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Abstract
A major concern arising from ubiquitous tracking of individuals’ online activity is that algorithms may
be trained to predict personal sensitive information, even for users who do not wish to reveal such
information. Although previous research has shown that digital trace data can accurately predict
sociodemographic characteristics, little is known about the potentials of such data to predict sen-
sitive outcomes. Against this background, we investigate in this article whether we can accurately
predict voting behavior, which is considered personal sensitive information in Germany and subject
to strict privacy regulations. Using records of web browsing and mobile device usage of about 2,000
online users eligible to vote in the 2017 German federal election combined with survey data from
the same individuals, we find that online activities do not predict (self-reported) voting well in this
population. These findings add to the debate about users’ limited control over (inaccurate) personal
information flows.
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Passively measured digital trace data are used for many purposes in academic and commercial

research. In recent years, social science researchers have turned to data collected on Twitter, for

example, to study political polarization (Conover, Goncalves, Ratkiewicz, Flammini, & Menczer,

2011) and predict election outcomes (see Gayo-Avello, 2013, for a review). Other studies used

Facebook Likes to estimate a wide range of individuals’ personal attributes such as sexual orienta-

tion and political views (Kosinski, Stillwell, & Graepel, 2013) or analyzed weblogs to measure

partisan polarization in political news consumption (Peterson, Goel, & Iyengar, 2018). Digital traces
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have received similar attention in political campaigns. In 2012, for example, the Obama election

campaign used data on voters’ browsing behavior and services from data brokers like Acxiom to

deliver personalized ads (Duhigg, 2012). Since then, digital trace data have been an essential

element of political campaigns in the United States and elsewhere (Kruschinski & Haller, 2017;

Nickerson & Rogers, 2013).

Online advertising, however, is likely the largest field where digital trace data have played a

prominent role. While browsing the Internet, individuals leave massive amounts of data that com-

panies collect through technologies like cookies and browser fingerprinting (Lerner, Kornfeld

Simpson, Kohno, & Roesner, 2016). Based on demographics, personality attributes or interests

inferred from users’ online activity (website visits), companies tailor search results, ads, social

media, and prices to individuals (Christl, 2017; Dolin et al., 2018; Fourcade & Healy, 2013).

Even if Internet users are aware of online behavioral advertising and find tailored ads and

personalized search results helpful, they often have a poor understanding of how and what compa-

nies can learn from their data (Dolin et al., 2018; Pew Research Center, 2019; Ur, Leon, Cranor,

Shay, & Wang, 2012). Similarly, critics of such activities voice concerns about companies’ lack of

transparency regarding the data collected: It is often unclear who collects what data, with whom the

data are shared, and what analyses for the data are used for (e.g., Christl, 2017). The inner workings

of the proprietary algorithms used to analyze the data are often hidden from the public, making it

nearly impossible for users to examine the appropriateness of the information flow (Nissenbaum,

2010) and to maintain control over it (Christl, 2017; Pew Research Center, 2019; Simo, 2015).

Moreover, although users are often more concerned about the accuracy of predicted attributes than

the sensitivity of those attributes themselves, we know very little regarding how much predicted

attributes overlap with the actual attributes (Dolin et al., 2018). In a rare example documenting the

accuracy of interests inferred by Facebook, a recent study by Pew reports that more than one quarter

of U.S. respondents do not find their predicted interests, including items such as political views, to

be accurate (Pew Research Center, 2019). Lastly, extensive tracking of online behavior may be

paired with privacy policies on websites that are too long to read and too complicated to understand,

suggesting that users consent to privacy terms they neither know (because they did not read them)

nor understand (because they are too complicated and vague; Christl, 2017; McDonald & Cranor,

2008; Milne & Culnan, 2004; Simo, 2015).

A major concern that arises from ubiquitous tracking of individuals’ online activity is that

algorithms may be trained to predict sensitive information (Bischoff, Cygan, Münkel, & Schindler,

2018; Christl, 2017; Lecuyer et al., 2015). Previous work focusing on less sensitive information

shows that demographic attributes can be predicted from users’ online activity with high accuracy

(e.g., up to 82% accuracy/0.85 receiver operator characteristic–area under the curve [ROC-AUCs]

in Goel, Hofman, & Sirer, 2012). Going beyond previous research, we ask in this article to what

degree sensitive information can be inferred from users’ online activity through the use of web

browsing histories and records of mobile device use. Moreover, we provide an estimate of the

accuracy of such predictions.

We focus our analyses on political views, specifically voting behavior. In Germany, political

views and voting behavior are considered sensitive personal data. Voting decisions are subject to

strict privacy regulations and require special protection (Dienlin, 2015; Nebel, 2015). In addition,

the General Data Protection Regulation (GDPR), implemented in 2018 for all countries of the

European Union (EU), requires explicit consent for processing of personal data revealing political

opinions (Regulation [EU], 2016, Art. 9). Using records of individuals’ online activity, we study

how much such records reveal about voting decisions, that is, whether digital trace data may be

(mis)used to infer sensitive information about individuals. For a better understanding of the perfor-

mance of our algorithms, we compare performance evaluation metrics of several sensitive outcomes

(voting) with those of less sensitive information (sociodemographic information). Data come from
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about 2,000 German Internet users who agreed to have their web browsing and mobile device use

monitored for a period of 4 months, before and shortly after the German federal election in Sep-

tember 2017. In addition to the records of web browsing and mobile device use, we use survey data

collected from the same individuals. Survey records inform us about individuals’ political views and

voting behavior in the 2017 German federal election. The combination of both data sources provides

us with a unique data set, which allows us to examine if and how accurately sensitive personal

information can be inferred from digital trace data. Moreover, we demonstrate how we can broaden

our understanding of (digital) societies through the integration of digital traces and powerful

machine learning algorithms in (computational) social sciences.

Background

A variety of techniques exist to follow individuals across the web and to record their online

activities. We review some of the most popular ones in the following to give an overview of how

third parties observe users’ online and mobile activities.

Third-Party Tracking Through Cookies and Other Techniques

Most tracking activities on the web operate through http cookies (Gomer, Rodrigues, Milic-Frayling,

& Schraefel, 2013; Urban, Tatang, Degeling, Holz, & Pohlmann, 2018). Cookies are small text files

placed on a user’s device when visiting a website, and we can distinguish between two general types.

First-party cookies are mainly used to make the browsing experience more user-friendly. They are

placed by the website visited (the so-called first party). Often, their purpose is to facilitate the

functionality of a website by, for example, recording language preferences. Third-party cookies,

by contrast, are embedded on (and by) the first-party site but refer to an object from a third-party site.

