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Scalars and fermions can arise as Goldstone modes of nonlinearly realized extensions of the Poincaré
group (with important implications for the soft limits of such theories): the Dirac-Born-Infeld scalar
realizes a higher-dimensional Poincaré symmetry, while the Volkov-Akulov fermion corresponds to super-
Poincaré. In this paper we classify extensions of the Poincaré group which give rise to a vector Goldstone
mode instead. Our main result is that there are no healthy (ghost free) interacting Uð1Þ gauge theories that
nonlinearly realize space-time symmetries beyond gauge transformations. This implies that the structure of
e.g., Born-Infeld theory is not fixed by symmetry.
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I. INTRODUCTION

Nonlinear realizations of spontaneously broken sym-
metries form an important and interesting part of quantum
field theory. When global internal symmetries are broken,
Goldstone’s theorem tells us that there is a massless mode
for every broken generator [1,2] (with an adapted counting
in nonrelativistic systems; see e.g., [3,4]). The nonlinear
transformation rules and invariants can be efficiently
extracted from the coset construction [5,6].
In contrast, Goldstone’s theorem does not apply to

spontaneously broken space-time symmetries [7,8], for
which there can be fewer Goldstone modes than broken
generators: every spontaneously broken generator that
commutes with translations into another such generator
gives rise to an inessential Goldstone [8–10]. The latter can
be removed from the low-energy effective field theory (EFT)
by imposing inverse Higgs constraints [8]. Alternatively,
one can integrate them out of the path integral since the
inessential modes acquire a mass gap. In many cases, and
possibly all, these two possibilities lead to equivalent EFTs
for the essential Goldstones [11] which nonlinearly realize
the full broken symmetry group.

The impact of these nonlinearly realized symmetries on
physical observables is beautifully captured by soft limits of
scattering amplitudes. Avery concrete and simple example is
Adler’s zero [12,13]: scattering amplitudes involving
Goldstone modes of internal symmetries vanish in the limit
where a single externalmomentum is taken soft; i.e., theTaylor
expanded amplitude begins at linear order in the softmomenta.
In the case of a single Goldstone scalar, there are specific

EFTs that display a further enhancement of the soft scaling to
quadratic or cubic order [14,15]. The quadratic scaling can be
traced to a nonlinearly realized Poincaré group in one higher
dimension, or its contraction dubbed theGalileon group [16],
i.e., to space-time symmetry groups. The cubic scaling
involves a further extension of the Galileon group [17,18],
and a soft scaling beyond cubic order is not possible. The
above list of enhanced scalings and space-time symmetries
can be proven to be exhaustive from the soft limit [14,15,19]
and Lie-algebraic [20] perspective.
A similar analysis has been initiated in the context of

fermionicGoldstones, or “Goldstinos.”Theknownexamples
correspond to the Volkov-Akulov (VA) fermion [21], which
nonlinearly realizes N ¼ 1 supersymmetry, and a shift
symmetric fermion which nonlinearly realizes a contraction
of the supersymmetric algebra [22]. The soft amplitudes for
these theories also exhibit special behavior [23–25].
For both the scalar and fermion, one therefore has well-

defined space-time symmetry breaking patterns that are in
one-to-one correspondence with special soft behavior. It is
natural to wonder about the extension to vector modes. In
this paper we will provide a Lie-algebraic study regarding
possible nonlinearly realized space-time symmetries for a
vector Goldstone. We will comment on complementary
amplitude results in the discussion.
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The outline of this paper is as follows. We classify
different space-time algebras that give rise to a vector
Goldstone in Sec. II. The implications for effective field
theories and the role of gauge symmetry is discussed in
Sec. III. There we show that a healthy (ghost free) self-
interacting Uð1Þ gauge vector cannot be a space-time
Goldstone with nonlinear symmetries that go beyond gauge
transformations. We present our conclusions and outlook
in Sec. IV.

II. LIE-ALGEBRA CLASSIFICATION

We are interested in D-dimensional relativistic field
theories of a single vector Goldstone, and will therefore
construct groups G which include a linearly realized
Poincaré subgroup with generators Pμ and Mμν as well
as a nonlinearly realized vector generator Qμ. Additional
nonlinearly realized generators can be added provided their
Goldstone modes are inessential due to inverse Higgs
constraints that set (a projection of) a G-covariant deriva-
tive to zero.
It will be useful to introduce some terminology here. We

label the essential Goldstone as G0, while inessentials that
are solved for using the essential Goldstone’s covariant
derivative we refer to as first-order inessentials G1. We
inductively define an nth-order inessential Gn as one which
is eliminated by the covariant derivative of an (n − 1)th-
order inessential. This assumption amounts to commutators
between translations and Gn taking the form (see [8,11] for
more details)

