
The University of Manchester Research

An architecture and stochastic method for database
container placement in the edge-fog-cloud continuum
DOI:
10.1109/IPDPS.2019.00050

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Kochovski, P., Sakellariou, R., Bajec, M., Drobintsev, P., & Stankovski, V. (2019). An architecture and stochastic
method for database container placement in the edge-fog-cloud continuum. In Proceedings - 2019 IEEE 33rd
International Parallel and Distributed Processing Symposium, IPDPS 2019 (pp. 396-405). [8821021] (Proceedings
- 2019 IEEE 33rd International Parallel and Distributed Processing Symposium, IPDPS 2019). IEEE.
https://doi.org/10.1109/IPDPS.2019.00050
Published in:
Proceedings - 2019 IEEE 33rd International Parallel and Distributed Processing Symposium, IPDPS 2019

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2022

https://doi.org/10.1109/IPDPS.2019.00050
https://www.research.manchester.ac.uk/portal/en/publications/an-architecture-and-stochastic-method-for-database-container-placement-in-the-edgefogcloud-continuum(802a85f3-30c1-4638-8201-35eee52c4f9f).html
https://doi.org/10.1109/IPDPS.2019.00050


An Architecture and Stochastic Method for
Database Container Placement in the

Edge-Fog-Cloud Continuum
Petar Kochovski

Faculty of Computer and Information Science
University of Ljubljana

Ljubljana, Slovenia
petar.kochovski@fri.uni-lj.si

Rizos Sakellariou
School of Computer Science

University of Manchester
Manchester, UK

rizos@manchester.ac.uk

Marko Bajec
Faculty of Computer and Information Science

University of Ljubljana
Ljubljana, Slovenia

marko.bajec@fri.uni-lj.si

Pavel Drobintsev
Institute of Computer Science and Technology

Peter the Great St.Petersburg Polytechnic University
St.Petersburg, Russia

drobintsev pd@spbstu.ru

Vlado Stankovski
Faculty of Civil and Geodetic Engineering

University of Ljubljana
Ljubljana, Slovenia

vlado.stankovski@fgg.uni-lj.si

Abstract—Databases as software components may be used to
serve a variety of smart applications. Currently, the Internet of
Things (IoT), Artificial Intelligence (AI) and Cloud technologies
are used in the course of projects such as the Horizon 2020
EU-Korea DECENTER project in order to implement four
smart applications in the domains of Smart Homes, Smart
Cities, Smart Construction and Robot Logistics. In these smart
applications the Big Data pipeline starts from various sensor
and video streams to which AI and feature extraction methods
are applied. The resulting information is stored in database
containers, which have to be placed on Edge, Fog or Cloud
infrastructures. The placement decision depends on complex
application requirements, including Quality of Service (QoS)
requirements. Information that must be considered when making
placement decisions includes the expected workload, the list of
candidate infrastructures, geolocation, connectivity and similar.
Software engineers currently perform such decisions manually,
which usually leads to QoS threshold violations. This paper aims
to automate the process of making such decisions.

Therefore, the goals of this paper are to: (1) develop a
decision making method for database container placement; (2)
formally verify each placement decision and provide probability
assurances to the software engineer for high QoS; and (3) design
and implement a new architecture that automates the whole
process.

A new optimisation method is introduced, which is based on
the theory and practice of stochastic Markov Decision Processes
(MDP). It uses as input monitoring data from the container
runtime, the expected workload and user-related metrics in order
to automatically construct a probabilistic finite automaton. The
generated automaton is used for both automated decision making
and placement success verification. The method is implemented in
Java. It also uses the PRISM model-checking tool. Kubernetes is
used in order to automate the whole process when orchestrating
database containers across Edge, Fog and Cloud infrastructures.

Experiments are performed for NoSQL Cassandra database
containers for three representative workloads of 50000 (workload
1), 200000 (workload 2) and 500000 (workload 3) CRUD database
operations. Five computing infrastructures serve as candidates

for database container placement. The new MDP-based method
is compared with the widely used Analytic Hierarchy Process
(AHP) method. The obtained results are used to analyse container
placement decisions. When using the new MDP based method
there were no QoS violations in any of the placement cases,
while when using the AHP based method the placement results
in some QoS threshold violations in all workload cases. Due to
its properties, the new MDP method is particularly suitable for
implementation.

The paper also describes a multi-tier distributed computing
system that uses multi-level (infrastructure, container, applica-
tion) monitoring metrics and Kubernetes in order to orchestrate
database containers across Edge, Fog and Cloud nodes. This
architecture demonstrates fully automated decision making and
high QoS container operation.

Index Terms—Cloud, Fog, Edge, storage, probabilistic decision
making, containers.

I. INTRODUCTION

Today, the Internet of Things (IoT) facilitates a vast number
of smart applications in practically all domains [1]–[3]. IoTs
continuously generate data that may raise multidimensional
concerns (e.g., volume, velocity, veracity, variety), which
are typical characteristics of Big Data applications. Various
distributed database techniques and data management methods
and technologies are currently being developed in order to
address Big Data related issues and concerns [4].

The newly started Horizon 2020 European Union-Korea
DECENTER1 project is inspired by four smart applications
in domains such as Smart Homes, Smart Cities, Smart Con-
struction and Robot Logistics. The intended smart applications
require the integration of data arriving from sensors and
video-streams. Such data is then processed by using various
Artificial Intelligence (AI) methods in order to extract useful

1https://www.decenter-project.eu/



information. Based on different application scenarios the data
is processed, filtered and integrated at various stages of the
Big Data pipeline, starting from Edge nodes via Fog nodes up
to Cloud data centres. The whole smart application design
process requires addressing various requirements including
Quality of Service (QoS) requirements.

In order to facilitate efficient and effective development
of smart IoT-based applications, distributed databases nowa-
days come hands-in-hands with component-based software
engineering approaches and tools [5]. The latter promise
radical improvements of the software lifecycle. One important
improvement is the ability to flexibly use container images
[6] within workbenches, i.e., Interactive Development Envi-
ronments (IDEs), such as the recently developed SWITCH
IDE [7], [8].