Through this object, information (such as the website visited) is exchanged with a third-party

domain, allowing the third party to record a user’s online activity. If a user visits another website

that uses the same third-party cookie, a user can be reidentified through the cookie set on the first

website and the information that the user visited both sites can be collected. Thereby, third-party

cookies allow the collection of users’ online activity across the web.

A cookie can collect complete records of the websites visited by a user only if all of the sites

contain that cookie. Given the number of websites on the Internet, placing the same cookie on every

site is hardly feasible. To overcome this limitation, tracking companies often synchronize their

cookies. That is, they share the (cookie-specific) IDs with each other and the data collected through

them (for technical details, see e.g., Papadopoulos, Kourtellis, & Markatos, 2019). Thus, cookie

synchronization allows trackers to collect a more complete picture of a user’s online activity.

Another step to recording complete records of users’ (and not devices’) online activity is cross-

device tracking. While cross-device tracking is easy when users log into an e-mail or social media

account on different devices (deterministic cross-device tracking), probabilistic cross-device track-

ing is more challenging. Yet, research (Brookman, Rouge, Alva, & Yeung, 2017; Solomos, Ilia,

Ioannidis, & Kourtellis, 2018; Solomos, Ilia, Ioannidis, & Kourtellis, 2019; Zimmeck, Li, Kim,

Bellovin, & Jebara, 2017) and work published by cross-device tracking companies themselves

(Drawbridge, 2018; Tapad, Inc, 2015) suggest that users can be identified across devices with high

levels of precision using, for example, their IP address and websites frequently visited. Thus, if

companies operate cookies on both desktop and mobile devices, cross-device tracking allows them

to collect a nearly complete picture of individuals’ online activities.

In recent years, other techniques such as browser and canvas fingerprinting have been developed

to supplement and substitute cookies. Fingerprinting techniques allow third parties to identify users

through recognizing unique combinations of characteristics such as the device, the browser used and
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fonts installed. Unlike cookies, which users can reject or delete (see above), it is difficult to hide a

browser’s fingerprint (Libert, 2015), and individuals browsing the web can thereby easily be rei-

dentified (identification rates for individuals based on fingerprints range between 81% and 90% as

shown by Laperdrix, Rudametkin, & Baudry, 2016). Thus, fingerprinting is another, even more

powerful technique to record users’ activity across the web.

Evidence of Tracking on the Web and on Mobile Devices

Unfortunately, it is difficult to measure the true amount of tracking due to discretion among trackers,

but studies estimate that up to 99% of popular websites contain potential third-party trackers

(Kontaxis & Chew, 2015; Libert, 2015). Fingerprinting technologies, although among the most

powerful technologies with respect to tracking, are less popular, but more likely the more popular

a website is (Englehardt & Narayanan, 2016). Moreover, the amount of tracking seems to differ by

category, with news sites hosting the most third-party trackers. Tracking in apps is similarly spread:

Between 60% and 90% of popular apps connect to third-party tracking services (Binns et al., 2018;

Brandtzaeg, Pultier, & Moen, 2019; Vallina-Rodriguez et al., 2016).

Regarding the third parties collecting data, tracking on the web is heavily concentrated among a

handful of key companies. More than half out of the top 20 trackers belong to Alphabet, the parent

company of Google, closely followed by Facebook (Binns et al., 2018; Brandtzaeg et al., 2019;

Englehardt & Narayanan, 2016). The share of a typical user’s browsing history that these companies

can reconstruct is estimated between 62% and 73% (Englehardt et al., 2015; Yu, Macbeth, Modi, &

Pujol, 2016).

Furthermore, cookie synchronization is a widespread phenomenon. Recent studies show that 97%
of regular web users are exposed to cookie synchronization (Papadopoulos et al., 2019) on about

80% of popular websites (Englehardt & Narayanan, 2016). Thus, there is ample evidence for

tracking through cookies and fingerprinting, both on the web and in apps on mobile devices.

One caveat of the studies mentioned above is that all were conducted prior to the introduction of

the GDPR in the EU. In order to limit tracking of individuals in the online world, the GDPR requires

that tracking companies explain what data are collected for which purpose (e.g., profiling) and with

whom the data are shared (Urban et al., 2018). Thus, one might hypothesize that the GDPR led to a

substantial decrease in online tracking. Yet, as Urban, Tatang, Degeling, Holz, and Pohlmann (2018)

conclude, the GDPR “did not revolutionize the ad ecosystem” (p. 20). Although the GDPR led to a

decrease in third-party tracking, Urban et al. find that tracking, especially among large advertisers, is

still ubiquitous. Moreover, the risk that one third-party cookie results in data sharing among hun-

dreds of additional companies has changed little after the introduction of the GDPR, and users can

barely trace who gets access to their data. Similarly, several companies do not seem to take legal

obligations seriously regarding informing users about the purposes of data collection, processing,

and sharing (Urban et al., 2018).

To sum up, previous research demonstrates that tracking companies collect detailed records of

users’ activities on the web and mobile devices through cookies, fingerprinting, and cross-device

tracking. The true amount of tracking and the actual share of a user’s online history observable by a

single organization remain, however, hidden to the public. Having reviewed how individuals’ online

activity can be tracked, we next summarize work using records of online behavior and mobile device

usage to infer user attributes.

Predicting User Attributes From Digital Trace Data

Previous research used many different sources of digital trace data to predict a variety of individual

attributes (see e.g., Hinds & Joinson, 2018, for a recent literature review). Here, we focus on those
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studies that used data similar to ours, that is, records of browsing behavior and mobile device usage.

With this review, we demonstrate the variety of information that can be learned from behavioral

residue in digital traces about the data producers (Hinds & Joinson, 2018). To our knowledge, no

study has attempted to predict users’ political behavior or preferences from such data yet. However,

if using a dating app predicts whether somebody is in a relationship or not (Seneviratne, Seneviratne,

Mohapatra, & Mahanti, 2014a), then spending a lot of time on (political) news websites may like-

wise predict a person’s degree of political interest and thus whether this person will vote in an

upcoming election.

