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SUMMARY 

CX3CR1+ mononuclear phagocytes extend processes into the intestinal lumen to monitor the intestinal 

microbiota as well as the chymus. Whether the constituents of the chymus are required for macrophages 

is not known. Moreover, the molecular mechanisms that control the intestinal ability to distinguish 

between "innocuous" and "dangerous" antigens remain poorly understood although macrophages play 

a key role in this process. A comprehensive macrophage development is critical for gut macrophages 

performing crucial tasks in the intestinal immune system. However, the underlying mechanisms of this 

development remain elusive. The amino acid transporter CD98, which was first identified as a 

lymphocyte activation marker, is a multifunctional protein and is associated with a variety of activities, 

such as those of amino acid transporters, integrin regulators, and fusion regulators. CD98hc interacts 

with certain integrin β-subunits to mediate signaling events and consequently controls cell migration, 

survival, and proliferation. To assess the role of branched-chain amino acids on the development of gut 

macrophages, we generated an inducible knock-out mouse model for the branched-chain amino acid 

transporter CD98hc specifically in CX3CR1+ intestinal macrophages. We showed that CD98 deficient 

macrophages attenuate the severity of dextran sodium sulfate-induced colitis clinically, endoscopically, 

and histologically. Single-cell RNA sequencing of colonic lamina propria macrophages obtained from 

unmanipulated and healthy mice revealed that silencing CD98 blocks the ‘monocyte waterfall’-

development to mature macrophages. Further, we observed that the arrest in macrophage development 

is associated with increased expression of apoptotic genes. Moreover, patients with Crohn’s disease and 

ulcerative colitis are characterized by high CD98 expression. Our results demonstrate that CD98 plays 

a pivotal role in intestinal homeostasis by influencing the development of gut macrophages. 
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1 INTRODUCTION 

1.1. Mucosal immune system 

The intestinal tract covers an area of approximately 100 m2 and is, therefore, the largest surface of the 

human body. Also, the intestine harbors around 1014 commensal bacteria, comprising ∼1.000 different 

species. Besides that, it is continuously exposed to dietary and environmental antigens. Intestinal 

epithelial cells (IECs) and mesenchymal cells are the first line of defense of the mucosal immune system 

and the host response to infection and tissue damage. The single layer of epithelial cells is covered by 

the mucus biofilm consisting of trefoil factors and mucins, which is secreted from goblet cells and is the 

first contact point with the environment (Baumgart and Sandborn, 2012; Varol et al., 2010). Further, 

Paneth cells located within the epithelial crypts produce antimicrobial peptides, which creates the 

protective mucus layer (Figure 1.1). IECs are not only a stout barrier, but they also function as an 

initiator of the innate immune response to microbiota and tissue damage. Additionally, IECs have 

numerous protective mechanisms such as pattern recognition receptors (Toll-like receptors), nucleotide-

binding oligomerization-domain protein-like receptors (NLRs), as well as cytokine and chemokine 

receptors (Baumgart and Sandborn, 2012; Uhlig and Powrie, 2018). 

 

The connective tissue underlying the epithelium is constituted by extracellular matrix components 

together with the mesenchymal cells, which are abundant in the intestine. Additionally, mesenchymal 

cells constitute the intestinal stem cell niche (Aoki et al., 2016). Further, as these cell types integrate 

IEC and immune response, they contribute to the host defense, inflammation, and tissue repair in the 

intestine. Three major subsets of mesenchymal cells are known: fibroblasts, myofibroblasts, and 

pericytes. Intestinal inflammation leads to an activation of myofibroblasts in response to inflammatory 

cytokines and initiates the production of collagen to restore tissue damage. Furthermore, fibroblasts 

react as sentinels and pericytes, which are also called mural cells and vascular smooth muscle cells, 

control the endothelial cell differentiation, endothelial signaling, angiogenesis, and excessive 

extracellular matrix deposition (Lawrance et al., 2017; Mifflin et al., 2011; Uhlig and Powrie, 2018). 

Besides, activation of nucleotide-binding oligomerization domain containing 2 (NOD2) initiates 

secretion of the monocyte chemoattractant CCL2 by mesenchymal cells which leads to the protection 
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of enteric pathogens. In IBD, the pathogenic inflammatory response by mesenchymal cells showed that 

they are the primary target of pathogenic TNF. Further, the activated phenotype of intestinal fibroblasts 

has enhanced responsiveness to cytokines and chemokines which are involved in recruitment and 

retention of leukocytes (Uhlig and Powrie, 2018).  

 

 

Figure 1.1: Schematic illustration of the mucosal architecture. IECs build the biochemical and physical barrier and is 

covered by mucus biofilm consistent of trefoil factors (TFF3, trefoil factor 3) and mucins (Muc2). The intestinal epithelial stem 

cell (IESC) niche controls the continuous renewal of the IEC layer by crypt-resident stem cells. Apart from Paneth cells, the 

differentiated IESC migrate up the crypt-villus axis. Antimicrobial peptides (AMPs) are secreted by Paneth cells and mucus by 

goblet cells to promote the exclusion of microbiota from the epithelial surface. Specialized IECs (also known as M cells 

(microfold cells)) and goblet cells mediate the transport of luminal antigens and live microbiota across the epithelial barrier to 

DCs, and gut-resident macrophages (Mφ) sample the lumen through their transepithelial dendrites (adapted from: (Peterson 

and Artis, 2014)). 

 

The intestinal lamina propria harbors diverse mononuclear phagocytes, including conventional dendritic 

cells (cDC), granulocytes such as neutrophils, monocytes, and monocyte-derived macrophages (Mφ) 

that play a crucial role in mucosal homeostasis. The mononuclear phagocytes accumulate during 
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intestinal infection and inflammation. These cells are in the gut-associated lymphoid tissue (GALT) as 

well as in the subepithelial lamina propria. Typical histological signs of intestinal inflammation are 

granulomas in CD and neutrophil enriched crypt abscesses in UC. Further, the cell-intrinsic defense 

mechanism autophagy is involved in xenophagy, which is an innate component of immune responses 

(Alexander, 2008), and defects are particularly associated with CD. Thus, NOD2 signaling links 

autophagy-related protein 16 like 1 (ATG16L1) signaling with defective in autophagy in DCs, 

neutrophils, and monocyte-derived macrophages (Baumgart and Sandborn, 2012; Joeris et al., 2017; 

Uhlig and Powrie, 2018; Varol et al., 2010).  

