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SUMMARY
Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which

niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2,

an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system.

Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by

methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor

CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization

and thereby allowsMEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscrip-

tionalmodulation of adult SVZneurogenesis whereby an extrinsic signal fine-tunes neurogenesis throughposttranslationalmodification

of a transcriptional regulator of cell fate.
INTRODUCTION

Postnatal neurogenesis contributes to homeostasis and

plasticity in the adult brain by the addition of new neurons

and the replacement of old ones in existing network cir-

cuitries. In the mammalian forebrain, adult generation of

neurons is restricted to few privileged areas, including the

subventricular zone (SVZ) and the dentate gyrus (DG) of

the hippocampus. The SVZ harbors astroglial-like stem

cells, which generate transient amplifying progenitor cells

(TAPs) that, after few cell divisions, mature into neuro-

blasts. Whereas TAPs can still generate both neurons and

glia, neuroblasts are committed to the neuronal lineage

and already possess traits of immature neurons, such as

staining positive for the microtubule-associated protein

doublecortin (DCX), the neuron-specific class III b-tubulin

(recognized by the TuJ1 antibody), or the polysialylated

form of neural cell adhesion molecule (PSA-NCAM). In

rodents, SVZ-generated neuroblasts migrate into the olfac-

tory bulb (OB) where they differentiate mostly into inhib-

itory olfactory interneurons (Hsieh, 2012; Ming and

Song, 2011). Continuous SVZ neurogenesis is crucial for

the structural and functional integrity of the adult OB

and for olfaction-associated behavior (Imayoshi et al.,

2008; Sakamoto et al., 2011). In contrast to the developing

brain, where the generation of neuronal cell types follows a

stereotypic spatial and temporal order, adult neurogenesis
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is strongly influenced by environmental signals. Examples

include the increased generation of granule cells in the

DG after physical activity or the modulation of adult

SVZ neurogenesis by hormonal changes or in response to

hypothalamic innervation (Kempermann et al., 1997;

Paul et al., 2017; Shingo et al., 2003). Adult neural stem

and progenitor cells thus activate intrinsic neurogenic pro-

grams in response to extrinsic signals, which reflect the

physiological state of the organism. The molecular path-

ways by which niche-derived signals are relayed onto tran-

scriptional regulators of cellular differentiation, however,

are still poorly defined.

MEIS (myeloid ectopic viral integration site) family pro-

teins belong to the atypical TALE class of homeodomain-

containing transcription factors. They function as part of

heteromeric complexes with the related PBX (pre-B cell leu-

kemia homeobox) proteins and act synergistically with

other transcriptional regulators, including HOX and PAX

proteins (Ladam and Sagerström, 2014; Longobardi et al.,

2014; Schulte, 2014). In the SVZ, neuronal differentiation

requires MEIS2, as Meis knockdown or transduction of a

function-blocking protein enhanced gliogenic differentia-

tion at the expense of neurogenic differentiation in vitro

and in vivo (Agoston et al., 2014). Mechanistically, MEIS2

recruits the histone modifier PARP1/ARTD1 to transcrip-

tionally inactive, but PBX1-prebound sites in the regula-

tory regions of neuron-specific genes, thereby facilitating
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poly-ADP ribosylation of the linker histone H1 at these

sites, which is followed by local decompaction of the chro-

matin fiber and effective gene expression (Hau et al., 2017).

MEIS2-mediated recruitment of PARP1 to chromatin hence

constitutes an important early step in the de novo activation

of neuron-specific genes. Surprisingly,Meis2 transcripts are

already present in quiescent adult neural stem cells in the

SVZ, whereas robust MEIS2 immunoreactivity is first seen

in neuroblasts (Agoston et al., 2014; Beckervordersand-

forth et al., 2010). MEIS2 must therefore be under particu-

larly stringent posttranscriptional or posttranslational

control in the SVZ, yet the underlying mechanisms are still

largely unknown.
RESULTS AND DISCUSSION

MEIS2 Subcellular Localization in SVZ-Derived

Progenitor Cells Is Regulated by EGFR Signaling

Adult SVZ-derived stem cells and TAPs grown as primary,

free-floating neurospheres (aNS) in the presence of

epidermal growth factor (EGF) and basic fibroblast growth

factor (FGF2) already possess high levels of Meis2 tran-

scripts, which increase further during neuronal differentia-

tion, but only faint MEIS2 immunoreactivity (Figures 1A,

1B, and S1). Notably, MEIS2 protein in these cells is evenly

distributed between cytoplasm and nucleus, as observed

with antibodies directed against different epitopes of the

MEIS2 protein (Figures 1B and 1C). In the SVZ in vivo,

most TAPs (identified as bromodeoxyuridine-positive

(BrdU+) cells following a short BrdU pulse or by the Ki67

antigen) also exhibited weak nucleo-cytoplasmic MEIS2

staining (Figures 1D and S1). By contrast, adult SVZ stem

cells isolated by their co-expression of GFAP and prominin

or putative stem cells in vitro (defined as label-retaining,

nestin-positive aNS cells, pulse labeled with carboxyfluor-

escein diacetat succinimidyl ester) are MEIS2 immunoneg-

ative (Beckervordersandforth et al., 2010; Figure S1). When

SVZ-derived aNS cells were induced to differentiate by

removal of EGF and FGF2 from the culture medium and

plating on laminin, MEIS2 protein rapidly localized to

the nucleus of some cells in the cultures, and these cells

began to stain positive for the early neuronal marker PSA-

NCAM (Figure 1C). Accumulation of MEIS2 in the cell nu-

cleus is thus a very early sign of neuronal differentiation.

Activated stem cells and proliferating TAPs express EGF

receptor (EGFR), and EGFR activation promotes prolifera-

tion and counteracts neuronal differentiation in vivo and

in vitro (Doetsch et al., 2002). We therefore induced cellular

differentiation in aNS by adding the EGFR inhibitor Tyr-

phostin AG1478 to EGF/FGF2-containing culture medium

and assessed MEIS2 nucleo-cytoplasmic redistribution 8 hr

later (Figures 1F–1H and S1). Cells in which nuclear MEIS2
immunoreactivity predominated over that in the cyto-

plasm were defined as ‘‘nuclear accumulation’’ (e.g., arrow-

heads in Figures 1C2–1C4, middle panels), and cells with

uniform MEIS2 staining in cytoplasm and nucleus upon

differentiation were counted as ‘‘cytoplasmic retention’’

(e.g., arrows in Figures 1C2 and 1C3). Treatment with

AG1478 elevated the proportion of cells in which MEIS2

accumulated in the cell nucleus 10-fold, while treat-

ment with the FGFR1 inhibitor SU5402 did not (Figures

1F–1H). We concluded that MEIS2 subcellular localization

is regulated in response to EGFR signaling.