Studies using weblog data to infer user attributes were conducted as early as in 1999 (Murray

& Durrell, 1999), but since then, the Internet and prediction algorithms have changed dramati-

cally. More recent work demonstrates that age (De Bock & Van den Poel, 2010; Goel et al.,

2012; Hu, Zeng, Li, Niu, & Chen, 2007; Zhang, Zhou, Tan, Bagheri, & Er, 2017), gender (De

Bock & Van den Poel, 2010; Goel et al., 2012; Hu et al., 2007; Zhang et al., 2017), education

(De Bock & Van den Poel, 2010; Goel et al., 2012), occupation (De Bock & Van den Poel,

2010), and income (Goel et al., 2012) can be predicted from weblogs with varying but often high

performance levels. These include, for example, (multiclass) ROC-AUCs of 0.76 (age, 6 classes),

0.72 (gender), 0.70 (occupation, 10 classes), and 0.81 (education, 5 classes) in the study of De

Bock and Van den Poel (2010) and accuracies of 0.55 (age, 4 classes) and 0.84 (gender), as

reported by Zhang, Zhou, Tan, Bagheri, and Er (2017). Furthermore, a snapshot of the apps

installed on a phone and other records of smartphone activity reveal users’ personality traits

(Chittaranjan, Blom, & Gatica-Perez, 2013; Stachl et al., 2017), age (Malmi & Weber, 2016; Qin

et al., 2018), gender (Malmi & Weber, 2016; Qin et al., 2018; Seneviratne, Seneviratne,

Mohapatra, & Mahanti, 2014b), income (Malmi & Weber 2016), race (Malmi & Weber,

2016), country of origin and residence, language, relationship status, religion, and parenthood

(Seneviratne et al., 2014a). App-based prediction models thereby often achieve similar or even

higher performance levels when compared to predictions based on browsing histories, with, for

example, accuracies/ROC-AUCs of 0.77/0.85, 0.82/0.90, and 0.72/0.80 for age (two classes),

gender and race (two classes) in the study of Malmi and Weber (2016).

While the outlined studies indicate that records of users’ online activity and mobile device usage

can be used to accurately infer many sociodemographic characteristics, it is worth noting that these

studies draw on samples that widely differ in scale (Chittaranjan et al., 2013; Seneviratne et al.,

2014a; Stachl et al., 2017). Furthermore, a common challenge of studies in this field is the multitude

and dimensionality of data that can be derived from browsing histories and app usage, which

typically results in a large number of (sparse) features. Common strategies to handle this type of

data include implementing dimensionality reduction techniques prior to model building (e.g., sin-

gular value decomposition [SVD]; Qin et al., 2018) and/or utilizing supervised learning methods that

are able to handle large sets of predictor variables (e.g., support vector machines; Goel et al., 2012,

random forests; De Bock & Van den Poel, 2010). Notably, the results of Malmi and Weber (2016)

indicate that decreasing the number of features by imposing (high) thresholds based on observed

frequencies, aggregating apps into categories, or using SVD can worsen prediction performance

compared to models that utilize the full list of apps installed.

Selective Exposure and Political Internet Use

Individuals use a plethora of websites and apps on a daily basis. While many of them are likely used

by people with all kinds of political views, some may be visited more often by people with a strong

interest in politics for reasons we review below. We provide a short summary of several explanations

and findings regarding the question why online behavior and mobile activity may reveal users’

political interest, behaviors, and preferences.
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Explanations focusing on selective exposure, for example, postulate such an association between

preexisting beliefs and media preferences (Lazarsfeld, Berelson, & Gaudet, 1944). Users tend to

consume news that align with their political views while avoiding news with opposing views in order

to minimize cognitive dissonance (Festinger, 1957), thereby creating the so-called echo chambers or

filter bubbles. Applied to the context of our study, browsing mainly conservative (liberal) news

websites may indicate support of a conservative (liberal) party, for example.

Dvir-Gvirsman, Tsfati, and Menchen-Trevino (2016) present evidence for this perspective. They

show that Israeli Internet users are more exposed to like-minded online content although overall

exposure to ideological content on the web was low. Flaxman, Goel, and Rao (2016) and Peterson,

Goel, and Iyengar (2018) demonstrate similar effects for U.S. Internet users, although the magnitude

of the effects is rather small. Thus, there is some evidence that news exposure can, to a limited

degree, predict political views. The strength of an ideological news media diet, however, seems to be

country-specific.

Additionally, there is some evidence that the amount of political (news) content consumed may

be indicative of users’ general political engagement. That is, users with low interest in politics, for

example, may choose not to visit sites or use apps with political content, thereby introducing a

relationship between online activity and political engagement. Empirical studies using various data

sources find, for example, that the use of online news sites is associated with small increases in

political knowledge and that using the websites of political parties increases political participation

(Dimitrova, Shehata, Strömbäck, & Nord, 2014). Similarly, Kenski and Stroud (2006) report that

Internet access and browsing websites related to presidential campaigns affect political knowledge

and participation, and Kruikemeier, van Noort, Vliegenthart, and de Vreese (2014) demonstrate that

“political Internet use” increases voter turnout and political interest. Furthermore, Boulianne (2009)

provides a meta-analysis of 38 studies to test the hypothesis that Internet use has a negative impact

on civic and political engagement. Her review identifies two streams of competing theories that both

postulate an association between Internet use and engagement: While one side argues that engage-

ment will decrease due to the Internet’s entertainment function, the other side predicts an increase in

engagement due to facilitated information access and networking. On average, her meta-analysis

reveals a small, but positive effect of Internet use on engagement. Nonetheless, both streams of

theories and Boulianne’s results provide important insights for our study as they all postulate that

Internet use is somewhat predictive of political and civic engagement.

Thus, to sum up, research from the social sciences demonstrates that Internet use and especially the

content consumed (through selective choice of news media and browsing websites with political

content) correlate with political interest, engagement, and a variety of political behaviors and attitudes.

We therefore expect that records of browsing behavior and mobile device usage about the kind and

frequency of (political news) content consumed allow us to infer users’ underlying political prefer-

ences and behaviors, as measured by users’ voting decisions. That is, we hypothesize that these records

predict users’ political behaviors and preferences. How accurately those records describe users’

political behaviors and preferences, however, is yet unknown and will be the focus of this article.

Method

Data

We use data from 1,991 members of a German nonprobability online panel who were recruited for

participation in several rounds of a longitudinal survey in the second half of 2017. Only individuals

who were eligible to vote in the 2017 German federal election and consented to allow the vendor to

track their online behavior and app use were eligible to participate. Age, gender, and education

quotas were used to achieve a sample approximately representing the German electorate, but we
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note that our data do not allow us to infer population totals due to its noprobabilistic nature

(Scherpenzeel & Bethlehem, 2011). Descriptive statistics of the respondent sample are reported

in Table S1 of Appendix A located in the Online Supplement to this article.

