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2019.

Abstract

Necessary conditions for the existence of pure Nash equilibria intro-
duced by Joó (A note on minimax theorems, Annales Univ. Sci. Budapest,
39 (1996) 175-179) for concave non-cooperative games are generalized and
then applied to Cournot oligopoly games. If for a specified class of games
there always exists a pure Nash equilibrium, then cost functions of the
firms must be convex. Analogously, if for another specified class of games
there always exists a pure Nash equilibrium, then revenue functions of the
firms must be concave in their respective variables.

Keywords Nash equilibrium, Cournot oligopoly
JEL-code: L13

1 Introduction

Oligopoly is a market structure where a few competing firms are present and
their individual decisions about production and/or selling price influence not
only their own profit but everybody else’s as well. Thus oligopoly lends itself
to being modelled as a non-cooperative game where the players are the firms
and payoffs are determined by profit functions usually defined as revenues less
costs. Oligopolies have long been in the focus of economic research and practical
market design. The ground breaking work of Cournot (1838) had laid down
the foundations but intensive research only began when game theory became
available to provide the necessary tools for deep analysis. Our focus will be on
classical Cournot games where firms make decisions on the production volume
of a single homogeneous product subject to capacity constraints.
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Among many other aspects the existence and uniqueness of equilibria of non-
cooperative games as defined by Nash (1950) has drawn much attention. Beyond
direct application of game theoretic existence theorems many papers utilized the
special features of an oligopoly game. Excellent reference books on the subject
are e.g. Friedman (1977), Okuguchi and Szidarovszky (1990). In game theory
much effort has been devoted to weakening conditions imposed on strategy
sets/payoff functions to ensure the existence of a (pure) Nash equilibrium point.
Staying in finite dimensional spaces, this endeavor is demonstrated by the series
of papers marked by the milestone results of von Neumann (1928), Nash (1950),
Nikaido and Isoda (1955), Friedman (1977).

These results of course translate to oligopoly games but sufficient conditions
directly imposed on the primitives (demand, inverse demand and cost functions)
are preferable since their interpretation is more direct and closely related to eco-
nomic phenomena thus readily embraced by economists. It was realized early
that there are limits to generalizations of revenue and/or cost functions if we
do not want to lose the desirable property of the existence of a pure Nash equi-
librium point. There are examples, a few of them analyzed in Novshek (1985)
and quoted in this paper, too, for Cournot games without pure Nash equilib-
ria. These are, however, only examples but not necessary conditions. Necessary
conditions in relation to oligopoly games are quite rare.

In this paper we will study and apply to the Cournot game a special class of
necessary conditions first formulated and proved by Joó (1986, 1996) for general
concave games. The main message of our analysis, in loose terms, is that if for
a special class of revenue functions there always exists a pure NEP, then the
cost functions need to be convex in their respective variables. This can also
be reversed: if for a special class of cost functions there always exists a pure
Nash equilibrium point, then the revenue functions must be concave in their
respective variables.

The paper is organized as follows. In section 2 we set forth a special class of
necessary conditions applicable in mathematical programming and game theory.
In section 3 we study and generalize necessary conditions for concave games due
to Joó (1986, 1996). In section 4 sufficient conditions for the existence of pure
Nash equilibria for the Cournot game with general cost functions are discussed.
In section 5 the necessary conditions established for concave games are applied
to generalized Cournot games. Section 5 concludes.

2 A special class of necessary conditions in
mathematical programming and game theory

In mathematical programming the seminal papers of Karush (1939) and Kuhn
and Tucker (1951) paved the way for the success of efficient solution methods of
convex programming i.e. where the minimum of a convex function is sought over
a convex set defined by convex constraints. Pretty soon the natural question was
raised: How far can the convexity of the objective and constraint functions be
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relaxed while preserving most of the nice properties enabling us to apply the effi-
cient methods of convex programming? This research question has led e.g. to re-
placing concave (convex) objective functions with quasi-concave (quasi-convex)
functions (see e.g. Diewert et al (1981)). The conceptual appeal of these notions
has made it indispensable in economic analysis and a standard subject of text-
books. On the algorithmic side, mild adjustments of solution methods originally
designed for convex programming resulted in efficient methods of quasi-convex
programming.

One might ask: Can quasi-convexity further be generalized while maintaining
the advantages the availability of local search or other efficient methods provide?
Where are the meaningful bounds for these generalizations? While sufficient
conditions giving way to generalizations abound in the literature, necessary
conditions are much harder to find. This is more so in game theory. Beginning
with the ground breaking work of Nash (1950) sufficient conditions to ensure
the existence of equilibrium have become less and less restrictive broadening
the scope of application of the theory. Necessary conditions, however, are even
harder to come by than in mathematical programming. A rare exception is the
work of Kolstad and Mathiesen (1987) addressing the uniqueness of the Nash
equilibrium point.