As a result, databases with various functionalities and
properties can be implemented in containers and attached to
a range of smart applications in various stages of the Big
Data pipeline. Moreover, the software engineering process is
completely platform-agnostic, in the sense that a software
component can be designed and developed before an actual
deployment decision is taken, that is, before an appropriate
infrastructure is selected [9].

Existing Open Source solutions and technologies for in-
teroperability, such as Docker2 and Kubernetes3, make it
possible to orchestrate containers across the Edge-Fog-Cloud
computing continuum [10], [11].

However, the decision on where to place (i.e., deploy) a
software component, such as an instance of a database in the
Edge-Fog-Cloud continuum, is particularly complex. Before
making an appropriate decision, the software engineer has to
consider various Quality of Service (QoS) related requirements
including the great variability of infrastructures, different
virtualisation technologies, geographical distribution, network-
related QoS (e.g., latency, throughput) and other application
and user-related requirements. Therefore, new approaches,
methods and technologies are needed to help improve the
decision making process and make adequate and optimal or
close-to-optimal deployment decisions.

Commonly, software engineers have to deal with multiple
Non-Functional Requirements (NFRs), which require various
trade-offs to be considered. For example, one such trade-
off could be to achieve a low operational cost for data
management operations versus fast data delivery. Thus, the
deployment decision making task represents a complex multi-
criteria decision making problem, which is difficult to be
addressed manually by the software engineer.

This paper addresses the distributed systems aspect of such
decision making task contributing the development of a new
probabilistic method for QoS assurance when orchestrating
containers across multiple computing infrastructures (multi-
tier). The method is also complemented with an architecture
that helps orchestrate software components across the Edge-

2https://www.docker.com/
3https://kubernetes.io/

Fog-Cloud computing continuum. It is used for automated
decision making for the placement of database containers and
their orchestration as required by various smart applications.
The new method relies on the theory and practice of stochastic
Markov models [12], [13].

The specific contributions of this paper include:
• a decision making method for database container place-

ment;
• formal verification of the decision and generation of QoS

probability assurances for the software engineer;
• a new architecture that automates the process.
The new architecture and method are used to automatically

select an optimal infrastructure where database containers
should be deployed. Before an infrastructure for deployment
is selected, the software engineer may also receive assurances
in terms of QoS scores, that the particular deployment will not
result in under- or over-provisioning of resources, additional
operational costs, or specific QoS threshold violations.

This paper presents in detail an orchestration approach
that uses a new probabilistic method for database placement.
First, we discuss related work and then we describe the Fog-
Edge-Cloud continuum concept, which is motivated by the
DECENTER’s smart applications. We provide a thorough
description of the database placement method, and the de-
scription of selected QoS and NFR attributes for the study. A
NoSQL Cassandra database is implemented in a container and
serves as a use case for the study. Three workloads and five
infrastructures are used to evaluate the whole decision making
and orchestration process. An example of an actually generated
probabilistic decision model (automaton) is also presented.

II. RELATED WORK

This paper focuses on decision making processes in the
deployment phase of databases implemented as software com-
ponents. Databases are implemented in containers so that they
can be deployed dynamically on a variety of infrastructures.
This work focuses on the resulting QoS and non-functional
properties of deployed databases.

The selection of an optimal IaaS provider with respect
to the expected QoS has been addressed in various studies
related to load balancing [14]–[17], resource management
and allocation [18]–[21], resource provisioning [22]–[24] or
service deployment and management systems [10], [25].

Many studies have proposed multi-objective optimisation
solutions for various Cloud deployment scenarios. For in-
stance, Karim et al. [26], Garg et al. [27] and Gonçalves et al.
[28] take into account user’s QoS requirements when selecting
an appropriate Cloud provider. These studies implement a
method called Analytic Hierarchy Process (AHP), which is
used to calculate and rank the Cloud services according to
various QoS properties. The AHP method is deterministic,
based on user priorities. However, the AHP method does
not provide probabilistic evaluation for QoS success, which
is required for business critical Big Data applications. In
addition, AHP can be computationally impractical if it is used
for comparing large amounts of parameters due to the large



number of embedded decisions that would be generated. For
instance, if it is used to make decisions from 100 possible
solutions, by comparing 20 attributes, the AHP will generate
a decision tree with 2000 nodes.

Zheng et al. [29] developed a framework for optimal Cloud
service selection, which ranks the services according to the
provided QoS. The method, however, has been implemented
for two network-level metrics (throughput and response time).
The ranking system uses past usage data, while our new
method takes into account the current deployment context for
the application (e.g., geographic availability). Guerrero et al.
[30] proposed an approach for container resource allocation.
Their four-objective method for optimal resource allocation
is based on the Non-dominated Sorting Genetic Algorithm
(NSGA-II). This approach uses predefined parameters for
which only thresholds can be dynamically managed by the
software engineer. The inclusion or exclusion of QoS attributes
is therefore not straightforward.

Various studies use Markov Decision Processes (MDP) to
deliver decision making methods in non-deterministic and
probabilistic situations. These seem highly relevant to our
database container placement case. MDP has been used for
context-specific decisions, which is the case when using
databases in various smart Big Data applications. For example,
MDP has been used to facilitate optimal medical treatment de-
cisions (which must be tailored to individual patients) [31]. In
addition, MDP has also been highly applicable in two related
fields, probabilistic planning and reinforcement learning within
the domain of artificial intelligence for modelling scenarios
with probabilistic dynamics [32].

MDP may therefore be suitable for the Cloud computing
context, to address its non-deterministic properties. In this
context, Yang et al. [33] present an MDP Cloud service
selection method with the purpose of choosing an environment
that provides optimal performance to an application.

Nevertheless, to the best of our knowledge, the use of
probabilities in order to guarantee QoS of a deployed software
component in the context of containers has not been consid-
ered before. This represents a basis for formal verification of
the correctness of the placement decision.

Two recent research studies [34], [35] have applied such
techniques to the problem of horizontal scaling of VMs. An
interesting part of the two studies is that they make use of
very large MDP models composed of many VMs. However,
their computational complexity is an obstacle that prevents the
inclusion of such methods in mainstream software engineering
practices; this has not been adequately addressed in existing
studies.

