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Abstract

A common framework is provided that comprises classical ordinal item response
models as the cumulative, sequential and adjacent categories models as well as
the more recently propagated item response tree models. The obtained taxonomy
is based on the role that binary models play as building blocks of the various
models. The study of the binary models contained in ordinal latent trait models
clarifies the interpretation of item parameters in classical models. The taxonomy
for ordinal models also contains a new general class of hierarchically structured
models, which can be seen as a generalization of item response tree models. For
this class of models estimation methods are developed, which make use of com-
monly available program packages.

Keywords: Ordered responses, latent trait models, item response theory, graded re-
sponse model, partial credit model, sequential model, Rasch model, item response
trees

1 Introduction

Various latent trait models for ordered response data have been proposed in the litera-
ture, for an overview see, for example, Van der Linden (2016). One can in particular
distinguish between three basic types of models, cumulative models, sequential mod-
els and adjacent categories models. One of the objectives of the present paper is to
show how these models are easily built from binary latent trait models. The way how
the binary models are used to construct models helps to understand the structure of
the models and to clarify the meaning of the parameters. It also provides a framework
that allows to embed more recently developed ordinal item response models as the
tree-based models, yielding a general taxonomy of ordinal item response models.
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FIGURE 1: Structure of classical ordinal latent trait models.

Binary models for person p and item i have the common form

P (Ypi = 1) = F (θp − δi), (1)

where F (.) is a cumulative distribution function, θp is the person parameter, and δi is
the item parameter, typically a difficulty or threshold. An important member of this
class of models is the Rasch model, which is obtained if F (.) is the logistic distribu-
tion function F (η) = exp(η)/(1 + exp(η)). It is straightforward to include an item
discrimination parameter by using αi(θp− δi) instead of θp− δi. For simplicity we will
mostly use the simple form without an item discrimination parameter.

Given one has a response in ordered categories {0, 1, . . . , k} there are several ways
to construct an ordinal model from binary models of the form (1). The binary models
can be used to compare specific categories or groups of categories from {0, 1, . . . , k}.
One can, in particular,

- compare groups of categories that result from splitting the categories into the
subsets {0, 1, . . . , r − 1} and {r, . . . , k},

- compare (conditionally) between two categories, for example, adjacent cate-
gories,

- compare (conditionally) between a category and a set of adjacent categories, for
example, {r − 1} and {r, . . . , k}.

The different ways to compare categories correspond to cumulative models, adjacent
categories and sequential models in that order. The way how binary models are used
yields a taxonomy of classical ordered latent trait models. As a preview Figure 1
shows that the consideration of the binary models contained in ordinal models yields a
distinction between conditional and non-conditional models. The cumulative or graded
response model is the only non-conditional model from this class of models. The other
two use some sort of conditioning on responses when considering the binary building
blocks within the models.

2



In the second part of the paper we consider tree-based model, which have been
propagated more recently, for example, by De Boeck and Partchev (2012), Böckenholt
(2017). Tree based models use the binary choices conditionally in a hierarchical way.
We extend existing approaches to find parsimonious models that efficiently use the
information in the ordering of categories.

The characterization of ordinal models by the binary models that are contained
as building blocks yields a general taxonomy of ordinal item response models that
includes tree-based models. The obtained hierarchical structure differs from the tax-
onomy proposed by Thissen and Steinberg (1986). Their classification into “divide-
by-total” models and “difference” models focuses on the form of the response prob-
abilities. They do not distinguish between conditional and un-conditional models, a
distinction that arises quite naturally if one focuses on the binary models as the el-
ements that are behind complex item response models. An additional advantage of
the proposed structure is that it clarifies the interpretation of parameters in complex
models.

2 Classical Ordered Response Models

In the following let Ypi ∈ {0, 1, . . . , k}, p = 1, . . . , P , i = 1, . . . , I , denote the ordinal
response of person p on item i. An important partition of the response categories is the
partition into the subsets {0, . . . , r − 1} and {r, . . . , k}, which can be represented by
the binary variable

Y
(r)
pi =

{
1 Ypi ≥ r
0 Ypi < r.

(2)

The variables Y (1)
pi , . . . , Y

(k)
pi are called split variables because they split the response

categories into two subsets. They play a major role in the construction of the traditional
ordered latent trait models.

2.1 Simultaneous Modelling of Splits: The Graded Response Model

Let us assume that the response categories represent levels of performance in an
achievement test. Then one can consider two groups of categories, {0, 1, . . . , r−1} for
low performance and {r, . . . , k} for high performance, where low and high are relative
terms that refer to “below category r” and “above or in category r”. One might assume
that the split into low and high performance is determined by a binary model with per-
son ability θp and a threshold that depends on the category at which the categories have
been split. Therefore, one assumes

P (Y
(r)
pi = 1) = F (θp − δir, ) , k = 1, . . . , k. (3)

Thus, for each dichotomization into categories {0, 1, . . . , r−1} and {r, . . . , k} a binary
model is assumed to hold. Importantly, the models are assumed to hold simultaneously
with the same person ability θp but different item difficulties δir. Simple rewriting
yields the cumulative model

P (Ypi ≥ r) = F (θp − δir), k = 1, . . . , k, (4)

which is equivalent to a version of Samejima’s graded response model (Samejima,
1995, 2016). Thus, the graded response model can be seen as a model for which the
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dichotomizations into the categories Ypi < r and Ypi ≥ r are simultaneously modeled.
One consequence is that item difficulties are ordered. Since P (Ypi = r) = P (Ypi ≥
r)−P (Ypi ≥ r+1) = F (θp−δir)−F (θp−δi,r+1) ≥ 0, one obtains that δir ≤ δi,r+1has
to hold for all categories.

