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Our faculties of perception are limited even for simple things...

Stanis law Lem
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Abstract

Recognizing emotion comes naturally to us. We are able to read people’s feelings quite

well, from their facial expressions, behavior, body posture, appearance and social interac-

tion with others. We often try to perceive or recognize, subconsciously and continuously,

what people might be feeling or what are the emotional states of people in specific sit-

uations. This ability helps us understand what people are feeling and, depending on

their emotional state, helps us respond appropriately. For example, if a person is sad

and feeling unhappy, instinctively we are ready to offer our support and empathize with

him. With a view to imparting such capability to machines, computer vision researchers

have developed automatic emotion recognition techniques based on a person’s facial ex-

pressions and, in some cases, the body posture. Some of these methods work remarkably

well in specific surroundings. However, their performance is limited in natural, uncon-

strained environments. Recent studies in psychology show that the scene context, in

addition to facial expression and body posture, contributes essential information to our

perception of people’s emotions. However, the processing of the context for automatic

emotion recognition has not been explored in depth, partly due to the lack of proper data.

We present EMOTIons in Context (EMOTIC), a dataset of images of people in natural

and diverse situations annotated with their apparent emotion. The EMOTIC database

combines two different types of emotion representations: (1) 26 Emotion Categories, and

(2) 3 Continuous Dimensions (Valence, Arousal, and Dominance). We present a detailed

statistical and algorithmic analysis of the dataset along with the annotators’ agreement
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analysis. We also develop a fusion Convolutional Neural Network (CNN) model which

takes the person and his surrounding scene (context) as inputs to predict about his emo-

tional state. We train this model on EMOTIC and analyse different configurations of the

CNN model.

When the model is trained using both the format of emotion representation, the pre-

diction performance is better when the context is present. Our results show that scene

context contributes important information to automatically recognize emotional states

and motivate further research in this direction.
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Chapter 1

Introduction

1.1 Emotion Recognition

In our daily lives, we are continuously engaged in trying to assess the emotions of people

we interact with. We process the information about the person and his surroundings

received through our sensory inputs like vision. While trying to determine the emotional

state of the person, we often wonder why do people feel the way they do? Why is someone

happy and why is anyone sad? We are affected by these feelings and quite often rely on

them. More interestingly, what are the causes for feeling what we feel? Are feelings hard-

coded inside us or do they change according to the situation and the environment we

find ourselves in? For example in Figure 1.1 there are 2 people doing a common activity

i.e. ‘reading a book’. When we pose the question: what are they feeling or thinking?, we

(a) Reading a book in the park (b) Reading a book in the office

Figure 1.1: Two people doing the same activity of reading a book in different surround-
ings. Depending on their surroundings, their perceived emotional states are
different

get different answers for each of the person. We perceive those differences due to their

1



2 CHAPTER 1. INTRODUCTION

surroundings. The person in Figure 1.1.a is reading in the park, and by the looks of his

posture and the clothes he is wearing, he seems to be in a relaxed mood; whereas the

person in Figure 1.1.b is reading in an office and his formal clothes along with his posture

gives us the impression that he is in work mode. However, observe that both of them are

engaged in their respective tasks. We see here that the difference of perception in their

emotional state is caused by multiple reasons, but their surrounding environment plays

and important part.

Complexity of our Emotion Perception The origins of emotions or rather the rea-

sons behind elicitation of our feelings has been an interesting area of research. These

basic questions have been investigated by many philosophers since the time of Plato and

Aristotle (de Sousa [2017]). Later on, Descartes (Damasio [2002]) deconstructed the spec-

trum of human emotions into a few elemental components out of which all other emotions

are synthesised. Although the inquiry was speculative and philosophical in nature, their

attempts made way for future researchers to finding the underlying structure of human

emotions. Darwin, a naturalist and a meticulous analyst (one of the most prominent

figure in human history), was also puzzled by the richness of human feelings and their

social constructs. He postulated that there might be universal basis for all emotions, that

there are fixed set of emotions decipherable from facial expressions. He also investigated

display of feelings in animals (Darwin [1998]).

During 1970’s, psychologists Ekman and Friesen, inspired by Darwin’s work, came up

with a definitive coding of facial expressions into action units called Facial Action Coding

System (FACS, Ekman and Friesen [1969]) which pushed forward emotion research. Their

work on facial expression recognition helped in augmenting our understanding of human

emotions and inspired the future research in human behaviour analysis. Recently, Hassin

et al. [2013] and Aviezer et al. [2008a] studied the effect of body and context in the

emotion perception. Their findings showed the importance and influence of multiple

external sources for emotion perception.

Neuroscientific point of view, the researchers investigated the processes responsible

for emotion elicitation in the brain. The limbic system in the brain, called the emotional

centre of the brain, is made of amygdala, hippocampus and hypothalamus functional units

(Stephani [2014]). Amygdala helps in processing the emotions like Fear, Anxiety and

Pleasure; Hippocampus provides mechanisms for storing past experiences in the form of

memories and; Hypothalamus controls the motor functions, including emotional responses.

Together, they form the limbic functional system that helps us maintain our emotional

health.

Computer scientists have also been engaged in emotional analysis, specifically com-
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puting human emotions through expressions in face (Masuda et al. [2008]), voice (Aviezer

et al. [2008b]), body pose (Bänziger et al. [2009a], Righart and De Gelder [2008]), EEG

(Jirayucharoensak et al. [2014]) and text (Chen et al. [2014]). These recent advancements

in computing technologies and the growing number of it’s applications has made emotion

recognition much more computationally viable than ever before. Many existing systems

or applications exist that have need for better automatic emotion recognition.

Darwin (Darwin [1998]) posed a question: Why do our emotions have variable forms

of expression? Emotional expressions once served particular functions (e.g. baring teeth

in anger to prepare for attack), but now accompany particular emotions because of their

usefulness in communicating one’s feelings and thoughts. Taking inspiration from Dar-

win’s work and building upon it, Paul Ekman (Ekman and Friesen [1969]) conducted a

benchmark study which laid the foundation of popularly known basic emotions (usually

listed as happiness, sadness, fear, anger, surprise, and disgust). However, this study

excludes emotions that have higher cognitive processes like jealousy, envy, etc. These

emotions show the sophisticated nature of our emotion perception (de Sousa [2017]).

During the early periods of human civilization, Fear played a central role in the survival

of our species. It was essential to have non-cognitive reflexes for survival, and Fear

helped elicit such reflexes. For example when a primitive man (defenseless) sees a lion

approaching towards him, he knows immediately that he is in mortal danger and he takes

action that can save his life. However, today, a similar effect of Fear is observed in different

situations. A person afraid of cockroaches might go crazy, despite the small size and the

harmlessness of the insect. These situations are very different from one another, however,

the emotion Fear is observed in both the cases. Why should such different circumstances

induce the same emotion? Is there any underlying factor that connects the two cases? It

can be argued that the intensity of Fear in both the cases is variable. These cases show

the sophisticated nature of our emotional structure.

1.1.1 Automatic Emotion Recognition and Applications

Recognizing emotion comes naturally to us. We are able to read people’s feelings quite

well, from their facial expressions, behaviour, body posture, appearance and social inter-

action with others. We do this recognition task subconsciously and continuously in our

daily lives. It is needless, therefore, to emphasise the importance of recognizing emotional

state of a person. It not only helps to understand what people are feeling in general,

but also to respond appropriately. For example, if a person is sad and feeling unhappy,

instinctively we are ready to offer our support and empathize with him.

When we look at a person it is very easy for us to put ourselves in his situation,
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and even to feel, to some degree, things that this person appears to be feeling. We use

frequently this exceptional ability of estimating how others feel in our everyday lives. Such

empathizing capacity serves us to be more helpful, sensitive, sympathetic, affectionate and

cordial in our social interactions. More generally, this capacity helps us understand other

people, their motivations and goals behind their actions and to predict how they will react

to different events. If a person is sad and feeling unhappy, instinctively we are ready to

offer our support and empathize with him.

Figure 1.2 serves as a motivation for trying to unravel the functioning of our brains

for such tasks. When we look at the images from left-to-right, the information content

increases as one moves from face → visible body → whole image. Facial expression (Figure

1.2.a) suggest that the boy is annoyed, while the body posture (Figure 1.2.b) suggests

that he is probably annoyed because of the apple, however, it is still not clear as his

gaze is not in the direction of the apple. When we see the bigger visual context (Figure

1.2.c), it is revealed that he is indeed annoyed but not just with the apple. He is not

happy about the girl eating the chocolate, almost feeling jealous about it. This analysis

helps in understanding how our perception of the emotional state changes according to

the different information available from the surroundings.

(a) Visible face

(b) Visible body

(c) Visible body with scene
context

Figure 1.2: Perceived emotion of the person changes from face → visible body → whole
image

Application point of view, there are many important scenarios where automatic emo-

tion recognition is crucial. Human Computer Interaction (HCI) involves a verbal or

non-verbal interchange between machine and human. There is a huge gap between how

a machine works and the functioning of human beings. HCI techniques try to bridge
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this gap. Emotion recognition is essential while designing such interfaces (Cowie et al.

[2001]). Automatic emotion recognition techniques can come handy to improve the ma-

chine’s limited capability to understand emotional response from humans. Another similar

application is in the advanced driver assistance systems (or ADAS) technology. Human

performance decreases during prolonged sleep depravation (Posada-Quintero et al. [2018]).

Due to this, the probability of accidents due to driver’s drowsiness is increased. Auto-

matic emotion recognition can help detect the emotions that are responsible for this kind

of tiredness early on and help avoid road-accidents. Emotion recognition is also important

for creating affective interactions for VR (Virtual Reality) applications. VR is used as a

medium to elicit affective response while inside the virtual environments. Automatic emo-

tion recognition is essential to create a feeling of presence inside the virtual environments

(Riva et al. [2007]).

Apart from technological applications, emotion recognition is also essential from hu-

man behaviour analysis perspective as well. While interacting with technology, human

emotions can be influenced and this in turn can affect the health of the individuals. Med-

ical applications are increasingly taking this into consideration in their design (Luneski

et al. [2008]). Another important application can be found in the field of mental health,

where the experts try to improve the lives of people suffering from disabilities related to

their mental health. Emotion regulation has shown good improvements in the treatment

process (Berking and Wupperman [2012]). During emotion regulation, the researchers

quite often take help of visual media that elicit affective reaction. The variability of the

applications of emotion recognition has made the field important for the coming years.

1.2 Role of Context in Emotion Recognition

The place and/or the social situation that the person finds himself affects his emotional

state and also influences the manner in which his feelings are perceived by an observer.

The context of the situation is an important aspect while analysing people’s feelings.

Despite research focusing on facial expression and body pose, there is ample research

work (Barrett et al. [2011], Aviezer et al. [2008a], Camras et al. [2006]) that asserts the

importance of context in emotion perception. We try to understand the role of context

through visual example shown in Figure 1.3.

There are 3 columns viz. Face/Head, Body and Person in Context. In the first column

(Face/Head) of Figure 1.3.a, we see a female’s face, she seems to be smiling suggesting

that she might be feeling happy. We cannot be sure just by looking at the face. In

second column (Body) of Figure 1.3.a, we see her body posture wearing a sports-wear.
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(a) Full frontal view of the person’s face is visible

(b) Facial profile of the person’s face is visible

(c) Only the back of the person’s face is visible

Figure 1.3: Examples showing people with different facial views, along with their body
posture and the surrounding scene. What can be said about the emotional
state of these people?
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We can see that she is indeed happy about something, but we cannot yet be sure. One

thing to note by her body posture is that something has grabbed her attention and she

is looking towards that direction with some anticipation. In the third column (Person-

in-Context) of Figure 1.3.a, we see that she is not only feeling happy, but also proud

of her achievement. It is difficult to tell from the image which kind of sport it is, but

using our common sense knowledge about such situations, we can say with certainty that

she is the winner. This fact adds information to our previous knowledge about the face

and her body posture and gives us more clues to understand what the person is feeling.

The face and/or the body posture were not enough to understand her emotional state.

The emotions suggested by facial expressions could change systematically and drastically

depending on the intensity of the context in which the face of the person is embedded in

(Aviezer et al. [2008a]). Figures 1.3.b & 1.3.c show examples of people whose faces and

body are immersed into different situations. In Figure 1.3.b only the profile of the face of

the person is visible, so it becomes complicated to anticipate his feelings. With his body

posture visible (second column, Figure 1.3.b), a bit more information is revealed which

indicates that the person is looking away toward something or someone - which apparently

has his attention, but it is not enough to tell us what he is feeling. Only when we see

the whole picture (third column, Figure 1.3.b) it becomes clearer that the person is in a

meeting room and he is paying attention to a person talking, probably feeling engaged in

the activity. Figure 1.3.c shows even more challenging situation. We just see the back of

the person’s head (first column) which does not give any information about the emotional

state of the person. The body posture (second column) reveals part of the story, but it

is only the whole image (third column) that portrays a bigger and more rich picture. We

see that the boy is playing, so he is engaged in playing with other kids, and he is probably

in a state of anticipation. We see that context is necessary to predict emotions when the

face of the person is not visible or partially occluded. Even when it is completely visible

(first column, Figure 1.3.a), the contextual cues present in the visual scene shapes our

emotional perception very heavily. This is a clear example of how the context affects a

person’s emotional state and also how it is equally important when trying to estimate a

person’s emotional state. Context not only changes the perception of the emotional state,

it also impacts what the person-in-context is actually feeling (Aviezer et al. [2008a]).

Psychological studies also discovered the effect of context on a person’s emotional

state. Barrett et al. [2011] contend that the perception of emotion is influenced by three

different types of context which are based on viz. (i) Stimulus, (ii) Perceiver and (iii)

Culture. The authors argue that Stimulus comes from the situational context that the

subject is embedded in. Figure 1.2 is a representation of this argument. We can see
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that despite having food (apple) in front, the boy gets annoyed because the girl gets

to eat the chocolate. Her action of eating chocolate serves as a stimulus to make the

boy feel annoyed. Various stimulus produces different kinds of emotional reactions -

which in turn also affects the perceived emotion. Perceiver or Observer is another source

of context according to the authors. It involves the use of verbal description by the

perceivers. Emotion perception inherently is restricted by the limitation of the language.

The authors affirm that quite often the association of the emotion words used to represent

the actual facial expressions is obscure. An example of this is shown in Figure 1.4, where

a single image was given to 2 observers and they were asked to recognize the emotion

of the subject using emotion categories (Table 3.1) and natural language. When asked

to choose the applicable emotions from a list, the observers concur on the categories.

However we see that their emotion perception starts to differ when asked to respond

using natural language. For Observer 1, the doctor doesn’t like what he is doing, where

as for Observer 2 he is being sympathetic. This signifies that the facial expressions are

not unambiguous, and that contextual information conditions the emotion perception.

Cultural context plays a sociological role in emotion perception. Emotion perception

changes across different cultures, even when the cultures share the same language. This

indicates that the cultural context is not a cause of language differences between cultures,

rather it is in itself an important contributor to the emotion perception. Culture dictates

how and where a perceiver looks while making emotion judgements.

Figure 1.4: Emotion perception of two observers presented via Emotion Categories and
Natural Language

Another study by Aviezer et al. [2008c] provides evidences by experimentation that

the facial expressions (and eventually the emotion of the person) is not invariant to the

context. The authors found that the scene context and the body posture affect the emotion

perception, even when the perception is done at early stages. It does not matter if the

emotions are perceived through specific categories or affect dimensions, their experiments

suggest that the context influences the emotion perception regardless of the representation
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format of the emotions. Hence, context should be taken as an important modelling factor

while designing emotion recognition systems.

Current systems which recognizing people’s emotions through images are good in

interpreting the emotions using face or body pose only, but they lack a holistic view and

do not consider the context of the scene while making predictions. These systems rely

heavily on facial features or work with only limited set of emotional states and do not work

when the face is occluded. There is a need for a more robust system that can understand

people’s emotions while also taking context in consideration. There is a lack of research

in this area mainly due to absence of a good labelled dataset which can overcome such

limitations. In the following section we explore the various sources of context and try to

understand their influence on the emotion perception.

1.2.1 Sources of Information for Emotion Recognition

We are surrounded by multitude of things in our day-to-day lives. Different inanimate

objects (utensils, furnitures, machines, vehicles, infrastructure, nature, etc) surround us

depending on the place and occasion. We live amongst (and are also surrounded by)

people like our colleagues, friends and family - also depending on the circumstances,

location and the time of the day. So the environment surrounding every person is unique

and changes continuously. And these various surroundings can influence the emotional

state of the person in many different ways. Due to these various situations, the perception

(from an observer’s point of view) of their emotional state is also heavily influenced. Here

we list and discuss some such sources of context that are accessible to use through our

vision capability.

1. Face Pose: Facial expressions have been and still are the primary source of emotion

and also the main point of focus for research in emotion recognition (Ekman and

Friesen [1969]; Essa and Pentland [1997]; Chanes et al. [2018]). Depending on the

visibility of the face (or face pose), it contributes different kind of information for

emotion recognition. For example in Figure 1.5, we see that a person with the same

facial expression with 9 different face poses. When viewed independently, each image

showcases distinct visual information.

2. Body Posture: One of the more effective way of communication includes the

way one displays his body posture. For example, when the faces in Figure 1.6 are

seen independent of their associated body pose, the emotion perceived is Disgust.

However, depending on the different body postures, the perception of the emotion

changes. When face with the same expression is put into different body context,
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Figure 1.5: Visual information for emotion recognition changes with the change in face
poses, for a fixed facial expression (Ouamane [2015])

emotions like Anger (Figure 1.6.b), Sadness (Figure 1.6.c) and Fear (Figure 1.6.d)

are perceived. This has been experimentally demonstrated by Aviezer et al. [2017]

(also, Martinez et al. [2016]) with ample more evidences (like Dael et al. [2012a];

Schindler et al. [2008]; Dael et al. [2012b]) that demonstrates the influence of body

pose on the perception of emotion of the given person. These examples suggest that

body posture is an important source of context for emotion perception and should

be considered part of the emotion recognition process.

3. Hand Gestures: Hand gestures form an integral part of the body posture. Here,

we discuss it’s influence on emotion perception by keeping the facial expression as

well as the body posture fixed. The gesture we use (or choose subconsciously -

learned through experience) supplement the expression of our feelings. The gesture

could be a simple movement of hand and can supplement our perception of the per-

son’s feelings. Similar to Figure 1.6, Figure 1.7 shows a person with the same facial

expression and giving different hand gestures. We can see how emotion perception

changes when we move from one gesture to the other. For instance, we see a huge

contrast in gestures 2 and 5. Gesture 2 suggests that the person is approving posi-

tively where as gesture 5 is a complete opposite suggesting rejection or disapproval.

Gesture is an important context for emotion perception. Mitra and Acharya [2007]

is a good survey on different gesture recognition, specifically the ones with hand

and faces.