The present paper complements the above efforts by focus-
ing on the dependability, formal assurances and compatibility
aspects required to select an optimal deployment infrastructure
for database software components. The proposed architecture
aims at providing formal guarantees to the software engineer
using a stochastic approach, which may be considered as a
novelty in the context of component-based software within
the Edge-Fog-Cloud computing continuum.

III. CONTAINER DEPLOYMENT USE-CASE

Typical IoT-based services are commonly built by using a
layered architecture composed of sensors/actuators, such as
DHT11 [36], Remote Terminal Units, such as SAITEL DR4,
IP Gateways, such as Cisco-ASA [37], Database Servers, such
as Apache Cassandra5 and IoT application layer components,
such as Web servers, notification components, call centres, and
so on. Usually, such IoT-based services generate and process
large amounts of unstructured data. However, the amount of
data differs between IoT use cases. For instance, an IoT-based
construction site [3] may use various smart devices (e.g.,
sensors, actuators) that could be used to facilitate a smart,
automated, secure and sustainable construction environment
by generating and processing large amounts of data. Due
to the different amount of smart devices per construction
site, the data processing workloads differ between sites. For
example, a smaller IoT construction site may execute 50000
data operations per minute, whilst a bigger IoT construction
site may operate with more than 500000 data operations per
minute. Thus, the performance of database containers in such
multi-tier computing infrastructures plays an important role
and usually affects the overall performance of the system. For
example, significant fluctuations of the database workload may
cause a low response rate and service unavailability. Therefore,
it is important to assure high QoS in the context of large
quantities of concurrent database operations, which may be
placed at any stage of the Big Data pipeline as shown in Figure
1.

The terms Edge, Fog, Cloud differentiate among properties
such as: computing performance, network performance and
geographic distribution [38]. Cloud computing is a centralised
computing approach that operates with high computing power
and high throughput in large data centres. However, to improve
network performance, Cloud computing is being replaced by
emerging computing paradigms that extend the computing
capacity to the network edge, such as Fog and Edge com-
puting. Fog computing can be perceived as Cloud resources
that exist between the Edge devices and the traditional Cloud
computing data centres [39]. In contrast to Cloud computing
it offers high computing performance with improved network
performance. Edge computing is a highly distributed approach
that allows processing data on various multiprocessor devices
that operate in close proximity to sensors, such as Raspberry
Pi, BeagleBoard or PCDuino [40]. This approach may have
high network performance, but it is not recommended for
intensive computing operations.

In the investigated case, the client to our database is
located in Ljubljana, Slovenia. As presented later, in Ta-
ble I, infrastructures located in Europe achieved high network
performance. Therefore, they resemble Fog resources. Fur-
thermore, the infrastructures g1-small and n1-standard-1 are
characterised by computing power that is similar to those used
by multiprocessor Edge devices. Infrastructures such as n1-

4https://www.schneider-electric.com/
5http://cassandra.apache.org/



standard-4 and n1-standard-8 use more powerful computing
resources, thus, they can represent typical Cloud computing
resources.

The middle layer between the sensors and the data cen-
tre, which is composed of various smart computing devices,
significantly reduces the amount of data that is required to
be sent to the centralised data centre. It also helps address
privacy and security concerns and other high-level application
requirements. Thus, it allows efficient data processing, analysis
and storage of large quantities of data. Although the Fog
infrastructure theoretically ensures higher performance in such
use cases, the overall performance significantly depends on
the location within that Fog infrastructure, where a certain
database container is deployed.

We consider databases implemented as software compo-
nents. Such databases are designed to satisfy certain Big
Data QoS requirements, such as: handling large volumes of
unstructured data, supporting high incoming data velocity,
scaling out and similar. A representative technology in this
context is Cassandra Apache, a highly-scalable, open-source
database technology, which can be used to store and process
large amounts of unstructured data on multiple nodes. Cassan-
dra supports nodes distribution across multiple infrastructures
addressing low latency requirements for all clients. In order
to provide reliable usage of Cassandra on heterogeneous hosts
(e.g., data centres, micro-data centres, routers, IoT devices)
and simplify its creation, deployment and running, we imple-
mented an instance of Cassandra in a Docker container, which
is used for the purposes of this study.

Fig. 1. Concept of container database placement on the Edge-Fog-Cloud
continuum

IV. DEPLOYMENT-OPTIMISATION METHOD

The goal of our new method and architecture is to facilitate
automated decision making and operation for the placement
of databases. Databases are implemented as containers and
deployed in the Edge-Fog-Cloud computing continuum. The
new method helps automatically rank the available infrastruc-
tures according to the current workload context and the QoS
requirements (see Fig. 2 for an illustration of the process). The
ranking of deployment infrastructures is performed accord-
ing to precisely defined quality constraints that the software

engineer sets up at the beginning of the process. Such QoS
requirements can be unique for every containerised database.
Furthermore, in order to guarantee that the selected quality
requirements are satisfied, the method generates probabilities
for QoS assurance.

Fig. 2. Database placement decision making method

In order to achieve the above goals, we designed a new
method that has the following four distinctive steps:
• Quality of Service attributes selection;
• Infrastructure and network monitoring;
• Probabilistic model generation; and
• Probabilistic output verification and infrastructure rank-

ing.
These steps are elaborated in the following subsections.

A. Quality of Service attributes selection

The use of databases as software components applies to a
great variety of applications. Hence, there is no universal set of
QoS requirements that must be satisfied. In the course of our
work, we studied a variety of non-functional properties that
can be used by an automated decision making method and are
associated to different containerised software components. A
recent study [41] concluded that attributes such as: geograph-
ical location, CPU utilisation, availability and response time
are important for achieving high QoS with present-day Big
Data applications. Another study [42] describes that network-
level metrics, such as bandwidth, throughput, jitter, power
efficiency and cost are important quality attributes for their IoT
applications. It is therefore necessary to design a method that
allows the software engineer to choose among QoS attributes
and thresholds that matter most to the specific application.
Another study [43] thoroughly describes how the values of
QoS attributes, such as latency, delay, jitter, data rate, error
rate, loss rate and throughput, differ between application types;
these values strongly depend on the specific use case, such as
Web browsing, network communication, audio broadcasting,
video rendering and so on.