Once recruited, panelists were asked to complete three surveys—one between August 21 and 28,

2017, one between September 4 and 11, 2017, and a final one between September 25 and

October 2, 2017. The German federal election was held between the second and third survey

on September 24, 2017. The first two surveys (conducted before the election) collected information

whether respondents already had decided for which party they intended to vote (83.0% participation

rate in Wave 1, 90.1% in Wave 2). The third one (after the election) collected information on

whether respondents actually voted and for which party (86.1% participation rate). However, we

note that those reports are likely biased because respondents often overreport voting in surveys due

to social desirability (see e.g., Presser, 1990). Thus, reported voting behavior may in some cases not

correspond with actual voting behavior. Ignoring respondents who did not respond to all questions in

all three surveys, our sample consists of 1,991 respondents.

In addition to the survey data, the vendor collected digital trace data in two ways for us. First,

respondents were asked to install an add-on in all their web browsers on their personal computers.

This add-on kept track of their browsing histories on their PCs. Specifically, each time a respondent

navigated to a website, the add-on recorded the complete URL of the website (e.g., https://en.

wikipedia.org/wiki/URL), the domain (wikipedia.org), the current date and time, and the time spent

on the website. Second, respondents downloaded an app on their mobile devices (i.e., smartphones

and tablets). Similar to the browser add-on installed on PCs, the app recorded complete URLs,

domains, dates/times, and time spent on the website, though only for a device’s native browser (i.e.,

Chrome on Android devices and Safari on Apple devices). In addition, the app collected information

on the brand and model of the device used, the operating system and version installed, the type of

network connection used and the type of device (e.g., smartphone or tablet) used. Moreover, the

tracking app kept record of the apps that respondents used on their mobile devices. Every time a

respondent opened an app on her device, the name of the app, the duration of use, and information

about the device were logged. Information on what the individual did in the app was not recorded.

Both tools are based on software provided by Wakoopa (www.wakoopa.com) and are implemented

in the vendor’s online panel.

Respondents were invited for data collection starting July 1, 2017, and their digital traces were

collected through October 31, 2017. However, users could turn off the data collection temporarily.

We cannot observe when and how long users turned off data collection, but the prevalence of

potentially sensitive records (e.g., visits to pornographic websites and illegal streaming platforms)

suggests that users did not make use of this possibility very often. Finally, on mobile devices, we do

not capture domains visited in browsers other than the native ones. Thus, it is possible that we do not

record all online activities of each user. Although we do not know whether this introduces bias in the

tracked online behavior, we believe that, in fact, this results in a realistic scenario of tracking in

the online world. Our review above demonstrates that it is unlikely that a single company records

the complete history of a user’s online activity.

To address our research questions (can online behavior predict political behaviors), we linked

respondents’ survey data with their records of online behavior and mobile device usage using a

unique ID available in all datasets. Political behaviors (the outcomes that we predict in our study)

were taken from the survey data, and we created four variables (for descriptive statistics, see Table

S1 of Appendix A located in the Online Supplement to this article):

1. Undecided: In the second survey, respondents were asked which party they intended to vote

for in the upcoming election. We created a binary variable from the responses, indicating

whether individuals reported to have decided which party to vote for or not.
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2. Voted: In the third survey, individuals were asked whether they had voted in the German

national election.

3. Alternative für Deutschland (AfD): In the third survey, individuals were asked for which

party or individual they voted. Individuals who reported voting for the AfD (a right-wing

populist party founded in 2013) were coded as having voted for “AfD.” All other respondents

who reported having voted for another party were coded as “other.”

4. Greens: From the same question, we created a binary indicator on whether or not individuals

voted for the Green party (“Bündnis 90/Die Grünen”), a progressive party formed in 1993,

which focuses on ecological and social sustainability.

While other parties exist in the German political system, we focus our predictions on votes for

these parties because they represent the populist-rightwing-conservative and left-wing/progressive

extrema of the political spectrum in Germany. Moreover, both have gained notable increases in

popularity in recent years and can be seen as major antagonists in many policy questions (e.g.,

regarding migration, gender, and environmental issues). We therefore hypothesize that identifying

their voters based on digital traces should be easier (compared to the less polarized parties of the

middle) because those voters may be more likely to visit distinct news websites or blogs that are

homogeneous in the political attitudes of their readership.

In addition to our main dependent variables, the survey data provided us with respondents’

sociodemographic information including age, gender, personal net income, household net income,

marital status, federal state, number of children, number of children in household, household size,

type of accommodation respondent lives in, education, vocational training, employment status,

occupation, occupational status, industry sector, reason for unemployment, and town size. These

variables were included as independent variables in the models for which survey data were included.

Moreover, we predict those shown in Table S1 (see Appendix A located in the Online Supplement to

this article) using the same tracking information for benchmark purposes.

The information extracted from the records of online and mobile device activity was processed

as follows. Due to the large number of predictors derived from the digital records (about 12,000),

we cannot describe every variable in detail. Rather, we describe three blocks of variables that we

used for categorization of the predictors and the general methodology used to derive the predictors

within each block (for an overview, see Table S2 in Appendix B located in the Online Supplement

to this article).

The first block contains variables with information on the general use of devices, such as the

share of mobile Internet connection in total online time, the number of different devices used, and

the use of the devices at night.

The second block includes variables that capture the duration and extent of usage of various news

media sources. First, we collected a list of the 50 most used news media domains in Germany during

the period of data collection (Schröder, 2017) and added the names of the corresponding apps, if

available. For each individual, we calculated the total time spent across all of these domains/apps as

well as the proportion of news media consumption in total online/app time. Second, we gathered

information about respondents’ use of German public-service broadcasting by collecting the

domains of the main public-service broadcasting stations in Germany, including radio stations and

media centers. If available, we collected the names of the corresponding apps, too. We then calcu-

lated, for each individual, the total time spent across all of these domains and the total time spent

across all of these apps as well as their proportions in total online time/app time. Third, we consider

the usage of a collection of about 80 news domains or blogs that we labeled populist, propagandistic,

or “alternative/fake” news. The criteria for inclusion of a site on our list were somewhat subjective,

as there was neither a universal definition of such nonmainstream news nor a comprehensive list of

such domains (for a list of the domains, see Appendix C located in the Online Supplement to this
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article). For each respondent, we calculated the total time spent across all of these domains as well as

the proportion of time spent across all of these sites compared to the total online time.