The general framework set forth in this paper for necessary conditions is in-
spired by Martos (1975) in mathematical programming and Joó (1986), (1996)
in game theory. While Martos’ results are well known those of Joó’s have re-
mained practically unnoticed. This is mainly due to the titles of the papers
not giving any orientation about what they are really all about. Especially the
title of Joó (1996) is misleading claiming the subject of the paper ”minimax
theorems” when in fact none of the theorems were about minimax.

Define a general mathematical programming problem P (f, L) as

max f(x)
subject to

x ∈ L ,

where L ⊂ Rn is the feasible set, f : Rn → R is the objective function.
Let T be a particular property of P (f, L). Let furthermore L be a family of

feasible sets and F a family of objective functions. The following two statements
are said to be Martos-type necessary conditions:

(i) If property T holds for any P (f, L), L ∈ L, then f ∈ F .

(ii) If property T holds for any P (f, L), f ∈ F , then L ∈ L.

An example of a Martos-type (i) condition is the following.

Theorem 1 (Martos (1975)). Let L′ be a compact, convex subset of Rn. If for
any compact, convex set L ⊂ L′ problem P (f, L) has the property that every
local maximum point is also a global maximum point, then f is quasi-concave
on L′.
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Here L is the family of all compact, convex subsets of L′, F is the family
of quasi-concave functions defined on L′, and property T is all local maximum
points being also global on a compact, convex set.

We will consider games in normal (strategic) form: G = {S1, ..., Sn; f1, ..., fn}
or briefly G = {S; f} where S = S1 × ...,×Sn is the set of strategy profiles and
f : S → Rn is the profile of payoff functions. Let T be a property of G = {S; f}.
Let Σ be a family of strategy profiles and z a family of payoff profiles. The
following two statements are said to be Joó-type necessary conditions:

(i) If property T holds for any G = {S; f}, S ∈ Σ, then f ∈ z.

(ii) If property T holds for any G = {S; f}, f ∈ z, then S ∈ Σ.

An example of Joó-type (i) necessary condition is due to Forgó and
Joó (1997). The basic idea is to characterize the functions for which
maxmin=minmax holds.

We need a few definitions in order to state the theorems.

Definition 1. ϕ : R2 → R is called a submaximum function if for any u, v ∈ R,
ϕ(u, v) ≤ max{u, v}.

Let X and Y be compact, convex sets in Rn and f : X×Y → R a continuous
function.

Definition 2. Given a submaximum function ϕ, f is said to be ϕ-concave-like
if for all λ > 0 and x1, x2 ∈ X, there exists x3 ∈ X such that

y ∈ Y =⇒ f(x3, y) ≥ ϕ(f(x1, y), f(x2, y))− λ .

Theorem 2 (Forgó and Joó,1997). If

(i) for any closed set K ⊂ Y,

max
x∈X

min
y∈K

f(x, y) = min
y∈K

max
x∈X

f(x, y) ,

(ii) for any closed set K ⊂ Y the set of maximizers

arg max
x∈X
{min
y∈K

f(x, y)}

is convex, then f is ϕ-concave-like.

Theorem 3 (Forgó and Joó,1997). If

(i) f(x, .) is linear on Y ,

(ii) ϕ is linear on R2,

(iii) for any closed, convex set C ⊂ Y ,

max
x∈X

min
y∈C

f(x, y) = min
y∈C

max
x∈X

f(x, y) ,
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(iv) for any closed, convex set C ⊂ Y, the set of maximizers

arg max
x∈X
{min
y∈C

f(x, y)}

is convex, then f is ϕ-concave-like.

The following theorems are also necessary conditions of a somewhat different
nature. We will call a function f defined on a convex, compact set C ⊂ Rn
partially concave if it is concave in each of its variables if the rest of the variables
are held fixed.

Theorem 4 (Theorem 1 in Joó (1986)). Let fk : [0, 1]n → R (k = 1, ..., n) be
continuous functions, and f = f1 × ...× fn. Let T be the following property: If
f ′k : [0, 1]n → R (k = 1, ..., n) is continuous and partially concave in the k-th
variable, then the game G = {[0, 1]n, f + f ′} has at least one Nash equilibrium
point, where f ′ = f ′1 × ... × f ′n. If property T holds, then each function fk
(k = 1, ..., n) is partially concave in its k-th variable.

Theorem 4 was extended to games with convex, compact strategy sets.