The strong link between the binary responses and the ordinal response yields a
specific view of the graded response model that differs from traditional ones. In an
achievement test the sequence of binary responses (Y (1)

pi , . . . , Y
(k)
pi ) can be seen as re-

ferring to tasks with increasing difficulties. More concrete, because item difficulties are
ordered, one has P (Y (r)

pi = 1) ≥ P (Y
(r+1)
pi = 1), which means the “task” represented

by Y (r)
pi is simpler than the “task” Y (r+1)

pi . Moreover, if the task Y (r)
pi was completed

(Y (r)
pi = 1 or, equivalently, Ypi ≥ r), the preceding tasks Y (s)

pi , s < r (Y (s)
pi = 1 or,

equivalently, Ypi ≥ s) were also completed. Therefore, the outcome of the sequence of
binary variables has the specific form

(Y
(1)
pi . . . , Y

(k)
pi ) = (1, . . . , 1, 0, . . . , 0),

which means a sequence of ones is followed by a sequence of zeros. Binary variables
that follow this pattern have been called Guttman variables and the resulting response
space is usually referred to as Guttman space (Andrich, 2013). The increasing sequence
of difficulties δi1 ≤ · · · ≤ δik may also be seen as thresholds that have to be exceeded
to obtain a higher level of performance. Y (r)

pi = 1 means that threshold δir has been
exceeded. A nice feature is that the ordinal response is simply given as the sum of the
binary variables

Ypi = Y
(1)
pi + · · ·+ Y

(k)
pi ,

which means the ordinal response is the number of thresholds that have been exceeded.
It is also the number of tasks that have been successfully completed.

The interpretation of item parameters as thresholds is also supported by an alterna-
tive derivation of the cumulative model. Let Ỹpi = θp+εpi, where εpi is a noise variable
with symmetric continuous distribution function F (.), denote a latent variable that is
invoked if person p tries to solve item i. Ypi is essentially the ability of the person plus a
noise variable and can be seen as the random ability of the person. The category bound-
aries approach assumes that category r is observed if the latent variable is between
thresholds δir and δi,r+1. More formally, one has Ypi = r ⇔ δir ≤ Ỹpi < δi,r+1.
It is immediately seen that one obtains the cumulative model and thresholds have to be
ordered.

It is noteworthy that the derivation of the cumulative model by Samejima (1995,
2016) is different from the derivations given here. Samejima considers steps in the
problem solving process. It is assumed that a graded item score r is assigned to an
examinee who successfully completes up to step r but fails to complete step r+1. The
conceptualization is very similar to that of the sequential model to be considered later.
Contrary to this motivation Andrich (2015) states that there is no concept of steps in
the cumulative model. It is indeed hard to see why the dichotomization specified in
the model representations (9) and (4) should be linked to steps. Certainly the variables
Y

(r)
pi should not be seen as steps. Y (r)

pi = 1 simply denotes that a person has at least
performance level r. Since performance levels are ordered, that means, its performance
cannot be below level r, or, in split variables, Y (1)

pi = · · · = Y
(r−1)
pi = 1, which is
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the Guttman property of the binary responses. One observes Ypi = r, if, in addition
Y

(r+1)
pi = 0, which means that the performance is below level r. However, no steps or

transitions are needed to explain the level of performance. As Andrich (2015) argues,
if a performance like acting is to be classified according to some protocol, the judge
places the person’s performance in one of the categories on the trait, not how the person
transitioned in getting to the category. Moreover, even in simple binary models for
problem solving one observes if the problem was solved or not, but not the transition.
Thus, when considering ordinal models and the binary models contained in them there
is no reason to construct a transition. It might be misleading and is not compatible
with the underlying process, which is determined by simultaneous dichotomizations or
the placing on the continuum of the latent scales, which is divided by the thresholds
δi1 ≤ · · · ≤ δi,k.

Thissen and Steinberg (1986) called the graded response models “difference” mod-
els because the probabilities are given as differences, P (Ypi = r) = F (θp − δir) −
F (θp − δi,r+1). Although they also start with binary models they do not further inves-
tigate that the models have to hold simultaneously.