The third block of predictors contains general information on domains visited and apps used by

respondents (about 80,000 domains and about 12,000 apps). However, it would not make much sense

to keep all domains and apps as many were visited/used only once by one participant and for a few

seconds. Therefore, to keep the number of predictors at a reasonable number, but also exploit as much

information as possible from the digital records, we restrict the pool of domains as follows. We

consider only those domains/apps that were, calculated across the whole sample, visited/used at least

80 times, for a total time of at least 1 min and by at least 1% of respondents in our data. The choice of

these thresholds was purely data-driven (i.e., determined through inspecting the resulting reduction in

the number of predictors). Doing so reduces the number of domains and apps to about 11,700. We then

calculate the time spent browsing each of the domains and the time spent using each of the apps for

each respondent. These variables make up the largest set of predictors in our resulting dataset.

Altogether, we create 11,999 predictors from the records of online behavior and mobile device usage.

Models

Predicting voting behavior and political attitudes with digital trace data constitutes a challenging

prediction problem that cannot easily be tackled with parametric regression, given the dimension-

ality and sparsity of the data (i.e., more predictors than observations, many rare categories, many

predictors that might be uninformative for the outcome of interest). Against this background, we

opted for a nonparametric approach by using gradient boosting machines (Friedman, 2001; Fried-

man, Hastie, & Tibshirani, 2000) as implemented in XGBoost (T. Chen & Guestrin, 2016) to build

the prediction models. XGBoost is a prominent boosting implementation that has been shown to give

competitive results in machine-learning competitions. As part of the boosting family, XGBoost can

learn complex relationships between the predictors and the outcome while also incorporating a built-

in feature selection step. It allows the algorithm to extract the informative variables from a vast pool

of predictors directly in the model building process. With nearly 12,000 potential predictors from

individuals’ app usage and browsing behavior, this is an important feature as we expect that only a

fraction of the available information is predictive of the outcomes studied.

Boosting is an ensemble method that builds a sequence of (i.e., multiple) lower level models that

collectively represent the final prediction model (Hastie, Tibshirani, & Friedman, 2009). Typically,

decision trees (Breiman, Friedman, Olshen, & Stone, 1984) are used as base learners to construct the

ensemble, which approximate the relationship between the predictors and the outcome with a set of step

functions. The individual trees are built by repeatedly splitting the predictor space (the set of values of

all predictors) into smaller subregions, guided by searching for tree structures that minimize the

objective function (e.g., negative binomial log-likelihood [log loss] for binary outcomes). On this basis,

gradient tree boosting seeks to find a sequence of trees where each individual tree adds an improvement

over its predecessor. This is achieved by updating the input for the next tree based on the “mistakes” of

the respective previous tree and by repeating this process until a large number of consecutive trees is

grown. The final tree ensemble can be used for predicting the outcome for a given (new) observation by

summing the corresponding scores (predicted values) of the individual trees.

In order to study the potential of digital trace data for inferring personal information, we built a

total of 35 XGBoost models, 6 for each of the political outcome variables (undecided, voted, AfD,

and Greens) and 1 for each of the sociodemographic outcome variables (age, gender, net income,

marital status, federal state, childless, number of children in household, and employment status). We

built multiple models for each political outcome variable by considering different subgroups of

features for each outcome, which enables nuanced insights into the predictive power of digital traces

for our outcomes of main interest (see Table 1). Group 1 (Demo) uses sociodemographic variables
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from the survey data as features, providing a reference point to compare performance within out-

comes. Group 2 (Tracking) includes all variables that were derived from the digital trace records

while excluding all survey information from the feature set (equivalent to benchmark models

predicting sociodemographic characteristics to compare performance across outcomes). In addition,

Groups 3–5 combine both data sources by adding different subgroups of features from the digital

trace data (general use, news media consumption, or commonly visited apps and domains) to the

sociodemographic information to study the (potential) added benefit of linking both types of data.

Finally, Group 6 incorporates the full set of features from both data sources (Demoþ Tracking). The

models with sociodemographic characteristics as outcomes use all variables that were derived from

the digital trace data as features (Tracking) and provide a reference for the models that predict voting

behavior and party preferences.

The training and evaluation procedure for the XGBoost models included multiple steps. First, we

tuned the hyperparameters of each model by using 10-fold cross-validation (CV) in a 75% training

data set that was drawn at random from the full sample. Tuning was conducted via exhaustive grid

search over the full set of hyperparameter values. Details on the tuning process are provided in

Appendix D located in the Online Supplement to this article. For each model, the tuning parameter

constellation that minimized the binomial log loss was chosen as the best setup. We then used the

CV results of the respective best model for a first evaluation of prediction performance across

XGBoost models with different outcomes and feature groups (Hothorn, Leisch, Zeileis, & Hornik,

2005). In the next step, a final model is built for each feature group and outcome (combination) by

retraining the respective best model on the full training data. The final models were used to predict

the corresponding outcome in a 25% validation set that resulted of the initial train-test split. We used

the predictions in the validation set to again evaluate and compare XGBoost models with different

outcomes and feature groups, this time using a new, completely untouched data set to get an honest

estimate of out-of-sample performance (in the tuning process hold-out sets were used repeatedly,

i.e., the CV error for each final model potentially underestimates the true test error; Hastie et al.,

2009). We used ROC-AUC and log loss to assess prediction performance in the validation set. While

these metrics summarize prediction performance independent of specific classification thresholds,

we also predicted class membership at “optimal” thresholds (based on the top-left points of the ROC

curves) to illustrate classification performance for fixed cutoffs.

Results

Figures 1 and 2 summarize the first set of results for our outcomes of main interest, voting behavior

and party preferences. Figure 1 presents cross-validated ROC-AUCs (the ROC-AUC distribution

Table 1. Feature Groups.

Survey Data Only Digital Trace Data Only Survey þ Digital Trace Data

Group 1
(Demo)

Group 2
(Tracking)

Group 3
(Demo þ
Track_general)

Group 4
(Demo þ
Track_news)

Group 5
(Demo þ Track_
domains_apps)

Group 6
(Demo þ
Tracking)

Demographics Demographics Demographics Demographics Demographics
General use General use General use
News media News media News media
Domains/apps

commonly
visited

Domains/apps
commonly
visited

Domains/apps
commonly
visited
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over all hold-out samples) for our main series of XGBoost models that predict voting behavior with

different feature groups. More precisely, the distributions of ROC-AUC over all hold-out folds

(samples that were not used for model training) of the CV procedure are summarized with boxplots.