Theorem 5 (Theorem 2 in Joó (1986)). Let K1, ...,Kn be convex, compact
subsets of finite dimensional euclidean spaces, fk : K1 × ... × Kn → R (k =
1, ..., n) be continuous functions and f = f1 × ... × fn. Let T be the following
property: If f ′k : K1 × ... × Kn → R (k = 1, ..., n) is continuous and partially
concave in the k-th variable, then the game G = {K1, ...,Kn; f +f ′} has at least
one Nash equilibrium point, where f ′ = f ′1 × ... × f ′n. If property T holds, then
each function fk (k = 1, ..., n) is partially concave in its k-th variable.

3 Necessary conditions for concave games

One of the standard existence theorems in noncooperative game theory is due
to Nikaido and Isoda (1955):

Theorem 6. Let G = {S1, ..., Sn; f1, ..., fn} be a game in normal form. If

(i) the strategy sets S1, ..., Sn are nonempty, compact, convex sets of finite
dimensional euclidean spaces,

(ii) the payoff functions fk : ×nj=1Sj → R (k = 1, ..., n) are continuous and
partially concave in the k-th variable,

then G has at least one Nash equilibrium point.

Theorem 4 of Joó (1996) gives a necessary condition for the concavity of the
payoff functions when the payoff function is subjected to concave perturbations.
We give a generalization of Theorem 4 where the continuity of the payoff func-
tions is relaxed to (partial) upper semicontinuity. Key to the generalization is a
characterization of concave functions which we will give in the form of a lemma.
We need two propositions to prove the lemma.
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Proposition 1. If the function f : [a, b] → R is bounded from above, then the
function

Φ : R→ R
Φ(c) : = sup

t∈[a,b]

(
f(t) + c · t

)
is Lipschitz continuous.

Proof. For any c, d ∈ R and x ∈ [a, b] we have

f(x)+d·x leqf(x)+c·x+(|a|+ |b|)·|c−d| ≤ sup
t∈[a,b]

(
f(t)+c·t

)
+(|a|+ |b|)·|c−d| ,

or equivalently

sup
x∈[a,b]

(
f(x) + d · x

)
≤ sup
t∈[a,b]

(
f(t) + c · t

)
+ (|a|+ |b|) · |c− d‖ .

Using the definition of Φ and rearranging we obtain

Φ(d)− Φ(c) ≤
(
|a|+ |b|

)
· |d− c| .

Changing the role of c and d we get

|Φ(d)− Φ(c)| ≤ (|a|+ |b|) · |d− c|

which was to be proved.

Proposition 2. Let f : [a, b] → R be a function bounded from above and a <
x < b. Then there exist c, d ∈ R such that

sup
t∈[a,x]

(
f(t) + c · t

)
≤ sup

t∈[x,b]

(
f(t) + c · t

)
sup
t∈[a,x]

(
f(t) + d · t

)
≥ sup

t∈[x,b]

(
f(t) + d · t

)
.

Proof. Define

c := max

0,

sup
[a,x]

f − f(b)

b − x

 .

Then for every t ∈ [a, x] we have

c · (b− t) ≥ c · (b− x) ≥ sup
[a,x]

f − f (b) ≥ f (t)− f (b) ,

implying
f (t) + c · t ≤ f (b) + c · b,
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or equivalently

sup
t∈[a,x]

(
f (t) + c · t

)
≤ f (b) + c · b ,

from which we get the first assertion of the proposition. Define

d := min

0,

f (a) − sup
[x,b]

f

x − a

 .

By similar reasoning as before we will arrive at

sup
t∈[x,b]

(
f (t) + d · t

)
≤ f (a) + d · a ,

leading to the second assertion of the proposition.

Lemma 1. Let f : [a, b] → R be an upper semicontinuous function. If for any
c ∈ R the set {

x ∈ [a, b] : f(x) + c · x = max
t∈[a,x]

(f(t) + c · t)
}

is a closed interval, then f is concave.

Proof. We will show that at any point a < x0 < b there is a line supporting f
from above. Consider the function

Ψ : R→ R,

Ψ (c) : = max
t∈[a,x0]

(
f (t) + c · t

)
− max
t∈[x0,b]

(
f (t) + c · t

)
.

Ψ is continuous by Proposition 1, and by Proposition 2 there are numbers c, d ∈
R such that Ψ(c) ≤ 0 ≤ Ψ(d). Thus by Bolzano’s theorem there is a number c∗
for which Ψ(c∗) = 0, i.e.

max
t∈[a,x0]

(
f (t) + c∗ · t

)
= max
t∈[x0,b]

(f (t) + c∗ · t).