2.2 Conditional Comparison of Categories: the Partial Credit and Other Adjacent
Categories Models

Rather than compare groups of categories by utilizing a binary model one can also
compare two categories from the set of categories {0, 1, . . . , k}. A choice that sug-
gests itself are adjacent categories. Let the binary models that compare two adjacent
categories be given by

P (Ypi = r|Ypi ∈ {r − 1, r}) = F (θp − δir), r = 1, . . . , k. (5)

Again all the models contain the same person parameter but model-specific item pa-
rameters. It is straightforward to derive that for the logistic distribution function one
obtains the partial credit model

P (Ypi = r) =
exp(

∑r
l=1(θp − δil))∑k

s=0 exp(
∑s

l=1(θp − δil))
, r = 1, . . . , k,

which was propagated by Masters (1982) and Masters and Wright (1984). It is also
equivalent to the polytomous Rasch model, which is just a different parameterization,
see, for example, Andrich (2010). Thissen and Steinberg (1986) called the graded
response model a “divide-by-total” model because of the denominator in the probabil-
ities.

If one uses binary models as building blocks, the question arises why one should
confine oneself to adjacent categories, although they seem a natural choice. An alterna-
tive would be to use binary models for a set of pairs of categories (s1, r1), . . . , (sk, rk),
si < ri. It can be shown that postulating binary models for pairs of categories also
yields the partial credit model. Therefore, the partial credit model can be seen as a
general model for pairs of categories.

An alternative form of the model, which emphasizes the implicit comparison of
categories is

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= θp − δir, r = 1, . . . , k. (6)
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That means, the PCM directly compares two adjacent categories, and θp determines
the strength of the preference for the higher category.

It should be emphasized that the binary models used as building blocks are con-
ditional models, it is assumed that a binary model holds given the response is in two
categories from the set of available categories. This is seen from the representation
(5) but hidden in the representation (6). However, it has consequences for the interpre-
tation of parameters. The item parameters represent thresholds given the response is
in categories {r − 1, r} and the trait parameters are the abilities to score r rather than
r−1 given the response is in categories {r−1, r}. Therefore, the parameters refer to a
local conditional decision or preference although changing the item parameter changes
the probabilities of all possible outcome values since the PCM assumes that the binary
models hold simultaneously. Nevertheless the binary models are conditional models
and parameters should be interpreted with reference to the conditional structure. One
consequence of the conditional parameterization is that thresholds do not have to be
ordered though there has been some discussion on the ordering of thresholds, see, for
example, Adams et al. (2012), Andrich (2013), Andrich (2015).

The class of adjacent categories model also contains simplified versions that use a
sparser parameterization. By assuming that the item parameters can be decomposed
into two terms in the form δil = δi + τl, one obtains the Rasch rating scale model
(RSM), see Andrich (1978), Andrich (2016).

2.3 Conditional Comparison of a Single Category and a Group of Categories:
Sequential Models

In achievement tests frequently items are used that are solved in consecutive observed
steps. For example, a mathematical problem may have the form: (

√
49− 9)3 =?. One

can distinguish four levels: no problem solved (level 0),
√
49 = 7 solved (level 1),

7−9 = −2 solved (level 2), (−2)3 = −8 solved (level 3). Obviously the sub problems
have to be solved in a consecutive way. A sub problem can only be solved if the all the
previous sub problems have been solved. A model that explicitly models the solving
of sub problems has the form

P (Ypi ≥ r|Ypi ≥ r − 1) = F (θp − δir), r = 1, . . . , k. (7)

The model is known as sequential model (Tutz, 1990) or step model (Verhelst et al.,
1997). It is a process model for consecutive steps. One models the transition to
higher categories given the previous step was successful. The first step is the only
non-conditional step. If it fails, the response is in category 0 (first sub problem not
solved), if it is successful, the response is larger than 0 (first sub problem solved). In
the latter case the person tries to take the second step. If it is not successful, the re-
sponse is in category 1 (second sub problem not solved), if it is successful, the response
is larger than 1 (second sub problem solved), etc. In the r-th step it is distinguished
between Ypi = r − 1 and Ypi ≥ r given at least level r − 1 is reached (Ypi ≥ r − 1).
In the model the parameter θp represents the person’s ability to successfully perform
each of the steps while δir is the difficulty in step r. Of course, later steps can be easier
than early steps, thus item difficulties are not necessarily ordered. In the example step
2 (7 − 9) is certainly easier to master than step 1 (

√
49 = 7). However, sub problem

2 can be only solved after step 1 was successful. Therefore, the item parameters have
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0 1, 2, 3

1 2, 3

2 3
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FIGURE 2: The sequential model as a hierarchicaly structured model.

local meaning, they refer to the difficulty in a step given that all previous steps were
successful. In contrast, the same ability parameter is present in each of the steps, which
makes the model uni-dimensional in terms of person parameters.

The logistic version of the model, also called logistic sequential model, can be
given in the alternative form of a continuation ratio model,

log

(
P (Ypi ≥ r)

P (Ypi = r − 1)

)
= θp − δir, r = 1, . . . , k. (8)

The logits on the left hand side compare the categories the probability of a response
in the categories {r, . . . , k} to the probability of a response in category {r − 1}. In
this sense the binary models contained in the sequential model compare groups of cat-
egories to single categories. This comparison is also seen from the tree representation
of the model given in Figure 2, which shows a sequential model with four categories.
It shows the sequence of (conditional) binary splits. In the r-th step a decision between
category {r − 1} and categories {r, . . . , k} is obtained. The split is conditional, given
categories {r − 1, . . . , k}, that means, under the condition that the previous step was
successful.