4. Visual Scene: We travel to visit other places, cities or countries because we want

to explore different towns, their characteristics, people, food and culture. While

walking around a new village or neighbourhood, we see various things. We see
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(a) Body posture depicting disgust (b) Body posture depicting anger

(c) Body posture depicting sadness (d) Body posture depicting fear

Figure 1.6: Keeping the facial expression fixed, the body posture influences the perceived
emotion of the person (Aviezer et al. [2017])

Figure 1.7: Six different hand gestures suggesting distinct emotions (Link)
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a building that we have never seen before or have seen it but with a different

architecture style. Sometimes there are streets or shops which reminds us of our

own neighbourhood or something from our past. Such an experience gives us a

new kind of feeling. We enjoy this state of being and are in general happy. But

sometimes, there are situations or scenes that are disturbing or annoying, that makes

us feel sad or anger or even fear. For example, while walking in an unknown town,

we come across a deserted street in the middle of the night. It is very dark and

there is no sound at all - this might be scary and might make you feel afraid. The

visual scene described here is affecting the feelings of a person. Our perception of

the surrounding scene has a direct influence to our emotional state. For example,

when we see the two people in Figure 1.8 , we see that both are working but we

perceive their emotional states to be different. We can interpret that the person in

Figure 1.8.a is more relaxed as compared to the other, she is in her pyjamas which

are more comfortable than wearing a suit and tie while working. Visual scene is a

very important source of contextual information considering all the other sources.

Visual scene or the immediate surrounding of the person contains more holistic

information on the contexts affecting emotional state of the person.

Figure 1.8: Type of the surrounding visual scene impacts the emotion perception. For
example, the 2 people doing the same activity in different scenes are perceived
to have distinct emotional states

1.3 Motivation for Emotion Recognition

Human beings have different ways of sensing the physical world. We use tongue for

taste, ears for listening, nose for smelling and eyes for vision. Each of these senses are

unique and have their distinctive advantage over the other. However when we look at

the different sources of context that can affect our emotions (discussed in subsection 1.2.1

and Appendix C), all of them except audio are visual contexts that are accessible (and

eventually analyzable) through our vision capability. One can argue about the context
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called Prior Knowledge as not being directly accessible through vision, however, once we

have the visual input of the situation, then we can make a prediction about it which is

based on our prior knowledge (or experience). This makes the visual input as a necessary

requirement.

Computer vision being the primary field in understanding visual information, has a

distinctive advantage to use state of the art algorithms developed for scene understand-

ing (and visual information extraction) to understand emotions visually. In addition to

computer vision, fields like psychology and cognitive neurosciences also helped us for-

mulate our research problem. We divide our approach into 3 aspects. First Step is to

find or extract the visual features responsible for the emotion; Second Step is to tag the

extracted features with appropriate emotion labels so that they are distinguishable for

further analysis; and Third Step is to develop a model that uses the visual features and

their corresponding labels to make predictions about the perceived emotions.

Computer vision helps in visualising and perceiving the world and the people in it as

is seen though human vision system. It also helps to capture various visual features which

can be used to compute information about the world - type of objects, their position, rela-

tionship with other surrounding objects, etc (Lowe [1999]). Current research in computer

vision has demonstrated that algorithms have surpassed human-level visual recognition

(He et al. [2016]). Specifically, CNNs have helped achieve great performances on many

vision-related problems. Using the robust power of CNNs, a machine can visualise a per-

son’s facial expressions, body features and the surroundings - crucial first step towards

emotion recognition. Research related to emotion recognition in the field of psychology

focuses on the cause, effect and response of emotions. This helped us understand the

nature and different sources of emotion elicitation in humans. We learned how humans

perceive emotions - by forming categories of emotions and affect dimensions (Russell

[2003]) - which forms an important second step towards emotion recognition. Research

in cognitive neuroscience (Stephani [2014]) showed us how different neuronal pathways in

the human brain is responsible for elicitation, understanding and expression of emotions.

This helps us understand how the emotions are perceived by the human brain, conse-

quently aiding in development of a model for our emotion recognition pipeline - third, and

final step towards emotion recognition.

1.4 Thesis Outline and Contributions

In this section we discuss the main scope of this thesis, briefly outline the content and

coverage of each chapter and also summarize the main contributions of the thesis.



14 CHAPTER 1. INTRODUCTION

The principal goal of this thesis is to create the first model of automatic emotion

recognition from a computer vision perspective that explicitly includes the visual scene

context. We demonstrate the performance of the model through various empirical ex-

periments and analysis. In working towards this goal, we constructed a novel dataset

containing images of people taken in unconstrained environments - which provided suf-

ficient sources of visual context for the purpose of emotion recognition. Then, we used

crowd-sourcing techniques to generate emotion labels for people present in those images.

The work was done by human workers, who were selected based on their qualification to

being able to do such tasks. Then we used state of the art supervised learning algorithms

in computer vision to design emotion recognition pipeline based on the collected data -

which helped us demonstrate our principal goal.

Chapter 1 gives an introduction of the larger scope of the thesis and brief overview

of the ideas being covered in this thesis. It introduces emotion recognition as the main

problem domain of the thesis and discusses the relevance and importance in our daily

lives with examples of applications. Then the chapter introduces the role and affects of

visual context in emotion perception. The importance of context in emotion recognition is

explained with examples detailing different sources of contexts that have direct influence

on the emotion perception. It also expounds the importance and need for the development

of an automatic emotion recognition system. Before closing, the chapter gives an outline

of the whole document chapter-wise along with a brief summary of the main goals of the

thesis and gives a brief description of the main contributions.

Chapter 2 covers the discussion about related research in the area of emotion recog-

nition. The chapter starts with discussion of work related to emotion representation

methods. Then an overview of current research in emotion recognition from facial expres-

sions, body posture, group-level emotion recognition and related approaches is presented.

Following this, a discussion on currently available datasets related to the task of emotion

recognition is presented. The chapter closes with the comparison of contribution of this

thesis with respect to the previous research and datasets.

Chapter 3 introduces our EMOTIC dataset for the first time. The chapter is di-

vided into 2 main sections. The first section explains about the construction process

of EMOTIC, detailing all the aspects in each step. The second section is devoted to

the analysis of the generated annotations of the dataset. It presents a statistical and

an algorithmic analysis along with the analysis of the agreement between workers for the
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generated annotations. A discussion about common sense knowledge present in the visual

scene ends the chapter.

Chapter 4 focuses on design of an appropriate architecture for the task of emotion

recognition in context. It explains how state-of-art research in scene and object recognition

helped design our CNN-based EMOTIC fusion model. The chapter closes by explaining

the various criterion choices and the performance evaluation metrics used for training the

model on EMOTIC dataset.

Chapter 5 details and lists all the empirical experiments and their respective analysis

using the EMOTIC dataset and the fusion model. The chapter begins by explanation

of baseline experiments and their analysis performed using different features. Then the

chapter covers additional experiments done using more deeper networks with different

types of architectures. It also describes how using a different loss criterion helped improve

the performance. The chapter closes with a comparative analysis on using Sentibanks as

visual context features for emotion recognition.

Chapter 6 is an account of conclusions from the experiments performed with respect

to the current research paradigm. The chapter then explicitly describes the contributions

of the thesis in the research domain. This final chapter end the dissertation by outlining

different probable directions a future research can take based on the work presented in

this thesis.

Main Contributions of the thesis are summarized below:

1. Generation of a novel dataset - EMOTIC - in the field of emotion recognition in

context. Different scenes provide the necessary visual context. People in the im-

ages are annotated in their corresponding scene-contexts using 2 different emotion

representations [Chapter 3]

2. A CNN fusion model designed in accordance with the characteristics of the EMOTIC

dataset for automatic emotion recognition in visual scene context [Chapter 4]

3. Empirical experiments that demonstrate the influence of the visual scene contexts in

emotion recognition. In addition, a comparative study of different sources of visual

context features [Chapter 5]
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Chapter 2

Previous Research on Emotion

Recognition from Images

Emotion recognition is important for human behaviour analysis - which is an interesting

area of research in many fields (psychology (Ekman and Friesen [1969], Izard [1971], Rus-

sell [2003]), cognitive neuroscience (Hassin et al. [2013], Aviezer et al. [2008a], Ritter et al.

[2017]), computer science (Bänziger et al. [2009a])). As a consequence to the powerful

techniques developed in the recent years after the success of deep learning, computer sci-

entists are able to apply the new methods in multi-disciplinary fields. These new methods

are well suited for complex problems like modelling human behaviour and emotions. By

studying how humans interact with the world, we can model human behaviour. Emotion

recognition forms an integral part of the human behaviour analysis.

Researchers have studied multiple cues that allow us to recognize a person’s emotional

state. For example, viz. face (Beristain and Graña [2009]), body (Dael et al. [2012a]),

voice (Bänziger et al. [2009b]), gesture (Wan et al. [2016]), physiology (Bazgir et al.

[2019]; Goshvarpour et al. [2018]), tactile (Gunes and Pantic [2010]), text (Ferreira et al.

[2018]), brain-waves (Gunes and Pantic [2010]), etc. or a combination of these modalities

(Bänziger et al. [2009b]; Gunes and Pantic [2010]) - which also constitute the various

sources of emotion elicitation. Our vision helps us process the facial expressions, body

postures, hand and body gestures and written text (in the form of literature, novels, etc.

or any written material that can elicit emotions) for emotion recognition. Our audio

capability allows us to listen to voices; and through our sense of touch we can sometimes

feel the physiological changes in a person’s body to understand what the person is feeling.

Human beings use these modalities simultaneously to estimate a person’s emotional state.

Machines also have the capability to process these different modalities. The current

research in emotion recognition is focused in trying to create automatic mechanisms that

17
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can achieve commendable performance. We begin our review of related research by talking

about various emotion representation formats present in the current research paradigm.

2.1 Emotion Representation Formats

Automatic emotion recognition algorithms need to capture the complex emotional states

exhibited by humans. There are multiple ways for describing emotions. We mention the

,most commonly used representation formats:

1. Free Form: The emotions are described in the form of sentences and paragraphs

using words and phrases used in our daily lives. This text carries information about

the underlying affective states which is usually reflected in the usage of certain words

or grammatical alternatives. There have been attempts in figuring out the best

representation form for the emotions described in Free Form by building markup

languages (Schröder et al. [2007]). The HUMAINE database is an example where

the authors tried to bridge the gap between emotion elicitation and it’s annotation

(Douglas-Cowie et al. [2011])

2. Affect Dimensions: The emotions are indicated using scales based on different af-

fect terminologies. For example, Cowen and Keltner [2017] use 12 affect dimensions

while gathering emotional experiences. Annotators (or workers who are paid to do

such tasks) report their experiences on a given scale (an example of such a scale

would be the Likert scale (Likert [1932])) for each of those 12 affect dimensions.

Another, very popular approach is to use 3 independent affect dimensions (intro-

duced by Mehrabian [1995]). The three dimensions are viz. Valence, Arousal and

Dominance. Valence measures how positive or pleasant an emotion is, ranging from

negative to positive; Arousal measures the agitation level of the person, ranging

from non-active / calm to agitated / ready-to-act; and Dominance measures the

control level of the situation by the person, ranging from submissive / non-control

to dominant / in-control

3. Emotion Categories: The emotions are represented in discrete form using words

that represent the characteristics pertaining to that emotion. Darwin [1998] was the

first to suggest the permanence of human expressions. He suggested that the hu-

man emotions are universal and, based on the facial expressions, can be categorised

into modular (or discrete) emotion categories like Fear, Anger, etc. Du et al. [2014]

proposed a set of 21 facial emotion categories, defined as different combinations
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of the basic emotions, like happily surprised or happily disgusted. With this cate-

gorization the authors were able to give a fine-grained detail about the expressed

emotion. After multiple studies spread across many decades, modern psychologists

and neuroscientists also concur the modal form of emotions (Ekman and Friesen

[1969], Izard [1971])

Using these 3 methods of emotion description, the emotions of the person (enclosed in

bounding-box) in Figure 2.1 can be described as follows:

Figure 2.1: Example for emotion perception for the person-in-context. The perceived
emotion is using Free Form, Affect Dimensions and Emotion Categories

(i) Free Form - The person is lying down in pain and so multiple people are attending

him because he is injured. The fact that he is lying down suggest that he is suffering

in pain. He was involved in a sporting activity so maybe not sad or afraid but he

might be annoyed at the inconvenience

(ii) Affect Dimensions - The range of each dimension is between 1− 10, 1 being the

lowest value and 10 the highest.

(a) Valence = 2 : The person is injured and thus is in pain, so the valence is very

low
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(b) Arousal = 2 : Similarly, the person is not active any more due to the immobility

caused by the accident

(c) Dominance = 1 : He needs assistance to get better, clearly his ability to control

himself is limited due to the injury, so dominance takes a very low value as

well

(iii) Emotion Categories - The following categories are relevant labels, with their

conceptual descriptions

(a) Suffering - psychological or emotional pain; distressed; anguished

(b) Sadness - feeling unhappy, sorrow, disappointed, or discouraged

(c) Pain - physical suffering

(d) Fear - feeling suspicious or afraid of danger, threat, evil or pain; horror

We mentioned 3 different formats of emotion representation with a corresponding

example to have a broader understanding of the different formats available. Out of these

formats, Free Form is the most flexible allowing one to convey the perceived emotion

through verbal (or written) language. EMOTIC uses Affect Dimensions and Emotion

Categories to label the perceived emotions of the people.

2.2 Emotion Recognition from Images

In this thesis, we focus on the importance of visual scene context on our emotion percep-

tion. We introduced and discussed a few sources of context that can affect the emotion

recognition in section 1.3. Since our research is from the perspective of computer vision

we, therefore, analyze the most prominent state-of-art studies for their contributions and

shortcomings in this section.

2.2.1 Facial Expression Based Approaches

Most of the work has focused on the analysis of facial expression to predict emotions.

The base of most of these methods is the Facial Action Coding System (FACS) (Friesen

and Ekman [1978]), which encodes the facial expression using a set of specific localized

movements of the face, called Action Units (AUs). These facial-based approaches usually

use facial-geometry or appearance features to describe the face. The extracted features

are then used to recognize AUs and infer the basic emotions from it. Ekman and Friesen

(Ekman and Friesen [1971]) proposed the mapping of those action units into the following
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six emotions: anger, disgust, fear, happiness, sadness, and surprise. Current state-of-the-

art systems for emotion recognition from facial expression analysis use CNN to recognize

emotions from AUs.

Essa and Pentland [1997] developed a computer vision system to annotate the dynamic

movement of facial muscles using optical flow. The authors found that AUs of FACS are

insufficient to encode the visual motion of muscles, primarily because they are based on the

spatial pattern of the facial muscles. Their new proposed coding system, called FACS+,

is able to encode the spatio-temporal functionality of the muscles (as opposed to spatial

functionality in FACS) into their respective AUs. Pantic and Rothkrantz [2000] dived

deeper into feature representation techniques specific to emotion recognition from face.

Their system, called Integrated System for Facial Expression Recognition (ISFER), uses

hybrid approach to facial feature extraction. Li et al. [2009] take advantage of the local

features to model the facial expressions. They divide the face into sub-regions and extract

it’s local features like SIFT (Scale Invariant Feature Transform) and PHOG (Pyramid of

Histogram of Oriented Gradients) that help in getting the texture and shape information

of the sub-regions respectively.

Current state-of-the-art systems for emotion recognition from facial expression analysis

use CNN to recognize emotions from AUs. The main advantages of CNN based algorithms

is that they are able to highly reduce the dependency of the models on the physical

properties of the face components and the pre-processing steps, and introduce an “end-

to-end” learning system that is able to use the pixel values directly from the images.

Breuer and Kimmel [2017] use CNNs for feature extraction and inference. Zhao et al.

[2016] introduced a unified deep network, called Deep Region and Multi-label Learning

(DRML), where a novel region layer induces important facial regions forcing the learned

weights to capture structural information of the face. The complete network is end-to-end

trainable, and automatically learns representations robust to variations inherent within a

local region. Jung et al. [2015] trained 2 different CNNs for learning temporal appearance

features and temporal geometry features respectively.A more intensive analysis on the

different research work, based on deep learning and CNNs directed towards facial emotion

recognition from images and video, can be found in Ko [2018].

2.2.2 Body Posture Based Approaches

Although the research in emotion recognition from a computer vision perspective is mainly

focused in the analysis of the facial expressions (Beristain and Graña [2009]), recent re-

search has also focused to consider other additional visual cues or multimodal approaches.

A person’s body has lot of information that can help understand what that person is feel-
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ing. This information could be in the form of gestures, body posture, facial expressions

and head pose. Schindler et al. [2008] implement a computational model to understand

body emotional language. Their main focus is studying the emotional language conveyed

by the human body’s posture when the subjects are shown stimuli to elicit emotional re-

ponse. The faces of the subjects, although visible, are not very clear sometimes (as shown

in Figure 2.2 Row-1 for fearful and sad emotions). The authors do not neglect this visual

information, rather they include it in their model as a coarse representation. As seen in

Figure 2.2, different body postures can still communicate the same emotion. This gave us

a good motivation to consider the emotional language communicated by the human body

posture as an important contextual cue for understanding emotional state in our model

as well. Furthermore, Dael et al. [2012b] developed their Body Action and Posture (BAP)

system to understand how the body posture conveys not only the emotion intensity but

also some postures convey important information about particular emotions and augment

the understanding of the overall emotional state of the person. In their attempt, they

compared their findings with related theories and suggest that a more thorough design of

experiments was needed.

Figure 2.2: Different body postures that represent various emotion stimuli, while main-
taining a uniform background (Adams Jr and Kleck [2005])
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In order to find out the effect of body posture on the perception of emotions, Aviezer

et al. [2012] carried out an interesting experiment. They used a single face and superim-

posed it on different body poses (Figure 1.6). As the authors report, perception of the

emotions changed from one posture to another.

The dynamic body movement is also an essential source for estimating emotion. Stud-

ies such as Kleinsmith and Bianchi-Berthouze [2007] & Kleinsmith et al. [2011] establish

the relationship between affect and body posture using as ground truth the base-rate of

human observers. The data consist of a spontaneous set of images acquired under a re-

strictive setting (people playing Wii games). Similarly, Dael et al. [2012a] also show that

body posture conveys not only positive or negative emotions, but also specific emotions.

The research has also focused on using neural networks for modeling and training the

body features to recognize emotions. Nicolaou et al. [2011] used the location of shoulders

as additional information to the face features to recognize basic emotions. The authors

compare the performance of traditional Support Vector Regressors (SVRs) against a bi-

directional Long Short Term Memory (BLSTM). Due to the ability of LSTMs to model the

past and future information, they could perform much better than SVRs. Schindler et al.

[2008] demonstrate computationally that different body poses have different emotions.

They use a biologically inspired design of neural network to model different body poses

to recognize 6 basic emotions. They conducted experiments on a small dataset of non-

spontaneous poses acquired under controlled conditions.

2.2.3 Group-level and whole-Image based Approaches

Apart from face and body, there are research work that have focused on more holistic

approaches to emotion where the whole image is considered for extraction of relevant

features. For example, Marchesotti et al. [2011] try to estimate the aesthetic aspects of an

image computationally using image descriptors. Recent works mainly use the advantages

offered by CNNs and deep learning to create better models and improve performance.