½P;Gn� ¼ Gn−1 þ Poincaré: ð1Þ

We exclude algebras where all inessentials cannot be
uniquely assigned an order in this way. To our knowledge
no such algebras have been constructed.
Let us first see what the ordering (1) implies for the

subset Pμ, Mμν and Qμ. In the absence of Levi-Cività
tensors (more on which in the Sec. IV), Lorentz invariance
fixes the following form for the only nontrivial commu-
tators (all others are specified by having a Poincaré factor
and by Qμ transforming as a Lorentz vector):

½Pμ; Qν� ¼ aMμν; ½Qμ; Qν� ¼ bMμν þ
X
i¼1

ciN
ðiÞ
μν ; ð2Þ

where a, b, ci are real constants and the two-forms NðiÞ
μν can

correspond to Lorentz projections of higher-order generators
with more indices. Jacobi identities imply a ¼ b ¼ ci ¼ 0,
ensuring thatPμ,Mμν andQμ always form a subalgebra even
when we add a number of higher-order generators.
Throughout this paper we will therefore have the doublet
of generators

U⃗μ ¼ ðPμ; QμÞT; ð3Þ

commuting amongst themselves.
The nonlinear transformation rules for the Goldstones

are extracted by left multiplication of the coset element by
an element of the full symmetry group. Without inessen-
tials, the coset element is1

γ ¼ ex
μPμeA

μQμ ; ð4Þ

and given that

eq
μQμγ ¼ ex

μPμeðAμþqμÞQμ ; ð5Þ

the broken generator Qμ induces a constant shift on the
vector δAμ ¼ qμ.
This result is the first marked difference compared to the

scalar or fermion Goldstone case, in which it is possible to
have a nontrivial transformation beyond a constant shift in
the absence of higher-order generators. In the scalar case
we have a scalar generator, X, with ½Pμ; X� distinguishing
between two possibilities. The commutator can be propor-
tional to Pμ, in which case the essential Goldstone is the
dilaton and generates a space-time symmetry. Instead,
taking the commutator to vanish implies that X induces
a shift symmetry on the essential Goldstone and corre-
sponds to an internal symmetry.
For a fermion, a similar role is played by the anticom-

mutator fQ; Q̄g between the fermionic generators. This can
be proportional to a translation, leading to supersymmetry;
i.e., supersymmetry transformations are the “square root”
of translations. The anticommutator can also vanish, in
which case supersymmetry is contracted to a shift sym-
metry for a fermion [22]. The above vector result implies
that one cannot take the square root of Lorentz trans-
formations in a similar fashion.2

In order to have nontrivial vector transformations
beyond the constant shift, we have to include inessential
Goldstones. The extension of the previous subalgebra with
first-order generators again forms a subalgebra, consisting
of Poincaré as well as G0 and G1. This follows straight-
forwardly from Jacobi identities. Consider the commutator
½G0; G1� and the associated Jacobi identity with Pμ which
implies

½Pμ; ½G0; G1�� ¼ 0: ð6Þ

Given that any higher-order generators must have a non-
vanishing commutator with translations, we infer that only
the doublet Pμ and Qμ can appear on the right-hand side of

1Wewill assume that the proof of coset universality for internal
symmetries also applies to space-time symmetries.

2The situation in D ¼ 3 is different: it allows for a nontrivial
vector transformation involving a Levi-Cività tensor [26].
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½G0; G1�. A similar argument can be applied to the
remaining relevant commutators to complete the subalge-
bra proof. As we will discuss at the end of this section, this
fact plays an important role in our no-go.
First-order inessentials, by definition, can be eliminated

by setting a projection of the G-covariant derivative of the
vector to zero. Since the latter has three possible Lorentz
projections, we can extend our algebra with one antisym-
metric two-form Nμν, one symmetric and traceless tensor
Sμν, one scalar T or a combination of these three generators.
The most general algebra with these generators has the
following form. In addition to the commuting doublet, the
crucial commutators are between the first-order generators
and the vector doublet [where (anti)symmetrization is with
weight 1]

½U⃗μ; Nρσ� ¼ 2MNημ½σU⃗ρ�;

½U⃗μ; Sρσ� ¼ MS

�
2ημðσU⃗ρÞ −

2

D
ηρσU⃗μ

�
;