This common maximum is also the maximum of the function t → f (t) + c∗ · t
on the interval [a, b]. Therefore, there are numbers a ≤ x1 ≤ x0 ≤ x2 ≤ b such
that

f (x1) + c∗ · x1 = max
t∈[a,b]

(
f (t) + c∗ · t

)
= f (x2) + c∗ · x2. (1)

By the assumption, the level set H belonging to the maximum of the function
t→ f (t)+c∗ · t is a closed interval and by (1) x1, x2 ∈ H. Thus by x1 ≤ x0 ≤ x2
we have x0 ∈ H. Therefore for any t ∈ [a, b],

f (x0) + c∗ · x0 ≥ f (t) + c∗ · t

7



holds. After rearrangement we get

f (t) ≤ f (x0)− c∗ · (t− x0) . (2)

The expression on the right-hand side of (2) is a straight line which supports f
from above at x0.

Similar characterization of quasi-convex (and thereby quasi-concave) func-
tions based on the nature of the set of maximum points was given by Forgó
(1996).

Theorem 7. Let X ⊂ Rn be a non-empty convex set and f : Rn → R a
continuous function. Then f is quasi-convex on X if and only if for any closed
interval I ⊂ X the set of minimum points of f over I is a closed interval.

Proof. Assume that f is not quasi-convex. Then there are x1 6= x2 ∈ X and
x0 ∈ [ x1, x2] such that

f(x0) > max{f(x1), f(x2)} . (3)

We may suppose that f(x1) ≤ f(x2). Let

Hi = {λ : 0 ≤ λ ≤ 1, f(λx0 + (1− λ)xi) ≤ f(x2)}, i = 1, 2

and
λi = max

λ∈Hi
λ, i = 1, 2.

The sets Hi are non-empty, closed and bounded by (3) and the continuity
of f , therefore λ1, λ2 are well defined and both are less than 1. Also, by the
continuity of f we have

f(λx0 + (1− λ)xi) = f(x2), i = 1, 2.

Let

y1 = λ1x0 + (1− λ1)x1 .

y2 = λ1x0 + (1− λ2)x2 .

By the definition of λ1, λ2 and since y1 6= y2, the problem

min f(x)

x ∈ [y1, y2]

has exactly two optimal solutions y1 and y2, a contradiction.

Interestingly, the continuity assumption cannot be relaxed to lower semicon-
tinuity as the following example shows.
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Example 1. Let X = [−1, 1] and f : R→ R.

f(x) = x+ 1, if − 1 ≤ x < 0 ,
f(x) = −1, if x = 0 ,
f(x) = −x+ 1, if 0 < x ≤ 1.

f is lower semicontinuous. To see this consider all possible lower level-sets
L(β) = {x ∈ X : f(x) ≤ β} for different values of β:

(i) 1 ≤ β < 0 : L(β) = {0},
(ii) β = 0 : L(β) = {−1, 0, 1},
(iii) 0 < β < 1 : L(β) = [−1,−1 + β] ∪ {0} ∪ [β, 1− β],
(iv) β ≥ 1 : L(β) = [−1, 1].

In all cases L(β) is closed i.e. f is lower semicontinuous.
The set of optimum points of

min f(x)

x ∈ [y1, y2]

is closed and convex for any intervals [y1, y2] ⊂ X. Indeed the list of all possible
intervals and optimum sets L are the following

(i) y1 < y2 < 0 : L = {y1},
(ii) y1 < y2 = 0 : L = {0},
(iii) 0 = y1 < y2 : L = {0},
(iv) 0 < y1 < y2 : L = {y2},
(v) y1 < 0 < y2 : L = {0}.

However, f is not quasi-convex since if x1 = −1, x2 = 1, x0 = 1
2 , then

f

(
1

2

)
> max{f(−1), f(1)}.

Now we turn to the main result of this section: the generalization of Theorem
4.

We will call a function f defined on a convex, compact set C ⊂ Rn partially
upper semicontinuous if it is upper semicontinuous in each of its variables if the
rest of the variables are held fixed and continuous in the rest of the variables.

Theorem 8. Let fk : [0, 1]n → R (k = 1, ..., n) be partially upper semi-
continuous functions, and f = f1, ..., fn. Let T be the following property: If
f ′k : [0, 1]n → R (k = 1, ..., n) is continuous and partially concave in the k-th
variable, then the game G = {[0, 1]n, f + f ′} has at least one Nash equilib-
rium point, where f ′ = f ′1 × ...× f ′n. If property T holds, then each function fk
(k = 1, ..., n) is partially concave in its k-th variable.
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Proof. The proof goes along the lines of the proof of Theorem 1 in Joó (1996).
We use proof by contradiction. Assume that the theorem is not true and there
exists at least one k such that fk is not partially concave, i.e. there is a
y0 = (y0,1, ..., y0,k−1, y0,k+1, ..., y0,n) such that fk(., y0) is not concave in its
kth variable over [0, 1]. Without loss of generality take k = 1. Taking into ac-
count that f1(y0,1, .) : [0, 1]n−1 → R is continuous by assumption and being not
concave is invariant under small perturbations, we may assume that

0 < y0,k < 1, k = 2, ..., n.