Mou et al. [2015] presented a system of affect analysis in still images of groups of people,

recognizing group-level arousal and valence from combining face, body and contextual

information. Polańıa and Barner [2017] use a hybrid network that uses global scene

features, skeleton features of the group and the facial features to make predictions about

the group-level emotion. Dolz and Pedersoli [2018] employ an attention mechanism in their

CNN pipeline to incorporate group-level emotion information as part of their attention

mechanism.

EmotiW (Emotion Recognition in the Wild) challenges (Dhall et al. [2017]) have pro-

vided researchers a platform where people can test their approaches to group-level emo-
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tion recognition. Here, the researchers submit their solutions and are evaluated against a

common test-set of samples. EmotiW host 3 databases: (1 ) The AFEW database (Dhall

et al. [2012a]) focuses on emotion recognition from video frames taken from movies and

TV shows, where the actions are annotated with attributes like name, age of actor, age

of character, pose, gender, expression of person, the overall clip expression and the basic

6 emotions and a neutral category; (2 ) The SFEW, which is a subset of AFEW database

containing images of face-frames annotated specifically with the 6 basic emotions and a

neutral category; and (3 ) the HAPPEI database (Dhall et al. [2012b]), which addresses

the problem of group level emotion estimation. In this work we can see an attempt to use

context for the problem of predicting happiness in groups of people.

Image Sentiment Analysis deals with any type of image and the goal is to recognize

the emotion an observer will have when looking at the image. This could be an interesting

source of group-emotion features, when the image contains people in them. Chen et al.

[2014] built a visual sentiment concepts called Adjective-Noun Pair (ANP) - which they

discovered by mining millions of tags from web photos. ANPs can be used as features to

find interesting information about the image.

2.3 Image-based Datasets for Emotion Recognition

The availability of appropriate data for visual recognition tasks is very important. Our

goal in this thesis is to recognize emotions of people through images, so it is important to

study the currently available datasets and analyze their feasibility for our purposes. Most

of existing datasets for emotion recognition are centered in facial expression analysis. For

example, the GENKI database (http://mplab.ucsd.edu) contains frontal face images

of a single person with different illumination, geographic, personal and ethnic settings.

Images in this dataset are labeled as smiling or non-smiling. Another common facial

expression analysis dataset is the ICML Face-Expression Recognition dataset (Goodfellow

et al. [2013]), that contains 28, 000 images annotated with 6 basic emotions and a neutral

category. On the other hand, the UCDSEE dataset (Tracy et al. [2009]) has a set of 9

emotion expressions acted by 4 persons. The lab setting is strictly kept the same in order

to focus mainly on the facial expression of the person. In addition to these, there is a

huge number of datasets that focus on facial expressions. Table 2.1 shows a list of publicly

available datasets for face images. We mention short description about the kind of facial

expression is present in the dataset and their corresponding quantity. Refer Table B.1

in Appendix B for their corresponding references and download links. Recently, Google

launched a Dataset Search (Google)

http://mplab.ucsd.edu
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Dataset Description Data Info
CK+ Posed and spontaneous facial expressions

(123 Subjects)
593 Video Se-
quences

CE 22 Compound facial emotions (230 Subjects) 5060 Images
DISFA+ Posed and spontaneous facial expressions

with 66 Facial Landmarks (27 Subjects)
130000 Stereo
Videos

Yale Face DB 9 face poses and 64 illumination conditions
(28 Subjects)

16128 Images

MMI Posed facial expressions - frontal and profile
(75 Subjects)

2900 Sequences
and Images

KDEF Posed facial expressions from 5 angles (70
Subjects)

4900 Images

PubFig Spontaneous face images (200 Subjects) 58797 Images
ExpW Spontaneous face images 91793 Images
CASIA WebFace Spontaneous face images from the Web

(10575 Subjects)
494414 Images

Table 2.1: Various publicly available facial expression datasets with their descriptions and
data quantity

Fabian Benitez-Quiroz et al. [2016] introduced a novel computer vision algorithm that

can annotate millions of images of facial expressions in the wild. The algorithm can

automatically detect the AUs and their respective intensities and map these to their

respective emotion categories. This algorithm provides an efficient tool for generating

large datasets.

There are datasets that also include the body of the person along with other related

modalities. For example, the GEMEP database Bänziger et al. [2006] is multi-modal

(audio and video) and has 10 actors playing 18 affective states. The dataset has videos

of actors showing emotions through acting. Body pose and facial expression are com-

bined along with multi-modal sources of producing output (audio and video). In another

example, Dael et al. [2012b] developed a dataset that contains videos of actors showing

emotions through acting - a combination of facial expressions and body pose.

The Looking at People (LAP) challenges and competitions (Escalera et al. [2017]) in-

volve specialized datasets containing images, sequences of images and multi-modal data.

The main focus of these datasets is the complexity and variability of human body configu-

ration which include data related to personality traits (spontaneous), gesture recognition

(acted), apparent age recognition (spontaneous), cultural event recognition (spontaneous),

action/interaction recognition and human pose recognition (spontaneous).

COCO dataset (Lin et al. [2014]) is one of the most exhaustively annotated datasets

available in computer vision community for visual recognition. COCO has been recently
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annotated with object attributes (Patterson and Hays [2016]), including some emotion

categories for people, such as happy and curious. These attributes show some overlap

with the emotion categories that we define in this thesis (Table 3.1). However, COCO

attributes are not intended to be exhaustive for emotion recognition, and not all the people

in the dataset are annotated with affect attributes. The biggest advantage of this dataset

is that it has the potential to be annotated with more exhaustive emotion attributes, given

that it already has object annotation, instance segmentation, cations for the visual scene,

people key-points, scene segmentations, stuff segmentation (which includes background

and foreground) and some affect attributes. These visual recognition tasks can serve as

good contextual cues for emotion recognition in context.

2.3.1 Shortcomings of the currrent Datasets

There has been a lot of research in emotion recognition from images due to which currently

there are lot of datasets out there. The problem of emotional state recognition is extremely

complex, but our hypothesis is that there are three important limitations in the current

approaches and datasets that we have reviewed:

1. The datasets have been generated in lab environments or the images of the people

are constrained (acted, posed or fixed)

2. The existing databases in emotion recognition (as discussed in the previous section)

lack fine-grain labels of human emotions. Most studies classify emotions according

to 6 categories, but this is far from the fine grain categorization that humans are ca-

pable of. In this work we introduce a more sophisticated set of 26 emotion categories

and combine them with the common continuous dimensions (valence, arousal and

dominance). This combination provides a rich description of the emotional state of

a person

3. The visual scene context (the surroundings of the person) is an important source of

information and has not been incorporated in previous studies

As an example, we compare the content of images present in EMOTIC with Cohn-

Kanade (Lucey et al. [2010]) and EMOTIONET (Fabian Benitez-Quiroz et al. [2016]).

EMOTIC includes the visual scene contextual features thereby enriching it with more

information content. For example: We can see in Figure 2.3.(a,1) that the woman is in

pain from some suffering and the other woman is trying to sympathize with her. Similarly

we can see in Figure 2.3.(a,5) that an old man is completely engaged in his painting - these

kind of information is absent in other datasets (Figure 2.3.b, Figure 2.3.c). EMOTIC also
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(a) EMOTIC

(b) Cohn-Kanade

(c) EMO-
TIONET

Figure 2.3: Sample images from EMOTIC, CK (Kanade et al. [2000]) and EMOTIONET
(Fabian Benitez-Quiroz et al. [2016]) datasets in rows (a), (b) and (c) respec-
tively

includes images with faces not clearly visible. For example: In Figure 2.3.(a,2) & 2.3.(a,3),

the faces are obscured, however, their pose, attention, objects they hold and corresponding

backgrounds provide more information about their emotional states.



28CHAPTER 2. PREVIOUS RESEARCHON EMOTION RECOGNITION FROM IMAGES



Chapter 3

EMOTIC Dataset

Machine learning has become ubiquitous for the past few years. Due to the availability

of fast, immense and cheap computing resources, machine learning algorithms are being

used by increasing number of researchers, companies and various institutions to either

improve state of the art or build smarter applications across disciplines. However, the

performance of machine learning algorithms is limited by the amount of data available.

Since there were enough computing resources, and not enough data, many new datasets

have proliferated since. As a result there are many benchmark datasets in computer vision

research available to work on. A good list of such datasets can be found on these links

(1) Fisher [2018] and (2) Wikipedia [2018].

In previous chapter (chapter 2), we saw various emotion recognition datasets based on

facial expressions, body pose and group-based emotion recognition. In all those datasets,

none of them considered the visual context (Section 1.2.1) for emotion estimation. This

fact, combined with the importance of context (Section 1.2) in emotion perception, gave

motivation to create the EMOTIC dataset with essential characteristics absent in pre-

vious datasets.

Specifically, the EMOTIC dataset is characterised by:

1. Appearance of Subjects: The images of people in EMOTIC is natural and not

acted (like in laboratory environments) and is not restricted by their facial expres-

sions, head pose or the body postures.

2. Presence of Context: The background or the surrounding environment is present

in the image and, also, not restricted to any particular location or setting. The

images can show any place, view point or social situation. People can be doing

different activities and have any object around them, including other people.

29
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3. Extensive Emotion labels: The subjects are labelled with emotions that are very

comprehensive. The emotion representations are unambiguous and encompasses

widest range of human emotions. The apparent emotions of people are represented

by a combination of 26 extensive discrete emotion categories and 3 continuous di-

mensions (Figure 3.19)

These attributes give a distinctive quality to the kind of data collected under the

umbrella of EMOTIC. This differentiates EMOTIC from any other emotion-recognition

dataset ever collected with regard to the type of images and their corresponding emotion

labels.

3.1 EMOTIC Dataset Construction

The creation of the present EMOTIC dataset was divided into 2 releases:

1. In the first release, 18316 images were annotated overall. There are images with

more than one person and, quite often, these people also have been annotated with

emotion labels. So, overall, there are 23788 people, each with their own annotations.

After dividing the dataset into Train (70%), Test (20%) & Validation (10%), each

person in the Test set was annotated by 2 additional distinct annotators. These

supplemental annotations were carried out to have Test set of images with exhaustive

labels from multiple different annotators. This created a bigger pool of labels for

each person making it more efficient for testing the model after the training

2. In the second release, 44% more people were added to the previous collection making

the final count of 34320 people in 23571 images. All the newly added instances in

Test set were also annotated with 2 additional annotators similar to the previous

release. For rigorous analysis of annotators’ agreement, each annotation in the

Validation set was annotated with 4 additional distinct annotators. Since Validation

set has more images as compared to the Test set, it has more definitive content for

doing agreement analysis amongst the annotators.

The creation of EMOTIC constitutes multiple stages for both the releases; with some

of them iterative. It began with collection of images while creating the emotion repre-

sentation formats simultaneously. Both these stages influence one another heavily. For

example: while using the name of an emotion category (from the set of emotion categories

compiled (Section 2.1) thus far) to look for related images, sometimes, we encountered
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people whose emotional states were not represented in the set of emotion categories. Dur-

ing such scenarios, the newly found emotional state of the person was added in the set of

emotion categories, and the image was also added to the main collection (Section 3.1.1).

3.1.1 Image Data Collection

EMOTIC is an image based dataset containing people as it’s main subject. So, it is

only natural that we started looking at the current available datasets. We sought those

datasets which have similarities to the characteristics that we desire in our dataset (page

29). Another important aspect is to only collect images that have the subjects’ (people,

in our case) location available in the image. Figure 3.1 gives an example of this aspect.

While generating annotations (Section 3.1.3), the subject needs to be localised in the

image so that it is distinguishable from the context to avoid ambiguity.

(a) (b) (c)

Figure 3.1: Example images from EMOTIC: The person-in-context is enclosed in a rect-
angular bounding-box

The main 3 sources for images in EMOTIC are the following:

1. COCO (Lin et al. [2014]) (COmmon objects in COntext (COCO)) - COCO

is a large-scale object detection, segmentation, and captioning dataset. It also

contains images with respective bounding-boxes for the objects (including people as

shown in Figure 3.1) present in the images. There are 80 object categories that are

annotated with their respective bounding-boxes and segmentation masks, including

people. So, we parsed COCO for images containing only people and added those to

the collection with their corresponding meta-data (including bounding-boxes)

2. ADE20K (Scene Parsing Benchmark) (Zhou et al. [2017b]) - ADE20K is

a scene parsing dataset with dense annotations of objects, including object parts.

We parsed ADE20K and collected images containing people and added them to our

collection along with their respective bounding-boxes
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3. Search Engines like Google - We queried Google with words from the list of

emotion categories (curated simultaneously (Section 2.1)), and collected images with

desired characteristics (page 29). People in these images were manually localised

with their respective bounding-boxes and then added in our collection

3.1.2 Emotion Representation format for EMOTIC

The emotion representation needs to be such that it can be handled computationally

and is easy to compare for different images. Since there are numerous ways of ascrib-

ing emotional states using natural language, it becomes challenging to compare different

annotations generated for the same image (section 2.1). In this thesis, we choose viz.

Affect Dimensions and Emotion Categories as our emotion representation formats which

we describe below.

3.1.2.1 Continuous Dimensions (or Affect Dimensions)

Affect Dimensions are very simple to understand and implement. Since the readings

recorded from these dimensions could have real valued numbers, we call them continuous

dimensions. The 3 continuous dimensions Valence, Arousal and Dominance were adopted

as one of the formats for emotion representation for EMOTIC, Mehrabian [1995] called

them Emotional State Model. In this model, emotions are represented as a tuple of

(V,A,D) with values ranging from 1 to 10. Valence, Arousal and Dominance represent

the axes of a 3D cartesian co-ordinate system. Valence represents the positiveness or

pleasantness of an emotional state. A negative emotion has a lower Valence value while

a positive emotion has a higher value (ref Figure 3.11). Similarly, Arousal represents the

activeness of a person in a particular situation. If the person is calm then the Arousal

values will be low, whereas for high activity the Arousal value will be high (ref Figure 3.12).

The third dimension, Dominance, represents how much a person is in control of the

situation. If a person is sad, in pain or is suffering for some reason, then she is not able

to keep a check on herself under the circumstances. Lower Dominance value means that

the person is not confident and unsure in the given situation. A high Dominance value

means that the person comprehends the situation and is to some extent confident (ref

Figure 3.13). Figure 3.2 shows examples of people annotated by their associated value of

the given dimension.
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Figure 3.2: Examples of annotated images in EMOTIC dataset for each of the 3 contin-
uous dimensions viz. Valence, Arousal & Dominance. The person in the red
bounding box has the corresponding value of the given dimension, mentioned
at the top of each image

3.1.2.2 Emotion Categories

In the work by Cowen and Keltner [2017], the authors found through cross-validated re-

gression that the affect dimensions fail to capture the whole spectrum of discrete emotion

categories. In their regression analysis the authors found that their discrete categories

(27 in all) were able to predict affect dimensions with 78% reliance, however, the af-

fect dimensions could only capture 61% of the discrete categories - suggesting that the

affect dimensions are not able to comprehensively represent the emotion space. Categor-

ical emotions cover extensively affect dimensional space and not the other way around.

Continuous dimensions alone aren’t enough to represent the full breadth of emotional

response. So we start building a list of emotion categories.

We collected an affect vocabulary from various resources like standard dictionaries

(Dictionary [a], Dictionary [b]) and references on psychology (Picard [1997], Fernández-

Abascal et al. [2010]). This vocabulary consists of a list of approximately 400 words

representing a wide variety of emotional states. After a careful study of the definitions

and the similarities amongst these definitions, we formed cluster of words with similar

meanings. The clusters were formalized into 26 (Table 3.1) categories such that they were

distinguishable from one another. For each category, it is possible to find an image of a

person representing that emotion category. The final list of 26 affective categories (we

call them emotion categories) were created taking into account the Visual Separability
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criterion: words (that represent different affective states) that have similar definitions or

meanings and not visually separable were grouped into one category. Those states for

which it is not easy to find representative images were grouped into one category. For

instance, Anger is defined by the words rage, furious and resentful. These affective states

are different, but it is not always possible to separate them visually in a single image.

Thus, the list of affective categories can be seen as a first level of a hierarchy, where

each category has associated subcategories. It is interesting to note that the final list of

emotion categories also includes the 6 basic emotions introduced by Ekman and Friesen

[1969]. The emotion categories 2, 5, 16, 17, 21, 24 from Table 3.1 represent Anger, Disgust,

Fear, Happiness, Sadness, Surprise respectively. However, there is one exception in that

we used the more general term Aversion for the category Disgust. Thus, the category

Aversion also includes the subcategories dislike, repulsion, and hate in addition to disgust.

The list of the 26 emotional categories that represent various state of emotions and their

corresponding definitions can be found in Table 3.1. Figure 3.3 gives 2 visual examples

of each category. These images are selected from annotations of the EMOTIC dataset.

Figure 3.3: Examples of annotated people in EMOTIC dataset for each of the 26 emotion
categories (Table 3.1). The person in the red bounding box is annotated by
the corresponding category.

According to Keltner and Cordaro, the 26 number of emotion categories is not too

large. They claim that the popularly known 6 basic emotions (Ekman and Friesen [1969])

are not exhaustive. In their work, they showed 2185 videos to their subjects. These videos

elicit varied kinds of emotions. The people who watched the videos were asked to report

their emotional experiences. The authors found out through an exhaustive analysis that

there were at least 27 distinct emotional experiences reported. We found a significant
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1. Affection: fond feelings; love; tenderness
2. Anger: intense displeasure or rage; furious; resentful
3. Annoyance: bothered by something or someone; irritated; impatient; frustrated
4. Anticipation: state of looking forward; hoping on or getting prepared for
possible future events
5. Aversion: feeling disgust, dislike, repulsion; feeling hate
6. Confidence: feeling of being certain; conviction that an outcome will be
favourable; encouraged; proud
7. Disapproval: feeling that something is wrong or reprehensible; contempt; hostile
8. Disconnection: feeling not interested in the main event of the surrounding;
indifferent; bored; distracted
9. Disquietment: nervous; worried; upset; anxious; tense; pressured; alarmed
10. Doubt/Confusion: difficulty to understand or decide; thinking about
different options
11. Embarrassment: feeling ashamed or guilty
12. Engagement: paying attention to something; absorbed into something;
curious; interested
13. Esteem: feelings of favorable opinion or judgment; respect; admiration;
gratefulness
14. Excitement: feeling enthusiasm; stimulated; energetic
15. Fatigue: weariness; tiredness; sleepy
16. Fear: feeling suspicious or afraid of danger, threat, evil or pain; horror
17. Happiness: feeling delighted; feeling enjoyment or amusement
18. Pain: physical suffering
19. Peace: well being and relaxed; no worry; having positive thoughts or
sensations; satisfied
20. Pleasure: feeling of delight in the senses
21. Sadness: feeling unhappy, sorrow, disappointed, or discouraged
22. Sensitivity: feeling of being physically or emotionally wounded; feeling
delicate or vulnerable
23. Suffering: psychological or emotional pain; distressed; anguished
24. Surprise: sudden discovery of something unexpected
25. Sympathy: state of sharing others’ emotions, goals or troubles; supportive;
compassionate
26. Yearning: strong desire to have something; jealous; envious; lust

Table 3.1: Proposed emotion categories with definitions.
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overlap between the 27 categories reported by the authors and the 26 emotion categories

we defined in Table 3.1. The comparison between the 2 categories is reported in the

Appendix A.