½U⃗μ; T� ¼ MTU⃗μ; ð7Þ

where MN is a 2 × 2 matrix in doublet space with entries
νi¼1;…;4 and MS and MT are defined similarly in terms of
σi and τi, respectively. The ordering condition (1) implies
that the second of these entries (in the upper right position)
has to be nonvanishing in order for the corresponding
Goldstone to be inessential. Without loss of generality it
will be set to unity.
The structure of the algebra and its nonlinear realization

is determined by the properties of the matrices MN;T;S. To
extract the action of the broken generators we parametrize
the coset element as

γ ¼ ex
μPμeA

μQμeB
μνNμνþgμνSμνþϕT: ð8Þ

Note that our coset parametrization has the generators of
each order appearing in a separate exponential with the
higher-order inessentials to the right. We will denote
the coset coordinates corresponding to the doublet Pμ

and Qμ by

V⃗μ ¼ ðxμ; AμÞT: ð9Þ

By computing the left multiplication of this coset element
to leading order in the parameters nμν, sμν, t of the broken
generators, we find the following infinitesimal transforma-
tion rules3

δV⃗μ ¼ ðMT
Nn

μ
ν þMT

Ss
μ
ν þMT

Ttδ
μ
νÞV⃗ν; ð10Þ

which, as covectors, involve the transposed matrices. In the
active form

δAμ ¼ nμνðxν þ ν4AνÞ − nσρðν1xρ þ ν3AρÞ∂σAμ

þ sμνðxν þ σ4AνÞ − sρσðσ1xρ þ σ3AρÞ∂σAμ

þ tðxμ þ τ4Aμ − ðτ1xν þ τ3AνÞ∂νAμÞ; ð11Þ

while the coordinates do not transform. Note that trans-
formations with ν1 ¼ ν4 are Lorentz transformations, and
hence we will take MN to be traceless without loss of
generality. Similarly, the trace of MT scales xμ and Aμ

evenly, leaves the field strength Fμν ¼ 2∂ ½μAν� invariant and
will play no role in what follows.
In order to close the algebra, the commutators between

the first-order generators are given by

½N;N�∼MþN; ½S;S�∼MþN;

½N;S�∼MþNþS; ½N;T�∼MþN; ½S;T�∼S; ð12Þ

where we have suppressed Lorentz structures since all
terms on the rhs correspond to a unique structure. Jacobi
identities impose the following constraints on the matrices:

M2
N ¼ a1I2 þ a2MN;

M2
S ¼ b1I2 þ b2MN;

½MN;MS� ¼ c1I2 þ c2MS þ c3MN;

½MN;MT � ¼ d1I2 þ d2MN;

½MS;MT � ¼ e1MS; ð13Þ

where the coefficients on the rhs parametrize the different
terms of the rhs of (12). One can still perform basis changes
of the doublet of generators (3) to simplify the matrices;
however, one can only do this to bring a single matrix to a
preferred form.
The most general solution to the Jacobi identities for the

algebra with three first-order generators has
(i) the traceless parts of the three matrices equal

and arbitrary, which can be brought to the form
ð0; 1; s; 0Þ with s ¼ 0, �1, plus an arbitrary trace
ðλ; 0; 0; λÞ for MS, or

(ii) the three matrices equal and with vanishing deter-
minant, which can be brought to the form ð0; 1; 0; 0Þ,
plus an arbitrary traceless diagonal ðλ; 0; 0;−λÞ for
either MS ¼ MT, MN ¼ MT or MT.

In all cases, the coefficients in (13) are determined by the
matrices MN;T;S.
Smaller algebras with fewer than three first-order gen-

erators can be classified similarly, by solving (13) with
some matrices vanishing, with essentially the same results
as above. For example, when the only first-order generator

3Since these transformation rules are independent of the
inessential Goldstones, the vector EFT is the same regardless
of whether we eliminate the inessentials with an inverse Higgs
constraint or integrate them out of the path integral.
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is the two-form, the first equation of (13) allows for
arbitrary MN and fixes a1;2 in terms of its determinant
and trace.
Finally, the presence of second- and higher-order gen-

erators will not change the transformation rules induced by
the first-order generators. This follows from the fact that the
above algebras are always subalgebras and from our choice
of coset parametrization.