Neuronal Differentiation Requires Nuclear

Accumulation of MEIS2

In silico analysis of the MEIS2 polypeptide sequence iden-

tified a nuclear localization signal (NLS) (amino acids

274–280 of NCBI CAA04139.1) and a canonical nuclear

export signal (NES) (amino acids 161–163), suggesting

that MEIS2 continuously shuttles between nucleus and

cytoplasm (Figure 2A). The nuclear accumulation of

MEIS2 that accompanies neuronal differentiation must

hence involve activation of the NLS and/or silencing of

the NES. Remarkably, the NES is fully embedded in a previ-

ously identified binding surface for the MEIS dimerization

partner PBX (Figure 2A,Knoepfler et al., 1997).We therefore

hypothesized that PBX and the nuclear export receptor

CRM1 may compete for binding to MEIS2, and that this

competition may regulate MEIS2 subcellular localization.

We blocked CRM1-dependent nuclear export with lepto-

mycin B (LMB) in aNS grown in EGF/FGF2-containing me-

dium. Eight hours of LMB treatment significantly induced

nuclear accumulation of MEIS2 (Figures 2B–2D; 8 hr LMB:

3.33% ± 0.87%, ctrl: 1.22% ± 0.81%). Strikingly, LMB treat-

ment also induced the generation of neurons in these cul-

tures, evident in amore than3-fold increase in cells labeling

for TuJ1 (8hr LMB: 2.75%±0.91%, ctrl: 0.85%± 0.28%; Fig-

ures 2E–2G). Neurogenesis thus occurred despite the fact

that the cells were grown in the presence of EGF and

FGF2, and hence under conditions that normally preclude

cellular differentiation. Adult SVZ-derived progenitor cells

thus exist in a delicate ‘‘meta-stable’’ state, which is main-

tained by the continuous CRM1-dependent export of

differentiation-inducing protein(s) from the nucleus. To

investigate whetherMEIS2 is such a protein, we transduced

Meis2, C-terminally fused to a triple HA tag and either the

strong NLS from SV40 large T antigen or the NES from the

HIV tat protein into aNS, induced cellular differentiation

48 hr later, and scored the fate of the transduced cells

after 3 days (Figure 2H). Forced nuclear import of MEIS2

increased, whereas forced nuclear export decreased neuron

production in these cultures relative to wild-type (WT)

MEIS2 (TuJ1+ cells: WT Meis2 13.30% ± 3.26%, Meis2-NES

5.17% ± 2.71%, Meis2-NLS 22.85% ± 2.87%; Figure 2I).
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Figure 1. MEIS2 Protein Stability and Subcellular Localization in SVZ-Derived Progenitor Cells Is Controlled by EGFR Signaling
(A) Transcript levels (determined by qPCR) of Meis1, Meis2, and Dcx in primary aNS after induction of neuronal differentiation for the times
indicated.
(B) Primary, free-floating aNS stained for MEIS2 (red) and a-tubulin (green); MEIS2 immunoreactivity in cells of the boxed area is shown as
insert.
(C) Expression of MEIS2 relative to a-tubulin or the neuron-specific markers PSA-NCAM and TuJ1 in undifferentiated primary aNS, after 1 hr
or 3 days of differentiation; arrowheads indicate nuclear accumulation of MEIS2 (middle panel) or PSA-NCAM staining (lower panel); arrows
indicate uniform cellular MEIS2 distribution typical of progenitor cells. Scale bars, 10 mm (applies to all panels).
(D and E) Weak, uniform MEIS2 staining in BrdU pulse-labeled TAPs in the SVZ in vivo; the arrows in (D) indicate a BrdU-positive cell with
MEIS2 cytoplasmic staining; the arrowheads in (E) indicate BrdU-negative, MEIS2-positive putative chain-migrating neuroblasts; BrdU,
red; MEIS2, white.
(F and G) Eight hours of treatment with AG1478 (F), but not DMSO as control (G), induces nuclear accumulation of MEIS2 in primary aNS
growing in the presence of EGF/FGF2.
(H) Quantification of the results for AG1478, SU5402, and DMSO; n = 3 independent experiments. Data are represented as means ± SEM.
See also Figure S1.
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Figure 2. Neuronal Differentiation Requires Nuclear Accumulation of MEIS2
(A) Sequence and relative location of the PBX-interacting motif, NES, and NLS found in Meis family members in different vertebrate
species.
(B and C) Subcellular localization of MEIS2 in primary aNS without LMB (B) or treated with LMB (C); MEIS2 immunofluorescence of the
boxed areas is shown as single channel in (B0 and C0).
(D) Quantification of the results; n = 5 independent experiments.
(E and F) Inhibition of nuclear export by LMB (F) induces neuronal differentiation in aNS growing in EGF/FGF2-containing medium.
(G) Quantification of the results; n = 3 independent experiments.
(H) Schematic representation of the retroviral vectors used in (I).
(I) Retroviral transduction of Meis2-NLS enhances, whereas transduction of Meis2-NES reduces neurogenesis relative to WT-Meis2 (n = 4
independent experiments).
Data in (D), (G), and (I) are represented as means ± SEM. See also Figure S2.
Availability of MEIS2 in the cell nucleus is therefore a rate-

limiting determinant of neuronal differentiation of adult

SVZ-derived neural progenitor cells.

AlthoughMEIS proteins usually function as components

of larger protein complexes, requirement for an other-

wise essential binding partner can be overcome by fusion

of MEIS to a dominant transactivation domain (Mamo

et al., 2006; Wang et al., 2006). Because MEIS2 and PAX6

co-operate in SVZ neurogenesis, we reasoned that Meis2

fused to the VP16 transactivation domain together with

an NLS (Meis2-VP16-NLS) may mimic the combined activ-

ities of nuclear MEIS2 and PAX6. Indeed, retroviral trans-

duction of Meis2-VP16-NLS into free-floating aNS induced

massive generation of neurons even in EGF/FGF2-contain-

ing medium (Figure S2). When localized to the cell nucleus

and in conjunction with a strong transactivation domain,

MEIS2 is thus able to direct neurosphere-derived cells
toward neurogenesis under conditions that normally pre-

clude neuronal differentiation.

PBX1 and CRM1 Compete for Binding to MEIS2

We directly compared recombinant PBX1 and CRM1 for

binding with a synthetic peptide comprising the PBX1-

binding motif and NES of MEIS2 (amino acids 146–180 of

NCBI CAA04139.1) (Figure 3A). Immobilized peptides

were incubated with PBX1 or CRM1, produced by

in vitro transcription/translation. Both CRM1 and PBX1

were enriched by the peptide with CRM1 binding

affinity exceeding that of PBX1 (Figure 3A). Pre-incubation

of the peptide with in vitro-translated PBX1 blocked

CRM1 binding to MEIS2146�180, even when excessive

amounts of CRM1 were added to the reaction (Figure 3B).