3.1.2.3 Combined Emotion Representation for EMOTIC

Studies conducted by various groups (Russell [2003]; Clore and Ortony [2013]; Scherer

[2009]) have revealed the underlying continuous dimensions (Valence, Arousal and Dom-

inance). In their work, Smith and Ellsworth [1985], review and ascertain the evidence of

Valence and Arousal emotional dimensions. In addition, they discuss their new-found 6

appraisal dimensions affecting the emotional experience and showed how the dimensional

approach influences the existing categorical approach. Multiple studies (Russell [1991];

Sabini and Silver [2005]) focused on the elicitation of emotional experiences that could

be recorded in discrete forms of emotions like anger and fear. Russell [2003] also laid

a descriptive ground-work to assist the combination of different modalities of emotion

recognition, including emotion categories and continuous dimensions. The combination

of continuous dimensions and emotion categories can be thought of a comprehensive tool

for emotion annotation. Both capturing emotional states in different modalities. Contin-

uous Dimensions use intensities across Valence and Arousal dimensions to capture the

intensity of feeling; whereas Emotion Categories try to capture the essence of a specific

emotion defined in a categorical fashion (Table 3.1). Each person in EMOTIC is anno-

tated using both the formats of emotion representation to assist a deeper understanding

of emotional state of people in different situations.

3.1.3 Collecting Annotations

After collecting images (Section 3.1.1) and building a comprehensive emotion representa-

tion format (Section 3.1.2), the next step is to get all the people in the images annotated.

Since there are thousands of images, it is impossible to generate all the annotations in

a lab or by a few people. A few hundred people are needed to generate all the required

annotations. Also, it is not recommended to generate annotations by a fixed set of indi-

viduals since this might create invisible biases in the annotations. The emotion perception

task is subjective in nature, so it is required that there are multiple different annotators.

Crowd-sourcing is a good method to gather annotations or labels in huge numbers

with multiple different annotators. Amazon Mechanical Turk (AMT) is one such crowd-

sourcing marketplace where there are annotators who can do such tasks anonymously.

The annotators are called Workers and the people who launch their tasks for generating

annotations are called Requesters. The tasks to be launched on AMT platform are called
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Human Intelligence Task (HIT). The workers get paid accordingly for doing these HITs

by the requesters. The identities of workers are hidden from requesters. Anyone residing

in either of the 43 countries (Turk [a]) can sign-up on AMT to become a worker. For

the first release of EMOTIC dataset, workers from 4 countries (Turk [b]) were allowed to

become workers on the AMT platform, whereas for the second release of the EMOTIC

dataset, workers from 43 countries (Turk [b]) were allowed to work on the AMT platform.

AMT provides a huge workforce who have varied professional background, gender, age,

demography, income and nationality (Ross et al. [2009]). According to the latest (2010

A.D.) study published on the background of the workers (Ross et al. [2010]), majority of

the workers on AMT are young, highly-educated people with a good gender distribution

- 48% males, 52% females. This ensures to certain extent that the responses will not be

biased based on these criteria. AMT is used to collect the annotations for all the people

in the EMOTIC dataset.

There are 3 HITs designed for generating all the annotations for EMOTIC. These are

described as follows:

1. Emotional Quotient (EQ) Task: In this task, the workers are asked simple

questions to gauge their emotional empathy skills. The questions are taken from

a standard study done by Groen et al. [2015]. These questions are very general

in nature asking about certain situations a person might face in real life and the

decisions, thereby, he/she takes. These decisions (or responses) help us estimate

their empathizing quotient. The worker needs to respond as if he is part of that

situation

2. Emotion Category (EC) Task: The worker is shown the person-in-context along

with all the 26 emotion categories. He has to put himself in that person’s position,

imagine how that person is feeling and select all the emotion categories that repre-

sent the emotional state of the person

3. Continuous Dimension (CD) Task: The worker is shown the person-in-context

along with the 3 continuous dimensions. Again, he has to put himself in the place

of person-in-context and choose the applicable levels for each of the continuous

dimensions (Valence, Arousal and Dominance)

3.1.3.1 Interface Design

Three Human Intelligence Tasks (HITs), one for each of the 2 formats of emotion repre-

sentation and one for EQ task are designed. The designing of the annotation interface
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has two main focuses: (i) the task should be easy to understand interface-wise, and (ii)

the interface fits the HIT in one screen which avoids scrolling.

EQ task design:

1. First page shown to the workers contains the Disclaimer, informing them that

their responses are anonymous and will be used for research purposes only.

The page briefly explains the tasks and also gives some general instructions

about attempting the tasks. At the end of the page, they are notified about

their browser settings. Figure 3.4 shows the first page of EQ task.

2. Figure 3.5 shows the main interface for EQ task. This page lists all the ques-

tions to be attempted

3. A warning message is displayed (as shown in Figure 3.6) if a worker does not

attempt any of the questions or overlooks a question. The task is then not

allowed to proceed until all the questions have been attempted

4. The next pages have one sample EC and CD tasks each along with their re-

spective instructions. Their interface is exactly the same as the main tasks,

shown in Figure 3.17

EC task design:

1. The first page (Figure 3.7) shows the disclaimer and instructions about the

browser settings to the worker. It also mentions about the qualification re-

quirement to attempt this particular task

2. Next pages show the instructions and an instance of how to annotate the images

as shown in Figures 3.8, 3.9 respectively. It also shows the correct and incorrect

ways of attempting the task as a guideline to the workers

3. Next, the worker is presented with the main task shown in Figure 3.17.a

4. If the worker misses by chance or tries to skip any question, then a warning

sign similar to Figure 3.6 is shown and the worker is not allowed to proceed

until the question is attempted

5. The instructions and examples (correct and incorrect), would be displayed at

the bottom of each page during the main task, so that the worker can refer

them in the same page without changing pages

CD task design:

1. First page of CD task is similar to that of EC task.
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Figure 3.4: EQ task design: First Page showing disclaimers and instructions
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Figure 3.5: EQ task design: Main page of EQ task asking the general questions

Figure 3.6: EQ task design: Warning message for EQ task if any question is missed (30th,
in the above example)
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Figure 3.7: EC task design: First page showing disclaimer and instructions about the
browser settings

Figure 3.8: EC task design: Page showing instructions on how to attempt the task
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2. Instruction page (similar to EC task) is shown in Figure 3.10

3. Next pages show the visual definition of each of the continuous dimensions. The

levels (high and low) of each dimensions are shown with animated characters

as well as sample example from the EMOTIC dataset. This visualization is

targeted to help the worker for doing the CD task with visual aids. Figures

3.11, 3.12, 3.13 show the visual definitions of the dimensions

4. The next pages show (like in case of EC task), an example with correct and

incorrect way of annotation. This is also serving as a guideline for the workers

(Figures 3.14, 3.15, 3.16)

5. Next, the worker is presented with the main task shown in Figure 3.17.b

6. If the worker misses by chance or tries to skip any question, then a warning

sign similar to Figure 3.6 is shown and the worker is not allowed to proceed

until the question is attempted

7. The instructions and examples (correct and incorrect), would be displayed at

the bottom of each page during the main task, so that the worker can refer

them in the same page without changing pages

Figure 3.9: EC task design: Page showing the correct and incorrect ways of annotation
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Figure 3.10: CD task design: Page showing the instructions for CD task

Figure 3.11: CD task design: Page showing the visual definition of Valence
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Figure 3.12: CD task design: Page showing the visual definition of Arousal

Figure 3.13: CD task design: Page showing the visual definition of Dominance



3.1. EMOTIC DATASET CONSTRUCTION 45

Figure 3.14: CD task design: Page showing an example on how to attempt the CD task

Figure 3.15: CD task design: Page showing a correct way of annotating in CD task
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Figure 3.16: CD task design: Page showing an incorrect way of annotating in CD task

3.1.3.2 Annotation Quality Control Strategies

To ensure that the workers understand each task, we showed them how to annotate the

images step-wise, by explaining two examples in detail. Also, instructions and examples

(correct and incorrect both) were attached at the bottom on each page as a quick reference

to the worker. Finally, a summary of the detailed instructions was shown at the top of

each page (Table 3.2) so that the worker doesn’t need to scroll to check the instructions

each time.

Emotion Category Continuous Dimension
“Consider each emotion Category sepa-
rately and, if it is applicable to the per-
son in the given context, select that emo-
tion category”

“Consider each emotion dimension sep-
arately, observe what level is applicable
to the person in the given context, and
select that level”

Table 3.2: Instruction summary for each HIT

Quality control of EQ Task: In order to avoid random choice selection of the ques-

tions asked in the EQ task, 2 trivial questions (shown in Figure 3.18) were included whose

correct and unambiguous response was known in advance. If the workers attempted these

trivial questions incorrectly, they would be notified immediately that one of their re-

sponses was incorrect and that they need to change it response in order to proceed. This
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(a) EC (Emotion Categories) task

(b) CD (Continuous Dimensions) task

Figure 3.17: AMT interface designs



48 CHAPTER 3. EMOTIC DATASET

helped control random choice selection by the workers. This made them aware that ran-

dom responses will not be accepted, and they had to pay attention and attempt each

question faithfully.

(a) First trivial question asked on the EQ task

(b) Second trivial question asked on the EQ task

(c) Warning message if either of the questions ((a) or (b)) is incorrect

Figure 3.18: Quality Control for EQ task by asking 2 trivial questions ((a) or (b)) and
the warning sign (c) that doesn’t allow to proceed if these questions have
not been answered correctly

Quality control for EC and CD Tasks: Multiple strategies were adopted to have

quality annotations in the EMOTIC dataset and avoid noise as much as possible without

biasing the annotations.

1. A qualification task is conducted to shortlist viable workers who could understand

and perform the main tasks (EC and CD) well. The qualification task has two

parts: (i) The EQ task itself served as first part of the qualification task, and (ii)

2 sample image annotation tasks - one for each of our 2 emotion representations

(emotion categories and continuous dimensions). The acceptable responses for the

sample annotations were known in advance. The responses of the workers to this

qualification task were evaluated and those who responded satisfactorily were chosen
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as our main candidates. These workers were then allowed to do the EC and CD

tasks to annotate images from EMOTIC dataset.

2. To avoid noisy annotations, 2 control images were randomly inserted in every an-

notation batch of 20 images. Again, the correct set of labels for the control images

was know beforehand. workers selecting incorrect labels on these control images

were warned and if they still kept annotating incorrectly, they were not allowed to

annotate further and their annotations were discarded.

3. According to Lerman and Hogg [2014], random policy is best for unbiased estimates

of preferences. The authors mainly experiment on the influence of position bias on

4 different policies for presentation; where they conclude that random policy (in

which the order of items shown to the participants is randomized) is best suited for

unbiased estimates of recommendations. However sometimes it is not completely

removed by simple rotation of the multiple choices (Blunch [1984]). But we overcome

these limitations by randomizing the order of appearance of emotion labels in our

data-generation steps. Following their research conclusion, the order of emotion

categories shown to every worker was randomised. This helped us avoid Position

Bias

4. EMOTIC is divided into three sub-sets viz. Train, Validation and Test. Individual

annotations for Validation and Test were augmented by adding multiple worker

responses. Particularly, each Validation set annotations was augmented by 4 more,

resulting in 5 annotations for each person-in-context in the Validation set. Similarly,

for Test set, in total there are 3 annotations for each person-in-context. In order

to avoid same worker annotating same person-in-context again, those tasks were

concealed from the workers who had already annotated those samples. In this

manner, each of the multiple annotations in Validation and Test sets are by different

workers. This helped bring variety in the annotations.

3.2 Analysis

We have the capacity of making reasonable guesses about other people’s emotional state

because of our capacity of being empathetic, putting ourselves into another’s situation,

and also because of our common sense knowledge and our ability for reasoning about

visual information.

The highlight of EMOTIC is that it contains annotated images of people with the

following characteristics:
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1. Faces are not visible in entirety, quite often either the head (back-side) of the face

or a profile from the side is visible (for example see Figures 3.19.b & 3.19.d). More

than 25% of the people in EMOTIC have their faces partially occluded or with very

low resolution, so we can not rely in facial expression analysis for recognizing their

emotional state.

2. Body is not visible in entirety, quite often only the upper torso is visible (for example

see Figures 3.19.b and 3.19.c)

EMOTIC presents a different task - to estimate people’s emotions without directly

using their facial expressions and body postures. Among the images of EMOTIC, a lot of

them have significant partial occlusions in the face, or faces are shown in non-frontal views.

For this reason, the task of estimating person’s emotional state can not be approached

with facial expression analysis only, presenting us with a new challenging task.

Figure 3.19 shows sample annotated images in the EMOTIC dataset. Figure 3.19.a

shows that the person is performing an activity that needs attention to predict the upcom-

ing curve on the road, so he is feeling anticipation. Since he is doing a thrilling activity,

he feels excited about it and he is engaged or focused in this activity to avoid unexpected

injuries. This explains the emotion categories annotated. Also, in terms of continuous

dimensions, since he is engaged in a precarious activity and it seems that he likes it,

the valence value is 6 - signifying a little positivity in his feelings. The high Arousal

value (= 9) clearly shows that he is involved in an intense activity. When one looks at

his posture, it is apparent that he is in control and is confident - this explains the high

Dominance value (= 10). Similar interpretations can be made about other annotations.

(a) (b) (c) (d)

Figure 3.19: Sample Images from EMOTIC dataset with their corresponding annotations
in both the formats

In Figure 3.19.c, the kid feels a strong desire (yearning) for eating the chocolate instead

of the apple. From his facial expression we can see that he is a bit disquiet and annoyed
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about it. Apparently, he feels disappointed with the situation, hence the low Valence

(= 3) and Dominance (= 3) values. Figures 3.19.b & 3.19.d shows people whose faces are

not visible, however, they have been annotated as well. In fact, if we consider the context,

we can make reasonable estimation (like in real world) about emotional states even when

the face of the person not visible (as illustrated in Figures 3.19.b & 3.19.d) The person in

bounding-box of Figure 3.19.b is picking a doughnut and he probably yearns for it. He

is participating in a social event with his colleagues, showing engagement. We can also

say that he is also feeling pleasure eating the doughnuts; and is also possibly happy for

the relaxed break along with other people. In Figure 3.19.d, the person is admiring the

beautiful landscape with esteem. She seems to be enjoying the moment (happiness), and

she seems calmed and relaxed (peace). We do not know exactly what is on the people’s

minds, but we are able to reasonably extract relevant affective information just by looking

at them in their situations.

After the first phase of annotations (1 annotation per person-in-context), the images

were divided into three sets: Train (70%), Validation (10%), and Test (20%) sets

maintaining a similar affective category distribution across the different sets. After that,

Test set was annotated by 2 additional distinct annotators to analyse the annotation

agreements amongst the annotators. In second phase, all the images in Validation set

were annotated by an additional 4 distinct annotators per annotation. The Validation

set annotations (being much higher in numbers) were used to study the consistency of

the annotations across different annotators (more in Section 3.2.2). The dataset statistics

and algorithmic analysis on the EMOTIC dataset are detailed in Sections 3.2.1 and 3.2.3

respectively.

3.2.1 Statistical Analysis

EMOTIC dataset is a collection of images of people in unconstrained environments anno-

tated according to their apparent emotional states. The dataset contains 23, 571 images

and 34, 320 annotated people. Overall, the images show a wide diversity of contexts, con-

taining people in different places, social settings, and engaged in diverse activities. The

posture of people is not limited either. As shown in Figure 3.19, sometimes only the face

or upper body part is visible (Figure 3.19.c), sometimes we see the whole body but the

face is not visible (Figure 3.19.d) and sometimes only the upper body part is visible while

the face is occluded.

The last release of the EMOTIC dataset contains 34, 320 annotated people, where 66%

of them are males and 34% of them are females. There are 10% children, 7% teenagers

and 83% adults amongst them. Figure 3.20 shows the number of annotated people for
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each of the 26 emotion categories, sorted by decreasing order. Notice that the data is

unbalanced amongst the categories, which makes the dataset particularly challenging.

An interesting observation is that there are more examples for categories associated to

positive emotions, like Happiness or Pleasure, than for categories associated with negative

emotions, like Pain or Embarrassment. The category with most examples is Engagement.

This is because in most of the images people are doing something or are involved in some

activity, showing some degree of engagement. Figures 3.21.a, 3.21.b and 3.21.c show the

number of annotated people for each value of the 3 continuous dimensions. In this case

as well unbalanced data is observed, but it is fairly distributed across the 3 dimensions

which is good for modelling.

Total People: 34320
Total Images: 23571
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Figure 3.20: EMOTIC Statistics: Number of people annotated for each emotion category

EMOTIC shows interesting patterns of category co-occurrences. For example, after

computing conditional probabilities, Figure 3.22 shows the co-occurrence rates of any two

categories. Every value in the matrix (r, c) (r represents the row category and c column

category) is a co-occurrence probability (in %) of category r if the annotation also con-

tains the category c, that is, P (r|c). It is observed, for instance, that when a person is

labelled with the category Annoyance, then there is 46.05% probability that this person

is also annotated by the category Anger. This means that when a person seems to be

feeling Annoyance it is likely (by 46.05%) that this person might also be feeling Anger.

We also used a k-means (Kanungo et al. [2002]) clustering on the category annotations
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(c) Number of people annotated for each value of Dominance

Figure 3.21: EMOTIC Statistics: Number of people annotated for every value of the three
continuous dimensions (a,b,c)
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Figure 3.22: Co-variance between 26 emotion categories. Each row represents the occur-
rence probability of every other category given the category of that particular
row.

to find groups of categories that occur frequently. It was found, for example, that these

category groups are common in the EMOTIC annotations: {Anticipation, Engagement,

Confidence}, {Affection, Happiness, Pleasure}, {Doubt/Confusion, Disapproval, Annoy-

ance}, {Yearning, Annoyance, Disquietment}.

