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Abstract
In this paper, the sine-Gordon expansion method is used to obtain analytical
solutions of the conformable space-time generalized reaction Duffing model and
conformable space-time Eckhaus equation with the aid of symbolic computation.
These equations can be reduced into ordinary differential equations (ODEs) using a
suitable wave transformation with a predicted polynomial-type solution.
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1 Introduction
Nonlinear fractional differential equations (FDEs) have an important role in studying var-
ious areas of engineering, physics, and applied mathematics [1–5]. Investigation of an-
alytical solutions of nonlinear FDEs is very important in the analysis of some physical
phenomena, such as plasma physics, solid-state physics, nonlinear optics, and so on [6–
9]. In order to understand the mechanisms of these cases, it is necessary to obtain their
exact solutions [10, 11]. Thus, many researchers have tried to obtain analytical solutions
of these equations. Therefore, many methods and techniques are found to seek exact so-
lutions of nonlinear FDEs, such as separating variables method [12], homotopy analysis
method [13], Adomian decomposition method [14], fractional complex transform [15],
variational iteration method [16], Hirota’s bilinear method [17], homotopy perturbation
pade technique [18], G′

G2 -expansion method [19], sub-equation method [20, 21], simplest
equation method [22, 23], first integral method [24], and so on. In this letter, the following
two FDEs are solved using the sine-Gordon expansion method:

(I) The form of the space-time fractional Eckhaus equation

iDα
t ϕ + D2α

x ϕ + 2Dα
x |ϕ|2ϕ + |ϕ|4ϕ = 0, (1)

where ϕ = ϕ(x, t), ϕ : R2 → C. This equation was introduced by Wiktor Eckhaus to de-
scribe the propagation of waves in dispersive media [25]. Many of the properties of the
Eckhaus were studied in [26].
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(II) The form of the space-time fractional generalized reaction Duffing model [27]

D2α
t ϕ + aD2α

x ϕ + bϕ + cϕ2 + dϕ3 = 0. (2)

This model illustrates the motion of a damped oscillator. It is a case of a dynamical sys-
tem which presents chaotic behavior. Here, Dα is the conformable derivative [28, 29]. The
paper is organized as follows. Section 2 is given to introduce the definition of the con-
formable derivative and its properties. Description of the conformable sine-Gordon ex-
pansion method and its application to the space-time FDEs are given in Sect. 3. We obtain
exact solutions to the space-time fractional Eckhaus equation and the space-time frac-
tional generalized reaction Duffing model with sine-Gordon expansion method in Sect. 4.
Conclusions of this paper are summarized in Sect. 5.

2 Definition of the conformable derivative and its properties
In this section, we illustrate the definition of the conformable derivative and some of its
important properties of order α with respect to the independent variable z as follows [28].

Definition 1 For a function g : [0,∞] → R, the conformable fractional derivative of g of
order α is defined by

Dα
{

g(z)
}

= lim
η→0

g(z + ηz1–α) – g(z)
η

. (3)

Some well-known properties to this newly defined fractional derivative are as follows.
If f and g �= 0 are two functions α-differentiable, α ∈ (0, 1] and a, b ∈R, then we have

(1) Dα
{

af (z) + bg(z)
}

= aDαf (z) + bDαg(z),

(2) Dα
{

f (z)g(z)
}

= f (z)Dαg(z) + g(z)Dαf (z),

(3) Dα

{
f (z)
g(z)

}
=

g(z)Dαf (z) – f (z)Dαg(z)
g2(z)

,

(4) DαC = 0, for all constant functions f (z) = C,

(5) Dα(f )(z) = z1–α df
dz

.

Also, conformable fractional derivatives of some special functions are as follows:

(a) Dα
(
zr) = rzr–α for all r ∈R,

(b) Dα(1) = 0,

(c) Dα
(
ecz) = cz1–αecz, c ∈R,

(d) Dα(sin bz) = bz1–α cos bz, b ∈R,

(e) Dα(cos bz) = –bz1–α sin bz, b ∈R,

(f) Dα

(
1
α

zα

)
= 1.