 

Focusing on mononuclear phagocytes in the gut, CX3CR1+ mononuclear phagocytes and CD11b+ 

CD103+ DCs are the significant cell populations in the intestinal lamina propria. Extravasated Ly6Chigh 

blood monocytes, which are recruited continuously by a CCR2 dependent manner, give rise to intestinal 

CX3CR1+ macrophages under steady state and inflammatory conditions. (Gren and Grip, 2016; Italiani 

and Boraschi, 2014; Joeris et al., 2017; Zigmond et al., 2012). The development from monocytes to 

macrophages in the lamina propria is a process known as 'monocyte waterfall.' Hence, monocytes 

develop through intermediates to tissue-resident macrophages which are characterized as CCR2+ 

CX3CR1int Ly6Chigh MHC II- monocytes, CCR2+ CX3CR1int Ly6Chigh/int MHC II+ monocytes, and 

CCR2+ CX3CR1high Ly6Clow MHC II+ monocytes. From the last stage of the 'monocyte waterfall,' the 

resident macrophage matures over the immature CD64+ CX3CR1high Ly6C- MHC II- macrophage to the 

mature CD64+ CX3CR1high Ly6C- MHC IIhigh tissue-resident macrophage (Joeris et al., 2017; Schridde 

et al., 2017; Tamoutounour et al., 2013). This transition takes approximately 96 hours and requires the 

CSF-1R (Bain et al., 2013; Joeris et al., 2017). Since tissue-resident macrophages like microglia in the 

brain, Kupffer cells in the liver, Langerhans cells in the skin, and alveolar macrophages may originate 

from embryonic or perinatal precursors, gut resident macrophages are mainly replenished by high 

turnover of extravasated Ly6Chigh blood monocytes. Resident macrophages are relatively short-lived 

with a half-life of 3-5 weeks. However, some of these macrophages were not replenished from 

circulating precursors and are maintained locally by self-renewal. This subset of intestinal macrophages 

is long-lived, which populate the submucosa and myenteric plexus (De Schepper et al., 2018; Shaw et 
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al., 2018; Zigmond and Jung, 2013). Importantly, for the establishment and the total number of all 

resident macrophage subsets in the colonic lamina propria, the live commensal microbiome is required 

independent of the ontogeny of macrophages. Therefore, microbiota, as well as CCR2-dependent 

recruitment of Ly6Chigh monocytes, is required for the homeostasis of tissue-resident intestinal 

macrophages (Bain et al., 2014; Shaw et al., 2018).  

 

As macrophages are one of the significant cell populations in the colonic lamina propria, they survey 

the intestinal content by clearing apoptotic cell bodies and ingest and kill microbes that have passed the 

epithelial barrier (Mowat et al., 2017). Moreover, CX3CR1+ macrophages initiate the innate and the 

adaptive immune response to commensal and pathogenic bacteria (Leonardi et al., 2018; Varol et al., 

2010). However, the stimulation of intestinal macrophages with Toll-like receptor (TLRs) ligands does 

not induce an inflammatory response in the intestine compared to most other tissues (Rogler et al., 1997; 

Smythies et al., 2005), by preventing uncontrolled inflammation. Therefore, leftovers during microbial 

clearance from ingested microbes are expelled into the intestinal lumen (Arques et al., 2009). In contrast, 

gut macrophages might be involved in the pathogenesis of IBD as they are a component of the cellular 

inflammatory infiltrates in experimental colitis as well as in patients with IBD (Hausmann et al., 2002; 

Kamada et al., 2008). As Ly6Chigh monocytes are associated with inflammation, the transition into gut-

resident macrophages is impaired during colitis. Thus, gut-resident macrophages are outcompeted by 

inflammatory CX3CR1int mononuclear phagocytes which are most like Ly6Chigh monocytes. 

Consequently, intestinal inflammation leads to disruption of full differentiation of inflammatory 

Ly6Chigh monocytes into CX3CR1high gut-macrophages (Bain and Schridde, 2018; Bain et al., 2013; 

Zigmond et al., 2012).  

 

During intestinal inflammation, macrophages are crucial for tissue repair and restoration of intestinal 

homeostasis. Nevertheless, pro-inflammatory mediators such as IL-1, IL-6, TNF, IL-23, NO, and 

reactive oxygen intermediates are found in the inflamed intestine, which is mainly produced by 

monocytes and macrophages. Also, pro-inflammatory monocytes and macrophages produce 

chemokines such as CCL2, CCL3, CCL4, CCL5, CCL8, and CCL11. These mediators/chemokines can 
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recruit and activate additional immune effector cells like monocytes, eosinophils, and neutrophils 

(Arnold et al., 2016; Asano et al., 2015; Joeris et al., 2017; Seo et al., 2015). However, inflammatory 

monocytes also inhibit the pathological effects of neutrophils during intestinal inflammation, which 

might reflect the balance between local pathogenic and regulatory mechanisms of the monocyte-

macrophage lineage (Joeris et al., 2017).  

 

 

1.2. Inflammatory bowel disease 

Bacteria, viruses, fungi, and parasites colonize or infect the intestine. For a lifelong response to dietary 

antigens and microbiota, a sufficient epithelial barrier function, as well as innate and adaptive immune 

regulation, is required. Changes in lifestyle and environment, the occurrence of genetic defects with 

high functional impact, or accumulation of common genetic susceptibility variants could lead to failure 

of those evolutionarily adapted mechanisms. Consequently, not only the genetic defects lead to 

inflammatory bowel disease (IBD), the additional exposures are also involved (Schirmer et al., 2018; 

Uhlig and Powrie, 2018). IBD is chronic intestinal inflammation with two primary forms: (1) Crohn's 

disease (CD), and (2) ulcerative colitis (UC). Additionally, there is a subgroup which is placed between 

colonic CD and UC in terms of variant burden called IBD unclassified. IBDs have a substantial health 

care problem, and a multifactorial etiology and its onset are in persons 15 to 30 years of age. IBD shows 

increased incidence and prevalence worldwide. Typical for IBD is a chronic relapsing disease activity 

of acute flares and intervals of remission. Thus, tissue damage over time including fistulizing and 

stricturing in CD as well as life-threatening episodes of acute severe UC are caused by these chronic 

intestinal inflammations with limited treatment options (Abraham and Cho, 2009; Baumgart and 

Sandborn, 2012; Imhann et al., 2018; Ordas et al., 2012; Uhlig and Powrie, 2018). Although the terminal 

ileum is mostly affected in CD, lesions can occur anywhere on the entire digestive tract, from the 

alimentary canal of the mouth to the anus. However, in UC only the mucosal layer of the colon is 

affected. Compared to CD, in which the inflammation is transmural and patchy, UC begins in the rectum 

where the disease spreads up through the large intestine (Varol et al., 2010).  
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Figure 1.2: Schematic illustration of the onset of inflammatory bowel disease (IBD). Defects of the mucus barrier and 

epithelial barrier due to genetic aberrations, and the uncontrolled immune response (e.g., by tissue macrophages (Mφ)) leads 

to an increased gut microbiota which results in tissue destruction and mucosal inflammation (adapted from: (Coskun, 2014)).  

 

In general, the basis of IBD pathogenesis occurs due to defects in the mucus barrier and epithelial barrier 

which leads to the initiation and augmentation of the intestinal inflammation (Figure 1.2). As IBD is a 

group of polygenic disorders in which over 200 alleles/loci contribute to the overall risk of the disease, 

genome-wide association studies showed that the innate immunity plays a central role of the IBD 

pathogenesis (Loddo and Romano, 2015; Torres et al., 2017; Ungaro et al., 2017). Moreover, intestinal 

macrophages maintain the intestinal homeostasis by clearing of apoptotic or senescent cells and can 

remodel the tissue at steady state (Torres et al., 2017). Although some loci (such as NOD2, ATG16L1, 

and MUC2) are specifically associated with CD and others only with UC, the majority of loci are shared 

between CD and UC with similar directions of effects (Ananthakrishnan, 2015). NOD2, which was the 

first described susceptibility gene for IBD, recognizes bacterial muramyl dipeptide and transduces 

signals which activate NF-κB. Thereby, NOD2 regulates the gut microbiota in steady state and 

stimulates not only the innate but also the adaptive immune system (Burada et al., 2018; Loddo and 
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Romano, 2015). Furthermore, many of the putative genes which influence the immune system can be 

divided into influencing innate immune response, adaptive immune response, autophagy, restitution and 

injury repair, microbial defense and antimicrobial activity, response to oxidative stress, and maintenance 

of the integrity of the epithelial barrier. Besides, cellular phenotypes such as Paneth cell function might 

be influenced by the synergy of genetic polymorphisms (Ananthakrishnan, 2015).  