A disadvantage of the model representation (8) is that it does not directly show the
underlying process. The implicit conditioning on responses Ypi ≥ r, which is essential
for the interpretation of the model parameters, gets lost. It is however seen in the model
representation with split variables given by

P (Y
(r)
pi = 1|Y (r−1)

pi = 0, . . . , Y
(1)
pi = 0) = F (θp − δir) , r = 1, . . . , k, (9)

which again shows that the split variables (Y (1)
pi . . . , Y

(k)
pi ) form a Guttman space.

2.4 Overview on Classical Ordinal Models

It has been shown that all the models contain binary models that split categories into
two subsets. In the partial credit model and the sequential model the splits are condi-
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TABLE 1: Overview of traditional ordinal models.

Category Representation Conditional Representation Conditional Representation

Logistic Version General Version With split variables
log(.) = θp − δir P (.) = F (θp − δir) P (.) = F (θp − δir)

Cumulative log
(

P (Ypi≥r)
P (Ypi<r)

)
P (Ypi ≥ r) P (Y

(r)
pi = 1)

Partial Credit log
(

P (Ypi=r)
P (Ypi=r−1)

)
P (Ypi = r|Ypi ∈ {r − 1, r}) P (Y

(r)
pi = 1|Y (r−1)

pi = 1, Y
(r+1)
pi = 0)

Sequential log
(

P (Ypi≥r)
P (Ypi=r−1)

)
P (Ypi ≥ r|Ypi ≥ r − 1) P (Y

(r)
pi = 1|Y (r−1)

pi ) = 0

tional whereas in the cumulative model the splits are simultaneous but not conditional.
Figure 1 visualizes the hierarchy of models.

In Table 1 the models are given in various representations. The left column shows
the logistic versions of the models. It shows which categories or groups of categories
are compared. In particular it is seen which type of logits are determined by the differ-
ence between person parameter and item parameter, θp−δir. For example, in the partial
credit model one has the adjacent categories logits log(P (Ypi = r)/P (Ypi = r − 1)), in
the sequential model one has the continuation ratios log(P (Ypi ≥ r)/P (Ypi = r − 1)).
In the middle column the general conditional representations of the models are given.
In these representations the distribution function F (.) can be any strictly monotonic
distribution function. It shows which conditional binary response models are con-
tained in the ordinal model. In the case of the graded response model the condition
is empty since it is a non-conditional model. The right column shows the representa-
tion of the general models with split variables. It also shows clearly the conditioning
implicitly contained in the models. It should be noted that in all the models the split
variables (Y

(1)
pi . . . , Y

(k)
pi ) form a Guttman space and the ordinal response is given by

Ypi = Y
(1)
pi + · · ·+ Y

(k)
pi .

3 Hierarchically Structured Modeling: Tree-Based Models

The classical models considered in the previous section represent different types of
modelling concerning the conditioning. While the graded response model is a model
that does not rely on conditioning, the partial credit model conditions on a response
in adjacent categories. The sequential model is conditional but, in contrast to the par-
tial credit model, it can be represented as a tree (see Figure 2). This makes it a special
model, it is hierarchical, that means, it can be represented by a sequence of conditional
splits. Neither the graded response models nor the partial credit model are hierarchical.
More recently with IR-Trees a whole class of hierarchical models has been introduced.
IR-Trees will be considered briefly in the following and extended afterwards. For sim-
plicity in the following the response categories are {1, . . . , k}, which is the common
notation in IR-Trees.
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1, 2, 3, 4, 5, 6

1, 2, 3 4, 5, 6

1 2, 3 64, 5

2 3 4 5

Query Agreement/Disagreement

Query Extremity

Query Weakness of Attitude

FIGURE 3: A tree for six ordered categories, categories 1,2,3 represent levels of dis-
agreement, categories 4,5,6 represent levels of agreement (compare Figure 3 in Böcken-
holt (2017)).

3.1 IR-Tree Models

Tree-based models assume a nested structure with the building blocks given as binary
models. They were considered by De Boeck and Partchev (2012), Böckenholt (2012),
Khorramdel and von Davier (2014), Böckenholt (2017) and Böckenholt and Meiser
(2017). In the following we use the presentation of IR-tree models given by Böckenholt
(2017). IR-tree models are sequential process model, a response is constructed based
on a series of mental questions. For illustration we consider an ordinal response with
six categories that represent an ordinal response from “strongly disagree” to “strongly
agree”. Figure 3 shows the corresponding tree, which is equivalent to Figure 3 in Böck-
enholt (2017). The first query determines a respondent’s agreement or disagreement.
The second query determines the extremity of the (dis)agreement and the third query
assesses whether the agreement is weak or not. For each query in the tree, which cor-
responds to a conditional binary decision one uses a binary model. For query q the
model is given by

P (Y
(q)
pi = 1) = F (θ(q)p − δ(q)i ). (10)