The proofs of these properties can be seen in [28].
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Definition 2 Let α ∈ (n, n + 1], and g be α-differentiable at t > 0. Then the conformable
fractional derivative of g of order α is defined as

Dα
(
g(t)

)
= lim

η→0

g(�α�–1)(t + ηt(�α�–α)) – g(�α�–1)(t)
η

, (4)

where �α� is the smallest integer greater than or equal to α.

3 Conformable sine-Gordon expansion method and its applications to the
space-time fractional differential equations

The proper fractional form ϕ(x, t) = φ(ξ ) with

ξ = k
(

xα

α
– 2r

tα

α

)
(5)

of wave transformation reduces the fractional sine-Gordon equation

D2α
x ϕ – D2α

t ϕ = m2 sinϕ, (6)

where m is constant, to the ODE

d2φ

dξ 2 =
m2

k2(1 – 4r2)
sinφ. (7)

Here, r is velocity of the traveling wave. Therefore, we have

(d( φ

2 )
dξ

)2

=
m2

k2(1 – 4r2)
sin2 φ

2
, (8)

with ω(ξ ) = φ(ξ )
2 and b2 = m2

k2(1–4r2) = 1, equation (8) is changed to

dω

dξ
= sinω. (9)

The following relations can be obtained from (9):

sinω(ξ ) =
2γ eξ

γ 2e2ξ + 1

∣∣∣∣
γ =1

= sech ξ (10)

or

cosω(ξ ) =
γ 2e2ξ – 1
γ 2e2ξ + 1

∣∣∣∣
γ =1

= tanh ξ , (11)

where γ is integral constant and γ �= 0. Nonlinear FDEs

P
(
ϕ, Dα

t ϕ, Dα
x ϕ, D2α

t ϕ, D2α
x ϕ, . . .

)
= 0 (12)

with the traveling transformation (5) can be reduced to an ODE

P̃
(
φ,φ′,φ′′, . . .

)
= 0. (13)
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Here prime denotes the derivative with respect to ξ . Now, the solution to (13) can be
written

φ(ξ ) = a0 +
n∑

j=1

tanhj–1(ξ )
(
aj tanh(ξ ) + bj sech(ξ )

)
, (14)

or

φ(ω) = a0 +
n∑

j=1

cosj–1(ω)
(
aj cos(ω) + bj sin(ω)

)
, (15)

where a0, aj, bj (1 ≤ j ≤ n) are constants to be determined later, and n is fixed by balancing
between the highest nonlinear term and highest order derivative in (13). It is worth noting
the following derivatives of φ(ω) in equation (15).

• The first, second, and third derivatives of φ(ω) for n = 1 in equation (15) can be written
as follows:

φ(ω) = a0 + a1 cosω + b1 sinω, (16)

φ′(ω) = b1 cosω sinω – a1 sin2 ω, (17)

φ′′(ω) = b1
[
cos2 ω sinω – sin3 ω

]
– 2a1 sin2 ω cosω, (18)

φ′′′(ω) = b1
[
cos3 ω sinω – 5 sin3 ω cosω

]
– 2a1 sin2 ω

(
2 cos2 ω – sin2 ω

)
. (19)

• The first and second derivatives of φ(ω) for n = 2 in equation (15) can be written as
follows:

φ(ω) = a0 + a1 cosω + b1 sinω + a2 cos2 ω + b2 sinω cosω, (20)

φ′(ω) = –a1 sin2 ω – 2a2 cosω sin2 ω + b1 cosω sinω + b2
(
sinω – 2 sin3 ω

)
, (21)

φ′′(ω) = –2a1 sin2 ω cosω + 2a2 sin2 ω
(
sin2 ω – 2 cos2 ω

)

+ b1
(
cos2 ω sinω – sin3 ω

)
+ b2 cosω

(
sinω – 6 sin3 ω

)
. (22)

Substituting (15) along (9)–(11) into (13) and collecting all terms with the same powers
of sinω cosω together, the left-hand side of (13) is converted into a polynomial. After set-
ting each coefficient of this polynomial to zero, we obtain a set of algebraic equations in
terms of a0, a1, b1, . . . , k, and r. Solving the system of algebraic equations and then substi-
tuting the results into (13), gives solutions of (12).