Adding a linear term to f1(., y0) does not alter concavity (or non-concavity for
that matter) and so by Lemma 1 there exist real numbers a, b to satisfy

0 ≤ a < b ≤ 1,

f1(a, y0) = f1(b, y0) = m,

f1(u, y0) < m for a < u < b,

where m = maxu∈[0,1] f1(u, y0). The maximum exists by the partial semiconti-
nuity of f1.

Define the function f ′1 : [0, 1]n → R

f ′1(x1, y) = −α‖x1 − a‖‖y2 − y0,2‖, if y2 ≥ y0,2
f ′1(x1, y) = −α‖x1 − b‖‖y2 − y0,2‖, if y2 ≤ y0,2.

Let g1 = f1 + f ′1. It is easy to see that f ′1 is continuous and partially concave in
all of its variables.

Define the sets

M1 = {(x∗1, y) : y ∈ [0, 1]n−1, g1(x∗1, y) = max
x1∈[0,1]

g1(x1, y)} ,

L =

[
(0, ..., 0), (

a+ b

2
, y0)

]
∪
[
(
a+ b

2
, y0), (1, ..., 1)

]
.

In M1 we have collected the maximum points of g1with respect to the variable
x1 and L is composed of two straight lines through the points (0, ..., 0), (a+b2 , y0)

and (a+b2 , y0), (1, ..., 1), respectively.
We insert here a lemma that is crucial in the proof of the theorem.

Lemma 2. If α is a large enough positive number, then M1 ∩ L = ∅.

Proof. Observe that M1 is closed since g1is partially upper semicontinuous, in
particular it is upper semicontinuous in the first variable and continuous in the
rest of the variables. By the definition of a and b the point (a+b2 , y0) does not
belong to M1.

We claim that there exists δ > 0 such (x1, y) ∈ L and ‖y2−y0,2‖ ≤ δ implies
(x1, y) /∈ M1. Assume that this implication does not hold. Then for any δ > 0
there exists (x1, y)(δ) ∈ L and ‖y2(δ) − y0,2‖ ≤ δ such that (x1, y)(δ) ∈ M1.

10



Since both L and M1 are closed, there is a sequence {δk}, k = 1, 2, ..., lim δk = 0,
such that {(x1, y)(δ)} converges to a point (x∗1, y

∗) ∈M1 ∩ L. By the definition
of L we have y∗ = y0. and thus (x∗1, y0) ∈ L can only hold if x∗1 = a+b

2 which is

impossible because (a+b2 , y0) /∈M1.
Take now a δ > 0 such that there is no point (x1, y) ∈ L and ‖y2− y0,2‖ ≤ δ

which belongs to M1. Notice that δ does not depend on α. If y2 > y0,2 + δ, then
by the definition of g1 and f ′1 we have g1(x1, y) = f1(x1, y)−α‖x1−a‖‖y2−y0,2‖
and for the points (x1, y) ∈ L we have x1 >

a+b
2 since along L all coordinates

are monotone increasing. It is easy to see that for x1 >
a+b
2 we get g1(x1, y) ≤

f1(x1, y)−α b−a2 δ. The function f1 is upper semicontinuous in x1 and is therefore
bounded from above. Thus we can choose α so large that g1(x1, y) cannot be
maximal for any x1 >

a+b
2 i.e. for the points in L.

Likewise, if y2 < y0,2 − δ, then by the definition of g1 and f ′1 we have
g1(x1, y) = f1(x1, y) − α‖x1 − b‖‖y2 − y0,2‖ and for the points (x1, y) ∈ L we
have x1 <

a+b
2 and g1(x1, y) ≤ f1(x1, y) − α b−a2 δ with the same conclusion as

above.

Proceeding with the proof of the theorem construct the functions f ′k (k =
2, ..., n) in the following way. Parametrize L by its first coordinate x1

L = {(x1, y2(x1), ..., y2(x1) : x1 ∈ [0, 1]}.

We do not need to know the functional form of the piecewise linear functions
yk(x1) (k = 2, ..., n). Let now x1 ∈ [0, 1], y ∈ [0, 1]n−1 and define the concave,
continuous functions

f ′k(x1, y) = −α‖yk − yk(x1)‖, k = 2, ..., n.

Denote

(xk, y) = (y1, ..., yk−1,xk, yk+1, ..., yn), xk ∈ [0, 1], yj ∈ [0, 1](j 6= k).