In order to develop our proof-of-concept probabilistic QoS
models, we use the following attributes:

1) Network throughput (Gb/s) - the rate at which data is
transferred between two endpoints, without losses. It
measures the quantity of data (TCP/UDP traffic) that a
given software component can transfer successfully by
unit of time.



2) Network latency (ms) - represents the time required for a
packet to be transferred across the network. In our case
it was measured as the round trip time for the package
to reach some point and return to us.

3) Packet loss (%) - percentage of lost packets in the
connection between the client and the running software
service (component).

4) CPU utilisation (%) - a performance metric, which
represents the sum of work handled by the CPU. The
CPU utilisation varies according to the system workload
of the deployed application.

5) Database throughput (requests/s) - the rate at which the
database processes the read/write requests.

6) Database Read/Write latency (ms) - represents the time
required to fulfil read/write operations, which begins
when the database instance receives a client request and
ends when it provides a response.

7) Cost ($/month) - cost for using the Cloud infrastructure
per month.

Of course, our goal is to design a method, which is not
limited to a specific set of QoS metrics and Non-Functional
Requirements (NFRs). The proposed new probabilistic method
can be used to support any quantified attribute that may be of
interest to the software engineer.

B. Decision making method

The decision making method relies on MDP (see references
in Section II). MDP is a stochastic process, where the transi-
tions between states depend only upon the present state of
the process, not on a preceding sequence of events. MDP
is a powerful mathematical framework that can be used to
support decision making in dynamic environments, where the
results are partly random and partly under the control of a
decision maker [44]. Its non-deterministic nature allows us to
incorporate multiple potential system behaviours in one single
model that takes the form of an automaton.

In this study, MDP is used to: (1) dynamically improve the
automaton by using new QoS measurements; (2) implement
utility functions that make it possible to express the success
score from the QoS requirements; and (3) rank the possible
deployment infrastructures according to QoS success score.

The output automaton of the MDP is hard to accurately
predict, because it depends on variable input parameters, such
as network throughput, latency, resource utilisation and other
QoS metrics and NFRs.

MDP is defined as a tuple M=(S, A, P, R, γ), where:

• S = {S0, ..., Sn} is a finite set of states, where, each
state represents a different deployment infrastructure;

• A ={a0, ..., an} is a finite set of actions, which, represent
the deployment actions to the set of configurations;

• P ={st+1 = s’|st = s, at = a} is the transition
probability from state s at step t to state s’ at the next
step due to an action a;

• R(s, s′) is the expected reward received after transition-
ing from state s to state s’, due to action a.

• γ is called a discount factor. It represents the difference in
importance between current and future rewards. Its value
is in the range 0-1.

The probabilistic model was prepared by following the MDP
tuple from the definition above. Its design and implementation
are thoroughly described in the following subsections.

1) Probabilistic model: The probabilistic model is a finite
automaton, which is a necessary component that is used
to generate infrastructure ranking results. Probabilistic mod-
els are built specifically for every software component, and
can dynamically change due to the variability of the input
QoS/NFRs of the deployment infrastructures.

Each transition in the probabilistic model is a probabilistic
choice over multiple next states. Each state of the proba-
bilistic model represents a different placement (i.e., deploy-
ment) configuration. The external context can also influence
the calculated probabilities. For example, on one occasion
one deployment infrastructure may yield a 60% probability
of reaching adequate QoS, while on another occasion this
probability may be completely different.

Transitions between states happen due to different actions
in the model, which give the non-deterministic behaviour of
the model. The current model implements two actions: deploy-
ment action, which is responsible for selecting a deployment
infrastructure and idle state, which is activated if the current
deployment infrastructure has the optimal QoS requested by
the software engineer. In the probabilistic model, every action
has a corresponding transition. Every action results in a
compatible transition between the states of the probabilistic
model. For instance, a state that represents a deployment
infrastructure with lower QoS will have valid transitions to
all the states that represent configurations with higher QoS.
At the same time, the same state may also have a transition
to itself and to the states with lower QoS. Although there are
multiple transitions from one state, they can be all mapped to
a different probability value. In addition, whenever a transition
from one state to another state takes place, a reward is gained,
because every state in the model is associated to a reward
value. The reward values are received from utility functions,
which implement current measurements from the monitoring
and threshold values set by the software engineer.

2) Calculating the model probabilities and rewards: When
designing the probabilistic model, the main task is to calculate
the probabilities for each transition and the rewards for each
state. Essentially the transition probabilities must satisfy the
Markov rule, which states that the probability to reach any
future state of the process depends only upon the present state,
and not on the states that preceded in the past. Hence, the
probabilities that predict the future behaviour of the model
are only dependent of the current state of the model. For
instance, when calculating the transition probability between
deployment infrastructures A and B, the transition probability
does not depend on the probability values that were necessary
to reach deployment infrastructure A.

In order to develop this probabilistic model, it is first
necessary to select an initial state of the probabilistic model.



Second, it is necessary to calculate the transition probabilities
between the deployment infrastructures. Third, it is necessary
to calculate the reward values, which are associated with each
state in the model.

1) The first stage provides a probability estimation, which
provides an initial state for the MDP. The transitions of
the initial action are equally probable, and they allow
the probabilistic model to commence the MDP from
any available deployment infrastructure that is available
at the moment. Hence, this is calculated using the
following equation P1 = 1

Ntran
, where Ntran is the

amount of transitions of the same action from one state.
2) The second stage provides the transition probabilities

between the states within the model. These probability
values are used to compare the configurations QoS
between each other. Therefore, the probability values
that are acquired within this stage can determine if the
software component would achieve better quality within
one transition to another state. To calculate the proba-
bilities during this stage, the method utilises the output
from the preceding probability estimations, which allows
better results within time. The probabilities are calcu-
lated by using the following equation P2 = Nchosen

Nlisted
,

where Nchosen is the number of times a deployment
infrastructure has been chosen for that specific type of
software component and the Nlisted is the number of
times the deployment infrastructure has been listed in
the set of states to build a model.