CRM1 thus fails to recognize the NES in a PBX1-MEIS2

heterodimer.
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Figure 3. PBX1 and CRM1 Compete for Association with MEIS2
(A) In vitro pull-down (PD) assays with synthetic MEIS2 peptides; (left) input: in vitro-translated CRM1-HA or PBX1; band intensities
correspond to 30% of the protein used for the PD; (middle) PD with CRM1; (right) PD with PBX1. Lower bands: biotinylated peptide eluted
from the streptavidin-coated beads. Peptide sequence: PBX dimerization motif, blue; NES, red.
(B) Competitive in vitro pull-down assay with MEIS2146�180 peptides that were pre-incubated with constant amounts of in vitro-translated
PBX1 followed by addition of increasing amounts of in vitro-translated CRM1-HA.
(C and D) PBX1 (C) and PREP1 (D) are nuclear in primary aNS.
(E) PBX1-GST precipitates PREP1, but not MEIS2, from aNS extracts.
(F) MEIS2 co-precipitates with PBX1-GST from nuclear extracts of SK-N-Be(2) cells.
(G) Co-immunoprecipitation of PBX1 and MEIS2 from the OB. in, input; p.c., preclear; sup., supernatant; w, wash; PD, precipitate of the
pull-down; IP, immunoprecipitate; ctrl., isotype-specific control.
Binding of PBX1 to either MEIS or PREP induces nuclear

localization of the heterodimer in different physiological

contexts (Berthelsen et al., 1998; Mercader et al., 1999).

We therefore focused on MEIS-PBX dimer formation. In

primary adult SVZ-derived aNS, PBX1, PREP1, and MEIS2

are co-expressed, yet only PBX1 and PREP1 localize to

the cell nucleus, suggesting that PBX1 may exclusively

dimerize with PREP1 in these cells (Figures 3C and 3D).

Indeed, pull-down experiments with GST-tagged PBX1

and protein extracts prepared from the nuclear or cyto-

plasmic compartment of primary aNS enriched PREP1,

but not MEIS2 (Figure 3E). Yet, MEIS2 was readily precipi-

tated by PBX1-GST from extracts of SK-N-Be(2) cells or in

complex with PBX1 by immunoprecipitation from extracts

of adult OB neurons, two cell populations in which MEIS2

localizes to the cell nucleus (Figures 3F and 3G).

Differential Methylation of Arginine 174 Modulates

MEIS2 Association with CRM1 or PBX1

We purified MEIS2 from primary SVZ-derived aNS and pri-

mary OB tissue and examined both protein fractions by
1188 Stem Cell Reports j Vol. 10 j 1184–1192 j April 10, 2018
mass spectrometry (MS) (Figures 4A and 4B). Interestingly,

MEIS2 purified from the OB but not from aNS carried a

mono-methylation on a conserved arginine at position

174 (R174; Figures 4A and 4B). R174 lies in close proximity

to the overlapping NES- and PBX1-binding motifs, raising

the possibility that methylation at this position may regu-

late MEIS2 nucleo-cytoplasmic localization by altering its

affinity toward PBX1 or CRM1 (Figure S3). To test this hy-

pothesis, we first induced primary aNS to differentiate

for 4 hr in the presence or absence of adenosine-20,30-dia-
ldehyde (AdOX), a general inhibitor of protein arginine

methyltransferases (PRMTs). Whereas MEIS2 largely accu-

mulated in the nucleus in control-treated cultures, strong

cytoplasmicMEIS2 staining was seen in AdOX-treated cells

(Figures 4C–4E). Inhibition of arginine methylation thus

prevented the nuclear accumulation of MEIS2 that nor-

mally accompanies neuronal differentiation. To investi-

gate whether methylation on R174 was involved, we misex-

pressed HA-tagged MEIS2 or a mutant form of MEIS2

in which R174 was replaced with alanine (MEIS2R174A)

in aNS. Nuclear accumulation of MEIS2R174A was severely



Figure 4. Methylation on R174 Modulates CRM1 Binding and Nuclear Localization of MEIS2
(A and B) MS/MS spectra of peptides derived from MEIS2 isolated from aNS (A) and OB (B), methyl modifications at R174 indicated by ‘‘me’’
(B); the inlets show non-nuclear and nuclear MEIS2 immunoreactivity in SVZ-derived aNS and OB, respectively.
(C and D) Inhibition of protein methylation by AdOX (D) prevents nuclear accumulation of MEIS2 upon differentiation; (C) control. MEIS2
immunoreactivity in the boxed cells is shown as inserts.
(E) Quantification of the results; n = 3 independent experiments.

(legend continued on next page)
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compromised following 2 hr of differentiation compared

with WT-MEIS2 (Figures 4F–4H). A reporter construct in

which luciferase is expressed under control of the proximal

enhancer/promoter of the DCX gene is activated by MEIS2

together with PBX1 and PAX6 when used in a reporter

assay in HEK293T cells (Agoston et al., 2014). MEIS2R174A

was fully functional in this assay, demonstrating that post-

translational modification on R174 influences the subcellu-

lar localization of the protein but not its ability to activate

transcription (Figure 4I). Because EGFR inhibition by

AG1478 had been sufficient to induce nuclear localization

of MEIS2 in free-floating aNS (Figure 1), we treated aNS

with AG1478 together with AdOX, reasoning that

AG1478-induced nuclear accumulation of MEIS2 might

be precluded by AdOX if R174 methylation was occurring

as a result of EGFR pathway inhibition. Indeed, signifi-

cantly fewer cells exhibited nuclear accumulation of

MEIS2 after 4 hr of combined treatment with AG1478

and AdOX than after treatment with AG1478 alone

(AG1478: 5.52% ± 1.8%; AG1478 + AdOX: 2.7% ± 0.9%;

Figures 4J–4L). Collectively, these observations argue that

the nucleo-cytoplasmic redistribution of MEIS2 upon

EGFR pathway inhibition acts via differential methylation

ofMEIS2 on R174.We therefore directly compared recombi-

nant PBX1 and CRM1 for binding with synthetic peptides

that were either non-methylated (MEIS2146�180) ormethyl-

ated on R174 (MEIS2146�180met; Figure 4M). Whereas PBX1

alone co-precipitated equally well with the methylated

and non-methylated peptide, CRM1 bound more strongly

to MEIS2146�180 than to MEIS2146�180met (Figures 4N

and 4O). Methylation at R174 thus reduces MEIS2 affinity

for CRM1 and thereby indirectly favors its association

with PBX1.

In sum, nuclear localization of aMEIS family protein and

its ability to dimerize with PBX can be jointly regulated by

methylation on an evolutionary conserved arginine resi-
(F and G) Subcellular localization of HA-tagged WT-MEIS2 (F) an
immunoreactivity in the boxed cells is shown in separate panels.
(H) Quantification of the results; n = 4 independent experiments.
(I) Luciferase reporter assay in HEK293T cells: a 2073 basepair fragmen
activated by PBX1 and PAX6 together with WT-MEIS2 or MEIS2R174A;
(J and K) Subcellular distribution of MEIS2 after 4 hr of treatment
immunofluorescence is shown as separate panels in (J0 and K0).
(L) Quantification of the results; n = 3 independent experiments.
(M) Amino acid sequence of the methylated and non-methylated MEI
(N) Different binding affinities of PBX1 and CRM1 to methylated and no
PBX1; (middle) PD with non-methylated MEIS2146�180; (right) PD w
biotinylated peptide eluted from the streptavidin-coated beads.
(O) Densitometric quantification of the band intensities of PBX1 (
methylated peptide (R174met, red) as shown in (N); n = 4 independe
intensity was set as a.u. 1. PBX1 binds with equal affinities to both p
Data in (E), (H), (I), (L), and (O) are represented as means ± SEM.
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due. Although it is well established that nuclear localiza-

tion of PBX1 or its D. melanogaster homolog extradenticle

(exd) requires associationwith anMEIS family dimerization

partner (Abu-Shaar et al., 1999; Berthelsen et al., 1999), the

results presented here establish an additional level of

complexity by demonstrating that the subcellular localiza-

tion of MEIS itself is modulated by posttranslational modi-

fication as a function of cellular differentiation. In addi-

tion, our results provide evidence for a mode by which

adult SVZ neurogenesis can be quickly fine-tuned in

response to extracellular signals: in adult SVZ progenitor

cells, non-methylated MEIS2 is rendered inactive by

continuous CRM1-dependent nuclear export. Methylation

on R174 weakens CRM1 binding toMEIS2 and thereby facil-

itates MEIS2 dimerization with PBX1 and its accumulation

in the cell nucleus, an established prerequisite for neuronal

differentiation (Agoston et al., 2014; Hau et al., 2017).