Let now gk = fk + f ′k and

Mk = {(x∗k, y) : y ∈ [0, 1]n−1, g1(x∗1, y) = max
x1∈[0,1]

g1(x1, y)} .

By the construction of gk we have for every k = 2, ..., n

gk(yk(x1), y) = fk(yk(x1), y), if xk = yk(x1)

gk(xk, y) ≤ fk(xk, y))− αδ, if ‖xk − yk(x1)‖ ≥ δ.

Since fk is bounded, for any δ > 0 there exists a large enough α so that gk(xk, y)
can only be maximal in xk if ‖xk − yk(x1)‖ < δ. This means that the points of
M2 ∩ ...∩Mn are uniformly close to those of L. M1 and L = ∅ are compact sets
and by Lemma 2 M1 ∩L = ∅. Therefore the points of M1 cannot be arbitrarily
close to those of L. Since δ > 0 is arbitrary, we have

M1 ∩M2 ∩ ... ∩Mn = ∅
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which means that the game G = {[0, 1]n, g} has no Nash equilibrium, contra-
dicting the assumption that G = {[0, 1]n, f+f ′} has a Nash equilibrium for any
continuous and concave function f ′.

4 Sufficient conditions for Cournot oligopoly
games to have a pure Nash equilibrium

In Cournot oligopolies firms make decisions about volume of production of a
homogeneous product. Production may have capacity bounds other than the
natural lower bound 0. Selling price is determined by the production of the
entire industry via an inverse demand function. Cost of production may vary
from firm to firm. Gross profit is defined as revenue (volume times selling price)
minus cost. This model gives rise to a game, called the Cournot game, defined
by strategy sets Si = [ai, bi] for firm i = 1, ..., n (bi =∞ is allowed for some or
all i), payoff (profit) functions fi(q) = qiP (Q)− Ci(qi), where P : R+ → R+ is
the inverse demand function assigning to total industry output the highest price
the market clears at, Ci → R is the cost function assigning to the production
qi of firm i the total cost incurred at that level of production and Q =

∑i=n
i=1 qi

the total industry output. So the Cournot game G in normal form is given as
G = {S1, ..., Sn; f1, ..., fn}.

It has long been a major line of research in economics in general and indus-
trial organization in particular, to give ever weaker sufficient conditions imposed
on the ingredients of the Cournot game that ensure the existence (uniqueness)
of a pure Nash equilibrium.

In textbooks one usually starts with the linear case, when the inverse de-
mand function and all cost functions are linear. For identical cost functions (the
symmetric case) the Nash equilibrium can be computed, and thereby the ex-
istence of a pure Nash equilibrium point constructively proved, by elementary
methods. This does not mean that the linear case poses no problems if we raise
other questions than the computation of a Nash equilibrium point. Sometimes
the linearity of the inverse demand and cost functions causes the problem. This
is the situation if we want to have correlated equilibria a la Aumann (1974)
other than the Nash equilibrium in the linear oligopoly game. Liu (1996) and
Yi (1997) proved that the only correlated equilibrium for Cournot games is
the unique Nash equilibrium. Ui (2008) extended this result to general concave
games. For linear duopolies, even the coarse correlated equilibrium a la Moulin
and Vial (1978) cannot give higher social welfare when it is defined as the sum
of the payoffs of the players, Ray and Sen Gupta (2013).

Taking the linear case as starting point significant generalization can be
achieved if we keep the assumption of linearity for one of the basic ingredients
of the Cournot game and allow complete generality for the other ingredient. In
particular, we have the following theorem.

Theorem 9. Consider a symmetric Cournot oligopoly game where the firms
choose positive outputs q1,..., qn and the inverse demand function P : R++ → R
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assigns the price P (Q) > 0 to the overall industry output. Every firm has the
same linear cost function with marginal cost c. The Cournot game thus defined
has at least one pure Nash equilibrium.

Proof. The game is an ordinal potential game. Consider the potential function

F : R++ → R, F (q1,..., qn) = q1 · · · qn(P (Q)− c).

It is easy to see that F is an ordinal potential function belonging to the
Cournot game, (see Monderer and Shapley (1996)). Every minimum point of F
is a pure Nash equilibrium.

The condition that the game is symmetric is indispensable as the following
example of Novshek (1985) shows.

Example 2. There are two firms with linear cost functions. Marginal cost for
firm 1 is 881

800 and marginal cost for firm 2 is 381
400 . Inverse demand is

P (Q) =


2−Q Q ∈ [0, 99

100 ]
8219
8119 −

19
8119Q Q ∈ ( 99

100 ,
100
19 ]

10019
19 − 100Q Q ∈ ( 100

19 ,
1900
19 ]

0 Q ∈ ( 1900
19 ,∞)

.