Although the resulting model is rather flexible and easy to estimate a disadvantage is
that for each query one has a new person parameter. That makes the model multi-
dimensional in terms of person parameters and person parameters are interpreted with
reference to the specific query, that is, the conditional decision. The model seems not
to efficiently use the information in the ordered categories. In particular, the basic
propensity to agree or disagree is only modelled in the first query. The person param-
eters in the next queries refer to response styles, whether a person prefers extreme or
middle categories. However, the basic propensity to agree or disagree is not present in
later queries though it might also determine the choice between category groups {1}
and {2, 3}. In contrast, a model like the sequential model uses the same person param-
eter in all binary decisions. Also in the partial credit model, which is not hierarchical,
the same person parameter is present in the conditional binary decisions. In the next
section we consider trees that include the same parameters in different levels yielding
more parsimonious models.
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1, 2, 3, 4, 5, 6

1, 2, 3 4, 5, 6

1 62 3 4 5

Query Agreement/Disagreement

Query Extremity

FIGURE 4: A tree for six ordered categories with three levels .

3.2 Hierarchical Partitioning

Let us consider the tree for six ordered categories given in Figure 4. The tree has only
two levels in addition to the 0-level with all categories. One can model the propensity
to agree or disagree by

P (Ypi ≥ 4) = F (θp − δ(1)i ), (11)

where δ(1)i is the level 1 item parameter. The conditional propensity to choose from
one of the categories in level 2 can be specified, for example, by conditional graded
response models

P (Ypi ≥ r|Ypi ≤ 3) = F (θp − δ(2)ir ), r = 2, 3 (12)

P (Ypi ≥ r|Ypi ≥ 4) = F (θp − δ(2)ir ), r = 5, 6. (13)

The model has as many parameters as a simple graded response model, however, order
restrictions are weaker. One just has δ(2)i2 ≤ δ

(2)
i3 and δ(2)i5 ≤ δ

(2)
i6 whereas in the simple

cumulative model five thresholds have to be ordered.

Uni-dimensionality

The two level model considered here has the advantage that it is uni-dimensional with
regard to the person parameter. The same person parameter is present on each level to
exploit the information in the ordered categories efficiently. That means if one com-
pares, for example, category {3} and categories {1, 2} by using the odds ratio

log
P (Ypi = 3)

P (Ypi ∈ {1, 2})
= θp − δ(2)i3 ,

one has a linear function that increases with increasing person parameter θp. Therefore,
also comparisons between probabilities of categories from the disagreement categories
depend on the parameter θp. Actually, comparisons between any categories s and r are
functions of θp, and, of course, item parameters. In contrast, in IR-tree models, which
use a different item parameter in each query/split comparisons between groups depend
on quite different item parameters.
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Including Response Styles

A further strength of the model is that it is easily extended to include response style
parameters by using in level 2 the parameterization

P (Ypi ≥ r|Ypi ≤ 3) = F (θp + γp − δ(2)ir ), r = 2, 3

P (Ypi ≥ r|Ypi ≥ 4) = F (θp − γp − δ(2)ir ), r = 5, 6.

The parameter γp is a response style parameter that contains the tendency to middle
categories. Figure 5 illustrates the effect of the response style parameter. In the first
row the number of response categories is four, parameters are δ(1) = 0.5, δ

(2)
2 = −1.5,

δ
(2)
2 = −1.5, δ(2)3 = 1.5. In the second row the number of response categories is

six. In the middle column there is no response style parameter, γp = 0, in the left
column it is positive, γp = 1, in the right column negative, γp = −1. The effect
of the response style is obvious. A person with positive value γp has a tendency to
middle categories whereas a person with negative value γp has a tendency to extreme
responses. In contrast to IR-tree models one keeps the attitude parameter θp and adds
a response style parameter instead of dropping the attitude parameter and using a new
response style parameter in the higher levels.
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FIGURE 5: Probabilities P (Ypi = r) against θp for positive (left), negative γp (right)
and γp = 0 (middle); in the upper panels the number of categories is four, in the lower
panels it is six.

Symmetry of Response Categories

Hierarchically structured model are in particular useful in Likert items that represent
a symmetric form of agreement and disagreement in the form “strongly disagree”,
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“weakly disagree”, ... “weakly agree”, “strongly agree”. For such symmetrical re-
sponse categories it is sensible to account for the symmetry by using a more parsimo-
nious parameterization. A person with parameter θp = δ(1) is “neutral”, she has the
same probability of choosing agreement categories or disagreement categories. For
this neutral person and six response categories as in Figure 4 one also expects that
P (Ypi = 1) = P (Ypi = 6), P (Ypi = 2) = P (Ypi = 5), P (Ypi = 3) = P (Ypi = 4),
which yields δ(2)2 − δ(1) = −(δ(2)6 − δ(1)), and δ(2)3 − δ(1) = −(δ(2)5 − δ(1)). Thus, the
free item parameters are δ(1), δ(2)2 , δ

(2)
3 .

General Ordinal Model with Two Levels

If the number of agreement and disagreement categories is even it is natural to split in
the first step into categories {1, . . . , k/2} and {k/2 + 1, . . . , k} by utilizing a binary
model. If the number of response categories is odd, there is a neutral category in the
middle. Then it seems sensible to use a three categories model in the first step.