ROC-AUC measures the area under the receiver operating characteristic (ROC) curve and ranges

between [0, 1], with higher values indicating better discrimination between classes and 0.5 repre-

senting a noninformative model. It becomes clear that predicting party preferences and whether a

person is undecided before an election is a challenging task. Particularly, Figure 1A (undecided)

indicates weak performance, with ROC-AUCs only slightly above the score of a noninformative

model. However, fair performance can be observed for Figure 1B (voted) and—in terms of dis-

crimination—also for Figure 1C (AfD) and 1D (Greens). Furthermore, it can be seen that for a given

outcome, performance hardly varies between feature groups, that is, the survey only, digital trace

only, and the combined models result in comparable ROC-AUC values. While there is typically a

Figure 1. Receiver operating characteristic–area under the curve (ROC-AUCs) for predicting voting behavior
with different feature groups (cross-validation in training set). (A) Undecided, (B) voted, (C) Alternative für
Deutschland, (D) Greens.
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small decrease in performance when using only tracking data as features, this feature group achieves

a slightly higher median ROC-AUC as the sociodemographic survey data when predicting AfD

votership. This is noteworthy as it indicates that digital trace data can substitute sociodemographic

survey information when predicting preferences for a populist party, following the assumption that

particularly polarized political attitudes manifest themselves in the form of distinct web media

consumption and browsing behavior. Note, however, that there is little evidence that a certain type

of digital trace data (general usage, time spend on news media websites, commonly visited websites

and apps) is particularly informative for predicting party preferences and not much can be gained

when combining both sources (survey and digital trace data). A similar pattern can be observed

when using cross-validated log loss as an alternative performance metric, again indicating little

variation when comparing prediction performance between feature groups for a given outcome

(Figure 2). Log loss evaluates the predicted probabilities of each XGBoost model with respect to

their “distance” to the actual classes, that is, smaller values indicate better performance. Note that

Figure 2. Log loss for predicting voting behavior with different feature groups (cross-validation in training set).
(A) Undecided, (B) voted, (C) Alternative für Deutschland, (D) Greens.
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although log loss has no upper bound, the log loss of a (useless) model which predicts 0.5 for all

cases is ln(0.5) � 0.693.

In addition to the CV results, Table 2 summarizes ROC-AUCs and log loss in the

validation set. The validation set results are generally in line with Figures 1 and 2; we

observe poor to moderate prediction performance across outcomes, with little variation

between feature groups (within outcomes). The results for predicting AfD votership some-

what diverge from this pattern, which seem to benefit from combining survey information

with digital trace data. In this case, ROC-AUC increases notably when adding information

on online news consumption and commonly visited websites as predictors, peaking at .659

(DemoþTrack_domains_apps). Note that—similar to the CV results—some combined mod-

els (which include survey and tracking data) perform slightly worse than the respective

survey data only model, indicating that the dimensionality of the data complicates distin-

guishing signal from noise.

While the previous evaluation focused on the general performance of the XGBoost models based

on predicted risk scores/probabilities, a typical objective with the outcomes at hand is classifica-

tion—predicting “voted” vs. “not voted” or “voted for AfD” vs. “not voted for AfD.” Table 3

presents accuracy, sensitivity, specificity, precision, F1, and k for predicted classes for all feature

group and outcome combinations. Class predictions were obtained using optimal classification

thresholds, that is, cut-offs close to the top-left point of the ROC graphs while putting more weight

on specificity (for the majority class) to account for the imbalanced class distributions. Note that the

thresholds were obtained based on the respective first model (survey data only) for a given outcome

and then fixed for the remaining models to ensure comparability. Again, there is no clear evidence

that digital trace data can be used to precisely predict voting behavior and party preferences, with all

accuracy values falling under the respective no information rate (accuracy when predicting the

majority class for all instances; undecided: .841, voted: .928, AfD: .87, Greens: .9). However, we

do see some indication of increased prediction accuracy when moving from the survey data only to

the combined models for the outcome AfD, again hinting that browsing behavior can reveal some

information about party preferences.

Finally, Figure 3 (CV) and Table 4 (validation set) present ROC-AUC (Figure 3A) and log loss

(Figure 3B) when predicting sociodemographic characteristics with features from digital trace data

for benchmark purposes. We achieve notable performance regarding age groups (both metrics) and

gender (ROC-AUC), whereas digital trace data appears to be less informative for inferring marital

status and predicting whether a person is in a partnership.

Table 2. Receiver Operating Characteristic–Area Under the Curve (ROC-AUC) and Log Loss for Predicting
Voting Behavior With Different Feature Groups (Validation Set).

Feature groups

Undecided Voted
Alternative für
Deutschland Greens

ROC-AUC
Log
Loss ROC-AUC

Log
Loss ROC-AUC

Log
Loss ROC-AUC

Log
Loss

Demo .608 .436 .667 .246 .575 .388 .676 .302
Tracking .607 .435 .605 .251 .581 .384 .691 .298
Demo þ Track_general .618 .432 .698 .241 .637 .372 .624 .317
Demo þ Track_news .631 .432 .627 .254 .634 .374 .705 .295
Demo þ Track_domains_apps .582 .439 .573 .257 .659 .369 .608 .307
Demo þ Tracking .633 .431 .654 .247 .624 .377 .696 .3

Bach et al. 13



Discussion

Commercial research in online marketing and advertising heavily rely on digital trace data to

gather insights into peoples’ lives. By inferring users’ attributes and interests from their online

activities, companies offer user-friendly online experiences, tailor search results, and make Inter-

net users’ lives easier. Ubiquitous tracking of individuals’ online activities, however, raises

concerns regarding users’ limited control over personal information, especially regarding sensi-

tive information. Against this background, we study in this article whether we can accurately

predict voting behavior and party preferences, a form of sensitive personal information, using a

rich combination of digital trace and survey data. With our setup, we aim to mimic tracking and

processing of digital trace data in the wild.

On a general level, our predictions of voting fail to reach typical performance levels of socio-

demographic benchmark models (e.g., Goel et al., 2012; Malmi & Weber, 2016). In particular,

digital trace data do not allow us to accurately identify undecided voters, while we achieve slightly

better results for (self-reported) voting and for votes for a right-wing populist party (AfD) and a

progressive environmentalist party (Greens). Comparing different feature groups indicates that

digital trace data seem to be more informative than sociodemographic information regarding pre-

dictions of populist party preferences (voted for AfD). Generally speaking, our findings do not

Table 3. Classification Performance for Predicting Voting Behavior With Different Feature Groups
(Validation Set).