Figure 3.23 shows the distribution of each continuous dimension across the different

emotion categories. For each plot, categories are arranged in increasing order of their

average values of the given dimension (calculated for all the instances containing that

particular category). Thus, it is observed from Figure 3.23.a that emotion categories

like Suffering, Annoyance, Pain correlate with low Valence values (feeling less positive)

in average whereas emotion categories like Pleasure, Happiness, Affection correlate with

higher Valence values (feeling more positive). Also interesting is to note that a category

like Disconnection lies in the mid-range of Valence value which makes sense. When we

observe Figure 3.23.b, it is easy to follow that emotional categories like Disconnection, Fa-

tigue, Sadness show low Arousal values and we see high activeness for emotion categories

like Anticipation, Confidence, Excitement. Finally, Figure 3.23.c shows that people are

not in control when they show emotion like Suffering, Pain, Sadness whereas when the

Dominance is high, emotion categories like Esteem, Excitement, Confidence occur more
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often.
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(a) Valence Dimension Distribution
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(b) Arousal Dimension Distribution
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(c) Dominance Dimension Distribution

Figure 3.23: Distribution of continuous dimension values across emotion categories. Av-
erage value of a dimension is calculated for every category and then plotted
in increasing order for every distribution.
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3.2.2 Annotator Agreement Analysis

There is no direct measure to find the agreement between the annotators given the subjec-

tive nature of the annotation task. In this section a study on the annotators’ agreement

level using the images in the Validation set is presented. 2 methods are used to measure

the annotation consistency. Since emotion perception is a subjective task, each perceiver

can recognise different emotions after seeing the same image. For example in both Figure

3.24.a and 3.24.b, the person in bounding-box seems to feel Affection, Happiness and Plea-

sure and the annotators have annotated with these categories with consistency. However,

not everyone has selected all these emotion categories. Also, it is seen that annotators

do not agree in the emotions Excitement and Engagement. However, these categories are

reasonable in this situation. Another example is that of Roger Federer hitting a tennis

ball in Figure 3.24.c. He is seen predicting the ball (or Anticipating) and clearly looks

Engaged in the activity. He also seems Confident in getting the ball. In spite of the

annotation process being subjective in nature and not all annotators agreeing on every

annotation, their responses have good quality and subtlety.

(a)

(b)

(c)

Figure 3.24: Five different annotators for a given person in context

After these observations and finding interesting co-occurrences amongst the categories
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in the statistical analysis (Section 3.2.1), different quantitative analysis on the annotation

agreement were conducted. First focus was on analysing the agreement level in the cate-

gory annotation. Given a category annotated (or assigned) to a person in an image, the

number of annotators agreeing for that particular category is considered as an agreement

measure. Accordingly, it was calculated, for each category and for each annotation in the

validation set, the agreement amongst the annotators and those values were sorted across

categories. Figure 3.25 shows the distribution on the percentage of annotators agreeing

for an annotated category across the validation set.

There seems a need to find a criteria with which we could compare annotator-agreement

analysis amongst the discrete categories. Normalize each category with the number of

people annotated for that category, then empirically weigh the number of people anno-

tated by 5, 4, 3, 2, 1 annotators and quantify in the form of a rank (an annotation agreed

upon by 5 annotators has the highest importance and is given the highest weight). This

rank ranges, in case of EMOTIC dataset, between [1.04, 2.87]. Practical values of this

rank have the limits [0, N ] - where N is the number of annotators for each annotation.

Accordingly, the categories are sorted based on this rank and plotted in decreasing or-

der of annotator-agreement in Fig. 3.25. We observe that Engagement has the highest

annotator-agreement which means that for each instance that Engagement is annotated,

62% of times 3 or more annotators (out of 5) agree. Similarly, for Pain, of all the instances

where it is annotated, there are 2 or more annotators who agree 26% of times.

The agreement between all the annotators for a given person using Fleiss’ Kappa (κ)

was also computed. Fleiss’ Kappa is a common measure to evaluate the agreement level

among a fixed number of annotators when assigning categories to data. In general, for the

validation set, if an annotator selects an emotion category, the probability that he is in

agreement with at least one of the four other annotators in selecting this category is 50%.

In case of EMOTIC, given a person to annotate, there is a subset of 26 categories. If we

have N annotators per image, that means that each of the 26 categories can be selected by

n annotators, where 0 ≤ n ≤ N . Given an image we compute the Fleiss’ Kappa per each

emotion category first, and then the general agreement level on this image is computed

as the average of these Fleiss’ Kappa values across the different emotion categories. We

obtained that more than 50% of the images have κ > 0.30. Figure 3.26.a shows the

distribution of kappa values across the validation set for all the annotated people in the

validation set, sorted in decreasing order.

Keeping the annotations’ parameters constant, we tried to find a random agreement

between the annotators. This random agreement value, over 1000 iterations for EMOTIC

is κ ≈ 0.15. Notice that total disagreement gives κ = 0. The random kappa value
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Figure 3.25: Representation of agreement between multiple annotators. Categories are
sorted in decreasing order according to the average number of annotators
that agreed for the category.
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(κ ≈ 0.15) in comparison to the actual value (κ > 0.30) indicates that there is a significant

agreement level even though the task of emotion recognition is subjective.

(a) Distribution of Kappa Values across Validation set (sorted)

(b) Std across Validation set (sorted)

Figure 3.26: (a) Kappa values and (b) Standard deviation (Std), for each annotated per-
son in validation set

Regarding to the continuous dimensions, the agreement is measured by the standard

deviation (SD) of the different annotations. In general, the average SD across the Valida-

tion set is 1.04, 1.57 and 1.84 for Valence, Arousal and Dominance respectively - indicating
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that Dominance has higher (±1.84) dispersion than the other dimensions. It reflects that

annotators disagree more often for Dominance than for the other dimensions which is

understandable since Dominance is more difficult to interpret than Valence or Arousal

Mehrabian [1995]. As a summary, Figure 3.26.b shows the standard deviations of all the

images in the validation set for all the 3 dimensions, sorted in decreasing order.

An important aspect of doing agreement analysis is the tool or method used. For

example, the agreement between the annotators decreases if the scales for capturing the

responses is increased (Whitehill et al. [2014]). In general, random agreement between

annotators is higher for a binary scale (1 or 0) as compared to when there are n options

to choose from (n > 2). We did a similar agreement analysis for continuous dimension’s

representation for EMOTIC. Reducing the scale from [1− 10] to [1− 5], we re-calculated

the average SD across the Validation set and found that it decreases, suggesting higher

agreement. The new average SD across the Validation set in contrast to the previous

values are (0.54, 1.04), (0.82, 1.57), (0.94, 1.84) for Valence, Arousal and Dominance

respectively. Similar interpretations can be made for the new values, however, the impor-

tant point to note is that the SD decreases when we reduce the scales. Clearly, lower SD

indicates better agreements, depending on the scale used.

The average values of each dimension for a given category is also a good character-

ization of annotation agreement. For example, Affection has (V,A,D) = (6.8, 5.3, 6.6)

- suggesting high positiveness, medium activeness and high control. This interpretation

makes sense when we see Affection in Figure 3.3(2). Similarly, for Suffering, (V,A,D) =

(3.7, 4.7, 4.3) - low positiveness (or high negativity), medium-low activeness and low con-

trol. Again, when we observe a person who is Suffering (example: Figure 3.3(26)), we see

that he is feeling negative emotions, is not too aroused and is not in control. Such com-

parisons are consistent across categories indicating good agreement amongst annotators.

3.2.3 Algorithmic Analysis

EMOTIC Dataset contributes to the research community with rich data to understand

people’s emotions in various contexts. In this section state-of-the-art scene recognition

systems by Zhou et al. [2017a] are used to observe interesting patterns in the distribution

of emotions shown in different places or environments.

A CNN trained on Places dataset (Zhou et al. [2017a]) is used to predict the scene-

category and scene-attributes for all the images in EMOTIC. With this information, the

dataset analysis for EMOTIC is divided per place category to show additional statistics

of the dataset. Figure 3.27.a shows the probability of each emotion conditioned to a

particular place. This is, P (emo|places) = Nemo/Npeople where Npeople is the total number
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Figure 3.27: Emotion distributions conditioned to a) image scene category, and b) image
scene attribute

of people present in the images of that particular scene category and Nemo is the number

of those people labeled with this particular emotion.

Representative distributions are shown in Fig. 3.27. As can be seen, the distribution

of emotions varies among different place categories (Fig. 3.27.a). For example, we see

that people in the Ski Slope frequently experience Anticipation or Excitement, which are

associated to the activities that usually happen in this place category. Compare sport-

related images and working-environment related images (Fig. 3.27.b), we see that people

in sport-related images usually show Excitement, Anticipation and Confidence, but they

show Sadness or Annoyance less frequently. Interestingly, these two categories appear

with higher frequency in working environments. Also, when comparing the distributions

on place attributes like Socializing and Working we see how negative emotions dominate

more in work environments than in social gatherings. In places such as the Airport

Terminal, only a few emotions dominate the distribution where as in places like Oceans

& Ski Slopes, range of activities are comparatively more.
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Figure 3.28: Summary of places and attributes with the highest and lowest values of
Valence, Arousal and Dominance.

Fig. 3.28 summarizes places and attributes with an overall highest and lowest value

of Valence, Arousal and Dominance, the three continuous variables used in the dataset.

We observe some interesting patterns here as well. For instance, places with the highest

Dominance value are sport-related places and sport-related attributes. Furthermore, low

Dominance categories contain places like Shower or Jail Cell or attributes like Enclosed

Area or Working, where the freedom of movement is reduced. Finally, places and at-

tributes with the highest value of Valence are usually related to pleasure or enjoyment.

However, categories with low Valence values are related to high stress situations such as

Driving or Working. Overall, these observations suggest that some common sense knowl-

edge patterns related with emotions and context could be extracted from the data.

Common Sense Knowledge in Visual Scenes We illustrate how current scene-

centric systems can be used to extract contextual information that can be potentially

useful for emotion recognition. In particular, we illustrate this idea with a CNN trained

on Places dataset (Zhou et al. [2017a]) and with the Sentibanks Adjective-Noun Pair

(ANP) detectors (Jou et al. [2015]; Chen et al. [2014]), a Visual Sentiment Ontology for

image sentiment analysis. As a reference, Figure 3.29 shows Places and ANP outputs for
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sample images of the EMOTIC dataset.

Figure 3.29: Illustration of 2 current scene-centric methods for extracting contextual fea-
tures from the scene: AlexNet Places CNN outputs (place categories and
attributes) and Sentibanks ANP outputs for three example images of the
EMOTIC dataset.

We computed the ANP for each image in EMOTIC. The positive sentiment scores

denote the presence of that particular ANP. These ANPs describe the apparent sentiment

conveyed by the image. The detected ANP with their respective labelled emotion cate-

gories, we found interesting patterns. For example, in images with people labeled with

Affection, the most frequent ANP is young couple, while in images with people labeled

with Excitement we found frequently the ANPs last game and playing field. Also, we

observe a high correlation between images with Peace and ANP like old couple and do-

mestic scenes, and between Happiness and the ANPs outdoor wedding, outdoor activities,

happy family or happy couple.

Overall, these observations suggest that some common sense knowledge patterns re-

lated with emotions and context could be potentially extracted, automatically, from the

data.
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Chapter 4

Modeling Emotion on EMOTIC

dataset

We, as human beings, perceive emotions of other people on daily basis which constitutes

an important part of our social skills. Over time, we have become more adept in being em-

pathetic towards a fellow human being. We have learned to recognize different emotional

states of people depending on the visual information available to us from the surround-

ings. Such information could be present in the immediate environments surrounding us

in various forms. Many of such sources have been explored in section 1.2.1. These sources

are very important aspect to understanding people’s emotions. It is, therefore, essential to

take into account all such sources. Machines are not as sophisticated as humans in making

estimations about people’s emotions. There are many machine learning algorithms which

use facial features, and sometimes body postures, to estimate a person’s emotional state.

Such algorithms (face based- Beristain and Graña [2009], body based - Schindler et al.

[2008]) are modeled on that specific feature of the person, while disregarding the other

visual contexts present in the image.

4.1 Architectural Design

In section 1.2.1 we described various sources of context (including visual ones) that influ-

ence emotional states of the people embedded in those situations. The context present in

the immediate surroundings affect and can modulate the emotions of the people present

in those settings. So, in order to describe the emotional state we integrate the features

that contain such information in the modeling process. It is very difficult to extract such

specific visual features (like edges, shape, color, texture, shapes, objects, etc) from each

image and model them; mainly because they change in size, orientation and shape. It is

65
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also possible that a particular feature can have more impact than the other. This kind of

information is very difficult to hand-craft. Traditional computer vision algorithms rely on

such techniques. But since the importance of a given feature cannot be defined for all the

images, it is impractical to use such methods. CNNs are a good way of extracting such

features. They are variant of Multi Layer Perceptron (MLP), with a specific connectivity

pattern. Inspired by neurons in the visual cortex of animals (Fukushima [1988]; Hubel and

Wiesel [1968]; Riesenhuber and Poggio [1999]), they have multiple overlapping receptive

fields (filters) that capture the global information in the visual field while simultaneously

preserving the local features. This helps in modeling the prior knowledge present in the

form of visual features automatically without hand-crafting them.

In this chapter, CNN architecture is introduced for modeling emotion recognition

based on EMOTIC dataset. CNNs have the following desirable properties that

would help us create a model to predict the emotion of a person:

• Locality preserving feature extraction or translation invariance - If a feature is

present in a different location, or is displaced, the CNN is still able to capture

those patterns. Pooling (Pooling) is the operation that accomplishes this feature

for the CNNs.

• Heirarchial feature extraction - The initial filters of the CNN extract low-level fea-

tures (edges, corners) and later layers become highly specific and extract more

abstract shapes and objects (Zhou et al. [2015]).

• Multi-grained feature extraction from fine to coarse granularity - The different filter

sizes in association with their strides accomplish this aspect of the CNNs. Smaller

filters would be able to extract finer features, whereas the bigger filters are able to

view and extract coarser features.

• Low pre-processing as compared to the MLPs - The number of parameters to learn

for CNN is drastically lower than that of a corresponding MLP designed for the

same task. This is because the CNNs rely on filter weights which extract local

features depending on the size of their receptive fields (filter size). The number

of filter weights are much lower in comparison to the parameters of an MLP. This

provides faster computation and low training time for CNNs.

• Can be trained end-to-end - The CNN does not need different training schemes for

various structural parts. All the components of the CNN work together and learn in

conjunction with one another. This end-to-end learning is not only convenient but
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also gives a holistic approach to training. The CNN is able to learn highly complex

tasks like image recognition, machine translation and BAP recognition.

The CNN-based model is expected to learn recognition of the person’s emotional state

using all the contextual features present in the image. CNNs are chosen because they have

properties that suit the purpose of emotion recognition. They can capture the context

present in the image along with the features of the person. As discussed in section 1.2.1,

the surrounding visual scene and the body posture of the subject constitute one of the

main sources of visual context. CNNs have the capability to learn scene-specific and

person-specific features automatically.

4.1.1 Person Features

All the research attempts in developing a model for emotion recognition using facial

expressions (section 2.2.1) and the emotional language communicated by the body (sec-

tion 2.2.2) make a compelling case to explicitly model person features for understanding

the emotional state of the person. As discussed in Chapter 3, all the annotated people

in EMOTIC also have their respective bounding boxes (example Figure 3.1). So, we use

the CNNs capability to extract all of the person features. In EMOTIC we have images

with the person embedded in the surrounding context. We use the bounding box of that

person to extract person features using a CNN that was pre-trained on object recogni-

tion. Specifically, we use a standard object recognition CNN to extract the features of

the person’s body. We employ a pre-trained Alexnet (Krizhevsky et al. [2012]) which was

trained on Imagenet (Deng et al. [2009]) to extract person features with some modifica-

tions. Figure 4.1 shows the basic structure of Alexnet, containing 5 Conv layers and 3 FC

layers. The shown network doesn’t include intermediate layers that are not trainable (like

ReLU). Because it was pre-trained on objects (including person), this Alexnet provides

us with features that represent the person.

For modeling emotion perception based on EMOTIC, we remove the FC layers and

add Spatial Average Pooling layer, followed by a layer that flattens all the values into

a single dimensional vector representation - called nn.View - part of Torch7 (Collobert

et al. [2011]) library. A detailed view of the network is shown in Figure 4.2. Each of the

Conv layer is followed by a ReLU layer - which rectifies negative values. C∗ refers to the

combination of CNN + ReLU. After each of the first 2 Conv layers there is a combination

of Max Pooling layer + Local Response Normalization (Krizhevsky et al. [2012]) layers,

PL1 and PL2 in Figure 4.2. Without further fine-tuning or transfer learning, this network

generates features related to the object it is presented in the form of an image. In our

case, the input is the body of the person so it generates features related to that person.
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Since our task is that of emotion recognition from images, quite different from that of

object recognition or localization, we need to retrain all these layers on our dataset for the

specific task of emotion recognition. The first filters of a CNN normally learn low-level

image features like edges, corners, etc (Zeiler and Fergus [2014]). Figure 4.3 shows all

the weights of all 96 filters corresponding to the Conv 1 layer of the pre-trained Alexnet

model. These filters capture the low-level features present in the image. Further layer

filters progressively learn higher object abstractions. Zeiler and Fergus [2014] give a deeper

visual understanding of which part of the image do these filters activate. Depending on

the layer, these filters will be activated to different pattern in an image.

Figure 4.1: Basic Alexnet (Krizhevsky et al. [2012]) with 5 Conv layers for feature extrac-
tion and 3 FC layers for classification
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Figure 4.2: Person module based on Alexnet. C∗ represent the combination of Conv
+ ReLU layers. PL∗ are a combination of Pooling layer + Local Response
Normalization layers
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4.1.2 Visual Scene-Context Features

Visual context includes the scene category, its attributes, the dynamics between other

objects present in the scene. Everything that can directly and indirectly affect the subject

(person) under consideration has contextual influence over the subject. Aviezer et al.

[2008a] gave an experimental evidence on how the context affects the emotion perception

from faces only. In a more recent cognitive-neuroscientific study, the authors (Hassin et al.

[2013]) show how the visual context not only influences the intensity of emotion perception

but also changes the categorical perception of emotion. Martinez et al. [2016] showed

how important the context (the surrounding scene and objects) plays in determining the

emotional state of the person from his body posture and gives us insight to look for more

information present in the surrounding visual scene to understand the emotional state of

the person. We also explored various visual sources of context in section 1.2.1. These

arguments gave us motivation to model the visual scene as one of the main sources of

context in our emotion recognition model.

In order to capture these aspects, we need a network that can extract holistic features

from the whole image. A network that is trained to capture the scene specific features

is a good choice. For this, we fine-tune a pre-trained network called PlacesCNN (Zhou

et al. [2017a] - based on Alexnet Deng et al. [2009]). This network was previously trained

on a scene-specific database called Places2 (Zhou et al. [2017a]) of 10 million images to

classify scenes. Alvarez and Petersson [2016] introduced a technique in the structure of the

PlacesCNN called DecomposeMe, where they use 1D convolutions on PlacesCNN to reduce

the computations of the first layers of the network (most of the computations in a CNN

occur in the first Conv layers - Denton et al. [2014]) and also reduce the memory footprint,

Figure 4.3: Filter weights of the Conv 1 layer of the basic Alexnet (Krizhevsky et al.
[2012]), displaying various filter weights that help to extract low-level features
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while simultaneously increasing classification accuracy. These CNN networks provide

competitive performance while the number of parameters is low. The proposed CNN

network to capture scene-specific features (Alvarez and Petersson [2016]) consists of 16

Conv layers with 1-dimensional kernels, effectively modeling 8 layers using 2-dimensional

kernels. We use this modified PlacesCNN model, pre-trained on Places2 database using

the DecomposeMe technique, to capture scene specific features as contextual cues for our

emotion recognition process. In fact, Zhou et al. [2015] show that intermediate CNN

layers learn object level features representations when the network is trained for scene

recognition. The network has the capability to learn object level features which is apt for

our purposes.
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Figure 4.4: Scene module based on Alvarez and Petersson [2016]. C∗ are Conv layers each
followed by a ReLU layer. CB∗ are a combination of Batch Normalization +
ReLU layer

Similar to the network for extracting person features (section 4.1.1), in this network

when we extract visual context features, we get rid of the final FC layers and add a

Spatial Average Pooling layer followed by a layer that flattens all the values into a single

dimensional vector representation - called nn.View - part of Torch7 (Collobert et al.