On themolecular level,methylation on R174maymodulate

MEIS2 subcellular distribution either directly by steric

interference with CRM1 binding or more indirectly by

inducing a conformational change in the MEIS2 polypep-

tide chain, which then masks the NES. Our observation

that methylation on R174 decreased binding of CRM1 to

the MEIS2 NES in a peptide of only 35 amino acids in

length argues that R174 methylation directly impacts on

CRM1 binding. Notably, in silico protein structure predic-

tions indicate that the MH-B domain of MEIS2, harboring

the PBX-binding motif, NES, and R174, forms an a-helical

secondary structure in solution, which condenses the 11

amino acid distance between R174 and the NES to three

helical turns, bringing R174 and the NES in even closer

proximity (Figure S3).

Because inhibition of PRMTs by AdOX counteracted

the nuclear accumulation of MEIS2, which is normally

induced by AG1478 treatment, EGFR pathway inhibition

likely plays a major role in R174 methylation of MEIS2.
d MEIS2-R174A (G) in aNS after 2 hr of differentiation; MEIS2

t of the murine DCX promoter/proximal enhancer is transcriptionally
n = 7 independent experiments.
with AG1478 alone (J) or in combination with AdOX (K); MEIS2

S2 peptides.
n-methylated peptides; (left) input: in vitro-translated CRM1-HA or
ith MEIS2146�180 methylated on R174. The lower panels show the

left) and CRM1 (right) bound to non-methylated (WT, black) or
nt experiments. PD, precipitate of the pull-down. The lowest band
eptides, whereas CRM1 prefers the non-methylated form.



Downregulation of EGFR signaling in vitro is achieved by

removing EGF from the culture medium, an integral step

in virtually all in vitro differentiation protocols for adult

neural stem and progenitor cells. In the SVZ in vivo, the

process is undoubtedly more complex and likely involves

the integration of multiple extracellular signals, possibly

together with the spatial displacement of progenitor cells

from the influence of the stem cell niche. Irrespective of

how EGFR signaling is terminated, the data presented

here highlight how extracellular signals can impinge on a

transcriptional regulator of neurogenic differentiation.
EXPERIMENTAL PROCEDURES

Experiments Involving Animals and Cell Culture
Sphere-forming cells were isolated from 7- to 10-week-old C57BL6

mice, cultured, and retrovirally transduced following published

protocols (Agoston et al., 2014). All procedures involving animals

were approved by the local animal care committee and the govern-

ment of Hessen and are in accordance with German and EU regu-

lations. SK-N-Be(2) and HEK293T cells were cultured following

standard conditions. For pharmacological inhibitors, plasmids,

and small interfering RNAs, see Supplemental Information.

Retroviral Constructs
Full-length Meis2b was C-terminally fused to a triple HA tag and

cloned into the retroviral vector pCLIG (Agoston et al., 2014).

Meis2-NLS and Meis2-NES carry oligonucleotides corresponding

to the NLS of SV40 large T antigen (PKKKRKV) or the NES of

the HIV� tat protein, respectively, inserted in frame in the HA

tag of mMeis2b-HA. In CLIG-Meis2-NLS-VP16, mMEIS2b-HA was

C-terminally fused to the SV40 large T antigen NLS followed by

an in-frame fusion to the herpes simplex virion protein 16 transac-

tivation domain. In CLIG-Meis2-R174A, the arginine at position

174 of mMEIS2B-HA was converted into alanine by site-directed

mutagenesis (Phusion Site-Directed Mutagenesis Kit, Thermo

Scientific, F-541). Luciferase reporter assays were performed as

described in Agoston et al. (2014).

MS Analysis
Peptide mixtures derived from in-gel tryptic digests of SDS-

PAGE-separated MEIS2 immunoprecipitates were analyzed by

liquid chromatography-tandem MS (LC-MS/MS) using an EasyLC

nano-HPLC coupled to an Orbitrap Elite mass spectrometer

(both Thermo Scientific). MS raw data were processed by

MaxQuant (Cox and Mann, 2008) with methylation of arginine

and lysine set as variable modifications.

Peptide Pull-Down
Peptides comprising the sequences LMIQAIQVLRFHLLELEKVH

ELCDNFCHRYISCLK and LMIQAIQVLRFHLLELEKVHELCDNF

CHR{met}YISCLK, N-terminally linked to a mini-PEG linker

followed by biotin (ProteoGenix; Schiltigheim, France), were

immobilized on streptavidin-coated Dynabeads (Invitrogen) in

20 mM sodium phosphate (pH 7.4), 150 mM KCl, 0.5 mM EDTA,
5 mM MgCl2, 10% glycerol, cOmplete protease inhibitor cocktail

(Roche), washed, blocked with 0.1% BSA, and incubated with

different amounts of recombinant PBX1 or CRM1-HA generated

by TNT-coupled transcription/translation (Promega) for 2 hr at

4�C. For competitive pull-down assays, peptide-loaded beads

were pre-incubated with PBX1 for 30 min prior to the addition

of CRM1-HA. Proteins were resolved by SDS-PAGE and detected

by western blot with antibodies against PBX1 (Chemicon), hemag-

glutinin (HA) (Roche) to detect CRM1-HA or horseradish peroxi-

dase-coupled streptavidin to detect the biotinylated peptide.

For the quantification shown in Figure 4O, band intensity was

determined densitometrically with ImageJ.
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(2017). MEIS homeodomain proteins facilitate chromatin opening

through PARP1/ARTD1-mediated eviction of histone H1. J. Cell

Biol. 216, 2715–2729.

Hsieh, J. (2012). Orchestrating transcriptional control of adult neu-

rogenesis. Genes Dev. 26, 1010–1021.

Imayoshi, I., Sakamoto, M., Ohtsuka, T., Takao, K., Miyakawa, T.,

Yamaguchi, M., Mori, K., Ikeda, T., Itohara, S., and Kageyama, R.

(2008). Roles of continuous neurogenesis in the structural and

functional integrity of the adult forebrain. Nat. Neurosci. 11,

1153–1161.

Kempermann, G., Kuhn, H.G., and Gage, F.H. (1997). More hippo-

campal neurons in adult mice living in an enriched environment.