3) The third stage provides the reward values for reaching
each state of the probabilistic model and the decision
results that are provided by a utility function. The
reward values are scalar values that are estimated by
an algorithm whose output depends on the data acquired
from real-time monitoring measurements and knowledge
from prior infrastructure utilisation. The reward values
are calculated according to Algorithm 1. The algorithm
inspects if the states of the model satisfy the thresholds,
which were chosen by the software engineer. If all
thresholds are satisfied by a specific deployment infras-
tructure, the algorithm will assign the highest reward that
equals 1. In contrast, if the deployment infrastructure
violates four threshold values, then according to the al-
gorithm the reward will be calculated as rewardsi = 1

5
and will equal 0.2. The algorithm uses the following
input parameters: network throughput, network latency,
cost, CPU utilisation, database throughput and database
latency.
Finally, a utility function is used to provide optimal
solutions for the decision making process. To pro-
vide optimal results, it utilises the transition proba-
bilities and reward values as input parameters. The
utility function in this model is a reinforcement learn-
ing function and has the following recursive form:
u(S) = r(S) + γmaxa

∑
S′ P (S′|a, S)u(S′), where

r(S) represents the reward value for reaching a state,

Algorithm 1 Algorithm for calculating the reward values in
the probabilistic model

1: Input parameters: Network Throughput (NT), Network
Latency (NL), Packet Loss (PL), CPU Utilisation (CPU),
Database Throughput (DT), Database latency (DL), Net-
work Throughput Threshold (NTT), Network Latency
Threshold (NLT), Packet Loss Threshold (PLT), CPU Util-
isation Threshold (CPUT), Database Throughput Thresh-
old (DTT), Database Latency Threshold (DLT), Cost (C),
Cost Threshold (CT), size - amount of deployment infras-
tructures

2: Output parameters: rewards
3: count← 1
4: for each i in size do
5: if NT < NTT AND NL > NLT AND PL > PLT

AND CPU > CPUT AND DT < DTT AND DL >
DLT AND C > CT then

6: rewardsi ← 0
7: else
8: if NT < NTT then count← count+ 1
9: if NL > NLT then count← count+ 1

10: if PL > PLT then count← count+ 1
11: if CPU > CPUT then count← count+ 1
12: if DT < DTT then count← count+ 1
13: if DL > DLT then count← count+ 1
14: if C > CT then count← count+ 1
15: rewardsi ← 1

count
16: end if
17: count← 1
18: end for

P (S′|a, S) is the transition probability value for reach-
ing state S′ from state S due to action a, and
P (S′|a, S)u(S′) represents the future, discounted re-
wards.

Although the current model uses a utility function whose
rewards are based on specific NFRs, the presented method
is independent of the number and type of NFR attributes
that could be used to prepare the rewards for each state.
Thus, it could be extended with more attributes that could
be implemented in the future.

C. Probabilistic model-checking

The proposed method builds an automaton, which has a
finite number of states. It is therefore possible to employ a
model-checking approach in order to verify that the system’s
output conforms to the requirements chosen by the software
engineer, in other words, to evaluate its correctness.

Probabilistic Computation Tree Logic (PCTL) [45] is a tem-
poral logic that allows probabilistic quantification of system’s
specification and was used to verify the generated automaton.
The primary function of PCTL in the current methodology is
to verify that the necessary QoS requirements are satisfied. It
is considered beneficial that model-checking can be used to
verify the system correctness against various criteria.



In the following, we present three examples to indicate
the wide scope of verification criteria that could be used by
the software engineer to ensure that the system satisfies the
required QoS and NFR standards:
• What is the probability that database latency with a

value less than 30 ms would be achieved, given that the
database was redeployed from place (configuration) A to
place (configuration) B?

• What is the probability of the service cost to be less than
100 $/month if it requires a network latency less than
50ms and a CPU utilisation less than 55%?

The above examples are presented as the following queries
in PCTL, respectively:
• P=?[F(databaseLatency < 30) & (chosenA U chosenB)];
• P=?[F(cost < 100 & networkLatency < 50 & CPUutili-

sation < 55)];
However, PCTL is generic and can be used to assess a range

of different criteria, when used to provide quality assurances.

Fig. 3. Multi-tier architecture

V. ARCHITECTURE

Computing infrastructures for IoT data processing may be
composed of Edge/Fog infrastructures, such as: Raspberry PIs,
routers and other computing devices that run in proximity
of the smart environment; or data-centres, such as private or
public Clouds. Figure 3 depicts a multi-tier architecture, which
follows the interoperability standards set by organisations such
as the Cloud Native Computing Foundation (CNCF)6 and

6https://www.cncf.io/

OpenFog Consortium7. Since IoT applications can be built
from reusable software components, the proposed architecture
allows containerised databases (and other software compo-
nents) to be deployed in three tier types. Each of the tiers
is used at different stage of the Big Data pipeline. The first
tier allows executing software components on various on-field
IoT devices at the Edge of the network, the second tier allows
running the software components on infrastructures in the Fog
and the third tier runs the software components continuously
on the most suitable Cloud infrastructure.

Each tier offers different properties and fulfills different op-
erations in the data pipeline. The first tier is generally used for
data collection from sensors, processing and storing for short
time periods. The Edge nodes in this tier are responsible for
rapid data acquisition and data normalisation, which requires
the time interval between sensing and actuation to be just a
few milliseconds. Through various network gateways, the data
can be also available to computing devices in the second tier.
The distributed Fog infrastructure is focused on data filtering,
compression and transformation of the data for further analysis
in the higher tier. This tier constantly monitors the database
containers, by a set of resource monitoring components and
gathers knowledge on their QoS. If various Internet connected
devices such as smartphones, robots or cars change locations it
is necessary to move containers from one Fog node to another
in geographic proximity of the device.