Determine the two firms’ best-reply correspondences B1, B2

B1(y) =

{
{ 719
1600 −

y
2} y ∈ [0, 719800 ]

{0} y ∈ ( 719
800 ,∞)

,

B2(y) =


{ 419600 −

y
2} y ∈ [0. 21400 )

{ 398300 ,
100
19 −

21
400} y = 21

400
{ 10019 − y} y ∈ ( 21

400 ,
3999639
760000 ]

{ 80007223040000 −
y
2} y ∈ ( 3999639

760000 ,
8000722
1520000 ]

{0} y ∈ ( 8000722
1520000 ,∞)

.

Drawing their graphs it can be observed that they have no points in common
i.e. there is no Nash equilibrium.

Theorem 10. Consider a Cournot oligopoly game with a linear inverse demand
function P (Q) = a − bQ, a, b > 0, and arbitrary cost functions Ci(qi), (i =
1, ..., n), q = (q1, ..., qn) ∈ Rn+. The Cournot game thus defined has at least one
pure Nash equilibrium.

Proof. The game can easily be shown to be a potential game with potential
function F : Rn+ → R (see Monderer and Shapley (1996))

F (q) = a

j=n∑
j=1

qj − b
j=n∑
j=1

q2j − b
∑

1≤k<j≤n

qkqj −
j=n∑
j=1

Cj(qj).

Again, every minimum point of F is a pure Nash equilibrium point.
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A landmark in departing from linearity is the theorem of Szidarovszky and
Yakowitz (1977). Concavity/convexity and smoothness of the inverse demand
and cost functions makes it possible to relax linearity.

Theorem 11 (Szidarovszky and Yakowitz, 1977). Given an industry with n
firms, an inverse demand function P and cost functions C1, ..., Cn, if

(i) P : R+ → R+ is nonincreasing, twice continuously differentiable and con-
cave where it has positive value, and

(ii) for all i (i = 1, ..., n), Ci : R+ → R+ is nondecreasing, twice continuously
differentiable and convex, then the Cournot game has at least one Nash
equilibrium.

The following important result assumes about the cost functions nothing but
being nondecreasing, a natural assumption, and lower semicontinuity, allowing
for fix set-up costs.

Theorem 12 (Novshek, 1985). Given an industry with n firms, an inverse
demand function P and cost functions C1, ..., Cn, if

(i) P : R+ → R+ is continuous,

(ii) there exists Q′ < ∞ such that P (Q′) = 0 and P is twice continuously
differentiable and strictly decreasing on [0, Q′),

(iii) for all Q ∈ [0, Q′), P ′(Q) +QP”(Q) ≤ 0, and

(iv) for all i = 1, ..., n, Ci : R+ → R+ is a nondecreasing, lower semicontinuous
function,

then there exists a Nash equilibrium for the Cournot game.

The economic interpretation of all but assumption (iii) are obvious. Given
assumption (ii), assumption (iii) is equivalent to the assumption that for all
nonnegative Y and y with Y + y < Q′, P ′(Y + y) + yP”(Y + y) ≤ 0, so each
firm’s marginal revenue is decreasing in the aggregate output of the rest of the
firms.

In the long line of contributions towards weakening the conditions under
which there is a pure Nash equilibrium, the paper of Ewerhart (2014) stands
out as one bringing most of them under the umbrella of the unifyining concept
of biconcavity.

Consider a family of monotone transformations given by

ϕα(x) =
xα

α
if α 6= 0

ϕα(x) = lnx if α = 0.

An inverse demand function P = P (Q) is called (α, β)-biconcave if P becomes
concave (in the interval where inverse demand is positive) after transforming the
price scale by ϕα, and simultaneously, the quantity scale by ϕβ , where α, β ∈ R.

The following theorem is an existence result for pure Nash equilibria in
Cournot games formulated in terms of biconcavity.
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Theorem 13 (Ewerhart, 2014). Assume that the inverse demand function P
is continuous, nonincreasing, nonconstant, and (α, 1 − α) biconcave for some
α ∈ [0, 1]. Furthermore, the cost functions ci are lower semicontinuous, and
nondecreasing for i = 1, ..., n. Then the associated Cournot-game has at least
one pure Nash equilibrium.

Notice that condition (iii) in Theorem 11 corresponds to (1, 0) biconcavity
and thus Theorem 13 is a generalization of Theorem 11.