Nature 386, 493–495.

Knoepfler, P.S., Calvo, K.R., Chen, H., Antonarakis, S.E., and

Kamps, M.P. (1997). Meis1 and pKnox1 bind DNA cooperatively

with Pbx1 utilizing an interaction surface disrupted in oncopro-

tein E2a-Pbx1. Proc. Natl. Acad. Sci. USA 94, 14553–14558.

Ladam, F., and Sagerström, C.G. (2014). Hox regulation of tran-

scription: more complex(es). Dev. Dyn. 243, 4–15.
1192 Stem Cell Reports j Vol. 10 j 1184–1192 j April 10, 2018
Longobardi, E., Penkov, D., Mateos, D., De Florian, G., Torres, M.,

and Blasi, F. (2014). Biochemistry of the tale transcription factors

PREP, MEIS, and PBX in vertebrates. Dev. Dyn. 243, 59–75.

Mamo, A., Krosl, J., Kroon, E., Bijl, J., Thompson, A., Mayotte, N.,

Girard, S., Bisaillon, R., Beslu, N., Featherstone, M., et al. (2006).

Molecular dissection ofMeis1 reveals 2 domains required for leuke-

mia induction and a key role for Hoxa gene activation. Blood 108,

622–629.

Mercader, N., Leonardo, E., Azpiazu, N., Serrano, A., Morata, G.,

Martı́nez, C., and Torres, M. (1999). Conserved regulation of

proximodistal limb axis development by Meis1/Hth. Nature 402,

425–429.

Ming, G.L., and Song, H. (2011). Adult neurogenesis in the

mammalian brain: significant answers and significant questions.

Neuron 70, 687–702.

Paul, A., Chaker, Z., and Doetsch, F. (2017). Hypothalamic regula-

tion of regionally distinct adult neural stem cells and neurogenesis.

Science 356, 1383–1386.

Sakamoto, M., Imayoshi, I., Ohtsuka, T., Yamaguchi, M., Mori, K.,

and Kageyama, R. (2011). Continuous neurogenesis in the adult

forebrain is required for innate olfactory responses. Proc. Natl.

Acad. Sci. USA 108, 8479–8484.

Schulte, D. (2014). Meis: new friends of Pax. Neurogenesis 1,

e976014.

Shingo, T., Gregg, C., Enwere, E., Fujikawa, H., Hassam, R., Geary,

C., Cross, J.C., and Weiss, S. (2003). Pregnancy-stimulated neuro-

genesis in the adult female forebrain mediated by prolactin. Sci-

ence 299, 117–120.

Wang, G.G., Pasillas, M.P., and Kamps, M.P. (2006). Persistent

transactivation by meis1 replaces hox function in myeloid leuke-

mogenesis models: evidence for co-occupancy of meis1-pbx and

hox-pbx complexes on promoters of leukemia-associated genes.

Mol. Cell. Biol. 26, 3902–3916.

http://refhub.elsevier.com/S2213-6711(18)30137-1/sref5
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref5
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref5
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref5
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref6
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref6
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref6
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref6
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref7
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref7
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref7
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref7
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref8
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref8
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref8
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref8
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref8
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref9
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref9
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref10
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref10
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref10
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref10
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref10
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref11
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref11
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref11
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref12
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref12
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref12
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref12
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref13
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref13
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref14
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref14
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref14
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref15
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref15
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref15
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref15
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref15
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref16
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref16
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref16
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref16
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref17
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref17
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref17
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref18
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref18
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref18
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref19
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref19
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref19
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref19
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref20
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref20
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref21
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref21
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref21
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref21
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref22
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref22
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref22
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref22
http://refhub.elsevier.com/S2213-6711(18)30137-1/sref22


Stem Cell Reports, Volume 10
Supplemental Information
Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote

Neuronal Differentiation of Adult SVZ Progenitors

Jasmine Kolb, Marie Anders-Maurer, Tanja Müller, Ann-Christin Hau, Britta Moyo
Grebbin, Wiebke Kallenborn-Gerhardt, Christian Behrends, and Dorothea Schulte



 

1 
 

Supplemental Figures  

 

Figure S1. MEIS2  in adult SVZ‐derived  stem‐ and progenitor  cells  in vivo and  in vitro.  (A, B) 3D‐

reconstruction of serial confocal laser scanning micrographs of primary SVZ‐derived aNS (A) or an in 

vitro differentiated TuJ1‐labeled neuron obtained by plating on laminin and treatment with AG1478 

(B). MEIS2‐staining (red) is weak and not confined to the cell nucleus in adult neural progenitor cells, 

the primary component of aNS (A), but strong and nuclear in neurons, recognized by their immuno‐

reactivity  for  the  TuJ1‐epitope  (green;  B).  (C) Weak,  uniform MEIS2‐staining  in  cells  that  exhibit 

nuclear Ki67‐immunreactivity, presumably TAPs,  in the SVZ  in vivo. (D) Proportion of  label‐retaining 

(CFDA+)  or  label  non‐retaining  (CFDA‐),  nestin‐expressing  cells  that  exhibit  immunoreactivity  for 

MEIS2.  Putative  transient  amplifying  cells  (defined  as  CFDA‐negative,  nestin‐expressing  cells) 

exhibited uniform MEIS2‐immunoreactivity in the cytoplasm and nucleus, whereas the vast majority 

of  label‐retaining,  nestin‐expressing  cells  (putative  stem  cells)  did  not  stain  for MEIS2.  The  few 

nestin+/CFDA+ cells that co‐labeled with the MEIS2‐specific antibody may either represent a minor 

population  of  label‐retaining  Meis2‐expressing  cells  or,  more  likely,  correspond  to  transient 
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amplifying cells that had been generated from label‐retaining cells shortly before the cells were fixed 

and analyzed and therefore had not yet fully lost the CFDA‐label. (E) Primary aNS grown as adherent 

cultures under different culture conditions; the images shown in panels 1‐4 were taken with identical 

exposure  times  to  highlight  the  strong  increase  in  MEIS2  staining  observed  upon  neuronal 

differentiation. (E1) MEIS2 immunoreactivity is very low in cells growing in the presence of EGF and 

FGF2;  (E2) Addition of AG1478 elicits nuclear accumulation of MEIS2  in  some  cells of  the  culture, 

these  cells  stain  positive  for  TuJ1;  (E3) Appearance  of  TuJ1+  neurites  in  cells with  nuclear MEIS2 

staining upon prolonged differentiation times; (E4) typical staining for MEIS2 and TuJ1 in primary SVZ 

neurospheres differentiated for 3 days by withdrawal of EGF and FGF2 from the medium.  
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Figure S2. Retroviral misexpression of a transactivating fusion protein of Meis2 in SVZ‐derived aNS 

induces  neuronal  differentiation  in  EGF/FGF2  containing medium.  (A)  Schematic  drawing  of  the 

retroviral  vectors  used.  (B‐D)  Light  microscopy  images  of  aNS  cultures  growing  as  free‐floating 

spheres  in  the  presence  of  EGF  and  FGF2  and  transduced  with  different  viral  vectors;  viruses 

expressing only GFP (B), viral vectors carrying Meis2 together with GFP (C), and viral vectors carrying 

Meis2 C‐terminally fused to a NLS and the VP16 transactivation domain (D). Red arrowheads indicate 

cells or groups of cells, which have attached  to  the cell culture  flask and  show  the  typical, bipolar 

morphology  of  differentiating  neuroblasts.  (E)  Relative  frequency  of  TuJ1+  neurons  among  cells 

transduced with the indicated retroviruses in aNS cultures growing in EGF/FGF2 containing medium. 