Whenever a QoS threshold violation is predicted, the mon-
itoring component issues an alarm and appropriate action is
taken by the orchestrator. The third tier represents data centres,
which are centralised infrastructures, capable of performing
data analytics and visualisation. In addition, the orchestration
in the third tier allows the system to autonomously overcome
the necessity of constant manual administration. Similarly, to
the second tier, this tier also monitors the database containers
and uses the measurements for the development of MPD based
automatons as models. These are then used by the Kubernetes
based orchestrator, which was developed and tested as part of
a very recent study [10].

However, our new orchestration capability is based on the
method described in the previous sections of this paper. It
can be used to deploy containerised databases across the
whole computing spectrum, for instance, in the data centre,
the computing devices in the Fog or the Edge and even in the
embedded systems and IoT devices. The orchestrator is based
on Kubernetes and allows rapid start and stop of containers and
their movement from one Fog node to another. In cases when
the utilisation increases, it can autonomously scale containers
horizontally and thus offers possibility for higher service
availability. Because database reliability is closely related to
the number of service replicas, the orchestrator can increase
or decrease their number based on the smart application
requirements.

7https://www.openfogconsortium.org/



VI. EXPERIMENTAL EVALUATION

The goal of the experimental evaluation is to show that the
decision making method and architecture are fully functional
and can be used to achieve high quality database placement
results. The experimental evaluation is divided into two parts:
in the first part we perform a feasibility study, in the second
part, we compare the new MDP based method with an AHP
based method, which is considered as a baseline multicriteria
decision making method for the type of problem we investi-
gate.

TABLE I
EXPERIMENTAL TESTBED CLOUD INFRASTRUCTURES

Infrastructure id vCPU RAM Location Cost [$/month]

g1-small 0 1 1.7
Asia

Europe
US

16.5
16.6
13.1

n1-standard 1 1 1 3.75
Asia

Europe
US

31.2
31.3
24.3

n1-standard 2 2 2 7
Asia

Europe
US

62.3
62.5
48.5

n1-standard 4 3 4 15
Asia

Europe
US

124.7
125.0
97.0

n1-standard 8 4 8 30
Asia

Europe
US

249.4
250.2
194.2

Our new method was tested by three software engineers
that were based in Ljubljana, Slovenia, who used this method
to deploy their containerised Apache Cassandra databases
on a suitable infrastructure for their purposes. They had
substantial workload requirements for their databases: 50000
(Workload 1), 200000 (Workload 2) and 500000 (Workload 3)
read/write operations, respectively. Essentially, one deploy-
ment infrastructure which is optimal for one of the engineers
may not be optimal for the other two.

The engineers could choose one out of 20 possible Cloud
infrastructures without additional performance optimisation,
hosted on Google Cloud Platform8. There were 5 different
deployment infrastructures at each of 4 different geographical
locations: Frankfurt, Iowa, Taiwan and Tokyo. The properties
of the deployment infrastructures are listed in Table I. All
measurements, including network-based metrics from clients
towards remote services were conducted from Ljubljana,
Slovenia.

TABLE II
AVERAGE NETWORK PERFORMANCE ON DIFFERENT GEOLOCATIONS

Location Latency Packet loss
Frankfurt 30.22 0.00
Iowa 333.56 0.00
Taiwan 621.79 0.00
Tokyo 556.39 0.00

The probabilistic model generation was done by using his-
torical multi-level monitoring measurements, collected during

8https://cloud.google.com/

the week before the actual database placement. From the
network-level metrics, which are presented in Table II, it can
be concluded that the network latency is heavily affected by
the clients (Ljubljana) to infrastructure geographical distance.

To generate the reward values for the probabilistic model,
the software engineers selected the following QoS thresholds:
CPU utilisation by the container less than 30%, network
latency less than 40 ms, network throughput greater than 4
Mbps, database latency less than 20 ms, database throughput
greater than 2500 operations per second and price less than
100 $/month.

TABLE III
DECISION-MAKING WITH THE NEW MDP BASED METHOD

Workload 1 Workload 2 Workload 3
id Rank Score Rank Score Rank Score
0 1 24.47 4 22.84 3 18.09
1 2 20.5 1 26.94 2 18.38
2 5 18.73 2 22.99 1 22.13
3 3 19.10 5 21.48 4 16.68
4 4 19.03 3 22.89 5 16.11

Fig. 4. Experimentally derived probabilistic model

Having prepared the probabilistic model, our new method
provides ranking of deployment infrastructures (see Table
III). As can be seen, the results strongly rely on the reward
system: thus, the higher the reward is, the better the ranking
score becomes. In addition, the results show that a different
workload has direct impact on network performance, database
performance and resource utilisation. As a result, the proposed
decision making method suggests different optimal Cloud
infrastructures under different workloads. An example of a
probabilistic model generated for the requirement of 200000
database read operations is shown in Figure 4.

The results, presented in Table III show that the new method
provides a ranking mechanism for infrastructures according to
the generated score for high QoS success.

In the second stage of our evaluation, we compare the newly
designed MDP based method with the AHP baseline method
(see Section II). Table IV presents the results obtained by using
AHP.

The obtained ranked lists for the workload of 50000
read/write database operations slightly differ for both methods,



TABLE IV
DECISION-MAKING WITH THE AHP METHOD

Workload 1 Workload 2 Workload 3
id Rank Score Rank Score Rank Score
0 1 43.2 1 35.7 1 36.4
1 2 25.0 2 21.6 3 18.4
2 4 10.3 4 14.2 2 19.6
3 5 8.8 3 15.5 5 10.2
4 3 12.8 5 13.0 4 15.4

TABLE V
METHODS WITH RESPECT TO QOS THRESHOLD VIOLATIONS

Workload 1 Workload 2 Workload 3
id MDP AHP N* MDP AHP N MDP AHP N
0 1 1 0 4 1 1 3 1 1
1 2 2 1 1 2 0 2 3 1
2 5 4 4 2 4 1 1 2 0
3 3 5 2 5 3 2 4 5 2
4 4 3 3 3 5 2 5 4 3

*N = Number of QoS metrics with threshold violations by the deployment
infrastructure.

while they differ significantly for the workloads of 200000 and
500000 read/write operations (see Table V). The MDP based
method suggests that for 200000 read/write operations it is
necessary to use the n1-standard-1 deployment infrastructure,
while the AHP method suggests the g1-small configuration.
For the use case of 500000 read/write operations the MDP
method suggests to use the n1-standard-2 deployment infras-
tructure, while the AHP suggests the g1-small configuration.