[2011]) library. Figure 4.4 shows the basic structure of the network used for extracting

visual context features. C∗ represents Conv layer followed by a ReLU layer, whereas CB∗
represents Conv layer followed by a Batch Normalization (Ioffe and Szegedy [2015]) and a

ReLU layer. All the Conv filters are one-dimensional filters (more details in Alvarez and

Petersson [2016]).

4.1.3 EMOTIC Fusion Model

Visual scene-context features (section 4.1.2) and person features (section 4.1.1) are essen-

tial to make predictions about the emotional state of the person embedded in the given

situation. We want to take into consideration both these features while training the net-

work on EMOTIC dataset. We want to show the network the scene as well as the person

features so that while training (and while making predictions) the network is able to visu-

ally interpret the features required for emotion estimation. For this, we designed a fusion
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model. It has three modules. The network architecture of our EMOTIC-CNN Fusion

model is shown in Figure 4.5. The first two modules are feature extractors, taken directly

from person module (Figure 4.2) and scene module (Figure 4.4). Accordingly, these two

modules do the heavy lifting of generating features from the images. The first module

(Visual Context Features) takes the whole image as the input and generates scene-related

features. The second module (Person Features) takes the visible body of the person and

generates features related to the body. The third module, called the fusion module, works

as a fusion layer and concatenates features generated by the previous two modules. The

combined features are then passed through tuple of FC layers for training.

Fusion module uses three FC layers. First FC layer (FC 1) reduces the dimensionality

of the concatenated features (person features (256) + scene features (640) = 896) to 256

and then, to learn independent representations for each task, the reduced features are

passed through two FC layers (FC 2 and FC 3) (Caruana [1997]), each for 3 Continuous

Dimensions and 26 Emotion Categories respectively. The output of FC 1 layer is first

passed through a dropout layer which helps avoid over-fitting the model (Srivastava et al.

[2014]). The output FC 2 gives the regressed values of the 3 continuous dimensions,

whereas FC 3 gives a probability distribution. This distribution from validation set of

images is used to calculate the thresholds for each category and find the ones that activated

for each test images.

Our EMOTIC-CNN is designed in a way that we are able to maintain the localization

of different parts of the image while achieving a design fitting our emotion recognition

system.
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Figure 4.5: EMOTIC-CNN Fusion model trained with Lcomb1/Lcomb2 criterion
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4.2 Multitask Learning (MTL)

Multitask Learning (MTL) (Caruana [1997]) in neural network is an approach to inductive

transfer learning. It uses the information content in the training signals of a related task

to improve the generalization performance of the network. For example, let’s say that

the task is to detect faces of people from an image. We know, through the human body

configuration, that the relation of face to the rest of the body is hierarchical. So, if we

know one part it is easy to infer the other part. So the task of body detection is a related

task to face detection. While training for body detection, the model will also embed,

inductively, the information of face. The content of training signals for body detection

also has face information, so training for body detection will also help to improve the

generalization performance of the face detection task.

In non-neural models like kernel methods, bayesian algorithms and linear models,

normally the generalization has been improved by enforcing regularization (Yuan and Lin

[2006]). Block-sparse method imposes l1/lq norm regularization on the jointly learned

parameters. In another method for learning task relationship, the technique involves

using constraints that would enforce clustering of tasks as a regularization. In learning

task relationships, bayesian based methods use gaussian as a prior distribution. Most of

these methods would take some characteristic of the features as a regularizer to constrain

the model to work better for the given task. In multitask neural models that are trained

end-to-end, the task relatedness itself imposes the regularization which helps to improve

the generalization of the model. The need to exclusively define a regularization is avoided

in neural networks.

Normally, the main learning task is divided into smaller sub-tasks. These sub-tasks

are trained on different models independently. The performance of the main task is then

calculated by combining the performance of models of all such sub-tasks. MTL technique

takes advantage of task-relatedness to learn a common model representation for the related

tasks.

MTL technique is inherent to our task of emotion recognition as well, while training our

model end-to-end. EMOTIC contains people annotated with 2 different formats of emo-

tion representation viz. Emotion Categories and Continuous Dimensions (section 3.1.2).

Both these representations have different ways of representing the perceived emotion of

the person, therefore each of these representations constitute tasks that are related to one

another. Emotion Categories use 26 emotions (Table 3.1) to do that, whereas Continuous

Dimensions use 3 dimensions (viz. Valence, Arousal and Dominance). So for every an-

notated person in EMOTIC, their emotional state can be described by these 2 different

approaches. We take advantage of this aspect of our dataset in designing our fusion model
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(section 4.1.3), where we have a single network that learns both representations simulta-

neously. We conducted experiments with individual representations and with combined

representations. Our results show that the performance of both the individual tasks in

a combined form of learning has improved as compared to learning with individual tasks

alone.

4.3 Loss criterions and Evaluation metrics

The first two feature extraction modules are initialized with weights from models pre-

trained on two different large-scale classification datasets called ImageNet (Deng et al.

[2009]) and Places (Zhou et al. [2017a]). ImageNet consists of data belonging to broad-

ranging classes including person. This motivates us to use the network called Alexnet

(pre-trained on Imagenet) to extract features related to the target person. Places dataset

is used for understanding high-level visual recognition tasks such as recognizing scene cat-

egories. The network, called PlacesCNN [based on DecomposeMe (Alvarez and Petersson

[2016]), pre-trained on Places], helps to model scene related features into our emotion

recognition system.

We train our recognition system end-to-end, learning the parameters jointly using

stochastic gradient descent with momentum and weight decay. As mentioned, the first

two modules are initialized using pre-trained models (Places (Zhou et al. [2017a]) and

Imagenet (Deng et al. [2009])) while the fusion module is trained from scratch. The batch

size is set to 52 - twice the size of the emotion categories. We found empirically after

testing multiple batch sizes (including multiples of 26 like 26, 52, 78, 108) that batch-size

of 52 gives the best performance.

In this section, we introduce and describe the different losses used for training the

models. We discuss the basis for choosing them and their relevance for our training goals.

Specifically, we use weighted euclidean loss for emotion categories, margin euclidean loss

and smooth L1 (Girshick [2015]) for continuous dimensions and a weighted combined loss

for joint training of emotion categories and continuous dimension. We discuss each in the

following sections.

4.3.1 Criterion for Emotion Categories (Ldisc)

In our emotion recognition problem, we have formalised 26 different emotion categories

(Table 3.1). Each person in EMOTIC can be labeled with multiple emotion categories

(sample example in Figure 3.19). We see that there are multiple possible emotion classes

(26 different emotion categories) to choose from and each different input can be labeled
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with multiple labels making this a multiclass-multilabel problem. In addition, there is

an inherent class imbalance as the number of training examples is not the same for each

emotion category (Figure 3.20) nor for each score of the continuous dimensions (Fig-

ure 3.21.a,b,c). Therefore, we use a weighted euclidean loss to overcome this issue. We

found empirically that this loss is more effective than using Kullback−Leibler divergence

or a multi-label multi-classification hinge loss. The weighted euclidean loss for our emotion

categories is defined as follows:

Ldisc =
1

N

N∑
i=1

wi(ŷ
disc
i − ydisci )2 (4.1)

where N is the number of categories (26 in this case), ŷdisci is the prediction and ydisci is

the ground-truth label for the ith category. The parameter wi is the weight assigned to

each category. Weight values are defined as wi = 1
ln(c+pi)

, where pi is the probability of

the ith category and c is a parameter to control the range of valid values for wi. Using this

weighting scheme the values of wi are bounded as the number of instances of a category

approach to 0. This is particularly relevant in our case as we set the weights globally based

on the occurrence of each category for the entire dataset. Experimentally, we obtained

better results using this approach compared to setting the weights batch-wise.

4.3.2 Criterions for Continuous Dimensions (L2cont, SL1cont)

In this learning task, there are 3 dimensions whose values are learned. Each dimension

has values in the range from 1 to 10 so we model this task as a regression problem.

There are multiple annotators for each annotation in validation and test sets and since

the annotation is a subjective evaluation, we compare the performance using two different

robust losses : (1) a margin Euclidean loss L2cont, and (2) the Smooth L1 SL1cont. The

former defines a margin of error (vk) when computing the loss for which the error is not

considered. The margin Euclidean loss for continuous dimension is defined as:

L2cont =
1

]C
∑
k∈C

vk(ŷcontk − ycontk )2 (4.2)

where C = {V alence, Arousal,Dominance} and ]C = 3, ŷcontk and ŷcontk are the prediction

and the normalized ground-truth for the kth dimension and vk (= 0, 1) is a binary weight

to represent the error margin:

vk = 0, if |ŷcontk − ycontk | < ε

= 1, otherwise (4.3)
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If the predictions are within the error margin, i.e. error is smaller than ε, then these

predictions do not contribute to updating the weights of the network during back propa-

gation.

The Smooth L1 loss refers to the absolute error using the squared error if the error

is less than a threshold (set to 1 in our experiments). This loss has been widely used

for object detection (Girshick [2015]) and, in our experiments, has been shown to be less

sensitive to outliers. Precisely, the Smooth L1 loss is defined as follows

SL1cont =
3∑

k=1

vk

{
0.5xk

2, if |xk| < 1

|xk| − 0.5, otherwise
(4.4)

where xk = (ŷcontk −ycontk ), and vk is a weight assigned to each of the continuous dimensions

and it is set to 1 in our experiments.

4.3.3 Combined Criterions (Lcomb1, Lcomb2)

We define the combined loss function as a weighted combination of two separate losses as

explained above:

Lcomb1 = λdiscLdisc + λcontL2cont (4.5)

Lcomb2 = λdiscLdisc + λcontSL1cont (4.6)

The parameters λ(disc,cont) weigh the importance of each loss and are set empirically using

the validation set. After various combinations, we found that using λdisc = λcont = 0.5

gives the best performance. Using equal weights gives equal importance to both the crite-

rions which prevents inducing bias for a particular task. Ldisc and Lcont (L2cont, SL1cont)

represent the losses corresponding to learning the emotion categories (section 3.1.2.2) and

the continuous dimensions (section 3.1.2.1) respectively. This combined loss criterion is

used to enforce the multi-task training in the model computationally. It calculates the

loss from both the tasks and back-propagates it through the model while training. This

enables the model to generalize it’s performance by learning the parameters in a shared

manner.

4.3.4 Performance Evaluation Metrics

The task for learning emotion categories is modeled as multi-class classification and the

task for learning continuous dimensions is modeled as regression. So we measure the

performance of our fusion model using 2 different evaluation metrics.
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4.3.4.1 Average Precision (AP)

For this evaluation metric, first we find a threshold for each emotion category from the

validation set predictions. After setting the model in evaluation mode, forward pass of

a sample from validation set generates 26 predictions - probabilities for the 26 emotion

categories. We collect all such predicted probability values for all the validation set

samples. Next, for each of the emotion category, their predictions for all the samples

together with the labels are used to plot Precision-Recall curves (Powers [2011]). For

each of these 26 curves, we find a point where Precision=Recall which is the threshold

for that particular category. We now have 26 thresholds for the 26 emotion categories.

These thresholds are then applied to the predicted probabilities of the model for the test

set samples. For example, when we forward pass a test set sample, the model predicts 26

values for the emotion categories. If a predicted value is above it’s respective threshold,

this indicates that the model triggers that emotion category with higher probability.

Similarly we apply the threshold to all the test set samples to find the predicted emotion

categories for each of them. Apart from this, in order to measure the performance of

the model in a holistic manner, we take the predicted probabilities for the test samples

together with their respective labels and we find the precision-recall curve for each emotion

category. The area enclosed by these curves (for each of the emotion category) constitutes

what is called as Average Precision. This metric represents the average performance of

the model for emotion categories. Average Precision can have values ranging from 0 to

100, where 0 implies that precision and recall both were nil and 100 indicates that there

was a perfect recall and perfect precision.

4.3.4.2 Average Absolute Error (AE)

The continuous dimension task is a regression and we use Average Absolute Error (AE) to

measure it’s performance. An error for a given continuous dimension is the absolute value

of the difference between it’s predicted value and the target value. An error is considered

for the calculation only if it is lower than the predefined error margin. Such errors are

averaged over all the inputs for each of the continuous dimensions. This performance

measure is similar to the criterion for continuous dimension (subsection 4.3.2), except

that instead of a square we consider the absolute values. Thus, the AE is calculated as:

AE =
1

]C
∑
k∈C

vk|ŷcontk − ycontk | (4.7)

where C = {V alence, Arousal,Dominance}, ŷcontk and ycontk are the prediction and the

normalized ground-truth for the kth dimension, m is the number of samples and vk (=0,1)
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is a binary weight to represent the error margin. This error is also weighted in the same

manner as the loss criterion (equation 4.3). This AE vector is the metric to represent the

average performance of the model for the continuous dimensions. Lower the AE, better

the performance.
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Chapter 5

Experiments and Analysis

This chapter discusses all the experiments conducted on variations of the EMOTIC fusion

model (introduced in Chapter 4, section 4.1.3). All these experiments use the EMOTIC

dataset (Chapter 3). We establish baselines through experiments that take into account

only the surrounding scene features or only the person features to learn about the per-

ceived emotions of the person-in-context. Then, we combine both these features and train

the fusion model (section 4.1.3) end-to-end. We observe that the performance is better

with the combined features than the individual features. Thus demonstrating the influ-

ence and importance of the surrounding visual scene in the perception of emotion of a

person embedded in that scene, in addition to the features extracted from the person alone.

In this section, we present all our experiments on the EMOTIC dataset. The goals of

these experiments are two fold:

1. Demonstrate the influence of visual context information on the perception of emo-

tion (in addition to the body of the person)

2. Using multitask learning for emotion perception, the two emotion representations

help one another to improve the generalization performance of the model. Ulti-

mately achieving better results for the combined training of the tasks as compared

to the individual training

5.1 Experiments

EMOTIC being the first dataset of it’s kind, we set up baseline performance for our

CNN fusion model. We want to observe the influence of different features on the task

of emotion perception for which we designed our fusion model. To this end, we design

79
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the experiments into 3 parts - each part with a different input given to the network. We

denote the experiments according to the following:

1. CNN models trained with only the body of the person as input as B ; with focus

on person features

2. CNN models trained with only the whole image as input as I ; with focus on visual

scene features

3. CNN models trained with body of the person and the whole image as inputs as B

+ I ; with focus on the combined features

Each of the above parts constitute 3 different experiments. There are 2 main tasks viz.

(1) learning 26 emotion categories and (2) learning 3 continuous dimensions. The first

two experiments focus on learning these tasks independently. In the third experiment,

we do a combined training for both the tasks. For each part we modify the architectures

depending on the task. The details for each part is discussed in the following sections.

5.1.1 B Model Experiments (person features)

The focus of this set of experiments is to train a CNN model that can extract person

related features and use this to make emotion predictions. We do a supervised training

of the person module (Figure 4.2) with input as the visible body of the person with their

respective labels. The purpose of training this model is to understand and analyze the

network behavior when only the body of the person is presented (or fed) to the network as

an input. We perform the experiments where the network learns the person features, and

trains in 3 different experiments and compare their performance for emotion recognition.

Depending on the task (learning emotion categories, continuous dimensions or their

combined form), the model configurations with their respective criterions (Ldisc, L2cont and

Lcomb1) are shown in Figure 5.1.a,b,c respectively. While training with criterion Lcomb1,

the B model shares the parameters between both the sub-tasks.

5.1.2 I Model Experiments (visual scene features)

In these experiments, we train a CNN model on visual scene related features for emotion

prediction and observe how the network behaves when only the image of the scene is given

as a training signal. We train visual scene model using only the image (visual scene) as

our input (Figure 4.4) with their respective labels. 3 different experiments use 3 different

criterions viz. Ldisc, L2cont and Lcomb1 for their respective tasks. Figure 5.2 shows the
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different CNN configurations trained for the I model. Similar to the body model, while

training with criterion Lcomb1, the I model also shares the parameters between both the

sub-tasks.
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Figure 5.2: I model configurations for different experiments (a, b, c)

5.1.3 B + I Model Experiments (combined features)

In this set of experiments, we use the visible body along with the visual scene as our

inputs for our fusion model (Figure 4.5), and train with their respective labels. Through

these experiments we would be able to observe the behaviour of the CNN when it trains

with both, the person features & the visual scene features for emotion recognition. Similar

to previous experiments the fusion model shares the parameters for both the sub-tasks

when trained with the combined criterion Lcomb1. Figures 4.5,5.3.a,b show the different
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CNN configurations trained for the B+I model for the different tasks.
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Figure 5.3: B+I model configurations for different experiments (a, b)

5.2 Results’ Analysis

We trained different models on the EMOTIC dataset with various input configurations

and loss functions. In this section we observe and compare how the 2 emotion represen-

tations (section 3.1.2) are learned independently using different criterions (L2cont & Ldisc)

and compare them with the combined criterion (Lcomb1), for each of the 3 experiments

(person features (B), visual scene features (I) and their combination (B + I)). Table 5.2

summarizes the Average Precision (AP) of different model configurations comparing the

performance of combined criterion (Lcomb1) with discrete criterion (Ldisc); and Table 5.1

summarizes the Average Absolute Error (AE) of different model configurations comparing

the performances of the combined criterion (Lcomb1) with the continuous criterion (L2cont).