 

Different therapeutic strategies have been explored to treat IBD. As the migration of leukocytes from 

the circulation into the inflamed intestinal mucosa is well characterized, anti-leukocyte trafficking 

therapy is a new target for the treatment of IBD. Vedolizumab was the first approved gut-specific anti-

integrin antibody for the therapy of CD and UC. It targets the α4β7 integrin on T cells which prevents 

their migration into the gut mucosa (Rogler, 2015; Sands, 2014). Additionally, other biological therapies 

have been promising. TNF inhibition by infliximab, adalimumab, certolizumab pegol, and golimumab 

provide effective treatment by improving long-term outcomes (Sands, 2014). Further, small molecule 

kinase inhibitors are also promising therapeutic strategies such as Tofacitinib in UC, which is a JAK3 

inhibitor. Several additional strategies for the treatment of IBD such as stem cell transplantation for 

patients who failed with established medications or fecal microbiota transplantation might be an option 

to attenuate the severity of IBD especially for UC patients (Rogler, 2015). A recommended effective 

first-line therapy to induce remission in pediatric patients with CD is the exclusive enteral nutrition 

(EEN) as the sole source of nutrition. The idea in EEN is to reduce the exposure to antigens found in 

food, alteration in the gut microbiota, improvement of intestinal permeability, and immunomodulatory 

properties. In general, individual anti-inflammatory supplements such as curcumin, omega-3 fatty acids, 

vitamin D or the positive effects of prebiotics and probiotics on the intestinal microbiome are used for 

the treatment of IBD (Limketkai et al., 2018).  

 

Alternative therapies with anti-inflammatory plant-derived natural compounds like phenols and 

anthocyanidins might attenuate the severity of IBD. For instance, curcumin or curcuma inhibits NF-κB 

and improved disease symptoms of IBD patients (Camacho-Barquero et al., 2007; Jobin et al., 1999).  
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Furthermore, as macrophages are identified as the critical target for interventional strategies, no 

selectively therapy in IBD against monocytes or macrophages is available. However, established and 

applied therapies also affect these cells. Thus, the PPAR-γ agonist aminosalicylate downregulates NF-

κB activation, corticosteroids have an anti-inflammatory effect on cytokine and chemokine release, anti-

TNF therapies induce apoptosis by intestinal macrophages, and the recruitment of myeloid cells to the 

intestine is inhibited by an anti-α4β7 antibody (Atreya et al., 2011; Gren and Grip, 2016; Lim et al., 

2007; Linard et al., 2008; Villablanca et al., 2014). However, the anti-inflammatory effects of these 

beneficial treatments cause a variety of undesired side effects (Gren and Grip, 2016).  

 

Although in recent years the advanced clinical approaches such as nutritional interventions and analysis 

of pathophysiological processes underlying IBD, the medical treatments have remained unsatisfactory 

with low response and remission rate (Torres et al., 2017; Ungaro et al., 2017). Thus, a better 

understanding of immune cells involved in the pathogenesis of IBD to mainly target monocytes and 

macrophages is required for the development of new treatment options for patients with IBD. 

 

 

1.3. Animal models of intestinal inflammation 

Animal models are essential to understand the systemic and mucosal immune response and its 

mechanism. In animal models, dissection of cellular compartments, genetic manipulation, and 

therapeutic concepts can be tested and investigated (Uhlig and Powrie, 2018). Therefore, mice as a 

model organism to investigate human biology are predicted on the biological, genetical, and 

physiological similarities between the species as mice get many of the same diseases, for the same 

genetic reasons (Perlman, 2016). Thus, mice are used as a convenient animal model in IBD. Further, the 

translation into clinical practice depends on the efficacy of the mouse model as well as on the associated 

human IBD disease type. Several kinds of IBD-models (Table 1), which are classified into chemically 

induced models (e.g., Dextran Sodium Sulfate), infection models (e.g., Citrobacter rodentium), immune 

activation-induced (T cell transfer) models, and genetically engineered, have been studied. Besides, 

genetically engineered mouse models in which a target gene is inducible overexpressed or deleted in a 
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specific cell type or all cells brought novel concepts on IBD pathogenesis. This type of animal model 

supports the concept of colitogenic gene-environment interactions and provides functional roles after 

infection or chemical challenge. Importantly, in many cases, animals with genetic defects do not develop 

spontaneous colitis. However, genetically modified animals reveal a functional role after infection or 

chemical challenge, supporting the concept of colitogenic gene-environment interactions. In general, 

there is no standard mouse model which is accepted by the US Food and Drug Administration (FDA) 

or the European Medicines Agency (EMA) (Koelink et al., 2018; Mizoguchi, 2012; Uhlig and Powrie, 

2018) or the Swissmedic. 

Table 1: Description of IBD-models 

Models Induction Mechanism Advantage/Disadvantage 

Chemical 

(Wirtz et al., 

2017) 

2,4,6-tri-

nitro-ben-

zene sul-

fonic acid 

(TNBS)  

 

Oxazolone 

 

DSS 

The hapten reagents of TNBS and oxazolone 

induces a T cell-mediated immunity against 

haptenized microbiota-derived proteins and 

luminal antigens. 

 

DSS leads to IEC death, compromising bar-

rier function, and subsequent intestinal in-

flammation. 

Chemical-induced models are widely 

used as they are comfortable and rapid 

to develop and can be used with WT 

mice. 

 

Luminal microbiota may play a role in 

the development of the chemical in-

duced intestinal inflammation 

Infectious 

(Eckmann, 

2006) 

Citrobacter 

rodentium 

 

Salmonella 

typhimurium 

C. rodentium attaches to the colonic and cecal 

epithelium and forms subcellular attaching 

and effacing (A/E) lesions. A/E-lesion form-

ing pathogens do not spread systemically or 

invade more profound layers of the mucosa. 

C. rodentium is a predominantly mucosal 

pathogen.  

 

In antibiotics pretreated mice, disseminated 

S. typhimurium infection resembles many as-

pects of human infection such as mucosal in-

flammation by rapid crypt loss, epithelial ero-

sion, goblet cell loss, mucosal and submuco-

sal infiltration with acute inflammatory cells, 

and edema. 

Determination of the interactions be-

tween the host immune system and mi-

crobial pathogens in the intestinal tract, 

physiological consequences of neutral-

izing, and antimicrobial signaling path-

ways of the host defense. 