In order to compare the quality of both methods, we define
the metric N as the number of QoS metrics for which their
thresholds have been violated by a deployment infrastructure.
The results are presented in Table V. In contrast to the
AHP method, our new MDP based method always arrives
to a deployment infrastructure that does not violate the QoS
metrics thresholds. Going down the ranked list, in the case
of the MDP-ranked list, the values of the N metric increase
monotonously, while this is not the case with the AHP method.
This suggests that the newly designed MDP methods are more
suitable for the given purpose.

The AHP method derives its ranked lists by applying
pairwise comparison between deployment infrastructures’ at-
tributes, while the MDP method strongly relies on a reward
value. The MDP method derives its ranked list by multiple
simulations from random initial states of the probabilistic
model (automaton), thus exploring all possible alternatives
before arriving to a ranked list. It iterates through the model
multiple times and checks if the current state provides optimal
QoS and what action must be selected to reach an optimal QoS
from any other state of the model.

VII. CONCLUSION

With the emergence of IoT, Edge, Fog and Cloud computing
the concept of distributed systems evolves. It also poses some
new optimisation problems when loosely coupled container
based applications have to be orchestrated across geographic
regions. Various smart applications, such as those developed

in the course of the newly started DECENTER Research
and Innovation Project require the deployment of software
components in multiple computing tiers, starting close to the
actual sensors and video-cameras that produce data streams
up to data centres, where complex data analyses must be
performed.

The purpose of the present work was to address the decision
making problem when specific database containers must be
deployed in any of the available infrastructures, i.e. the Edge,
Fog or the Cloud. Bearing in mind the plethora of IoT and Big
Data approaches on one hand, and Edge-Fog-Cloud infrastruc-
tures on another, the database container placement problem is
an important research problem which was investigated in this
study.

This paper presented a new decision making method for
database container placement with optimal QoS. It also pro-
vides QoS assurances to the software engineer. Finally, a
multi-tier orchestration approach is presented, which is used
to automate the whole process of using smart Big Data
applications. Our new MDP based method takes as input QoS
measurements collected from a distributed monitoring system.
It also uses constraints (thresholds) on the collected QoS
metrics. The obtained data are then used to derive models
for specific workloads and database deployment cases. The
generated models take the form of automata.

Our experiments are based on 25 infrastructures and 8 QoS
metrics, however, the new method is suitable for potentially
large quantity of available infrastructures and QoS metrics,
which may be in the range of hundreds. Our results show that
the new method can be used effectively and helps avoid any
QoS threshold violations in the investigated experimentation
cases. It can be used in real-world software engineering
practice and the generated probabilities can be used to gain
confidence (i.e., QoS assurances) about the database container
placement process. The new method and the orchestration ar-
chitecture is designed to be included in the new DECENTER’s
Fog Computing Platform.

Our future work will concentrate on the evaluation of the
new MDP based method for other software components, such
as compute and memory intensive Microservices implemented
in containers. In the course of our DECENTER project, we
also plan to use Blockchain and Smart Contracts to facilitate
automated changes of Fog nodes by using a Fog Exchange
Broker.

ACKNOWLEDGEMENTS

The research and development reported in this paper has
received support from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreements
no. 780787 (I-BiDaaS: Industrial-Driven Big Data as a Self-
Service Solution) and no. 815141 (DECENTER: Decentralised
technologies for orchestrated cloud-to-edge intelligence).

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet of Things journal, vol. 1, no. 1,
pp. 22–32, 2014.



[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[3] P. Kochovski and V. Stankovski, “Supporting smart construction with
dependable edge computing infrastructures and applications,” Automa-
tion in Construction, vol. 85, pp. 182–192, 2018.

[4] V. Stankovski and R. Prodan, “Guest editors’ introduction: Special
issue on storage for the big data era,” Journal of Grid Computing,
vol. 16, no. 2, pp. 161–163, Jun 2018. [Online]. Available:
https://doi.org/10.1007/s10723-018-9439-1

[5] G. Casale, C. Chesta, P. Deussen, E. D. Nitto, P. Gouvas, S. Koussouris,
V. Stankovski, A. Symeonidis, V. Vlassiou, A. Zafeiropoulos, and
Z. Zhao, “Current and future challenges of software engineering for
services and applications,” Procedia Computer Science, vol. 97, pp.
34 – 42, 2016, 2nd International Conference on Cloud Forward:
From Distributed to Complete Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050916320944

[6] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,” in
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium On. IEEE, 2015, pp. 171–172.

[7] Z. Zhao, A. Taal, A. Jones, I. Taylor, V. Stankovski, I. G. Vega, F. J.
Hidalgo, G. Suciu, A. Ulisses, P. Ferreira et al., “A software workbench
for interactive, time critical and highly self-adaptive cloud applications
(switch),” in Cluster, Cloud and Grid Computing (CCGrid), 2015 15th
IEEE/ACM International Symposium on. IEEE, 2015, pp. 1181–1184.

[8] Z. Zhao, P. Martin, J. Wang, A. Taal, A. Jones, I. Taylor, V. Stankovski,
I. G. Vega, G. Suciu, A. Ulisses et al., “Developing and operating
time critical applications in clouds: the state of the art and the switch
approach,” Procedia Computer Science, vol. 68, pp. 17–28, 2015.

[9] V. Stankovski and D. Petcu, “Developing a model driven approach for
engineering applications based on mosaic,” Cluster computing, vol. 17,
no. 1, pp. 101–110, 2014.

[10] U. Paščinski, J. Trnkoczy, V. Stankovski, M. Cigale, and S. Gec,
“Qos-aware orchestration of network intensive software utilities within
software defined data centres,” Journal of Grid Computing, pp. 1–28,
2017.

[11] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira,
M. Curado, L. Villas, L. DaSilva, C. Lee, and O. Rana, “The internet of
things, fog and cloud continuum: Integration and challenges,” Internet
of Things, vol. 3-4, pp. 134–155, 2018.