In general a hierarchical model is obtained by first modeling the response groups
of homogenous response categories and then modeling the response within groups.
Generally, let the categories 1, . . . , k be subdivided into basic sets S1, . . . , St, where
Si = {mi−1 + 1, . . . ,mi},m0 = 0,mt = k. In the first step the response in one of the
sets is determined by an ordinal model with item parameters δ(1)r . In the second step the
conditional response given Si is determined by an ordinal model with parameters that
are linked to Si. From these two steps one obtains, if one uses the cumulative model,

P (Ypi ∈ Tj) =F (θp − δ(1)ij ), (14)

P (Ypi ≤ r|Y ∈ Sj) =F (θp − δ(2)ir ),

where Tj = S1 ∪ · · · ∪ Sj, δ
(1)
i1 < . . . < δ

(1)
i,j−1 < δ

(1)
j = ∞, δ(2)i,mj−1+1

< . . . <

δ
(2)
i,mj−1

, j = 1, . . . . . . , t.
For even categories one uses S1 = {1, . . . , k/2} and S2 = {k/2 + 1, . . . , k},

for odd categories one uses S1 = {1, . . . , (k − 1)/2} and S2 = {(k + 1)/2}, S3 =
{(k + 1)/2, . . . , k}. The inclusion of response style parameters is in the same way as
in the example with six categories. The presentation given here uses the cumulative
model in both steps, however one may also use the adjacent categories model in both
steps. Hierarchically structured models of this type were considered by Thissen-Roe
and Thissen (2013) and in a regression context by Tutz (1989).

The inclusion of response style parameters in the hierarchically structured model
provides an alternative to response style modeling as that for the partial credit model
given by Tutz et al. (2018).

3.3 Alternative Representations of Hierarchical Partitioning Models and Parameter
Estimation

Parameter estimates of a hierarchical tree model can be obtained by using ordinary
program packages for multidimensional models assuming a vector-valued person pa-
rameter along with a particular arrangement of the data. For simplicity let us consider
a categorical ordinal response with four categories, {1, 2, 3, 4}. The two-dimensional
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model that can be used has the form

P (Yip ≥ r|Yip ∈ T ) = F (aTθp − δir), r = 2, 3, 4,

with θTp = (θp1, θp2) and the vector-valued constant aT = (a1, a2) representing the
loadings of the two dimensions (or factors) on the items. The condition Yip ∈ T is kept
general and will be specified from case to case.

The level 1 binary model can be specified by using aT = (a1, a2) = (1, 0) and no
condition, that is,

P (Ypi ≥ 3) = F (θp1 − δi3),
where θp1 = θp and δi3 = δ

(1)
i . The conditional level 2 model that distinguishes

between categories 1 and 2 given T ∈ {1, 2} is obtained by choosing aT = (a1, a2) =
(1, 1) yielding

P (Ypi ≥ 2 | Ypi ≤ 2) = F (θp1 + θp2 − δi2),
where θp1 = θp, θp2 = γp, δi2 = δ

(2)
i2 , therefore a response style parameter is included.

The conditional level 2 model that distinguishes between categories 3 and 4 given
T ∈ {3, 4} is obtained by choosing aT = (a1, a2) = (1,−1) yielding

P (Ypi ≥ 4 | Ypi ≥ 3) = F (θp1 − θp2 − δi4),

where θp1 = θp, θp2 = γp, δi4 = δ
(2)
i4 .

The hierarchical structure of the model allows to write the likelihood contributions
for person p and item i as products of conditional probabilities. For the ordinal response
Ypi = 1 one obtains the likelihood contribution

Lpi(θp1, θp2, δi3, δi2) = (1− P (Ypi ≥ 3))(1− P (Ypi ≥ 2 | Ypi ≤ 2))

= (1− F (θp1 − δi3))(1− F (θp1 + θp2 − δi2)),

for Ypi = 2 one obtains

Lpi(θp1, θp2, δi3, δi2) = (1− P (Ypi ≥ 3))P (Ypi ≥ 2 | Ypi ≤ 2)

= (1− F (θp1 − δi3))F (θp1 + θp2 − δi2),

for Ypi = 3 one obtains

Lpi(θp1, θp2, δi3, δi4) = P (Ypi ≥ 3)(1− P (Ypi ≥ 4 | Ypi ≥ 3))

= F (θp1 − δi3)(1− F (θp1 + θp2 − δi4)),

and for Ypi = 4 one obtains

Lpi(θp1, θp2, δi3, δi4) = P (Ypi ≥ 3)P (Ypi ≥ 4 | Ypi ≥ 3)

= F (θp1 − δi3)F (θp1 + θp2 − δi4).