 

Colonization of bacteria is limited to the 

intestinal mucosa. Loss of effective host 

defense due to stronger stimulus results 

in exacerbate mucosal inflammation. A 

few bacteria can reach the systemic side 

or the bloodstream. In the case of S. 

typhimurium pretreatment with antibiot-

ics is needed. 
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Immune 

activation 

(Eri et al., 

2012) 

T cell 

transfer 

Two important concepts of the adoptive 

CD4+ T cell-based pathogenesis: (1) naïve 

CD4+ CD45RBhigh T cells from the spleen 

and/or lymph nodes trafficking to the intes-

tine where they cause severe intestinal in-

flammation, and (2) regulatory T cells are 

able to overcome the effect of the CD4+ ef-

fector T cells. Adoptive transfer of naïve T 

cells (CD4+ CD45RBhigh) into immune defi-

cient Rag KO mice react on gut antigens and 

become colitogenic T cells secreting cyto-

kines that results in severe gut inflammation 

involving small as well as large intestines. 

Studying multiple drug targets interfer-

ing the T cell-mediated cytokine pro-

duction. Closer synchronization of the 

onset and severity of intestinal inflam-

mation.  

 

Introduction of homeostatic prolifera-

tion as an additional variable predispos-

ing mouse to autoimmunity. 

Genetically 

engineered 
(Mizoguchi 

et al., 2016) 

Gene 

deletion 

 

Gene 

insertion 

and/or 

alteration 

In most gene deletion models (KO mice), 

genes encoding immune factors are deleted. 

This results in perturbations to the gut im-

mune system and physiology. There are two 

ways of gene deletion: (1) conventional gene 

knock-out, (2) conditional knock-out. In con-

ditional knock-out, a gene is deleted from a 

specific cell type. 

 

Gene insertion affects the protein product due 

to a frameshift mutation. Gene expression can 

be altered by changing the structure and func-

tion of chromatin. Acetylation or deacetyla-

tion of histones may later transcriptional ac-

tivity. Thus, gene insertion and/or alteration 

for example in the NOD2 genes leads to in-

creased susceptibility to CD but not to UC.  

Genetically engineered mouse models 

carry the susceptibility genes which are 

identified in human IBD. Cutting-edge 

technologies such as cell-specific and 

conditional knock-out systems 

enhanced the ability to provide 

relevantly, and unexpected rationales 

for developing new therapeutic 

strategies for IBD. 

 

Developmental abnormalities due to ge-

netic defects or interindividual variabil-

ity in the penetrance and activity of co-

litis. 

 

In general, murine models have been widely used in biomedical research due to the advanced knowledge 

of their genetics and the availability of many genetically modified mouse models facilitate the functional 

research (Nguyen et al., 2015; Perlman, 2016). Collectively, the mammalian digestive tract is strongly 

conserved. However, major differences between species being likely driven by diet, although humans 

and mice share strong similarities (Nguyen et al., 2015). Thus, the anatomy of the gastrointestinal tract 
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differs between these two species. Humans have evolved towards a smaller cecum and colon and a 

relatively longer small intestine as compared to the mouse digestive tract. In mice, the fermentation of 

indigestible food components is compartmentalized in the cecum. By contrast, in humans, the 

fermentation is taken over by the colon, and the cecum is vestigial. Additionally, the human colon is 

divided by haustra, small pouches caused by sacculation (sac formation), which give the colon its 

segmented appearance, whereas the mouse colon is rather smooth (Nguyen et al., 2015; Perlman, 2016). 

Further, the two species provide different environments that support the development of different 

gastrointestinal microbiota (Perlman, 2016). Nevertheless, the genetic and epigenetic similarities and 

differences between mice and humans as well as external factors such as living conditions and diet might 

influence the ability of murine models to represent disease-related changes that occur in humans 

(Nguyen et al., 2015; Perlman, 2016). 

 

 

1.4. The amino acid transporter 4F2/CD98 heavy chain  

The glycoprotein CD98, which was originally termed 4F2 and identified as an activation antigen of 

lymphocytes in 1981 (Haynes et al., 1981), is an integral membrane protein that contains a single-pass 

heavy chain which is covalently linked to a multi-pass light chain via a disulfide bond. CD98 is 

ubiquitously expressed in many cell types and almost all cell lines. Biochemical analysis revealed that 

the glycosylated protein CD98 is a type II transmembrane protein of around 80 kDa (CD98 heavy chain 

(CD98hc)) which is encoded by the gene SLC3A2 for human and Slc3a2 for mouse, and a protein of 

around 37 kDa (CD98 light chain (CD98lc)) encoded by the genes SLC7A5/Slc7a5 (Cantor and 

Ginsberg, 2012; Deves and Boyd, 2000; Nakamura et al., 1999). Initially, CD98hc was also designated 

as fusion regulatory protein (FRP-1) to reflect its function in events of cell fusion, which leads to 

multinucleated giant cells such as osteoclasts (Cantor and Ginsberg, 2012; Mori et al., 2001; Mori et al., 

2004; Tsurudome and Ito, 2000). The glycoprotein CD98 has two known biochemical function (Fenczik 

et al., 2001) in which the CD98hc binds to β1A and β3 integrins, and the CD98lc binds via disulfide 

bonds to the CD98hc (Figure 1.3). The CD98hc-integrin-interaction mediates adhesive signals which 

lead to the control of cell spreading, cell survival, as well as cell growth (Bajaj et al., 2016; Feral et al., 
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2005; Prager et al., 2007). The CD98lc can be one of six several permease-type amino acid transporters. 

The two-best known CD98lc are the large amino acid transporters LAT-1, encoded by SLC7A5/Slc7a5, 

and the LAT-2, encoded by SLC7A8/Slc7a8. LAT-1 and LAT-2 import branched-chain amino acids 

(valine, leucine, isoleucine) and aromatic amino acids (phenylalanine, tryptophan, tyrosine) at the 

plasma membrane (Maeda et al., 2018). Thus, through the exchange of several essential amino acids, 

CD98 contributes to the survival and growth of many different cell types. Furthermore, CD98 is also 

involved in antigen presentation (Tsumura et al., 2012). Importantly, as CD98hc is expressed 

independently, the surface expression of the CD98lc is dependent on the presence of the CD98hc 

(Boulter et al., 2018; Cantor and Ginsberg, 2012; Reynolds et al., 2007; Verrey, 2003).  

 

 

Figure 1.3: Schematic illustration of CD98. Type II transmembrane protein CD98 with a large, heavily glycosylated 

extracellular domain, and a short transmembrane domain and a cytoplasmic tail. Heterodimer of CD98 is formed by disulfide 

bonds between the membrane-proximal section of CD98hc (extracellular domain) and one of at least six possible CD98lc 

(LAT-1 or LAT-2). Integrin signaling of CD98hc is dependent on the transmembrane and cytoplasmic domains. The unusual 

protein CD98 combines functions of adhesive signaling as well as amino acid transport (adapted from: (Cantor and Ginsberg, 

2012)). 

 

Further, as CD98 was first identified in lymphocytes, it has been shown that anti-CD98 antibody or 

CD98 crosslinking have an effect in B and T cell activation and proliferation or has an effector function 

(Komada et al., 2006), by acting as a co-stimulatory receptor. Moreover, CD98 can prevent T-cell-
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mediated autoimmunities, such as type 1 diabetes or multiple sclerosis. Additionally, the glycoprotein 

CD98 is crucial for the clonal expansion of B cells, which raises the opportunity that CD98 might serve 

a therapeutic target to block inappropriate adaptive immune responses (Cantor et al., 2009; Cantor et al., 

2011; Cantor and Ginsberg, 2012).  