Feature groups Accuracy Sensitivity Specificity Precision F1 k

(a) Undecided
Demo .692 .431 .741 .238 .307 .129
Tracking .722 .278 .806 .213 .241 .075
Demo þ Track_general .678 .389 .733 .215 .277 .092
Demo þ Track_news .694 .444 .741 .244 .315 .139
Demo þ Track_domains_apps .727 .319 .804 .235 .271 .107
Demo þ Tracking .72 .319 .796 .228 .266 .099

(b) Voted
Demo .854 .233 .902 .156 .187 .11
Tracking .869 .133 .925 .121 .127 .056
Demo þ Track_general .869 .133 .925 .121 .127 .056
Demo þ Track_news .833 .233 .879 .13 .167 .082
Demo þ Track_domains_apps .871 .1 .931 .1 .1 .031
Demo þ Tracking .862 .2 .913 .15 .171 .098

(c) AfD
Demo .725 .265 .793 .16 .2 .046
Tracking .802 .286 .878 .259 .272 .157
Demo þ Track_general .725 .184 .805 .123 .148 �.009
Demo þ Track_news .802 .204 .891 .217 .211 .097
Demo þ Track_domains_apps .804 .265 .884 .255 .26 .147
Demo þ Tracking .807 .306 .881 .278 .291 .18

(d) Greens
Demo .81 .278 .865 .179 .217 .115
Tracking .841 .25 .904 .214 .231 .143
Demo þ Track_general .812 .278 .868 .182 .22 .118
Demo þ Track_news .751 .194 .81 .097 .13 .003
Demo þ Track_domains_apps .831 .361 .88 .241 .289 .197
Demo þ Tracking .823 .361 .871 .228 .28 .184
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indicate that political behaviors such as those studied in our article can be inferred from records of

users’ online activity in an almost deterministic way.

Overall, our sociodemographic benchmark results are in line with findings from previous studies

(e.g., Goel et al., 2012, report similar ROC-AUCs for age and gender based on web visits and Malmi

& Weber, 2016, for app-based models), demonstrating that tracking data can be used to uncover

users’ age and gender. Given that these findings match those of previous research, we believe that

the levels of accuracy achieved regarding political behaviors provide a realistic estimate of how

much digital trace data reveal about them. Yet, companies like Alphabet (Google) or data brokers

like Acxiom likely have larger analytical resources and collect additional data through the variety of

the services they offer (e.g., location data through Google maps) and may do so for longer time

spans. Therefore, the levels of accuracy that can be achieved through combinations of more data

sources and larger investments in analytical capacities may be higher.

Figure 3. Performance for predicting sociodemographic characteristics with tracking data (cross-validation in
training set). (A) Receiver operating characteristic–area under the curve and (B) log loss.

Table 4. Receiver Operating Characteristic–Area Under the Curve (ROC-AUCs) and Log Loss for Predicting
Sociodemographic Characteristics With Tracking Data (Validation Set).

Outcome ROC-AUC Log Loss

Low inc. .698 .591
High inc. .78 .273
Under 25 .873 .3
Over 60 .85 .279
Male .863 .465
East .756 .438
Married .7 .58
No partner .664 .635
No children .673 .597
Unemployed .737 .207
Full-time emp. .733 .605

Note. Low inc. ¼ low income; High inc. ¼ high income; Full-time emp. ¼ full-time employed.
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It is important to note that our results are conditional on a number of methodological decisions

made in the workflow of our study. Given the large amount of information from the digital trace

data, we considered only domains (instead of full URLs) and restricted the domains visited and apps

used based on the frequency and duration of usage. Future studies may attempt to extract more

information from the records of browsing behavior, for example, by mining information from the

websites visited or by extracting additional information from a URL such as the title of a news article

or search queries from visits to search engines. While additional efforts of mining URLs increase the

workload of preprocessing the records substantially, there is no guarantee that those efforts will pay

off in terms of increasing predictive performance. Furthermore, we observed class imbalance in

most of our outcomes, which complicates class predictions and—in combination with the overall

sample size—limits detailed subgroup analysis. In addition, the size of our training data (about 1,500

users) is rather small, and predictive performance may increase with more training data. Another

caveat is that we treated survey data from a nonprobability source as the ground truth of the out-

comes. Our models predict reported voting behavior and reported party preferences (for members of

a nonprobability panel who consented to being tracked for four months). Our findings are therefore

dependent on the assumption that any (potential) survey errors (such as sampling or measurement

error) are unrelated to the correlation structure used to build the prediction models. We also note that

our results are limited to the German case, and results may differ for countries with different political

systems (e.g., the two-party systems of the U.S.) or more (or less) polarized and partisan media.

Interestingly, studies using Twitter data report similar (low) levels of predictive performance

(Cohen & Ruths, 2013). While classifying political orientations of politically very active Twitter

users and politicians based on their Twitter activity results in high accuracies (more than 90% of

users can be correctly classified), the same task fails for an ordinary sample of Twitter users (only

about 65% correctly classified). Likewise, even large and experienced companies like Facebook do

not seem to achieve results that are much different from ours (about 75% correctly classified), thus

challenging the idea that more data and more resources may boost algorithmic performance (Pew

Research Center, 2019). The difficulties of predicting political behaviors and preferences of people

who are not above-average politically active thus seems to be consistently difficult across various

sources of digital trace data.

Regarding social science theories of selective news exposure and changes in political engagement

due to Internet use, our results add to previous research regarding the limited effect size of internet

use and selective news exposure on political behaviors and preferences. We do not believe that our

results disprove these theories; instead, they contribute to our understanding of the magnitude of the

associations. That is, online societies, for example, may not be as fragmented as some early com-

mentators postulated (e.g., Sunstein, 2009). Likewise, mainstream public debates of Big Data,

microtargeting in political campaigns, and social media’s impact on democracy may overestimate

what Big Data and predictive modeling can (or cannot) do (A. Chen & Potenza, 2018).

Regarding the issue of users’ limited control over personal information flows, we note that our

findings are only partly appealing to those concerned that digital trace records may be (mis)used to

reveal sensitive political behaviors. While the inferred attributes are likely inaccurate, users seem to

perceive inaccurate information as much of a privacy violation as accurate attributes (Dolin et al.,

2018). Moreover, some companies seem to infer sensitive personal information (including political

views and behaviors) from digital trace data, although (judging from our results) with low accuracy.