Transduction  of  Meis2‐VP16‐NLS  induces  substantial  neuronal  differentiation;  n=3.  Data  are 

represented as mean ± SEM. (F‐I) Representative, high‐magnification images of TuJ1‐immunoreactive 

cells generated from free‐floating aNS growing in EGF/FGF2‐containing medium and transduced with 

GFP (F), Meis2 (G) or Meis2‐VP16‐NLS (H, I). The scale bar in (F) also applies to (G‐I).  
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Fig. S3. Protein structure prediction of MEIS2. (A) Protein sequence of mouse MEIS2b; the bipartite 

MEINOX domain with the MH‐A and MH‐B subdomains is shown in blue, the TALE homeodomain in 

red. NES, the PBX‐binding motif (as determined by (Knöpfler et al., 1997)) and R174 are underlined or 

shaded  respectively.  (B)  Protein  structure  of  MEIS2B  as  predicted  by  RaptorX 

(http://raptorx.uchicago.edu).  (C‐E)  Schematic  drawings  of  the  MEINOX  domain;  the  predicted 

orientation  of  the  amino  acid  side  chains  of  arginine  174  and  lysine  163,  an  integral  part  of  the 

LLELEK nuclear export motif, are shown  in  (E) and  (D) respectively. Note that both amino acids are 

located within a predicted alpha helical structure with both side chains facing the same orientation.  
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Supplemental Experimental Procedures 

Cultivation of primary stem-/progenitor cell cultures of the SVZ under free-floating and adherent 

conditions 

All procedures involving animals were approved by the local animal care committee and the 

government of Hessen, and are in accordance with German and EU regulations. Neurospheres (aNS) 

were prepared from 7-10 week old C57bl6 mice and cultured in DMEM/F-12 containing 3.5 mM 

glucose (GIBCO), B-27 supplement (GIBCO), 20 ng/ml fibroblast growth factor-2 (FGF2, human 

recombinant; Peprotech) and 20 ng/ml epidermal growth factor (EGF, human recombinant; 

Peprotech) as described (Agoston et al., 2014). Unless noted otherwise, primary aNS, grown as free-

floating spheres for no more than five days in the presence of EGF/FGF2 without attachment to 

laminin were used. To assess MEIS2 subcellular localization, aNS cells were split with accutase, 

resuspended in EGF/FGF2-containing culture medium and briefly allowed to attach to coverslips that 

had been coated with poly-D lysine. To induce cellular differentiation, aNS cells were split with 

accutase and plated on coverslips coated with (1µg/cm2 laminin (Roche) in medium lacking EGF and 

FGF2 and cultivated for the times indicated. The images in Fig. S1E show adherent neurosphere 

cultures. For these, cells were allowed to attach to cell culture dishes coated with (1µg/cm2 laminin 

(Roche), in EGF/FGF2-containing medium. For retroviral infection, neurospheres split with accutase, 

washed once with EGF/FGF2 containing medium, resuspended in 1.2ml EGF/FGF2 containing 

medium and incubated for 4 hours at 37oC in the presence of retroviral stocks at 1-3x105 CFU/ml. 

Cells were then pelleted for 2min at 4.200 rpm in an Eppendorf centrifuge at room temperature, 

washed again once, resuspended in 5ml EGF/FGF2-containing medium and allowed to grow under 

non-adherent conditions for additional 48 hours. The following pharmacological agents were used: 

AdOX (Sigma Aldrich, A7154) 10µM (from a 1mM stock in distilled water); AG1478 (N-(3-

Chlorophenyl)-6,7-dimethoxy-4-quinazolinamine; LC-Laboratories, T-7310) 100nM (from a 10mM 

stock in DMSO); SU5402 (3-[3-(2-Carboxyethyl)-4-methylpyrrol-2-methylidenyl]-2-indolinone; Santa 
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Cruz, sc-204308) 20µM (from a 10mg/ml stock in DMSO); Leptomycin B (Sigma, L2913) 50nM (from a 

10µM stock in Methanol). Control cells were treated with equal volumes of the respective solvent.  

Retroviral constructs  

Full length Meis2b was amplified with the primers 5'-TACCAATTGCATGGCGCAAAGGTACGAT and 5'-

TAGCTAGCCATATAGTGCCACTGCCCATC from cDNA prepared from the SVZ of adult C57Bl/6 mice and 

cloned MfeI and NheI into the EcoR1 and NheI sites of pSLAX13-HA (generous gift of Cliff Tabin, 

Harvard Medical School, Addgene #14027), which generates a C-terminal fusion to a triple HA-

epitope to allow immunohistochemical differentiation between endogenous MEIS2 and the 

retrovirally misexpressed transgene. The mMeis2b-HA insert was isolated by XbaI digest, blunted and 

cloned into the pCLIG retroviral vector (Hojo et al., 2000). pCLIG carries an IRES-GFP cassette for 

visualization of the transduced cells. For CLIG-Meis2-NLS, an oligonucleotide corresponding to the 

nuclear localization signal of SV40 large T-antigen (PKKKRKV) (Kalderon et al., 1984) was inserted in 

frame into NdeI/SacI sites of the last HA-tag of mMeis2b-HA. For CLIG-MEIS2-NES, an oligonucleotide 

corresponding to the sequence LPPLERLTL (Fischer et al., 1995) was inserted in frame into NdeI/SacI 

sites of the last HA-tag of mMeis2b-HA. In CLIG-Meis2-NLS-VP16, mMEIS2b-HA was C-terminally 

fused to the NLS of SV40 large T-antigen followed by an in frame fusion to the herpes simplex virion 

protein 16 (VP16) transactivation domain. To generate CLIG-MEIS2-R174A the arginine at position 

174 of mMeis2b-HA was converted into alanine by site directed mutagenesis (Phusion Site-Directed 

Mutagenesis Kit, Thermo Scientific, F-541) following manufacturer's instructions.  

CFDA-labeling 

Primary neurospheres were dissociated with accutase (Sigma Aldrich) 24 hours prior to labeling. 

CFDA labeling occurred in 2.5µM CFDA (carboxyfluorescein diacetat succinimidyl ester; Invitrogen, 

C1354) in Dulbecco's PBS (Invitrogen) for 5 min. at room temperature. Cells were washed in culture 

medium and once more after 1 hour of incubation at 37oC. The cells were grown as free-floating aNS 

and passaged every three days by dissociation with accutase for a total of three passages. After the 
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last split, the cells were allowed to adhere to laminin coated slides, fixed in 2% paraformaldehyde in 

Dulbecco's PBS and stained with MEIS2- and nestin-specific antibodies.  