 

The glycoprotein CD98 plays a crucial role in gut homeostasis and the intestinal innate immune 

responses (Yadav et al., 2016). IBD has been strongly correlated with increased expression of CD98 in 

humans but also mouse models. Additionally, pro-inflammatory cytokines induce upregulated 

expression of CD98 in intestinal epithelial cells, and CD98 is highly expressed in intestinal immune 

cells such as monocytes and macrophages. Overexpression of CD98hc by intestinal epithelial cells 

induces dysregulated gut homeostasis which leads to exacerbated colitis and colitis-associated cancer 

(Laroui et al., 2014; Nguyen et al., 2011). It has also been shown that the oral administration of 

nanoparticles loaded with CD98hc small interfering RNA attenuates the severity of colitis by decreasing 

CD98 expression in intestinal macrophages and epithelial cells (Xiao et al., 2014). Further, CD98hc-

deficient Treg cells showed impaired proliferation ability (Ikeda et al., 2017). Thus, maintaining low 

levels of CD98 in intestinal epithelial cells and monocytes and macrophages could represent a potential 

therapeutic target for the treatment of IBD by improving the mucosal barrier which further leads to a 

decreased intestinal tissue damage (Yadav et al., 2016). 

 

 

1.5. Aims of the study 

The glycoprotein CD98, which was initially termed 4F2, was first identified in 1981. This type II 

transmembrane protein was originally described as a lymphocyte activation antigen. The glycoprotein 

CD98 contains a heavy chain which covalently links to the light chain via disulfide bonds. CD98hc can 

also bind to integrin β1A and β3 tails which leads to the regulation of integrin activation. As increased 

CD98 expression levels correlate with IBD, this study aims to elucidate the impact of CD98 on intestinal 

mononuclear phagocytes in a colitis-associated mouse model. Therefore, CD98hcflox/flox mice were 

crossed with Cx3cr1CreER mice to obtain CD98hcΔCX3CR1 animals. In the CD98hcΔCX3CR1 mice, the 
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tamoxifen-induced Cre-mediated recombination leads to the knock-out of CD98hc (Slc3a2) in 

CX3CR1+ mononuclear phagocytes. Further, this study shows that the conditional deletion of CD98 in 

CX3CR1+ mononuclear phagocytes in the gut results in the impairment of Ly6Chigh monocytes 

differentiation into macrophages, leading to attenuated colitis. 

 

Aim I – Identification of amino acid transporter CD98hc in colonic mononuclear phagocytes. 

CD98hc and CD98lc expression levels were elucidated in progenitor cells of mononuclear phagocytes 

homing in the mouse bone marrow, in mononuclear phagocytes of the mouse intestine in vivo, and 

CD98hc in BMDMs in vitro. Additionally, immunohistological staining of CD98hc in human colonic 

biopsies was implemented. 

 

 

Aim II – Development of a mouse model to silence the expression of CD98hc in colonic CX3CR1+ 

mononuclear phagocytes. 

A newly generated mouse line, CD98hcΔCX3CR1 mouse, was used in which the tamoxifen-inducible 

Cre/loxP-system leads to the deletion of CD98hc in CX3CR1+ mononuclear phagocytes. Further, the 

kinetics revealed the optimal time frame of the CD98hc deletion in mononuclear phagocytes as well as 

their turnover/replenishment in the gut. 

 

 

Aim III – Analysis of CD98hc deficient colonic mononuclear phagocytes and the impact on the colonic 

monocyte-macrophage development. 

Investigation of CD98hc deletion in steady state as well as under inflammatory conditions highlighted 

the impact of the amino acid transporter on intestinal mononuclear phagocytes. Furthermore, the 

transcriptomic analysis revealed the effect of CD98hc on monocyte differentiation into intestinal 

macrophages. 
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2 METHODS 

2.1. Animals 

C57Bl/6, CD98hcflox/flox, Cx3cr1-GFP (B6.129P2-Cx3cr1tm1Litt/J) and Cx3cr1CreER (B6.129P2(Cg)-

Cx3cr1 tm2.1(cre/ERT2)Litt/WganJ) were bred and maintained under specific pathogen free (SPF) 

conditions in the animal facility of the Department of Biomedicine, University of Basel, 

Basel, Switzerland. Dr. Hideki Tsumura, Division of Laboratory Animal Resources, Nation Research 

Institute for Child Health and Development, Tokyo, Japan, provided cryopreserved CD98hcflox/flox 

embryos (Tsumura et al., 2012). Embryo transfers were conducted in the Center for transgenic animals, 

University of Basel, Switzerland, and a colony of CD98hcflox/flox mice was established. CD98hcflox/flox 

mice were then crossed with Cx3cr1CreER mice and called after that CD98hcΔCX3CR1 mice, in which the 

tamoxifen-inducible, Cre-mediated recombination will lead to the excision of CD98hc (Slc3a2) in 

CX3CR1+ cells. Female and male mice (6–12 weeks of age) were used for the experiments. The local 

animal welfare committee (animal protocol #2854_27600 (Canton Basel Stadt)) approved the 

experiments. All experiments were conducted by following the Swiss Federal and Cantonal regulations. 

 

 

2.2. CD98hc cKO mouse construct 

Dr. Hideki Tsumura and Dr. Morihiro Ito provided cryopreserved CD98hcflox/flox embryos which were 

generated by flanking exon 3 with loxP sites (Figure 2.1). A neomycin selection cassette flanked by an 

Flp site was inserted into intron 3. The CD98hc neo mice were bred onto Flp deleter strain to excise the 

neomycin selection cassette. The CD98hc conditional knock-out mice (CD98hcflox/+) were congenically 

rebred to C57BL/6N for eight generations (Tsumura et al., 2012). 
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Figure 2.1: CD98hc cKO mouse construct (Tsumura et al., 2012) 

 

 

2.3. Patients and study population 

Biopsies from 31 patients with Crohn`s disease (CD) and 31 patients with ulcerative colitis (UC) in 

RNAlater® stabilization solution were received from the Swiss Inflammatory Bowel Disease Cohort 

Study (SwissIBD cohort project 2016-12) and stored at -80oC. This Swiss national cohort of patients 

with inflammatory bowel disease (IBD) was started in 2006 (Pittet et al., 2009). Gastroenterologists 

recruited patients with a diagnosis of CD or UC confirmed by endoscopy, radiology or surgery at least 

four months before inclusion in private practice, regional hospitals, and tertiary centers participating in 

the SwissIBD cohort study. Exclusion criteria were other forms of colitis or ileitis, no permanent 

residency in Switzerland or when informed consent was not admitted. Patients with active IBD 

ileocolonoscopic was performed to assess the activity of the disease and to rule out complications of the 

course of the disease. Patients with quiescent IBD surveillance ileocolonoscopic were carried out. 

Biopsies were taken from segments that appeared macroscopically inflamed. Table S1 gives detailed 

patient`s characteristics. The biopsies used for immunofluorescence were obtained from the inflamed 



17 

 

and non- inflamed regions of patients from the Basel IBD cohort. Patient characteristics are given in 

Table S2 (ethic protocol EKBB 139/13 (PB 2016.02242) (Ethics Committee for Northwest and Central 

Switzerland (EKNZ))). 