III. GAUGE SYMMETRY

We now turn to the physical theories exhibiting such
symmetries. Importantly, the shift symmetry of the vector
requires it to be derivatively coupled, e.g., forbidding a
mass termm2A2

μ. Therefore, the longitudinal mode does not
have a healthy kinetic term, and it is either infinitely
strongly coupled or a (massless) ghost. Healthy vector
theories with interesting nonlinear symmetries will there-
fore have to feature gauge invariance.
We follow [27–29] to embed a Uð1Þ gauge symmetry in

the coset construction as follows. The gauge symmetry
includes an infinite number of global symmetries of the
form

δAμ ¼
X∞
n¼1

sμν2…νnx
ν2…xνn ; ð14Þ

where the parameters sμν2…νn are symmetric constants
(which include both traceless and trace parts). These
transformations can be derived from the coset construction
by augmenting the Poincaré group with an infinite number
of fully symmetric generators4 Sμν2…νn . For n ¼ 1 we have
a shift symmetry and hence Sμ corresponds to our essential
vector generatorQμ. The higher-order generators only have
the nontrivial commutation relation5

½Pμ; Sνρ2…ρn � ¼ ðn − 1ÞημðνSρ2…ρnÞ; ð15Þ

as required by the inverse Higgs ordering (1).
The introduction of gauge symmetry implies specific

transformation rules for the first-order inessential subalge-
bra of the previous section: it implies that now the algebra
matrices MS and MT are given by the degenerate case

ð0; 1; 0; 0Þ. The most general solution to the Jacobis
therefore only allows for the remaining first-order inessen-
tial, generated by the antisymmetric two-form Nμν, to have
the same matrix, MN . Thus, the only two-form trans-
formation compatible with gauge symmetry is given by

δAμ ¼ nμνxν; ð16Þ

and hence the field strength Fμν shifts with the constant
two-form parameter. One would naturally call any theory
invariant under this symmetry a “vector Galileon” due to its
similarity with the scalar Galileon [30]: in both cases a shift
symmetry is accompanied by a shift linear in the space-time
coordinates.
The Maurer-Cartan form in this case takes a very simple

structure. Once we have solved for the inessential two-form
Goldstone by setting the antisymmetric part of the vector’s
covariant derivative to zero, all Uð1Þ gauge invariant self-
interactions are constructed from ∂σFμν and its derivatives.
Each of these will lead to an unhealthy theory with an
Ostrogradski ghost in the spectrum. Any healthy invariant
interactions must therefore be Wess-Zumino terms.6

However, it has been proven that no such interactions
exist [31]. Given that (16) does not change when we add
second- and higher-order generators, we therefore conclude
that a gauge vector has no healthy self-interactions that
nonlinearly realize a space-time symmetry beyond gauge
transformations when we include the two-form generator.
The remaining possibility for healthy interacting Uð1Þ

theories with nontrivial space-time symmetries therefore
consists of having gauge symmetry augmented with non-
symmetric inessentials at higher orders. However, we will
argue that the higher-order inessentials do not change the
story. In particular, without the first-order two-form, the
only higher-order inessentials one can add correspond to
gauge transformations. For concreteness, we will concen-
trate on second-order inessentials but our argument holds at
any order.
Since we are omitting the first-order two-form, the

second-order symmetric, traceful gauge generator Sμνρ
can only be augmented with a hook generator Hμν;ρ (with
Hμν;ρ ¼ −Hνμ;ρ and H½μν;ρ� ¼ 0); the only other option is
the antisymmetric three-form but since this does not
correspond to any projections of the first-order inessentials’
covariant derivatives, its corresponding Goldstone cannot
be inessential. However, the Jacobi identities imply that the
Goldstone corresponding to the hook generator cannot be
inessential either: in the absence of the two-form, Jacobi
identities require ½Pμ; Hνρ;σ� ¼ 0. This can be seen most
easily at the level of transformation rules. If the hook
Goldstone was inessential then it would induce a trans-
formation on the essential vector of the form

4While gauge symmetry can be implemented in the coset
construction in an analogous manner to nonlinear (space-time)
symmetries, its implications are fundamentally different: the
latter impose restrictions on the interactions of a specific degree
of freedom, while the former eliminates the longitudinal mode
altogether. In this terminology, a gauge vector without additional
nonlinear symmetries therefore does not constitute a Goldstone
mode.

5The above can be easily adapted for a theory of a massive
vector which, in the Stückelberg formalism, includes a longi-
tudinal scalar with transformation rules Aμ → Aμ þ ∂μΛ,
ϕ → ϕ − Λ. To realize this, we add a scalar generator X and
the n ¼ 1 commutator ½Pμ; Sν� ¼ ημνX to (15).