The performances are compared on the images from the testing set of EMOTIC.
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Continuous Dimensions
Input to network

B I B + I
L2cont Lcomb1 L2cont Lcomb1 L2cont Lcomb1

Valence 0.0543 0.0537 0.0600 0.0541 0.0613 0.0546
Arousal 0.0661 0.0600 0.0620 0.1060 0.0622 0.0648
Dominance 0.0589 0.0570 0.0604 0.0687 0.0604 0.0573

Mean 0.0597 0.0569 0.0608 0.0763 0.0613 0.0589

Table 5.1: Average Absolute Errors (AE) for various models, comparing performance of
each with L2cont and Lcomb1 criterions

Emotion Categories
Input to the network

B I B + I
Ldisc Lcomb1 Ldisc Lcomb1 Ldisc Lcomb1

1. Affection 22.89 21.80 19.51 21.03 19.46 21.16
2. Anger 07.55 06.45 06.88 05.64 08.10 06.45
3. Annoyance 10.72 07.82 05.73 08.49 09.79 11.18
4. Anticipation 57.68 58.61 53.75 57.12 52.27 58.61
5. Aversion 06.04 05.08 05.37 05.33 05.58 06.45
6. Confidence 70.15 73.79 65.76 68.23 60.59 77.97
7. Disapproval 09.62 07.63 09.01 07.84 08.10 11.00
8. Disconnection 19.42 20.78 16.89 17.72 20.79 20.37
9. Disquietment 14.83 14.32 13.75 14.08 14.66 15.54
10. Doubt/Confusion 28.17 29.19 28.39 28.11 28.47 28.15
11. Embarrassment 02.72 02.38 02.60 02.52 02.58 02.44
12. Engagement 85.08 84.00 81.33 84.72 81.72 86.24
13. Esteem 17.05 18.36 17.90 17.26 17.54 17.35
14. Excitement 69.22 73.73 65.98 68.09 65.20 76.96
15. Fatigue 08.62 07.85 06.63 07.55 07.87 08.87
16. Fear 11.55 12.85 13.01 11.54 12.11 12.34
17. Happiness 57.07 58.71 55.64 56.04 54.55 60.69
18. Pain 05.78 03.65 02.77 03.88 04.79 04.42
19. Peace 20.31 17.85 17.35 18.79 17.69 19.43
20. Pleasure 44.36 42.58 42.17 42.86 42.34 42.12
21. Sadness 10.01 08.13 11.72 06.14 09.11 10.36
22. Sensitivity 05.43 04.23 04.76 04.24 04.09 04.82
23. Suffering 09.33 04.90 08.34 06.01 07.41 07.65
24. Surprise 17.53 17.20 16.05 16.26 16.77 16.42
25. Sympathy 11.20 10.66 11.60 11.29 10.52 11.44
26. Yearning 07.76 07.82 08.28 07.93 07.64 08.34

Mean 24.23 23.86 22.74 23.03 22.68 24.88

Table 5.2: Average Precision (AP ) for various models, comparing performance of each
with Ldisc and Lcomb1 criterions
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5.2.1 B Model Analysis

Research in emotion perception has mainly focused on the facial expressions (section 2.2.1)

and body pose (section 2.2.2) of the person. This motivated us to create experiments

with features focused on the body of the person as the network input. Person features are

extracted from the visible body of the person so they include the facial features (if the face

is visible) as well as features off the body of the person. Since body of a person (which

also includes faces) is the main source for emotion perception, we consider model B as

the benchmark with which we compare the performances of other models. In columns 2

& 3 of Tables 5.2 & 5.1 each, we provide results for the experiments focused only on the

person features. For emotion categories, B model with Ldisc has better AP as compared

to Lcomb1. For continuous dimensions, the AE performance of B(Lcomb1) model is better

by 0.0028 points as compared to B(L2cont) model (lower AE is better). So, B(Ldisc)

and B(Lcomb1) model register best performance for emotion categories and continuous

dimensions respectively for this set of experiments.

5.2.2 I Model Analysis

Affect analysis of images has inspired research in sentiment and emotion analysis (Soley-

mani et al. [2017]). This inspired us to use the whole image and train different models on it

for emotion perception. These set of experiments focuses on the visual features extracted

from images as a whole for training and prediction. Columns 4 and 5 of Tables 5.2 & 5.1

furnish the results of the experiments for emotion categories and continuous dimensions

respectively. As shown, none of the models is able to perform better than their counter-

part of B models. The best I(Lcomb1) model gives an AP lower by 1.2 points for emotion

categories as compared to B(Ldisc) model. When compared for continous dimensions, the

I(L2cont) model gives lower performance as compared to B(Lcomb1) model by 0.0039 AE

points.

5.2.3 B + I Model Analysis

Taking cues from the above 2 experiments, we want to observe the model performance

when both the features (person and visual scene context) are used in conjunction as the

input to the model. Columns 6 and 7 of Tables 5.2 & 5.1 furnish the results of the

experiments for emotion categories and continuous dimensions respectively. The model

which considers person features as well as visual contextual information (B+I model)

outperforms the B model for one task and is similar in performance for the other. For

emotion categories, B+I(Lcomb1) model gives 0.65 points higher AP than B(Ldisc) model.
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This could be attributed to the fact that B+I model is able to learn additional features

supplied by the input image. For continuous dimensions, B+I(Lcomb1) model gives lower

AE performance by 0.002 points as compared to the B(Lcomb1) model, which is not very

different as the B+I(Lcomb1) model is the second best by performance for continuous

dimensions.

5.2.4 Analysis Summary

After reviewing the above experiments, it is clear to see how person features together

with the visual scene context features learn a better representation for emotion perception.

Neither B model nor I model could capture independently what the B + I model captured

by joining both the features. This result clearly suggests that multiple tasks learned

together helps to improve the predictions. Jointly learning both emotion representations

is more effective and improves the performance. In addition, as shown column 7 of

Table 5.2, the model achieves better performance when visual contextual information (I

models) is taken into account in addition to person features (B models). For B model, the

input feature space contains only the visible body part whereas the input feature space

for B+I model has a wider feature space covering, in addition to person features, the

visual scene (the surrounding context).

Note that B model as well as I model have 2 different models that give better perfor-

mance for emotion categories and continuous dimensions each. However, quite interest-

ingly a single B + I(Lcomb1) model gives better performance for both.

It is now evident that the B+I(Lcomb1) model gives better performances for emotion

categories as well as continuous dimensions in comparison to the B and I models.

5.3 Experiments with other architectures: SHG and

Resnets

We conducted more experiments on our proposed fusion CNN baseline model. Concretely,

we experimented with different state-of-art CNN architectures for the feature extraction

modules of our model. In particular, we used ResNets (He et al. [2016]) which won the

ILSVRC 2015 image recognition challenge (Deng et al. [2009]) as visual scene-context

feature extractor. ResNets have been trained on ImageNet 2012 dataset and achieved

a top-5 error rate of 3.57% on the test set of ImageNet with ensembles, and a top-5

error rate of 4.49% on the validation set with a single model. The previous models like

VGG (Simonyan and Zisserman [2014]) and GoogLeNet (Szegedy et al. [2015]) achieved
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top-5 test error rates of 7.32 and 6.66. The performance improvement in ResNets for

the task of image recognition over previous models is attributed to the fact that they

address the degradation problem (He and Sun [2015]; Srivastava et al. [2015]) using deep

residual learning. ResNets achieve more depth and complexity in their architecture which

motivated us to use them for a more complex visual scene-context feature extractor. A

state-of-the-art Stacked Hour Glass (SHG, Newell et al. [2016]) network was used as body

feature extractor. SHG has a unique architecture that allows it to learn features from

the body of the person for the task of pose estimation. We get rid of the last layer from

SHG and use it as our person feature extractor. We trained these networks with different

parameters (batch sizes, learning rates) and found that their performances were lower as

compared to using less deeper models or less complex models like AlexNet. In particular,

the best obtained result in the discrete categories was AP = 22.38, which is lower by

2.5 points as compared to our baseline B + I(Lcomb1) model. We observed that the

performances do not improve, showing that increasing the complexity of the CNN is not

helping the model to improve the emotion recognition task.

5.4 Discussions

5.4.1 Experiments with Lcomb2 (BEST EMOTIC MODEL)

Lcomb2 (Equation 4.6) is a loss that combines Smooth L1 (SL1cont) and weighted euclidean

loss (Ldisc). The Smooth L1 loss (Equation 4.4) refers to the absolute error using the

squared error if the error is less than a threshold (set to 0.1 in our experiments). This loss

has been widely used for object detection (Girshick [2015]) and, in our experiments, has

been shown to be less sensitive to outliers. Precisely, the Smooth L1 loss is a robust L1 loss

that is less sensitive to outliers than the L2 loss used in R-CNN (Girshick et al. [2014]) and

SPPnet (He et al. [2015]). Normally, when the regression labels are unbounded, training

with L2 loss (Equation 4.2) can require careful tuning of learning rates in order to prevent

exploding gradients.

We re-trained our models with Lcomb2. Results for emotion categories in the form of

AP are summarized in Table 5.3, whereas for continuous dimensions in the form of AE

are summarized in Table 5.4. Notice that the B+I models outperform the B models

in all categories except Esteem. Clearly, the combination of person features and visual

scene-context features (B+I model) is better than the person features (B model). For

continuous dimensions we can observe from the Table 5.4 that the performance increases

for B + I model but not for B model.

Another noteworthy thing is that B + I(Lcomb2) model has AP higher by 2.5 points as
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Emotion Categories
Input to the network

B B + I
Ldisc Lcomb2 Lcomb1 Lcomb2

1. Affection 21.80 16.55 21.16 27.85
2. Anger 06.45 04.67 06.45 09.49
3. Annoyance 07.82 05.54 11.18 14.06
4. Anticipation 58.61 56.61 58.61 58.64
5. Aversion 05.08 03.64 06.45 07.48
6. Confidence 73.79 72.57 77.97 78.35
7. Disapproval 07.63 05.50 11.00 14.97
8. Disconnection 20.78 16.12 20.37 21.32
9. Disquietment 14.32 13.99 15.54 16.89
10. Doubt/Confusion 29.19 28.35 28.15 29.63
11. Embarrassment 02.38 02.15 02.44 03.18
12. Engagement 84.00 84.59 86.24 87.53
13. Esteem 18.36 19.48 17.35 17.73
14. Excitement 73.73 71.80 76.96 77.16
15. Fatigue 07.85 06.55 08.87 09.70
16. Fear 12.85 12.94 12.34 14.14
17. Happiness 58.71 51.56 60.69 58.26
18. Pain 03.65 02.71 04.42 08.94
19. Peace 17.85 17.09 19.43 21.56
20. Pleasure 42.58 40.98 42.12 45.46
21. Sadness 08.13 06.19 10.36 19.66
22. Sensitivity 04.23 03.60 04.82 09.28
23. Suffering 04.90 04.38 07.65 18.84
24. Surprise 17.20 17.03 16.42 18.81
25. Sympathy 10.66 09.35 11.44 14.71
26. Yearning 07.82 07.40 08.34 08.34

Mean 23.86 22.36 24.88 27.38

Table 5.3: Average Precision (AP) obtained on test set per category. Comparing perfor-
mance of B(Ldisc) and B + I(Lcomb1) models with their Lcomb2 counterparts

Continuous Dimensions
Input to network
B B + I

Lcomb1 Lcomb2 Lcomb1 Lcomb2

Valence 0.0537 0.0545 0.0546 0.0528
Arousal 0.0600 0.0630 0.0648 0.0611
Dominance 0.0570 0.0567 0.0573 0.0579

Mean 0.0569 0.0581 0.0589 0.0573

Table 5.4: Average Absolute Error (AE) obtained on test set per each continuous dimen-
sion. Comparing performance of B(Ldisc) and B + I(Lcomb1) models with their
Lcomb2 counterparts
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compared to B + I(Lcomb1) model. This shows that using SL1cont (Lcomb2) loss criterion

in place of L2cont (Lcomb1) for continuous dimension boosts the performance of the model

in general. We can see this fact reflected in columns 4 and 5 of Table 5.3. B + I(Lcomb2)

model outperforms B + I(Lcomb1) model in all but one emotion category (Happiness,

the AP for both these models is same for Yearning). In addition to emotion categories,

the performance in continuous dimensions of B + I(Lcomb2) model is better than B +

I(Lcomb1) model as shown in Table 5.4 (Lower AE is better). Also note that B + I(Lcomb2)

model has better performance by AP of 3.52. This improvement is a good sign of how

the visual scene affects the emotion perception as compared to only person features.

These experiments with Lcomb2 show the importance of using a loss that is less sensitive

to outliers. These experiments gave us B + I(Lcomb2) model which outperforms all the

other models for EMOTIC dataset.

5.4.1.1 Quantitative Evaluation

We focus now on a detailed quantitative analysis of our results. We keep our discus-

sion limited to B and B + I models. We compare the performance of these models

on our 2 principal forms of emotion representations (emotion categories and continuous

dimensions).

Performance analysis with Emotion Categories: We focus now on analyzing the

performance of the models trained on emotion categories. To this end, we analyze

precision-recall curves and use the validation set to find, for each emotion category, the

points where Precision = Recall. With these values (thresholds) we find the Jaccard coef-

ficient (JC) for all the samples in the test set. The JC coefficient is computed as follows:

per each category we use as threshold for the detection of the category the value where

Precision = Recall. Higher values of JC are better, with a maximum value of 1, where

the detected categories and the ground truth categories are exactly the same. Then, the

JC coefficient is computed as:

JC =
Intersection(detected categories, ground-truth categories)

Union(detected categories, ground-truth categories)
(5.1)

The summary of the results obtained per each instance in the testing set can be found

in Figure 5.4. Specifically, Figure 5.4.a shows JC for all the samples in the test set for 4

different models. The examples are sorted in decreasing order of the JC coefficient. We

can observe that for B+I(Lcomb2) model, 65% of people have a JC ≥ 0.3 suggesting good

retrieval rates for emotion categories. In contrast the best model for B(Ldisc), has 59%

of people with JC ≥ 0.3. This difference in retrieval rates is a good measure to realize
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the importance of using the combined inputs (image and body) to predict the correct

categories. It can be said that the visual scene features are helping the person features

to improve the performance, indicating the importance of visual scene context in emotion

perception. This is a good evidence to change our understanding of emotion perception

in general. Instead of focusing only on the features related to the person (face, body pose,

or gestures), it is essential to look at the surrounding scene context.

Performance analysis with Continuous Dimensions: Results for continuous di-

mensions in the form of mean value of AE (the lower, the better) for the 3 dimensions

are plotted in Figure 5.4.b. Samples are sorted by increasing order of AE. Again, these

results are consistent with the observations made from Table 5.4. We can see that the

models are almost equivalent. The standard deviation (std) of the AE is 0.00077 which is

lower by 3rd order of magnitude from the range of their associated label values. The low

std is also reflected in Figure 5.4.b by the thick plot. All the compared models give very

results. From these results, we can conclude that combining contextual features from the

visual scene with person features (B + I models) and jointly training them improves the

AP (Table 5.3) compared to other model configurations. The network takes advantage of

the multiple emotion representation to improve its performance.

5.4.1.2 Qualitative Evaluation

Quantitative analysis give a computational insight into the performance of the models.

However, due to the inherent subjectivity of the task of emotion perception, it is important

to look at the qualitative examples. Figure 5.5 shows qualitative predictions for the

best B and B+I models. Categories in Red font indicate incorrectly predicted emotion

categories. For B model, the predictions for emotion categories are taken from B (Ldisc)

model, whereas the predictions of continuous dimensions are taken from B (Lcomb1) model.

These examples were randomly selected among samples with high JC ≥ 0.8 and a low

AE < 0.2 value (Figure 5.5.a) and samples with low JC ≥ 0.4 and AE < 0.3 value

(Figure 5.5.b). The graphic compares the B and B + I models’ predictions with their

corresponding ground truths. Red As shown, in general, B+I model outperforms B.

These examples show how the evaluation measures good predictions.

As we can see, the predictions of the continuous dimensions do not vary much when

comparing B and B+I models. However, we observe significant differences in the case of

the emotion categories. For example row 1 in Figure 5.5.a shows that B + I model predicts

all the emotion categories faithfully, whereas the B model predicts 3 incorrect categories,

meanwhile their continuous dimension predictions do not differ by huge margins. Another
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Happiness

(a) Predictions with high JC values
(Lcomb2)(Ldisc, Lcomb1)

(b) Predictions with low JC values

Figure 5.5: Comparing predictions of B(Ldisc, Lcomb1) and B+I(Lcomb2) models with high
and low JC values. Red indicates incorrectly predicted emotion categories
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example is of row 3 in Figure 5.5.b. Here we see that both the models predict 3 correct

emotion categories each, however the B model has lower JC because it is predicting 11

incorrect categories in comparison to the 6 incorrectly predicted by the B + I model.

Best prediction of emotion categories ( JC = 1) is by the B+I model (Figure 5.5.a,

row 1) and the worst (JC = 0) is by the B model (Figure 5.5.b, row 4). For the worst

prediction, the continuous dimension predictions have a mean AE of 0.103 whereas the

best has a mean AE of 0.063. From Figure 5.4.b we see that the mean AE for all the

models is ≈ 0.06. So the model that gives best prediction for emotion categories also

predicts the continuous dimensions within the mean AE; whereas the model that predicts

worse for emotion categories also predicts bad for their continuous dimension counterpart.

This exaggerates that our best EMOTIC fusion model (B + I (Lcomb2) model) is able to

perform better for both the emotion representation.

5.4.2 Sentibanks as Visual Context Features

Social media has become ubiquitous. Sharing of text, gifs, images, videos, and other

forms of media has become very commonplace. Quite often people use these mediums

to convey a specific message, a feeling or some other point of view. These medium very

often transgress language limitations due to their visual appeal. The visual content itself

is very intense to invoke specific sentiments. For example, the samples in Figure 5.6

convey lot of information and sentiments through their visual content. In Figure 5.6.a, we

see a popular image of people bringing down the famous Berlin wall. This image arouses

intense sentiments and serves as a symbol to demolishing the turbulent history. In an

another example shown in Figure 5.6.d, we see a beautiful sunset at a beach lined with

palm trees and light waves. This image evokes a feeling of admiration to the nature’s

beauty.

In computer vision it is feasible and computationally easy to detect and recognize

objects from an image. However, to recognize the reason that evoke sentiments is still

an open area of research. In Figure 5.6.c it is easy to find the position and recognize the

players, their poses, the ball, the net and the grass. From a football fan perspective, this

is an amazing goal. However it is difficult to compute the sentiment this image conveys.

The authors (Chen et al. [2014]) try to address this problem called the affective gap in

their work. They pose 2 interesting questions: (1) how are images in various languages

used to express affective visual concepts, e.g. beautiful place or delicious food? And (2)

how are such affective visual concepts used to convey different emotions and sentiment

across languages? They have build a visual sentiment concepts called ANP - which they

discovered by mining millions of tags from web photos. This ANP is considered to fill the
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(a) Berlin wall being torn down (b) A romantic moment at the beach

(c) A goal is being scored (d) A beautiful sunset at the beach

Figure 5.6: Examples of images that evoke sentiments through their visual content
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affective gap between recognition and sentiment.

These ANP detectors extract sentiments conveyed by the image. This motivated us to

use these features as a visual context feature for our emotion recognition system. First,

we analyse these features and then compare the performance of our model with these

ANP detectors.

5.4.2.1 Context Features’ Comparison

The goal of this section is to compare different context features for the problem of emotion

recognition in context. A key aspect for incorporating the context in an emotion recogni-

tion model is to be able to obtain information from the context that is actually relevant

for emotion recognition. Since the context information extraction is a scene-centric task,

the information extracted from the context should be based in a scene-centric feature

extraction system. That is why our baseline model uses a Places CNN for the context

feature extraction module. However, recent works in sentiment analysis (detecting the

emotion of a person when he/she observes an image) also provide a system for scene

feature extraction that can be used for encoding the relevant contextual information for

emotion recognition.