 

 

2.4. CD98 silencing 

Tamoxifen (Free Base, MP Biomedicals) was dissolved in corn oil at a concentration of 20 mg/ml 

overnight at 37°C (shaking) and protected from light. The dissolved tamoxifen was stored at 4°C 

(protected from light stable up to one month). 75 mg tamoxifen/kg body weight were i.p. injected for 

five consecutive days into CD98hcflox/flox x Cx3cr1CreER mice to activate the Cre-recombinase which leads 

to the silencing of CD98hc. Control CD98hcflox/flox x Cx3cr1CreER mice received the carrier corn oil 

without tamoxifen. 

 

 

2.5. Nutrition of CD98hcflox/flox and CD98hcΔCX3CR1 mice 

Mice were fed by the mouse and rat chow #3436 (extrudate), produced by Granovit AG, Switzerland, 

which is the standard chow of the Department of Biomedicine (DBM), University Basel, Basel, 

Switzerland. For the experiments described in 3.3, 5%/kg more L-leucine and 5%/kg more L-isoleucine 

was supplemented to the standard chow. Mice were fed with the amino acid enriched diet 4 weeks in 

advance before starting the experiments and during the experiments. 

 

 

2.6. Isoflurane anesthesia 

Mice were anesthetized with the inhalation narcotic isoflurane for the collection of the liver. For 

induction of narcosis, mice were placed in a narcosis chamber that was flooded with 2-3% isoflurane in 

oxygen at 1-2 l/min. Anesthesia was confirmed by assuring a decrease in the respiration rate and by 
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testing for the absence of the pedal withdrawal reflex. For hepatectomy, anesthetized mice were placed 

under a mask with isoflurane flow as described above. 

 

 

2.7. Euthanasia 

Individual animals were euthanized by isoflurane overdose (5% isoflurane in oxygen, at 1-2 l/min), 

followed by exsanguination. Larger groups of animals were euthanized with CO2 by flooding a 

euthanasia chamber with CO2 at 2 l/min. Death of animals was confirmed by controlling for a color 

change of the eyes and the absence of respiratory movements, palatable heartbeat, and response to a toe 

pinch.  

 

 

2.8. Dextran Sodium Sulfate induced colitis 

Dextran Sodium Sulfate (DSS; 1.5 to 2.5%; MW: 36,000–50,000) was added to the drinking water of 

co-housed, weight-matched female (6–12 weeks of age) for five days. DSS containing water was sterile 

filtered before it was given to the animals. On day 5, DSS in drinking water was exchanged by regular 

drinking water to induce recovery from colitis. Mice were daily monitored for clinical signs of colitis as 

described in section 2.9. The variation of DSS concentrations resulted due to the different Lot-Numbers 

of the product.  

 

 

2.9. Clinical colitis score 

Clinical signs of colitis were observed by using the following scores (Steinert et al., 2017): rectal 

bleeding: 0 - absent, 1 - bleeding; rectal prolapses: 0 - nil, clear prolapse - mice euthanized; stool 

consistency: 0 - normal, 1 - loose stools, 2 - diarrhea; position: 0 - normal movement, 1 - reluctance to 

move, 2 - hunched position; appearance of the fur: 0 - normal appearance, 1 - ruffled fur, 2 - spiky fur; 

weight loss: 0 – no loss, 1 - body weight loss 0-5%, 2 - body weight loss >5 - 10%, 3 - body weight loss 



19 

 

> 10 - 15%, 4 - body weight loss > 15%. Once per day the blinded investigator observed the animals. If 

the total score was ≥ 4, the animals were monitored twice per day. The respective animal was euthanized, 

when the total score was ≥ 6, when an individual animal lost > 15 % body weight, when gross bleeding 

occurred, or when rectal prolapse was noted. 

 

 

2.10. Isolation of bone marrow cells 

After the preparation of femurs and tibias, connective tissues and muscles were removed from femurs 

and tibias, and the bones were opened at the epiphysis. A syringe with a 25-gauge needle was placed 

into the ends of the opened femurs and tibias. Bone marrow cells were flushed out with RPMI 1640 

medium. The collected cells were passed through a 70 μm cell strainer to remove cell clumps and bone 

fragments. Cells were pelleted by centrifugation. The cells were counted and processed for in vitro 

cultures (bone marrow-derived macrophages - BMDMs) or for flow cytometry analysis. 

 

 

2.11. Colonic lamina propria cell isolation 

The isolated colon was opened longitudinally and washed with PBS to remove debris and mucus. The 

intestinal epithelium was removed by incubation in 5 mM EDTA in Ca2+/Mg2+-free PBS at 37°C under 

gentle shaking for 10 min for a total of three incubations. After every incubation cycle, the tubes were 

vortexed for 30 s, and the tissue pieces were transferred into fresh EDTA/PBS. The colon was washed 

in PBS to remove residual EDTA. The tissue was cut as small as possible and digested with 0.5 mg/ml 

Collagenase type VIII and 10 U/ml DNase in RPMI 1640 for 20-25 min at 37°C in a water bath with 

continuous shaking (200 rpm). Every 5 min, the tubes were manually vortexed for 30 s. Supernatants 

were collected and passed through a 70 mm cell strainer, and cLP cells were pelleted by centrifugation. 

The cells were counted and processed for flow cytometry analysis. 
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2.12. Yolk sac cell isolation 

The yolk sac (YS) was harvested from embryos at E8.5. Embryos were exsanguinated through 

decapitation in PBS containing 3% FCS. To obtain a single-cell suspension, the YS was incubated in 

RPMI 1640 medium containing 1 mg/ml collagenase type VIII, 100 U/ml DNase I and 3% FCS at 37°C 

for 30 min. The digested YS was poured through a 70 µm cell strainer, and erythrocytes were lysed (3–

5 min at RT with Tris-Lysing buffer). Cells were counted and processed for flow cytometry analysis. 

 

 

2.13. Liver perfusion and liver cell isolation 

The portal vein of an anesthetized (Isoflurane) animal was punctured with a 25-gauge needle. The liver 

was perfused with 10 ml liver perfusion medium followed by 5 ml liver digest medium after cutting the 

lower vena cava. After removing the gallbladder, the liver was placed into a petri dish and cut into small 

pieces. The tissue pieces were transferred into a 50 ml tube containing 5 ml liver digest medium and 

digested for 30 min at 37°C. Afterward, the digested tissue was poured and mashed through a metal cell 

strainer to remove connective tissue and centrifuged for 5 min and 500 rpm at RT. The supernatant 

(solution A) and pellet (solution B) were separated into two tubes. The solution A was centrifuged for 5 

min and 1,400 rpm at RT. To solution B 40 ml PBS was added and centrifuged for 5 min and 500 rpm 

at RT. The supernatant from solution A was discarded and the supernatant form solution B was added 

to the pellet of solution A. After centrifugation for 5 min and 1,400 rpm at RT, the supernatant was 

discarded, and the pellet frothed up with 3 ml of PBS/2% FBS supplemented with 0.1% w/v sodium 

azide and 10 mM EDTA and 3.5 ml 70% Percoll to obtain the ‘Cell-Percoll-Suspension'. A Percoll 

gradient was prepared and centrifuged for 20 min and 2,000 rpm without break. The fat layer on the top 

has been removed, and the interphase which contains the lymphocytes and erythrocytes as well as the 

whole upper liquid phase to increase the cell yield were collected. After the erythrocytes were lysed (3–