Quantitative real-time PCR 

Total RNA was isolated from murine SVZ-derived progenitor cells passage 1-2 utilizing RNeasy Mini 

Kit (Qiagen) including on-column DNase digestion (Qiagen, RNase-free DNase set) to eliminate 

remaining genomic DNA. RNA quality and quantity was assessed using a NanoDrop 

spectrophotometer. 1µg RNA was reversely transcribed with the First Strand cDNA Synthesis Kit 

(Thermo Scientific) with random hexamer primers according to the manufacturer's instructions. 

Complementary DNA corresponding to 5ng of total RNA was subjected to qPCR using ABsolute qPCR 

SYBR Green Mix (Thermo Scientific) and a CFX Real-Time PCR Detection System (BioRad). Relative 

target gene expression was normalized to the housekeeping gene β-actin. Relative expression was 

calculated with the ∆∆Cq calculation method, normalizing first on housekeeping gene ∆Cq = Cq (TAR) – 

Cq(REF) followed by transformation to exponential expression ∆Cq = 2-∆Cq . Primer sequences were: 

Meis1: 5`-TTGGAATTAGAGAAGGTACACGAA and 5`-TGGATAATTTGATGATACAAGCA;  

Meis2: 5`-AGGTGATGACGACGATCCAG and 5´-GGCATTGATAAACCAGTTGTTCAC;  

DCX: 5'- GGAAGGGGAAAGCTATGTCTG and 5'- TTGCTAGCCAAGGACTG;  

β-actin: 5'- AGCCATGTACGTAGCCATCC and 5'-CTCTCAGCTGTGGTGGTGAA.  

Antibodies and immunohistochemistry 

The following primary antibodies were used: α-TUBULIN, mouse monoclonal (Abcam, ab-7291), WB 

(Western Blot): 1:40.000, IFC (immunofluorescence): 1:2.000; HA-HRP, rat monoclonal (3F10. Roche 

Diagnostics, 12 013 819 001), WB: 1:10.000; anti HA; rat monoclonal (3F10. Roche Diagnostics, 12 

013 819 001) IFC 1:1.000; Ki67, mouse monoclonal (clone16A8, BioLegend, 652401) IFC: 1:200; 

MEIS2, rabbit polyclonal (gift of Arthur Buchberg, Arthur Buchberg, Kimmel Cancer Center, 

Pennsylvania), WB: 1:20.000, IFC: 1:5.000; MEIS2, mouse monoclonal (Sigma Aldrich, 

WH0004212M1), WB: 1:2.000, IFC: 1:200; NESTIN mouse monoclonal b (Chemicon, MAB252), IFC 
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1:500; neuronal βIII-TUBULIN (TuJ1), mouse monoclonal (Covance, MMS-435P), IFC: 1:1.000; PBX1, 

rabbit polyclonal (Cell Signaling Technologies, 4342) WB: 1:1.000, IFC: 1:400; PREP1 / MEIS4 clone 

1.1, mouse monoclonal (Upstate, 05-766) WB: 1:10.000; PSA-NCAM, mouse monoclonal (Millipore, 

MAB5324), IFC 1:1.000. Secondary antibodies for immunohistochemistry were Alexa 594-, Alexa 488-

, Cy2 or Cy3 conjugated (Molecular Probes, OR, Invitrogen, Karlsruhe, Germany or Dianova, 

Hamburg, Germany). Some sections were counterstained with 4'-6-Diamidino-2-phenylindole (DAPI) 

to visualize cell nuclei. For immunostaining, cells or fresh cryosections were fixed for 10 min. at room 

temperature in 2% paraformaldehyde in Dulbecco's PBS, washed in PBS and stained over night in the 

presence of 5 % ChemiBlock (Millipore) or 10 % goat serum with 0.5 % Triton X 100 and the 

antibodies listed above. SDS-PAGE and Western Blot were performed following standard protocols.  

Analyses of MEIS2-containing protein complexes  

Subcellular fractionation, immunoprecipitation and GST pull-down assays were performed as 

described (Agoston and Schulte, 2009; Agoston et al., 2014). For immunoprecipitation (except 

purification of MEIS2 for mass spectrometry, see below), 2µg per reaction of the following antibodies 

were used: HA-probe, rabbit polyclonal (Santa Cruz Biotechnology, Y-11), PBX1, rabbit polyclonal 

(Cell Signaling Technologies, 4342), MEIS2, goat polylconal (Santa Cruz Biotechnoloy, sc-10600). 

Isotype specific antibodies served as control (Santa Cruz Biotechnology). Secondary antibodies were 

Alexa 350-, Alexa 488-, Alexa 568-, Alexa 594- or Cy5-conjugated (Molecular Probes). For Western 

Blot analysis, proteins were separated on SDS-PAGE, transferred onto PVDF-membranes, blocked and 

incubated with the above antibodies following standard methods. HRP-conjungated secondary 

antibodies were goat-anti rabbit HRP (Cell Signaling Technologies, 1:10.000), goat-anti mouse HRP 

(Sigma Aldrich, 1:10.000), Immunocruz anti-mouse (Santa Cruz Biotechnology). Antibodies were 

diluted in 3% BSA in Tris-buffered saline or Rotiblock (Carl Roth, Karlsruhe, Germany). Blots were 

developed with Luminata forte (Millipore), chemiluminescence signals were detected with a LI-COR 

Odyssey Fc imager.  
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Mass-spectrometry analysis 

MEIS2 protein from aNS and OB tissue was isolated by immunoprecipitation from the olfactory bulbs 

of eight 10-week old C57Bl/6 mice or early secondary aNS produced from 10 age matched C57Bl/6 

mice per experiment. For MEIS2 isolation from aNS, primary aNS were dissociated with accutase 

(Sigma Aldrich) one day prior to extract preparation and 4x107 cells per experiment were allowed to 

recover over night. Preparation of cytoplasmic and nucelar extract and immunoprecipiation of MEIS2 

were carried out as described (Agoston et al., 2014) and with 31.2µg anti-MEIS1/2 goat (Santa Cruz 

Biotechnology; sc-10599-X) and 120µg protein A dynabeads (Invitrogen) per reaction. Preparation of 

protein extracts from aNS was carried out in the presence of 5µM MG123 (Merck, 474791). 

Precipitates were separated by SDS-PAGE, stained with Colloidal Coomassie and the MEIS2 protein 

band was excised from the gel.  

 Liquid chromatography-tandem mass spectrometry analyses were performed on an EasyLC 

nano-HPLC coupled to an Orbitrap Elite mass spectrometer (both Thermo Scientific). In gel trypsin 

digestion of the immunoprecipitates was performed as described previously (Shevchenko et al., 

2006). Briefly, eluates were run on a SDS-PAGE, alkylated with chloroacetamide, overnight digested 

with trypsin (Promega), and extracted. The desalted peptide mixtures were injected onto the column 

in HPLC Solvent A (0.5% acetic acid) and eluted with a 5%–33% gradient HPLC solvent B (80% 

acetonitril in 0.5% acetic acid) running at a constant flow rate of 200 nl/min at 30oC. Full-scan MS 

spectra were acquired in a mass range from m/z 150 to 2,000 with a resolution of 120.000 without 

lock mass. The 20 most intense precursor ions were sequentially CID fragmented in each scan cycle. 