Note again that θp1 = θp, θp2 = γp and δi3 = δ
(1)
i , δi2 = δ

(2)
i2 , δi4 = δ

(2)
i4 . As is seen

from the likelihood contributions level 1 and level 2 parameters do not occur simulta-
neously. In addition, the likelihood is not a function of both level 2 item parameters.
For Ypi ≤ 2 the likelihood is not a function of δi4 = δ

(2)
i4 , and for Ypi ≥ 3 it is not a

function of δi2 = δ
(2)
i2 .
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These properties of the likelihood allow to represent it by defining binary data
with missing values. Let each ordinal response Ypi be represented by a row vector of
Bernoulli variables (Zpi1, Zpi2, Zpi3). The first entry Zpi1 ∈ {0, 1} refers to the level 1
binary decision (or split) {1, 2} or {3, 4}, the second entry Zpi2 ∈ {0, 1} to the level 2
conditional binary decision {1} or {2} given the level 1 decision is {1, 2}, and the third
entry Zpi3 ∈ {0, 1} corresponds to the level 2 conditional binary decision {3} or {4}
given the level 1 decision is {3, 4}. If Ypi = 1 then set (Zpi1, Zpi2, Zpi3) = (0, 0,NA),
if Ypi = 2 let the values of the binary variables be given by (0, 1,NA), if Ypi = 3 by
(1,NA, 0), and if Ypi = 4 by (1,NA, 1), with NA denoting that the respective Bernoulli
variable or conditional binary decision is not available.

Then, for Ypi ≤ 2 the likelihood can be written as

Lpi(θp1, θp2, δi3, δi2)

= P (Ypi ≥ 3)zpi1(1− P (Ypi ≥ 3))1−zpi1

∗ P (Ypi ≥ 2 | Ypi ≤ 2)zpi2(1− P (Ypi ≥ 2 | Ypi ≤ 2))1−zpi2 ,

where the factor referring to the conditional binary decision {3} or {4} given {3, 4},
and depending on δi4 = δ

(2)
i4 , is omitted since the binary decision Zpi3 is not available

for Ypi ≤ 2. For Ypi ≥ 3 one obtains

Lpi(θp1, θp2, δi3, δi4)

= P (Ypi ≥ 3)zpi1(1− P (Ypi ≥ 3))1−zpi1

∗ P (Ypi ≥ 4 | Ypi ≥ 3)zpi3(1− P (Ypi ≥ 4 | Ypi ≥ 3))1−zpi3 ,

where the factor referring to the conditional binary decision {1} or {2} given {1, 2},
and depending on δi2 = δ

(2)
i2 , is omitted since the binary decision Zpi2 is not available

for Ypi ≥ 3.
After transforming the original ordinal observations into binary observations (in-

cluding missing values) the data matrix consists of P rows and 3I columns, i.e. three
columns for each item i. Together with the corresponding specification of the loadings
a1, a2 one can simply use ordinary existing program packages for multidimensional
models, like Conquest (Adams, Wu, and Wilson, 2015) or the R (R Core Team, 2018)
packages TAM (Robitzsch, Kiefer, and Wu, 2018) and MCMCpack (Martin, Quinn,
and Park, 2011), to obtain parameter estimates. The former two provide marginal ML
estimation and the latter a Bayesian approach. The program packages assume for each
of the 3 columns per item a single item parameter. These are equivalent with the level
1 item parameter δ(1)i and the two level 2 item parameters δ(2)i2 and δ(2)i4 of the present
tree model. For example, for I = 2 items the so-called Q-matrix with 3I rows and 2
columns (for the 2 dimensions) containing the choices of the loadings is given by




1 0
1 1
1 −1
1 0
1 1
1 −1




.
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3.4 Illustrative Example

To illustrate the estimation approach for hierarchical tree models we use a real-world
data example from the R package ltm (Rizopoulos, 2006). The data originate from
the 1992 Euro-Barometer Survey measuring the attitude towards the advantages of sci-
ence and technology. The data contain categorical ordinal responses in four categories
to seven questions obtained from 392 persons. The four categories are labeled with
”strongly disagree”, ”disagree to some extent”, ”agree to some extent”, and ”strongly
agree” and thus provide a symmetrical response format. Four of the seven questions are
formulated positively, i.e. expressing an advantage of science and technology. Three
items are negatively formulated, i.e. expressing a disadvantage. For these the order of
categories has been reversed.

The R package TAM has been used to estimate the parameters of a tree model with
binary splits (or decisions) exactly as decsribed in Section 3.3 and assuming the bi-
nary Rasch model for these binary splits. Two variants of the tree model have been
considered, one with response style parameter γp and one without by setting γp = 0
for all persons. Marginal ML estimation has been used by assuming that (θi, γi) are
drawn independently from a bivariate Gaussian distribution with expected value zero.
A bivariate Gauss-Hermite procedure with 21 quadrature points for each dimension has
been utilized for the numerical approximation of the integral involved in the marginal
likelihood. The variances and the covariance of the assumed bivariate normal distri-
bution are estimated jointly with the level 1 and level 2 item parameters of the model.
Table 2 shows the parameter estimates and provides the obtained information criteria.

TABLE 2: Marginal ML estimates with standard errors in parenthesis of survey measuring the
attitude towards science and technolgy

with resp. sty. par. without resp. sty. par.