5 min at RT with Tris-Lysing buffer), the cells were counted and processed for flow cytometry analysis. 
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2.14. Langerhans cell isolation 

After cutting off the mouse ears, the ears are divided into dorsal and the ventral halves, from which the 

cartilage is removed with forceps. The ears were then placed dermal side down onto PBS containing 2.5 

mg/ml dispase II and were incubated for 2 hours at 37°C. The dissociated epidermal sheets are placed 

in stop medium (2% FCS in PBS) and further transferred into a 50 ml tube with 20 ml RPMI 1640 

medium containing 10% FCS and supplemented with 0.05mM 2-mercaptoethanol (2-ME), 100 U/ml 

penicillin, and 100 mg/ml streptomycin. To release the Langerhans cells, the tube was gently shaking 

for 30 min at 37°C in a water bath. The remaining epidermal pieces and cell suspension were filtered 

through a 70 µm cell strainer and cells pelleted by centrifugation. The cells were counted and processed 

for flow cytometry analysis. 

 

 

2.15. Bone marrow-derived macrophages 

Murine bone marrow cells were cultured in 6-well plates in RPMI 1640 medium containing 10% FCS 

and supplemented with 0.05 mM 2-ME, 100 U/ml penicillin and 100 µg/ml streptomycin. Macrophages 

were generated by adding 20 ng/ml M-CSF. After seven days, macrophages were either stimulated with 

100 ng/ml Lipopolysaccharide (LPS) from Escherichia coli O111:B4 (Sigma) and 10 ng/ml 

recombinant mouse IFN-γ or with 10 ng/ml recombinant mouse IL-4 and 10 ng/ml recombinant mouse 

IL-13 for 6 hours before cells were analyzed. RT-qPCR was used for the characterization of LPS + IFN-

γ or IL-4 + IL-13 stimulated BMDMs by specific primer sequences for the amplification of Actb (Actin-

β), Tnf, iNos, Il-6, Mcp-1, Il-6, Il-1β, Kc, Chil3, Retnla1, Mrc1, Mgl1, and Il-10, which are listed in 

Table S3. For in vitro CD98 silencing tamoxifen dissolved in DMSO (Roth) was added into the culture 

during the macrophage generating and during LPS + IFNγ or IL-4 + IL-13 stimulation or D-

phenylalanine was added 1 hour prior and during LPS + IFNγ or IL-4 + IL-13 stimulation. 
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2.16. Surface staining for flow cytometry 

Following cell isolation, cells were counted and distributed at 0.5-2.0 x 106 cells per well to 96-well V-

bottom plates. The cells were pelleted (600 RCF for 2 min), the supernatant flicked off, and the cells 

were washed with PBS. Subsequently, to exclude dead cells from the analysis, the cells were incubated 

with 100 μl of a fixable viability dye diluted in PBS. Simultaneously, a mAb (Clone 93) directed against 

the FcRIII/II CD16/CD32 (0.5 µg mAb/106 cells) was added to prevent the unspecific binding of mAbs, 

which were used for cell labeling in consecutive steps, to Fc receptors, and incubated for 20 min at 4°C. 

Cells were washed in PBS/2% FBS supplemented with 0.1% w/v sodium azide and 10 mM EDTA, 

incubated with the relevant mAb for 20 min at 4°C and washed again twice. When primary antibodies 

were biotin-coupled antibodies, cells were incubated with fluorescently labeled streptavidin for 20 min 

at 4°C. Data were acquired with the BD LSRFortessaTM X-20 flow cytometer and analyzed using FlowJo 

software version 10.5.3. Cell sorting was carried out with the BD FACSAria™ III equipment. In all 

experiments, forward scatter (FSC)-H versus FSC-A was used to gate on singlets, with dead cells 

excluded, and CD3, CD19, NK1.1, Ly6G, and Ter119 expressing cells were removed from further 

analysis. Table S4 lists the utilized antibodies. In cases when the acquisition was not conducted on the 

same day, cells were fixed with 4% formalin solution for 15 min in the dark at RT, washed twice, and 

stored in FACS buffer for acquisition within the following three days.  

 

 

2.17. Intracellular staining of cytokines 

In order to detect cytokine production in DSS-induced colitis of tamoxifen- or corn-oil-treated animals, 

up to 2.0 x 106 freshly isolated cells were seeded into 96-well V-bottom plates and washed once with 

FACS buffer. Following viability and surface staining, cells were fixed and permeabilized for 20 min at 

4°C with 100 µl per well BD Cytofix/Cytoperm solution. Afterward, cells were washed twice with BD 

Perm/Wash buffer and then incubated with dilutions of the relevant antibodies shown in Table S5 in 50 

μl Perm/Wash buffer. After 20 min of incubation at 4°C, cells were washed twice and either resuspended 

in FACS buffer for acquisition on the same day or fixed with Cytofix/Cytoperm solution for a second 

time to allow for acquisition within the following three days. 
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2.18. Endoscopy 

After anesthetizing the mice by intraperitoneal injection of 200 µl anesthetic solution containing 1 

mg/ml xylazine (Xylazin Streuli ad us. vet., injection solution) and 100 mg/ml ketasol (Ketasol®-100 

ad us. vet., injection solution) in sterile PBS, the distal 3 cm of the colon and the rectum were examined 

with a tele pack vet X LED RP100 endoscope (Karl Storz).  

 

 

2.19. Tissue embedding in paraffin 

Tissue sections of approximately 0.5 cm length were taken from the colon of healthy or diseased mice 

and directly placed in 1 ml 4% formalin in a 1.5 ml reaction tube. The tissue samples were fixed for a 

minimum of 48 hours at RT, washed once with PBS, and stored in 70% ethanol at 4°C until further 

usage. For dehydration and embedding, the fixed tissue was transferred into histology cassettes. 

Dehydration was performed by submerging the samples in increasing concentrations of ethanol: 70% 

ethanol for 2 x 30 min, 96% ethanol for 2 x 30 min, and 100% ethanol for 2 x 30 min. The ethanol was 

then cleared by incubation in xylene for 2 x 1 hour. Afterward, the tissues were infiltrated with melted 

paraffin for 1 hour at 60 °C. After a second infiltration step in melted paraffin overnight, the tissue 

samples were embedded in paraffin blocks. 