In all measurements, up to 500-sequenced precursor masses were excluded from further analysis for 

90 s. The target values of the mass analyzers were 1 million charges (MS) and 5,000 charges 

(MS/MS). MS data was processed using default parameters of the MaxQuant software (1.2.2.5) (Cox 

and Mann, 2008). The peak lists were queried against the human UniProt database (2012_04). Full 

tryptic specificity was required, and up to two missed cleavages were allowed. 

Carbamidomethylation of cysteine was set as fixed modification. Protein N-terminal acetylation, 
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oxidation of methionine, and methylation of arginine and lysine were set as variable modifications. 

Initial precursor mass tolerance was set to 7 ppm and 0.5 Da at the fragment ion level. False 

discovery rates were set to 1% at peptide and protein group level. The MS/MS spectra shown in Fig. 

4 represent MEIS2 isolated from cytoplasmic extracts prepared from aNS (Fig. 4A) and nuclear 

extracts of OB tissue (Fig. 4B). R174 was neither methylated in MEIS2 precipitated from nuclear nor 

cytoplasmic aNS extracts. No MEIS2 protein could be detected in cytoplasmic OB-extracts. 

Peptide pull-down 

Peptides comprising the sequences LMIQAIQVLRFHLLELEKVHELCDNFCHRYISCLK and 

LMIQAIQVLRFHLLELEKVHELCDNFCHR{met}YISCLK, N-teminally linked to a mini-PEG linker followed by 

biotin were purchased from ProteoGenix (Schiltigheim, France). Peptides were immobilized on 

streptavidin-coated dynabeads (Invitrogen) essentially as described in (Dormann et al., 2012) with 

the following modifications: 200 pmol peptide per 10 µl beads were coupled in binding buffer (20mM 

sodium phosphate buffer pH 7.4, 150mM KCl, 0.5mM EDTA, 5mM MgCl2, 10% Glycerol, complete 

protease inhibitor cocktail (Roche)). Beads were washed four times in blocking buffer (binding buffer 

supplemented with 0.1% BSA), blocked for 12 min and washed once in binding buffer supplemented 

with 0.01% Tween20. Recombinant PBX1 and CRM1-HA were generated from pCS2-Pbx1a (gift of L. 

Selleri, Weill Cornell Medical College) and pRK5-Crm1HA (gift of R. Kehlenbach University Medical 

School Göttingen (Roloff et al., 2013)) respectively by TNT-coupled transcription/translation 

following the manufacturer's instructions (Promega). 60µl reactions each were diluted to 600 µl with 

water and increasing volumes of the respective proteins were incubated with 10µl peptide-coupled 

beads for 2 hours at 4oC. Thereby, 1 arbitrary unit (a.u.) in Figs. 3 and 4 corresponds to 10µl of the 

diluted in vitro translated proteins (e.g. 6 a.u. equal 60µl (or 10%) of the 600µl IVT reaction). For 

competitive pull-down assays, 30µl PBX1 were incubated with the beads for 30 min prior to addition 

of the indicated amounts of CRM1-HA. After the incubation period, the beads were washed four 

times with binding buffer supplemented with 0.01% Tween20; bound proteins were eluted in 1x LDS-
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sample buffer (Novex) and heated to 95oC for 5 min. This treatment also removed the biotinylated 

peptides from the streptavidin matrix. Eluted proteins and peptides were separated on a 8-16% Tris-

Glycine gradient gel (Novex), transferred to PVDF-membranes and detected with antibodies specific 

for PBX1 and the HA-epitope respectively. Blots were stripped and re-probed with streptavidin-HRP 

to detect the biotinylated peptides. For the graph shown in Fig. 4O, band intensities were quantified 

with ImageJ and normalized to the band achieved with 10µl of the diluted in vitro translated proteins 

(i.e. input of 1 a.u.). 

Reporter assay 

The luciferase reporter construct DCX2073 contains the genomic fragment of NT -3838 to NT -1765 

upstream of the DCX start codon (corresponding to pdcx2kb of (Piens et al., 2010)) subcloned into 

pGL3basic (Promega) and was previously described in Agoston et al., 2014. HEK293T cells were 

chosen for reporter assays because of their low endogenous Meis2 expression. Cells were 

transfected with 140ng of the above reporter constructs together with 40fmol each of Pbx1b-pCS2+, 

Meis2b-pMIWIII and Pax6(-5a)-pMIWIII. A plasmid expressing Renilla luciferase under the control of 

the human elongation factor 1 (Hef-1) promoter was co-transfected for normalization, luciferase 

assays were performed in triplicates 48 hours after transfection according to (Dyer et al., 2000).  

In silico analysis of protein motifs 

The NES motif in MEIS2 was identified according to (Cour et al., 2004) 

(http://www.cbs.dtu.dk/services/NetNES/). NLS sequences were analyzed based on models by 

Kosugi and colleagues (http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi; (Kosugi et al., 

2008; 2009a; 2009b)). Protein seconday structure prediction was carried out using Psipred 

(http://bioinf.cs.ucl.ac.uk/psipred/) and RaptorX (http://raptorx.uchicago.edu/; (Källberg et al., 

2012).  
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Data acquisition and statistical analysis 

Images were taken with a Nikon 80i, confocal images with a Nikon Eclipse TE2000-E and a 63 oil 

immersion lens with optical sections of maximum 1–2 µm intervals. A minimum of 300 cells per 

condition and experimental repeat were photographed. The number of independent experiments is 

given in the figure legends as 'n= number of independent experiments'. Standard deviation was 

calculated between independent experiments. Error bars represent s.e.m. Comparison between two 

groups was performed with unpaired student's t-test or non-parametrical Mann-Whitney U test 

when normal distribution of the data could not be assumed. Comparison between three or more 

groups was carried out by one-way ANOVA followed by Bonferoni Multiple Comparison post-hoc test 

(Prism 5.01, Graph Pad). Because the immunohistochemical staining intensity for MEIS2 obtained in 

primary aNS is significantly lower than that seen in in vitro differentiated neurons, neurons of the OB 

or in SK-N-Be(2) cells, contrast settings had to be adjusted automatically across the entire image to 

visualize the subcellular distribution of MEIS2 protein in aNS. The intensities of the MEIS-specific 

immunofluorescence shown in Fig.1B-G, 2B, C, and 4C, D, F, G, J, K therefore slightly overestimate 

the actual MEIS2 protein present in the cells. An unbiased account of the relative protein expression 

levels of MEIS2 in undifferentiated, SVZ-derived progenitor cells and differentiated neurons can be 

seen in Fig. S1E1-E4, which show aNS grown as adherent cultures on laminin (Fig. S1E1) and at 

different times after cellular differentiation was induced by addition of AG1478 (Fig. S1E2, S1E3) or 

removal of EGF and FGF2 from the culture medium (Fig. S1E4).  
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