6The Maxwell kinetic term is a Wess-Zumino term since it is
invariant under (16) up to a total derivative.
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δhAμ ¼ hμν;ρxνxρ þ…; ð17Þ

where we have omitted field-dependent terms. Upon
commuting this with translations (δϵAμ ¼ −ϵν∂νAμ), we
obtain

½δϵ; δh�Aμ ¼ hμν;ρðxνϵρ þ ϵνxρÞ þ… ð18Þ

The latter is however not a gauge transformation and hence
would require the presence of the first-order two-form
generator for the algebra to close.
This analysis can be repeated order by order to show

that in the absence of the first-order two-form generator,
the only higher-order generators whose corresponding
Goldstones can be eliminated by an inverse Higgs con-
straint correspond to a Uð1Þ gauge transformation.

IV. DISCUSSION AND OUTLOOK

For scalars and fermions, the possible nonlinear real-
izations of space-time symmetries are always accompanied
by enhanced soft limits, and vice versa. In this paper we
have addressed the question of whether similar symmetries
are possible for vectors as well. Our main result is that none
of the possible algebras with a single essential vector
Goldstone (as classified in Sec. II) that are compatible with
gauge symmetry allow for healthy interacting theories (as
proven in Sec. III). We have also shown that adding higher-
order inessential Goldstones does not change the story.
Throughout our derivation we have assumed coset

universality as well as the inverse Higgs ordering (1) as
satisfied by all known examples. We have also assumed the
absence of Levi-Cività tensors in the algebra such that our
results are valid in arbitrary dimensions. However, in
D ¼ 4 we have checked that adding Levi-Cività tensors
does not affect our no-go. Indeed, with Levi-Cività tensors
in the commutators the vector generator still induces a shift
symmetry (since we still have ½U⃗μ; U⃗ν� ¼ 0) and at the first-
order level Jacobi identities only allow for Levi-Cività
dependence when the first-order inessential is a two-form
but again the new terms do not allow for any healthy
interactions.
Remarkably, the question of whether the structure of a

gauge theory can be fixed by a nonlinear symmetry was
answered virtually simultaneously from a complementary
amplitude perspective, with the same negative result [32].
Note that this also applies to the Born-Infeld (BI) theory of
a gauge vector. In that case, the absence of a nonlinear
symmetry follows from writing BI in terms of the metric

gμν ¼ ημν þ Fμν; ð19Þ

where, in contrast to the induced metric of the Dirac-Born-
Infeld scalar and Volkov-Akulov fermion, the BI vector

only contributes to the antisymmetric part. Since both parts
separately have to transform covariantly under an induced
diffeomorphism, this leaves only the linearly realized
Poincaré symmetry. However, BI is still special amongst
vector EFTs since it can form the bosonic sector of a
supersymmetric theory which combines the BI vector and
VA fermion [33]. This leads to interesting multisoft limits
for BI at tree level [34].
Rather than adding higher-order inessentials, one can

alternatively try to extend each of the first-order algebras
above on the other side of the sequence with a central
extension C of the form ½Pμ; Qν� ¼ ημνC. This would imply
that we can solve for the vector in terms of a new scalar φ
associated to C via an inverse Higgs constraint Aμ ¼ ∂μφ;
the new scalar is now the essential Goldstone. The Jacobi
identities allow for this when the first-order inessential
Goldstone is a scalar or symmetric, traceless tensor.
Therefore the EFTs of these algebras can be consistently
truncated to their longitudinal mode, and in the symmetric,
traceless case, this coincides with the special Galileon
of [17].
Amongst the different possibilities of Sec. II, the

algebra with the inessential two-form appears particularly
interesting. Firstly, it does not allow for a scalar central
extension and hence cannot be truncated to its longi-
tudinal mode. Secondly, it is the only algebra whose
degenerate limit goes beyond gauge symmetries. Finally,
its nondegenerate version can be seen to be equal to a
double copy of Poincaré. The latter suggests tantalizing
relations with double field theory [35], building on
earlier results indicating factorization of both the scatter-
ing amplitudes of gravity [36,37] and its low-energy
Lagrangian [38–40].
Double field theory aims to incorporate key string

properties by introducing a double geometry spanned by
the coordinates xμ and their duals x̃μ, corresponding
respectively to momentum and string winding modes.
This double geometry can be seen as the generalization
of D ¼ 5 Minkowski, with an additional scalar coordinate
(from the 4D perspective), and D ¼ 4 superspace, with an
additional fermion coordinate. Placing a space-time filling
brane along the xμ-coordinates of double geometry would
lead to the identification of x̃μ ¼ Aμ as a vector in the
worldvolume theory, and would nonlinearly realize the
twofold Poincaré isometries of the flat double geometry.
This seems to indicate a relation to the doublet V⃗μ of the
symmetry algebras of Sec. II which we leave for future
investigations.
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