4 Applications of the sine-Gordon expansion method to the space-time FDEs
• Applications of the sine-Gordon expansion method to the space-time fractional Eckhaus
equation

Here, we will demonstrate this method to the space-time fractional Eckhaus equation as
follows:

iDα
t ϕ + D2α

x ϕ + 2Dα
x |ϕ|2ϕ + |ϕ|4ϕ = 0, (23)
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by transformations

ϕ(x, t) = φ(ξ )eiθ ,

ξ = k
(

xα

α
– 2r

tα

α

)
, (24)

θ =
(

r
xα

α
+ s

tα

α

)
,

where θ illustrates the phase component, r is the velocity, s is the frequency, and k is the
width of the soliton, equation (23) becomes:

k2φξξ –
(
s + r2)φ + 4kφξφ

2 + φ5 = 0. (25)

Now, we suppose that

φ =
√

ψ , (26)

therefore, equation(25) can be reduced to the following ODE:

2k2ψψξξ – k2ψ2
ξ – 4

(
s + r2)ψ2 + 8kψξψ

2 + 4ψ4 = 0. (27)

Therefore, the solution of (27) can be expressed as follows:

ψ(ξ ) = a0 + a1 tanh(ξ ) + b1 sech(ξ ). (28)

Substituting (16)–(18) into (27) and equating all terms with the powers of sinω cosω to
zero, the following system can be obtained:

4a4
1 – 4a2

0r2 – 8a1a0r2 – 4a2
1r2 – 4a2

0s – 8a1a0s – 4a2
1s + 4a4

0 + 16a1a3
0

+ 24a2
1a2

0 + 16a3
1a0 = 0,

8a1a0r2 – 4a2
0r2 – 4a2

1r2 – 4a2
0s + 8a1a0s – 4a2

1s + 4a4
0 – 16a1a3

0 + 24a2
1a2

0

– 16a3
1a0 + 4a4

1 = 0,

4a0b1k2 + 4a1b1k2 + 16a2
0b1k + 32a1a0b1k + 16a2

1b1k – 16a0b1r2 – 16a1b1r2

– 16a0b1s – 16a1b1s + 32a3
0b1 + 96a1a2

0b1 + 96a2
1a0b1 + 32a3

1b1 = 0,

64b3
1k – 20a0b1k2 – 44a1b1k2 + 16a2

0b1k – 160a1a0b1k – 176a2
1b1k – 48a0b1r2

– 16a1b1r2 – 48a0b1s – 16a1b1s + 96a3
0b1 + 96a1a2

0b1 + 128a0b3
1 – 96a2

1a0b1

+ 128a1b3
1 – 96a3

1b1 = 0,

192a2
0b2

1 – 256a1b2
1k – 192a2

1b2
1 + 16a2

1k2 – 64a1a2
0k + 64a3

1k – 24a2
0r2 + 8a2

1r2

– 24a2
0s + 8a2

1s + 24a4
0 – 48a2

1a2
0 + 24a4

1 – 40b2
1k2 – 32b2

1r2 – 32b2
1s + 64b4

1 = 0,

44a1b1k2 – 20a0b1k2 – 16a2
0b1k – 160a1a0b1k + 176a2

1b1k – 48a0b1r2 + 16a1b1r2

– 48a0b1s + 16a1b1s + 96a3
0b1 – 96a1a2

0b1 + 128a0b3
1 – 96a2

1a0b1 – 128a1b3
1
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+ 96a3
1b1 – 64b3

1k = 0,

4a0b1k2 – 4a1b1k2 – 16a2
0b1k + 32a1a0b1k – 16a2

1b1k – 16a0b1r2 + 16a1b1r2

– 16a0b1s + 16a1b1s + 32a3
0b1 – 96a1a2

0b1 + 96a2
1a0b1 – 32a3

1b1 = 0.