Thus, users are in fact associated with certain political positions and behaviors although they may be

far from accurate. Moreover, such activities leave users completely out of control of personal

information flows. This seems to be especially challenging for users if they do not know who gets

access to their (false) information and who may take the ascribed behaviors, trusting Big Data and

associated technologies, as the truth.
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Retrieved July 12, 2019, from https://www.mdr.de/datenspuren/datenspuren-138.html

Boulianne, S. (2009). Does Internet use affect engagement? A meta-analysis of research. Political Communi-

cation, 26, 193–211.

Brandtzaeg, P. B., Pultier, A., & Moen, G. M. (2019). Losing control to data-hungry apps: A mixed-methods

approach to mobile app privacy. Social Science Computer Review, 37, 466–488.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Monterey, CA:

Brooks/Cole.

Brookman, J., Rouge, P., Alva, A., & Yeung, C. (2017). Cross-device tracking: Measurement and disclosures.

Proceedings on Privacy Enhancing Technologies, 2017, 133–148.

Chen, A., & Potenza, A. (2018). Cambridge Analytica’s Facebook data abuse shouldn’t get credit for trump: ‘I

think Cambridge Analytica is a better marketing company than a targeting company.’ Retrieved July 12,

2019, from https://www.theverge.com/2018/3/20/17138854/cambridge-analytica-facebook-data-trump-

campaign-psychographic-microtargeting

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM

SIGKDD international Conference on knowledge discovery and data mining, San Francisco, CA, 13–17

August 2016, pp. 785–794. New York: ACM.

Chen, T., He, T., Benesty, M., Khotilovich, V., & Tang, Y. (2018). XGboost: Extreme gradient boosting.

R package version 0.6.4.1. Retrieved from https://cran.r-project.org/web/packages/xgboost/

Bach et al. 17

mailto:&lpar;r.�bach@uni-mannheim.de
https://github.com/chkern/web-tracking
https://github.com/chkern/web-tracking
https://www.mdr.de/datenspuren/datenspuren-138.html
https://www.theverge.com/2018/3/20/17138854/cambridge-analytica-facebook-data-trump-campaign-psychographic-microtargeting
https://www.theverge.com/2018/3/20/17138854/cambridge-analytica-facebook-data-trump-campaign-psychographic-microtargeting
https://cran.r-project.org/web/packages/xgboost/


Chittaranjan, G., Blom, J., & Gatica-Perez, D. (2013). Mining large-scale smartphone data for personality

studies. Personal and Ubiquitous Computing, 17, 433–450.

Christl, W. (2017). Corporate surveillance in everyday life: How companies collect, combine, analyze, trade,

and use personal data on billions. Vienna, Austria: Cracked Labs. Retrieved July 12, 2019, from https://

crackedlabs.org/en/corporate-surveillance

Cohen, R., & Ruths, D. (2013). Classifying political orientation on Twitter: It’s not easy! In Proceedings of the

seventh international AAAI conference on Weblogs and social media, Cambridge, MA, 8–11 July 2013,

91–99. Palo Alto, CA: AAAI.

Conover, M., Goncalves, B., Ratkiewicz, J., Flammini, A., & Menczer, F. (2011). Predicting the political

alignment of Twitter users. In Proceedings of third international conference on social computing, Boston,

MA, 9–11 October 2011, pp. 192–199. New York, NY: IEEE.

De Bock, K., & Van Den Poel, D. (2010). Predicting website audience demographics for web advertising

targeting using multi-website clickstream data. Fundamenta Informaticae, 98, 49–70.
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und demokratische Willensbildung in Zeiten von Big Data (pp. 13–44). Baden-Baden, Germany: Nomos.

20 Social Science Computer Review XX(X)

https://footprints.stanford.edu/papers/selective-exposure.pdf
https://footprints.stanford.edu/papers/selective-exposure.pdf
http://www.pewinternet.org/2019/01/16/facebook-algorithms-and-personal-data/
http://www.pewinternet.org/2019/01/16/facebook-algorithms-and-personal-data/
https://meedia.de/2017/09/20/agof-news-top-50-focus-bei-der-tagesreichweite-deutlich-hinter-bild-und-spon/
https://meedia.de/2017/09/20/agof-news-top-50-focus-bei-der-tagesreichweite-deutlich-hinter-bild-und-spon/


Solomos, K., Ilia, P., Ioannidis, S., & Kourtellis, N. (2018). Cross-device tracking: Systematic method to detect

and measure CDT. arXiv preprint. arXiv:1812.11393.

Solomos, K., Ilia, P., Ioannidis, S., & Kourtellis, N. (2019). Automated measurement of cross-device tracking.

In A. P. Fournaris, K. Lampropoulos, & E. Marı́n Tordera (Eds.), Lecture Notes in Computer Science, Vol.

11398. Information and operational technology security systems. IOSec 2018 (pp. 73–80). Cham, Switzer-

land: Springer.

Stachl, C., Hilbert, S., Au, J. Q., Buschek, D., De Luca, A., Bischl, B., . . . Bühner, M. (2017). Personality traits

predict smartphone usage. European Journal of Personality, 31, 701–722.

Sunstein, C. R. (2009). Republic.Com 2.0. Princeton, NJ: Princeton University Press.

Tapad Inc. (2015). Measuring cross-device: The methodology. Retrieved July 12, 2019, from https://www.

tapad.com/resources/cross-device/measuring-cross-device-the-methodology

Ur, B., Leon, P. G., Cranor, L. F., Shay, R., & Wang, Y. (2012). Smart, useful, scary, creepy: Perceptions of

online behavioral advertising. In Proceedings of the eighth symposium on usable privacy and security,

Washington, DC, 11–13 July 2012, p. 4. New York, NY: ACM.

Urban, T., Tatang, D., Degeling, M., Holz, T., & Pohlmann, N. (2018). The unwanted sharing economy: An

analysis of cookie syncing and user transparency under GDPR. arXiv preprint. arXiv:1811.08660.

Vallina-Rodriguez, N., Sundaresan, S., Razaghpanah, A., Nithyanand, R., Allman, M., Kreibich, C., & Gill, P.

(2016). Tracking the trackers: Towards understanding the mobile advertising and tracking ecosystem. arXiv

preprint. arXiv:1609.07190.

Yu, Z., Macbeth, S., Modi, K., & Pujol, J. M. (2016). Tracking the trackers. In Proceedings of the 25th

international conference on World Wide Web. Montréal, Canada, 11–15 April 2016, pp. 121–132. New
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