Item name Level 1 Level 2 low Level 2 high Level 1 Level 2 low Level 2 high

Comfort -2.46 (0.18) -2.94 (0.56) 1.58 (0.14) -2.43 (0.18) -2.31 (0.5) 1.21 (0.13)
Environment 0.92 (0.12) -0.37 (0.14) 1.81 (0.25) 0.91 (0.11) -0.25 (0.13) 1.51 (0.22)
Work -0.77 (0.11) -1.64 (0.24) 2.1 (0.18) -0.75 (0.11) -1.44 (0.21) 1.56 (0.16)
Future -1.4 (0.13) -2.51 (0.33) 1.29 (0.15) -1.38 (0.13) -2.13 (0.3) 0.95 (0.13)
Technology 1.06 (0.12) -0.49 (0.14) 2.53 (0.3) 1.04 (0.12) -0.35 (0.12) 2.06 (0.27)
Industry 1.94 (0.15) -0.19 (0.13) 2.31 (0.4) 1.92 (0.15) -0.12 (0.11) 1.98 (0.36)
Benefit -0.89 (0.11) -2.28 (0.28) 1.51 (0.16) -0.88 (0.11) -1.95 (0.25) 1.1 (0.14)

Note. Model with response style parameter: AIC = 5883, BIC = 5979, variances and covariance of
person parameters var(θp) = .51, var(γp) = 1.92, cov(θp, γp) = -.03. Model without response style
parameter: AIC = 6106, BIC = 6194, variance of person parameters var(θp) = .43.

Comparison of AIC and BIC values are in favor of the model that includes response
style parameters. For the AIC one has 5883 for the model with response style param-
eters and 6106 for the model without. The same ordering is obtained for the BIC. The
relevance of the response style parameters is also seen from the variances of the person
parameters. The variance of the content-related parameter θp is substantially smaller
than the variance of the response style parameter γp. The respondents seem to differ
stronger in their response styles (tendency to middle vs. extreme categories) than with
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respect to their attitudes (towards science and technology). As can be seen from Table
2, the level 1 parameters hardly change if response style parameters are included. In
contrast, level 2 parameters do change. Ignoring the response style parameter seems
to yield biased level 2 item parameter estimates with a bias towards 0. In Figure 6
the item parameter estimates of the two models are plotted to visualize the differences.
In the present illustrative example the correlation between response style parameters
and content-related parameters is very small, the correlation coefficient is close to zero
(ρ = 0.03).

FIGURE 6: Marginal ML estimates of item parameters. Solid (red) line visualizes es-
timates for model with resp. sty. par., dashed (black) line visualizes estimates for model
without resp. sty. par.

4 A Taxonomy of Ordinal Item Response Models

The taxonomy of ordinal item response models obtained by specifying the building
blocks in ordinal models is visualized in Figure 7. At the outset one can distinguish
between conditional models and simultaneous splits models. The former use binary
models in a conditional way, by assuming that the choice between categories has al-
ready been narrowed down to a reduced set of categories. In contrast, the latter assume
no conditioning but assume that the splits between categories are simultaneously de-
termined by the same person parameter.

There are two groups of conditional models. In the first group pairs of categories
are compared by utilizing a binary response model to obtain, for example, the partial
credit model and its simplified version, the rating scale model. The second group is
formed by hierarchical models. The crucial difference between non-hierarchical and
hierarchical model is that in the former the conditions under which binary models are
assumed to hold are overlapping. For example, in the partial credit model one binary
sub model conditions on the the categories {0, 1} another sub model conditions on
{1, 2}. Both conditions contain the category 1. This overlapping prevents a represen-
tation as a hierarchical model.

Hierarchically structured models can be divided into three types of models, which
are not exclusive. The sequential model assumes a sequential process and therefore
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Conditional Models

Non-hierarchical Models
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Rating scale model
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Hierarchical Partitioning
conditional ordinal models

Simultaneous Splits Model
Graded Response Model

Ordinal Models

FIGURE 7: Model overview.

conditions on the level that has been reached. IRTrees are general hierarchical mod-
els that allow almost arbitrary binary splits. They seem useful in particular for Likert
items in which the categories are divided into agreement and disagreement categories.
Of course, if one does not restrict the construction to Likert type items the sequential
model can be considered a special case of general IRTree models, which is visualized
by the arrow that connects the two types of models. Nevertheless it seems appropriate
to see it as a specific hierarchically structured model, therefore the arrow between hier-
archically structured models and sequential models. Hierarchical partitioning models
are general models that also allow ordinal models in the split levels. In specific cases,
for example, if one has only four categories in a disagreement - agreement item, of
course all the splits are binary and one obtains an IRTree model.

The structure proposed here has the purpose of characterizing modeling approaches
and describing relationships. As described above the models are not always exclusive,
in particular for hierarchically structured models there is some overlap between the
three types of hierarchically structured models. However, most types of identified
models are distinct. A graded response model cannot be represented as a partial credit
model, and the partial credit model is not a hierarchically structured model.

5 Concluding Remarks

It has been shown that an easily comprehensible taxonomy of ordinal item response
models is obtained by investigating the role of binary models within the structure of
ordinal models. The obtained structure contains IR-Tree models and the wider class of
hierarchical partitioning models. The latter has been illustrated exemplarily by inves-
tigating response styles in ordinal response data. Many more applications are feasible
since the class contains a variety of models that seem worth studying and comparing
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in future research.
One of the advantages of having a distinct taxonomy of models is that the meaning

of parameters becomes clear. In particular, parameters in conditional models should be
interpreted with regard to the conditioning.
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