Solving this system, we find a0, a1, and b1 as follows:
• Case 1:

a0 = –
k
4

, a1 = –
k
4

, b1 = ±
√

–r2 – s
2

; k = 2
√

r2 + s. (29)

Substituting (29) (case 1) in (28), we obtain solutions of (27) as follows:

ψ1(x, t) = –
√

r2 + s
2

(
1 + tanh

(
k
(

xα

α
– 2r

tα

α

)))
± i

√
r2 + s
2

sech

(
k
(

xα

α
– 2r

tα

α

))
.

Therefore, solutions of (23) can be written as follows:

ϕ1(x, t) =
{

–
√

r2 + s
2

(
1 + tanh

(
k
(

xα

α
– 2r

tα

α

)))

± i
√

r2 + s
2

sech

(
k
(

xα

α
– 2r

tα

α

))} 1
2

ei(r xα

α +s tα
α ).

• Case 2:

a0 =
k
4

, a1 = –
k
4

, b1 = ±
√

–r2 – s
2

; k = 2
√

r2 + s. (30)

Substituting (30) (case 2) in (28), we obtain solutions of (27) as follows:

ψ2(x, t) =
√

r2 + s
2

(
1 – tanh

(
k
(

xα

α
– 2r

tα

α

)))
± i

√
r2 + s
2

sech

(
k
(

xα

α
– 2r

tα

α

))
.

Now, solutions of (23) can be written as follows:

ϕ2(x, t) =
{√

r2 + s
2

(
1 – tanh

(
k
(

xα

α
– 2r

tα

α

)))

± i
√

r2 + s
2

sech

(
k
(

xα

α
– 2r

tα

α

))} 1
2

ei(r xα

α +s tα
α ).

• Case 3:

a0 = –
k
2

, a1 = –
k
2

, b1 = 0; k = –
√

r2 + s. (31)

Substituting (31) (case 3) in (28), we obtain solutions of (27) as follows:

ψ3(x, t) =
√

r2 + se(2k( xα

α –2r tα
α ))

e(2k( xα

α –2r tα
α )) + 1

.
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Also, solutions of (23) can be obtained as follows:

ϕ3(x, t) =
{√

r2 + se(2k( xα

α –2r tα
α ))

e(2k( xα

α –2r tα
α )) + 1

} 1
2

ei(r xα

α +s tα
α ).

• Case 4:

a0 =
k
2

, a1 = –
k
2

, b1 = 0; k =
√

r2 + s. (32)

Finally, substituting (32) (case 4) in (28), solutions of (27) can be calculated as follows:

ψ4(x, t) =
√

r2 + s

e(2k( xα

α –2r tα
α )) + 1

.

Furthermore, we obtain solutions of (27) as follows:

ϕ4(x, t) =
{ √

r2 + s

e(2k( xα

α –2r tα
α )) + 1

} 1
2

ei(r xα

α +s tα
α ).

• Applications of the sine-Gordon expansion method to the space-time fractional general-
ized reaction Duffing model

Now, we will demonstrate the sine-Gordon expansion method to the space-time fractional
generalized reaction Duffing model as follows:

A
0 D2α

t ϕ + aA
0 D2α

x ϕ + bϕ + cϕ2 + dϕ3 = 0 (33)

by transformations

ξ = k
(

xα

α
– 2r

tα

α

)
. (34)

Equation (33) becomes:

(
ak2 + 4k2r2)φξξ + bϕ + cϕ2 + dϕ3 = 0. (35)

With balancing, we get n = 1. Therefore, the solution of (35) can be expressed as follows:

ϕ(ξ ) = a0 + a1 tanh(ξ ) + b1 sech(ξ ). (36)