To compute body features, denoted by Bf , we fine tune an AlexNet ImageNet CNN

with EMOTIC database, and use the average pooling of the last convolutional layer as

features. For the context (image), we compare two different feature types, which are

denoted by If and IS. If are obtained by fine tunning an AlexNet Places CNN with

EMOTIC database, and taking the average pooling of the last convolutional layer as

features (similarly to Bf ), while IS is a feature vector composed of the sentiment scores

for the ANP detectors from the implementation of Chen et al. [2014].

To fairly compare the contribution of the different context features, we train Logistic

Regressors for the following features and combination of features: (1) Bf , (2) Bf+If ,

and (3) Bf+IS. For the discrete categories we obtain mean average precisions as AP =

23.00, AP = 27.70, and AP = 29.45, respectively. For the continuous dimensions, we

obtain AE as 0.0704, 0.0643, and 0.0713 respectively. We observe that, for the discrete

categories, both If and IS contribute relevant information to the emotion recognition in

context. Interestingly, IS performs better than If , even though these features have not

been trained using EMOTIC. However, these features are smartly designed for sentiment

analysis, which is a problem closely related to extracting relevant contextual information

for emotion recognition, and are trained with a large dataset of images.
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Chapter 6

Conclusions and Future Outlook

In this thesis we focused on the importance of considering the visual scene context in

the problem of automatic emotion recognition. We began by introducing the problem

of emotion recognition (section 1.1), then we discussed the role of contexts in emotion

perception (section 1.2). With the focus on the visual scene context, we discussed the rel-

evant related research in the domain of emotion recognition through images (section 2.2).

We also explored various datasets that are publicly available for the same (section 2.3).

This discourse led to the observation of their shortcomings with respect to our goal of

emotion recognition in context.

We presented the EMOTIC database (chapter 3), a dataset of 23, 571 natural uncon-

strained images with 34, 320 people labeled according to their apparent emotions with two

different emotion representation formats (section 3.1.2). We also provided different statis-

tics and algorithmic analysis on the EMOTIC database (section 3.2). Then, we proposed

a baseline fusion CNN model for emotion recognition in scene context (section 4.1.3) and

their related baseline experiments (section 5.1). We also compare different feature types

for encoding the contextual information (section 5.4.2). The obtained results show the

relevance of using visual scene context to recognize emotions and, in conjunction with the

EMOTIC dataset, motivate further research in this direction1.

6.1 Main Conclusions

The following summary of observations are made based on the challenges faced and tackled

while actively conducting research for the principal goals of the thesis:

1. There was a lack of proper dataset of images for emotion recognition in context.

EMOTIC dataset, presented in this thesis, is our attempt towards bridging this gap

1Dataset and trained models are available on the project site: http://sunai.uoc.edu/emotic/
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and trying to make emotion research from images more accessible. EMOTIC is one

of it’s kind in the field of emotion recognition through images. It is a collection of

images of people annotated according to their apparent emotional states. Images are

spontaneous and unconstrained, showing people doing various activities in different

situations. Figure 3.19 shows some examples of images in the EMOTIC database

along with their corresponding annotations.

2. EMOTIC Fusion CNN model (section 4.1.3) is designed based on the EMOTIC

dataset. The model is constructed in a way that it implements the use of the visual

scene and the body of the person as it’s inputs. This strategy helps the network

to see the whole image along with the focus on the person while training. This

network scheme helps to observe the effect of visual scene in emotion recognition.

The network uses state-of-art pretrained modules to ease the process of transfer

learning to achieve the empirical results (Tables 5.3, 5.4); while training end-to-end.

3. Baseline experiments (Table 5.2) show that using visual scene features, in addition

to the person features, improves the performance of the fusion model as compared

to using individual features. This experiment shows that the visual scene influences

and is an important cue for emotion recognition.

4. The fusion model is trained for multiple tasks in a joint manner, using a combina-

tion of two separate loss functions (section 4.3.3), one each for emotion categories

and continuous dimensions. A single fusion model gives the best performance (Ta-

ble 5.3), where as the models with single inputs (either Image (I) or Person (B))

couldn’t improve their performance when trained for both the tasks jointly.

5. Smooth L1 loss (SL1cont) is designed to be less sensitive to the outliers while training.

When applied to our model we observe that it improves the performance of the fusion

model (Table 5.3).

6. The low performance of our model (AP = 27.38) cannot be attributed to the low

capacity of the network. While training deeper networks like SHG and Resnets

(section 5.3), we could achieve AP = 21.46 as compared to our current AP = 27.38.

So, using deeper networks does not necessarily mean that the performance will

improve .

7. Emotion Recognition in Scene Context and Image Sentiment Analysis are different

problems that share some common characteristics. While Emotion Recognition

aims to identify the emotions of a person depicted in an image, Image Sentiment
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Analysis consists of predicting what a person will feel when observing a picture (does

not necessarily contain a person). We found that features from a model trained on

Image sentiment features and Scene context features are both good sources of visual

context information for the task of emotion recognition in context (section 5.4.2).

6.2 Future Outlook and Concluding Remarks

This thesis experimentally showed the importance of visual scene context for emotion

perception. We demonstrated, with empirical experiments, that visual scene context

plays an important role in emotion perception. This is an interesting and challenging

stage for the future research in this direction. Below we preview some of the probable

directions that the current research could potentially take.

Probable lines of research

• Data Augmentation: The recent work by Azulay and Weiss [2018] states that

data augmentation cannot be used for all the networks. Modern CNNs are not

invariant to image transformations. Due to the subsampling introduced by the

pooling layers, and due to the photographer’s bias, the networks don’t learn data

invariance. If all the sources of invariances were considered and data augmented

based on those then the data size increases exponentially which might not be a

good idea. The authors suggest (by virtue of Sampling Theorem) to always have

a stride + pooling combination while designing networks - which is supposed to

introduce invariability in the networks. This suggestion could be used to design a

completely new network model for emotion recognition using EMOTIC dataset.

• Quality of EMOTIC: The extended dataset contains 4 additional annotations

for the validation set which improves the quality of the labels. This is important

since the model continuously validates itself during training. Future work can focus

more on improving the qualitative aspects of the dataset. Maybe include more

annotations for training set of images for a more deterministic training.

• Quantity of EMOTIC: If a dataset has bias (depends on whether it is high or

low), increasing the data quantity depends on it. More data doesn’t help with high

bias, however with high variance in the data, adding more samples might just help.

The EMOTIC fusion CNN model does not have a high performance (AP = 27.38)

and with deeper networks, it’s performance is poorer (AP = 21.46). Due to this it

would be very difficult to improve performance by extending the dataset quantity.
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However, a different training strategy could help improve the performance. The

inherent dataset bias could be used as a starting point to design new strategies for

training (He and Garcia [2009]).

• Emotion Captioning or using Free Form for representing Emotions: Cap-

tioning generates a natural language description of the image contents. Current

captioning systems can even generate semantic description of the image contents

(You et al. [2016]). However, for emotion captioning, one needs to consider the af-

fective content of the image and the situation of the person whose emotion caption

needs to be acquired. An example of emotion captioning is shown in Figure 1.4.

We see the difference of opinion of both the observers. These words can be trans-

formed to vectors using word embedding methods like word2vec (Mikolov et al.

[2013]). This would make it easier to compute and quantify language. However,

there are two bigger challenges from computational perspective viz. 1. The choice

of words and phrases by the observer is highly subjective and varies so it becomes

difficult to compute semantic similarity of 2 different samples of Free Form, and

2. Once the Free Form responses are generated, it becomes difficult to compare

between different responses due to their variable lengths and dissimilarities in the

semantic content. Without comparison, it becomes difficult to understand the sim-

ilarities and differences in the perceived emotional states, which inevitably restricts

further useful analysis. Computing the gist (text summarization) of the emotional

content of a given Free Form expression is also challenging. These challenges pose

an entirely different research direction.

Concluding Remarks: The paradigm of research in emotion recognition in context

is new and challenging. This thesis has been an attempt in observing the influence and

importance of visual scene in emotion recognition. Overall our results are far from the

accuracies obtained in other visual recognition problems, showing that the EMOTIC

dataset and the problem of emotion recognition in context is a challenging area of research.

We hope that this work serves as landmark for the future research.
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Appendix A

Comparison of Emotion Categories

Keltner and Cordaro found that the subjects of their experiments reported multiple emo-

tion categories. After intensive analysis they found that there were 27 distinct emotion

categories. We compare these with the ones that is presented in this thesis (Table 3.1,

Section 3.1.2.2).

The following 2 tables (A.1 and A.2) summarizes the semantic overlap present in the emo-

tion categories. It is interesting to see that majority of the categories have similarities in

both works. This is a good example of how 2 different approaches converged to similar

conclusions about the emotion categories. The ones presented in Table 3.1 were designed

through meticulous analysis of previous works, dictionaries, including literature on psy-

chology and clustering techniques of semantically similar word meanings (Section 3.1.2.2).

On the other hand, the authors (Keltner and Cordaro) discovered their categories in the

experiments they conducted for their research. They showed 2185 videos to their subjects

and those people generated self-reports after watching the videos. Their analysis of these

observations helped them reveal the 27 distinct emotion categories.

Keys for Table A.1:

A - Emotion Categories reported by Keltner and Cordaro

B - EMOTIC Emotion Categories (Table 3.1) that overlap with Keltner and Cordaro

Keys for Table A.2:

C - EMOTIC Emotion Categories (Table 3.1)

D - Emotion Categories reported by Keltner and Cordaro that overlap with EMOTIC

Emotion Categories (Table 3.1)

NA - No semantic overlap was found
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# A Definitions of A B
1 Admiration feeling impressed, pride, amazement 6,13
2 Adoration love, adoration, happiness 1,17
3 Aesthetic ap-

preciation
awe, calmness, wonder 19,24

4 Amusement amusement, laughter, humor 17
5 Anger anger, angry disgust, boiling with anger 2,5
6 Anxiety anxiety, fear, nervousness 9,16
7 Awe awe, amazement, feeling impressed 24
8 Awkwardness awkwardness, amused embarrassment, em-

barrasment
11,17

9 Boredom boredom, annoyance, interest 3,8,12
10 Calmness calmness, peacefullness, serenity 19
11 Confusion confusion, curiosity, interested confusion 10,12
12 Craving hunger, desire, satiation of hunger 26
13 Disgust disgust, feeling grossed out, extreme disgust 5
14 Empathic Pain pain, emapathic pain, shock 18
15 Entrancement interest, amazement, feeling intrigued 12
16 Excitement excitement, adrenaline rush, awe 14
17 Fear fear, feeling scared, extreme fear 16
18 Horror shock, horror, feeling scared 16
19 Interest interest, amazement, feeling intrigued 12
20 Joy happiness, extreme happiness, love 1,17
21 Nostalgia nostalgia, boredom, reminiescence 8
22 Relief relief, deep relief, sense of narrow escape 19
23 Romance love, romantic love, romance 1
24 Sadness sadness, extreme sadness, sympathy 21,25
25 Satisfaction feeling impressed, satisfaction, awestruck

surprise
6,13,24

26 Sexual Desire sexual arousal, feeling horny, sexual desire 26
27 Surprise surprise, shock, amazement 12,24

Table A.1: Emotion Categories’ Comparisons between (A) and (B)
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# C Definitions of C D
1 Affection fond feelings; love; tenderness 2,20,23
2 Anger intense displeasure or rage; furious; resentful 5
3 Annoyance bothered by something or someone; irritated;

impatient; frustrated
14

4 Anticipation state of looking forward; hoping on or getting
prepared for possible future events

12

5 Aversion feeling disgust, dislike, repulsion; feeling hate 5,13
6 Confidence feeling of being certain; conviction that

an outcome will be favorable; encouraged;
proud

1

7 Disapproval feeling that something is wrong or reprehen-
sible; contempt; hostile

NA

8 Disconnection feeling not interested in the main event of the
surrounding; indifferent; bored; distracted

9,21

9 Disquietment nervous; worried; upset; anxious; tense; pres-
sured; alarmed

6

10 Doubt/Confusion difficulty to understand or decide; thinking
about different options

11

11 Embarrassment feeling ashamed or guilty 8
12 Engagement paying attention to something; absorbed into

something; curious; interested
11,15,19

13 Esteem feelings of favorable opinion or judgment; re-
spect; admiration; gratefulness

1

14 Excitement feeling enthusiasm; stimulated; energetic 16
15 Fatigue weariness; tiredness; sleepy NA
16 Fear feeling suspicious or afraid of danger, threat,

evil or pain; horror
22,23

17 Happiness feeling delighted; feeling enjoyment or
amusement

2,4,20

18 Pain physical suffering 14
19 Peace well being and relaxed; no worry; having pos-

itive thoughts or sensations; satisfied
10,22,25

20 Pleasure feeling of delight in the senses 26
21 Sadness feeling unhappy, sorrow, disappointed, or

discouraged
24

22 Sensitivity feeling of being physically or emotionally
wounded; feeling delicate or vulnerable

14

23 Suffering psychological or emotional pain; distressed;
anguished

14

24 Surprise sudden discovery of something unexpected 7,15,19,25,27
25 Sympathy state of sharing others’ emotions, goals or

troubles; supportive; compassionate
24

26 Yearning strong desire to have something; jealous; en-
vious; lust

12

Table A.2: Emotion Categories’ Comparisons between (C) and (D)
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Appendix B

Facial Expresssions’ Datasets

Dataset Reference WebLink
CK+

Kanade et al. [2000]
http://www.consortium.ri.

cmu.edu/ckagree/

CE
Du et al. [2014]

http://cbcsl.ece.

ohio-state.edu/dbform_

compound.html

DISFA+
Mavadati et al. [2013]

http://mohammadmahoor.com/

disfa/

Yale Face DB
Georghiades et al. [2001]

http://vision.ucsd.edu/

~iskwak/ExtYaleDatabase/

ExtYaleB.html

MMI
Pantic et al. [2005]

https://mmifacedb.eu/

KDEF
Lundqvist et al. [1998]

http://kdef.se/

PubFig
Kumar et al. [2009]

http://www.cs.columbia.edu/

CAVE/databases/pubfig/

ExpW
Zhang et al. [2015]

http://mmlab.ie.cuhk.edu.

hk/projects/socialrelation/

index.html

CASIA WebFace
Yi et al. [2014]

http://www.voidcn.com/

article/p-tnjoaphx-bqo.html

Table B.1: Various publicly available facial expression datasets with their references and
Weblinks
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Appendix C

Various sources of contextual

information

Here, we list some other related sources of context that can affect the perception of

emotions. Since this thesis does not cover the implementation or deep discussion of these

sources, we add them here so that it can serve as a reference for a curious reader.

1. Prior Knowledge: Our brain uses prior learned knowledge to predict when there

is gap in understanding or missing information (Barrett [2017]). For example, the

facial expression of the boy in Figure 1.2.a are ambiguous. His expressions suggest

that he is annoyed (and/or a bit angry) at something, but we are unsure of the

reason. This can happen due to several factors. Until we know the object (or the

reason) that incited this feeling in him, we cannot be sure about our perception of

his feelings. Maybe the object is not in the image (i.e. Out-of-Sight) or maybe it

is occluded. From Figures 1.2.b, 1.2.c we can deduce that he is annoyed because

of the girl eating a chocolate and probably refusing to share it with him. So when

presented with an image of a person, our brains try to fill in the missing contextual

information to make sense. Due to occlusion, vital knowledge that might help reveal

the apparent emotion state is concealed. Figure C.1.a shows that a person is on

a surf board. We can deduce safely that he is doing tricks on the surfboard, even

though we cannot see major parts of his body. Similarly we can see that the tennis

player is focused while tying her lace (Figure C.1.b). Her face is occluded but we

can safely assume that she is engaged in her task. It is easy for us due to our past

experience and knowledge to predict what the person might be doing or feeling.

Without this knowledge we are at a loss to describe what might be behind that

surfboard. Prior knowledge could be useful as an important source of contextual

information as well.
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(a) Surfer performing a trick (b) Tennis player tying her shoe lace

Figure C.1: Examples where part of the person’s body is not visible. However, due to
prior knowledge, it is easy to predict what they are doing

2. Audio: We not only listen to music for the sake of entertainment, but also enjoy and

appreciate the audio quality. We are able to recognize the change in tone and pitch of

singer’s voice (Bazgir et al. [2019]). And we use this skill to effectively communicate

more subtle expression of thought. Humour, for instance, is a good example where

the performer uses various combinations of words, gestures and voice intonation to

bring out the comical aspect of his act. It is very difficult to watch a movie without

sound. Clearly, audio serves as a major source of context to understand what the

person is feeling. For example in Figure C.2 try to see the frames without reading

the subtitles. Here we see that the protagonist (Tom Hanks) is talking. Unless

we listen to him, it is difficult to realise why his expressions are changing over the

frames. Once we listen (in this case, read the subtitles) to what he says, then it

makes sense.

3. Activity being conducted: There are different kinds of objects present in our im-

mediate surroundings. We interact with them depending on the activity. Different

activities can stir distinct emotional reactions. The body movement, gaze, facial ex-

pressions are different for different activities. The person performing high intensity

sports (for example, a boy showing off his skills on a skater-board in Figure C.3.a)

usually has high engagement (i.e. focussed) and high arousal with extreme physical

activeness, where as a person playing a board game (Figure C.3.b) is not active

physically, but is using a lot of mental ability. Another example is that of a girl

sleeping (Figure C.3.c) with a very low physical and mental activity.

4. Social Surrounding: When a group of people come together for a common pur-

pose, such a situation is considered a social surrounding. The social context of

the environment where the person is located can influence the emotional state of

the person. The surrounding could be either of a formal (or informal) party, cele-
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(a) First frame (b) Second frame

(c) Third frame (d) Fourth frame

Figure C.2: Frames from the movie Forrest Gump (Gump [1994]), showing the protagonist
recounting a story from his past . His speech is transcribed into subtitles

(a) Stunting on skateboard (b) Playing chess (c) Sleeping girl

Figure C.3: Emotional state of a person is influenced by the kind of activity being per-
formed. For example, the perceived arousal level for the person doing stunts
(a) is higher than the people playing chess (b), whereas it is the lowest for
the sleeping girl (c)



112 APPENDIX C. VARIOUS SOURCES OF CONTEXTUAL INFORMATION

bration, festival, community gathering, seminar, workshop, presentation, meeting,

demonstration, etc. One can find different types of apparent emotions in people

within these distinct situations. The people involved in any kind of social activity

(being part of the social surrounding) also influence one another’s feelings. More

specifically, together they show group emotion (Dhall et al. [2017]). Depending on

the kind of gathering, the apparent group emotion can be different. Figure C.4

gives few examples of people showing different types of emotions depending on the

gathering. Figure C.4.a shows people are enjoying a few drinks, they seem happy.

Figure C.4.b shows a small group of children supervised by an adult and they are

eating from a common plate, they seem calm. And Figure C.4.c shows that the

people are sad and suffering.

(a) People having drinks (b) People eating together (c) Sad group of people

Figure C.4: The gist of the social surrounding affects emotional states of the people in it
(Dhall et al. [2017]). The happiness level of the people drinking beers (a) is
higher than the family eating together (b), whereas that of people suffering
(c) is the lowest
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