[12] L. Rabiner and B. Juang, “An introduction to hidden markov models,”
ieee assp magazine, vol. 3, no. 1, pp. 4–16, 1986.

[13] H. M. Taylor and S. Karlin, An introduction to stochastic modeling.
Academic press, 2014.

[14] J. Hu, J. Gu, G. Sun, and T. Zhao, “A scheduling strategy on load bal-
ancing of virtual machine resources in cloud computing environment,”
in Parallel Architectures, Algorithms and Programming (PAAP), 2010
Third International Symposium on. IEEE, 2010, pp. 89–96.

[15] L. E. Li and T. Woo, “Dynamic load balancing and scaling of allocated
cloud resources in an enterprise network,” Mar. 31 2011, uS Patent App.
12/571,271.

[16] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A comparative study into
distributed load balancing algorithms for cloud computing,” in Advanced
Information Networking and Applications Workshops (WAINA), 2010
IEEE 24th International Conference on. IEEE, 2010, pp. 551–556.

[17] Z. Chaczko, V. Mahadevan, S. Aslanzadeh, and C. Mcdermid, “Availabil-
ity and load balancing in cloud computing,” in International Conference
on Computer and Software Modeling, Singapore, vol. 14, 2011.

[18] S. S. Manvi and G. K. Shyam, “Resource management for infrastructure
as a service (iaas) in cloud computing: A survey,” Journal of Network
and Computer Applications, vol. 41, pp. 424–440, 2014.

[19] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
vol. 23, no. 3, pp. 567–619, 2015.

[20] N. C. Luong, P. Wang, D. Niyato, Y. Wen, and Z. Han, “Resource
management in cloud networking using economic analysis and pricing
models: A survey,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 2, pp. 954–1001, 2017.

[21] N. Jain and I. Menache, “Resource management for cloud computing
platforms,” Mar. 14 2017, uS Patent 9,595,054.

[22] S. Singh and I. Chana, “Q-aware: Quality of service based cloud resource
provisioning,” Computers & Electrical Engineering, vol. 47, pp. 138–
160, 2015.

[23] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource
provisioning cost in cloud computing,” IEEE transactions on services
Computing, vol. 5, no. 2, pp. 164–177, 2012.

[24] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in INFOCOM, 2014
Proceedings IEEE. IEEE, 2014, pp. 433–441.

[25] R. Mijumbi, J. Serrat, J.-L. Gorricho, S. Latre, M. Charalambides,
and D. Lopez, “Management and orchestration challenges in network
functions virtualization,” IEEE Communications Magazine, vol. 54,
no. 1, pp. 98–105, 2016.

[26] R. Karim, C. Ding, and A. Miri, “An end-to-end qos mapping approach
for cloud service selection,” in Services (SERVICES), 2013 IEEE Ninth
World Congress on. IEEE, 2013, pp. 341–348.

[27] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking
of cloud computing services,” Future Generation Computer Systems,
vol. 29, no. 4, pp. 1012–1023, 2013.

[28] R. Gonçalves Junior, T. Rolim, A. Sampaio, and N. C. Mendonça, “A
multi-criteria approach for assessing cloud deployment options based on
non-functional requirements,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing. ACM, 2015, pp. 1383–1389.

[29] Z. Zheng, X. Wu, Y. Zhang, M. R. Lyu, and J. Wang, “Qos ranking
prediction for cloud services,” IEEE transactions on parallel and dis-
tributed systems, vol. 24, no. 6, pp. 1213–1222, 2013.

[30] C. Guerrero, I. Lera, and C. Juiz, “Genetic algorithm for multi-objective
optimization of container allocation in cloud architecture,” Journal of
Grid Computing, vol. 16, no. 1, pp. 113–135, 2018.

[31] C. C. Bennett and K. Hauser, “Artificial intelligence framework for sim-
ulating clinical decision-making: A markov decision process approach,”
Artificial intelligence in medicine, vol. 57, no. 1, pp. 9–19, 2013.

[32] A. Kolobov, “Planning with markov decision processes: An ai per-
spective,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 6, no. 1, pp. 1–210, 2012.

[33] J. Yang, W. Lin, and W. Dou, “An adaptive service selection method
for cross-cloud service composition,” Concurrency and Computation:
Practice and Experience, vol. 25, no. 18, pp. 2435–2454, 2013.

[34] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and
N. Koziris, “Automated, elastic resource provisioning for nosql clusters
using tiramola,” in Cluster, Cloud and Grid Computing (CCGrid), 2013
13th IEEE/ACM International Symposium on. IEEE, 2013, pp. 34–41.

[35] A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos,
I. Konstantinou, and S. Sioutas, “Dependable horizontal scaling based
on probabilistic model checking,” in Cluster, Cloud and Grid Computing
(CCGrid), 2015 15th IEEE/ACM International Symposium on. IEEE,
2015, pp. 31–40.

[36] D. Robotics, “Dht11 humidity & temperature sensor,” 2010.
[37] A. Cisco, “5500 series adaptive security appliances,” 2007.
[38] S. Taherizadeh, V. Stankovski, and M. Grobelnik, “A capillary com-

puting architecture for dynamic internet of things: Orchestration of
microservices from edge devices to fog and cloud providers,” Sensors,
vol. 18, no. 9, p. 2938, 2018.

[39] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[40] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[41] R. Sandhu and S. K. Sood, “Scheduling of big data applications on
distributed cloud based on qos parameters,” Cluster Computing, vol. 18,
no. 2, pp. 817–828, 2015.

[42] L. Li, S. Li, and S. Zhao, “Qos-aware scheduling of services-oriented
internet of things,” IEEE Transactions on Industrial Informatics, vol. 10,
no. 2, pp. 1497–1505, 2014.

[43] Y. Chen, T. Farley, and N. Ye, “Qos requirements of network applications
on the internet,” Information Knowledge Systems Management, vol. 4,
no. 1, pp. 55–76, 2004.

[44] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[45] F. Ciesinski and M. Größer, “On probabilistic computation tree logic,”
in Validation of Stochastic Systems. Springer, 2004, pp. 147–188.