Substituting (36) along (17) and (18) into (35) and equating all terms with the powers of
sinω cosω to zero, the following system can be obtained:

a0b + a1b + a2
0c + 2a1a0c + a2

1c + a3
0d + 3a1a2

0d + 3a2
1a0d + a3

1d = 0,

4a0b1c + 4a1b1c + 6a2
0b1d + 6a2

1b1d + 12a0a1b1d + 2ab1k2 + 8b1k2r2 + 2bb1 = 0,

8a0b1c + 12a2
0b1d – 12a2

1b1d – 12ab1k2 + 8b3
1d – 48b1k2r2 + 4bb1 = 0,

4a0b1c – 4a1b1c + 6a2
0b1d + 6a2

1b1d – 12a0a1b1d + 2ab1k2 + 8b1k2r2 + 2bb1 = 0,
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a0b – a1b + a2
0c – 2a1a0c + a2

1c + a3
0d – 3a1a2

0d + 3a2
1a0d – a3

1d = 0,

12a0b2
1d – 12a1b2

1d + 3a0b – a1b + 3a2
0c – 2a1a0c – a2

1c + 3a3
0d – 3a1a2

0d – 3a2
1a0d

+ 3a3
1d + 32a1k2r2 + 8aa1k2 + 4b2

1c = 0,

12a0b2
1d + 12a1b2

1d + 3a0b + a1b + 3a2
0c + 2a1a0c – a2

1c + 3a3
0d + 3a1a2

0d – 3a2
1a0d

– 3a3
1d – 32a1k2r2 – 8aa1k2 + 4b2

1c = 0.

Solving this system, we obtain a0, a1, and b1 as follows:
• Case 1:

a0 = –
3b
2c

, a1 = ±3b
2c

, b1 = 0; a =
–b – 16k2r2

4k2 , b =
2c2

9d
. (37)

Substituting (37) (case 1) in (35), we obtain solutions of (33) as follows:

ϕ1(x, t) =
3b
2c

(
–1 ± tanh

(
k
(

xα

α
– 2r

tα

α

)))
.

• Case 2:

a0 = –
3b
2c

, a1 = 0, b1 = ±3
√

2b
2c

; a =
b – 8k2r2

2k2 , b =
2c2

9d
. (38)

Now, substituting (38) (case 2) in (35), we obtain solutions of (33) as follows:

ϕ2(x, t) =
3b
2c

(
–1 ± √

2 sech

(
k
(

xα

α
– 2r

tα

α

)))
.

• Case 3

a0 = –
3b
2c

, a1 =
3b
2c

, b1 = ±3ib
2c

; a =
–b – 4k2r2

k2 , b =
2c2

9d
. (39)

Furthermore, substituting (39) (case 3) in (35), we obtain solutions of (33) as follows:

ϕ3(x, t) =
3b
2c

(
–1 + tanh

(
k
(

xα

α
– 2r

tα

α

))
± i sech

(
k
(

xα

α
– 2r

tα

α

)))
.

• Case 4:

a0 =
–2b + ak2 + 4k2r2

c
, a1 = 0, b1 = ±2k

√
a + 4r2(–2b + ak2 + 4k2r2)

c
√

b
;

a = –4r2, b =
c2

4d
.

(40)

Finally, substituting (40) (case 4) in (35), we obtain solutions of (33) as follows:

ϕ4(x, t) =
k2(a + 4r2) – 2b

c

(
1 ± 2k

√
a + 4r2
√

b
sech

(
k
(

xα

α
– 2r

tα

α

)))
.
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5 Conclusion
In this paper, the sine-Gordon expansion method has been successfully used to obtain ex-
act solutions of the space-time fractional Eckhaus equation and the space-time fractional
generalized reaction Duffing model. For this method, by means of balance equations, we
obtained exact solutions of the studied class nonlinear FDEs. These solutions can be useful
to describe some physical phenomena. The results show that the sine-Gordon expansion
method is accurate and effective. Mathematica has been used for computations and pro-
gramming in this paper.
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