5 Necessary conditions for Cournot oligopoly
games to have a pure Nash equilibrium

In the efforts to get ever weaker sufficient conditions for the existence of pure
Nash equilibria, after Novshek’s and Ewerhart’s it has become clear that in
the conventional Cournot model there is not much room for generalizations
especially as far as the cost function is concerned. In order to more clearly
see the limitations of generalizations we will consider more general Cournot
games. It turns out that if we allow more general revenue functions not just
the conventional ”quantity times price” form, then the existence of a pure Nash
equilibrium necessitates the convexity of the cost function.

Let us redefine the Cournot oligopoly game G = {S1, ..., Sn; f1, ..., fn} where
Si = [0, 1], fi(x) = Ri(x) − Ci(x), i = 1, ..., n. Here Ri,Ci : S = ×j=nj=1Sj → R
are the (generalized) revenue and cost functions. Notice that in this set-up
revenues and costs of each firm may depend on the industry’s production profile.
Revenue in the classical model does depend on the production profile of the
industry, specifically on the firm’s own level of production and the total industry
production. In case of a generalized revenue function this is not necessarily so,
other functional dependence of the revenue on the production profile of the
industry is allowed. For cost functions, as opposed to the classical form, the
cost of each firm may depend not only on its own production volume but on the
production profile of the whole industry.

The general revenue function allows for getting different levels of revenue
for two production profiles with the same total production. Indeed, an evenly
distributed production profile gives less chance for the firm to get extra leverage
by utilizing its position marked by a dominant market share. Also, a general
revenue function can take into account other market forces than price (discounts,
all sorts of promotions, etc.). By not assuming anything a priori about the
monotonicity and the shape of the inverse demand function, unusual markets,
such as markets of Giffen and Veblen goods (see Varian (1992)) can be studied
in the same model.

Costs can also depend on the whole production profile. Overuse of natu-
ral resources may incur costs that increase much faster as industry output in-
creases compared to the situation when only an individual firm uses more of
the resource. Even monotony can be violated in special cases. In some countries
zero-level production in agriculture is rewarded by subsidies which disappear as
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production moves away from zero. This is also an example of the presence of
discontinuities as well.

The following theorem emphasizes the importance of convexity of the cost
functions if we want to ensure the existence of a pure Nash equilibrium point.

Theorem 14. Let all the cost functions Ci of a generalized Cournot game
be partially lower semicontinuous. If the generalized Cournot oligopoly game
G = {S1, ..., Sn, R1 − C1, ..., Rn − Cn} has a pure Nash equilibrium point for
any partially concave continuous revenue function Ri i = 1, ..., n, then all Ci
i = 1, ..., n are partially convex.

Proof. By Theorem 8 −Ci is partially concave implying that Ci is partially
convex for all i = 1, ..., n.

The following question comes naturally to mind: If we only consider Cournot
games (not generalized!) which means that we only require the existence of a
pure Nash equilibrium point for a special class of revenue functions, what can be
said about the cost function? Surely less than convexity. Maybe quasi-convexity?

The role of the revenue and cost functions can be reversed in a natural way.
We then obtain the following necessary condition.

Theorem 15. Let all the revenue functions Ri of a generalized Cournot game
be partially upper semicontinuous. If the generalized Cournot oligopoly game
G = {S1, ..., Sn, R1 − C1, ..., Rn − Cn} has a pure Nash equilibrium for any
partially convex continuous cost function Ci i = 1, ..., n, then all Ri i = 1, ..., n
are partially concave.

Theorems similar to Theorem 14 and 15 can be stated for multiproduct
oligopolies as defined in Forgo et al. (1999) page 67-72. In this case Theorem 5
has to be invoked in order to arrive at the same results.

6 Conclusion

Necessary conditions for the existence of pure Nash equilibria were derived for
generalized Cournot oligopoly games. If for all revenue functions there exists at
least one pure Nash equilibrium point for a fixed partially lower semicontinuous
cost function, then the cost function must be convex. The question of how to
characterize cost functions within the framework of the classical Cournot game
where revenues are calculated as the product of volume and price determined
by the total production of the industry through an appropriately conditioned
inverse demand function remains open.
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Joó, I. (1996). A note on minimax theorems. Annales Univ. Sci. Budapest Sectio
Math. 39: 175–179.

Karush, W. (1939). Minima of functions of several variables with inequalities as
side constraints. M.Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago,
Chicago, Illinois.

Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. Proceedings
of the 2nd Berkeley Symposium. Berkeley, University of California Press 481–
492.

Kolstad, C. D. and Mathiesen, L. (1987). Necessary and sufficient conditions
for uniqueness of a Cournot equilibrium. Review of Economic Studies 54:
681–690.

Liu, L. (1996). Correlated equilibrium of Cournot oligopoly competition. Journal
of Economic Theory 68: 544–548.

Martos, B. (1975). Nonlinear Programming Theory and Methods, Akadémiai
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