 

 

2.20. H&E staining and histological colitis score 

Colonic tissue was fixed in 4 % formalin and embedded in paraffin blocks. Six-micrometer sections 

were prepared using an electronic rotary microtome (Thermo Fisher Scientific). Before Hematoxylin 

and Eosin (H&E) staining, the glass slides containing the sections were incubated for 10 - 20 min at 

60°C to bond the tissue to the glass and to melt the paraffin. All of the following steps were conducted 

by submerging the glass slides in the appropriate chemicals filled into cuvettes. First, the tissue sections 

were deparaffinized in xylene I (2 min), and xylene II (5 min). Second, the sections were rehydrated in 

a decreasing ethanol row: 100% ethanol I (2 min), 100% ethanol II (5 min), 96% ethanol I (2 min), 96% 
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ethanol II (5 min), 70% ethanol (2 min), 50% ethanol (2 min), and finally A. dest. (3 min). Third, sections 

were stained with Mayer's hematoxylin solution (5 – 10 s) and differentiated under flowing tap water (2 

min) before staining with 1% eosin (45 – 60 s). Afterward, the sections were washed with A. dest. I, and 

II (2 min each) and dehydrated with 90% ethanol I (2 min), 90% ethanol II (2 min), 100% ethanol I (2 

min), and 100% ethanol II (5 min). In the last steps, the sections were cleared in xylene I (2 min), and 

xylene II (2 min) before mounting with mounting medium. Images of H&E stained sections were 

acquired with an Olympus BX63F (Olympus) microscope and processed with cellSens Dimension 

software (Olympus). 

 

 

2.21. Histological assessment  

Histological features of colonic inflammation was scored with a previously published scoring system 

(Souza et al., 2017): extent of destruction of normal mucosal architecture (0: normal; 1: mild; 2: 

moderate; 3: extensive damage), presence and degree of cellular infiltration (0: normal; 1: mild; 2: 

moderate; 3: transmural infiltration), extent of muscle thickening (0: normal; 1: mild; 2: moderate; 3: 

extensive thickening), presence or absence of crypt abscesses (0: absent; 1: present), and the presence 

or absence of goblet cell depletion (0: absent; 1: present). Each feature score was summed up to a 

maximum possible score of 11. Histological scores were assessed by two independent investigators in a 

blinded fashion and for each animal, the mean histological score was determined. 

 

 

2.22. Immunohistochemistry and immunofluorescence 

Cryopreserved biopsies of patients with CD or with UC embedded in Tissue-Tek O.C.T. compound 

were acquired from the Basel IBD cohort. Immunohistochemistry (IHC) was performed on six-µm 

sections using a polyclonal rabbit anti-human CD98hc. Primary antibody binding was detected with an 

Alexa Flour 647 goat anti-rabbit IgG secondary antibody. The six-µm sections from cryopreserved 

mouse tissues were fixed in 4% formalin for 15 min at RT. Afterward, sections were blocked with goat 

serum in DPBS/0.4% Triton-X-100 for 30 min and stained with the primary monoclonal rabbit anti-
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mouse CD98 mAb overnight in a humidified container at 4°C. Primary antibody binding was detected 

with an Alexa Flour 647 goat anti-rabbit IgG secondary antibody. Sections were counterstained with 

NucBlueTM Live Cell Stain Ready ProbesTM reagent and imaged with a Nikon A1R Nala confocal 

microscope.  

 

 

2.23. Genotyping of CD98hcflox/flox and CD98hcΔCX3CR1 mice 

The determination of mouse genotypes has been done by taking toe clippings from mice of less than 

three weeks of age. The biopsies were digested with 0.4 mg/μl Proteinase K (Roche) in 100 μl 

DirectPCR (Tail) (Viagen Biotech) overnight at 56°C in a PCR cycler. Afterward, the enzyme was heat 

inactivated at 85°C for 45 min. Two separate PCR reactions amplified the CD98hcflox/flox and the 

CD98hcΔCX3CR1 gene locus in order to genotype the transgenic mice. The DreamTaq PCR Master Mix 

(2x) (Thermo Fisher Scientific) was used in 25 μl reactions, and in accordance with manufacturer's 

instructions with 1 μl of the digested tissue, and the appropriate forward and reverse primers shown in 

Table S6 in a final concentration of 0.6 µM for CD98hcflox/flox or 1.2 µM for CD98hcΔCX3CR1 per primer 

sequence. The following conditions were used for the DNA amplification in a PCR thermocycler 

(Biometra): 

 

CD98hcflox/flox 

Initial Denaturation  95°C  5 min 

Denaturation   95°C  60 s 

Annealing   55°C  30 s  40 cycles 

Elongation   72°C  45 s 

Final elongation  72°C  10 min 
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CD98hcΔCX3CR1 

Initial Denaturation  95°C  3 min 

Denaturation   95°C  30 s 

Annealing   60°C  30 s  35 cycles 

Elongation   72°C  2 min 

Final elongation  72°C  10 min 

 

The samples were cooled at 4 °C for short term storage. The amplified DNA fragments were separated 

by gel electrophoresis in a 2% agarose gel, and prepared and run in TRIS-acetate-EDTA (TAE)-buffer 

for 60 min at 80 V. For the visualization of the DNA fragments under UV light nuclear dye RedSafeTM 

was added during the preparation of agarose gels. A typical result of CD98hcflox/flox and CD98hcΔCX3CR1 

mice is given in Figure 2.3 

 

 

Figure 2.3: Genotyping of CD98hcflox/flox and CD98hcΔCX3CR1. Product size CD98hcflox/flox: Flox: ∼ 600bp; Wild: ∼ 400bp. 

Product size CD98hcΔCX3CR: Wild: ∼ 695bp; Mutant: ∼ 300bp. 
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2.24. RNA isolation from cells and tissues 

RNA was extracted from indicated tissues or cells by guanidinium thiocyanate-phenol-chloroform 

extraction. The samples were lysed in TRI-Reagent (ZymoResearch). Cells were lysed by repetitive 

pipetting, and tissues were homogenized using 2.0 ml Lysing Matrix D tubes (1.4 mm ceramic beads) 

with a FastPrep-24 5G Instrument (MP Biomedicals) at speed 6 for 30 – 60 s. Then, 200 μl chloroform 

per milliliter of TRI-reagent was added to the lysed sample, mixed vigorously, and incubated for 2-3 

min at RT to isolate the RNA. After centrifugation for 15 min at 12,000 RCF and 4°C, the RNA-

containing aqueous phase was transferred into 500 μl cold isopropanol and incubated for 10 min to allow 

precipitation of the RNA. The precipitated RNA was pelleted at 12,000 RCF and 4°C for 10 min, the 

supernatant was discarded, and the RNA pellet was washed with 1 ml ice-cold 75% ethanol. 

Subsequently, the washed RNA pellet was centrifugation at 7,500 RCF and 4°C for 5 min. The ethanol 

supernatant was carefully removed, and the pellet air-dried for ∼ 5 min. The RNA was dissolved in 20 

µl nuclease-free water and incubated in a heat block at 55°C for 10 min. The NanoDrop 2000 (Thermo 

Fisher Scientific) was used for the spectrophotometric measurement at 260/280 nm to determine the 

RNA concentration. Contaminating DNA was removed with the TURBO DNA-freeTM Kit (Invitrogen) 

according to the manufacturer’s instructions. 

 

 

2.25. RNA isolation from DSS-treated animals 

Samples from the intestine of DSS-treated mice were purified by spin-columns to ensure complete 

removal of DSS residues from the RNA preparations. Therefore, the RNA was extracted with the 

DirectZol Miniprep Kit including the provided on-column DNase treatment (Zymo Research) after the 

guanidinium thiocyanate-phenol-chloroform extraction described in 2.24. The procedure has been done 

according to the manufacturer recommended user manual. 
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2.26. Reverse transcription 

To reverse-transcribe, the DNase-treated RNA into cDNA, the MultiScribeTM Reverse Transcriptase Kit 

(Applied Biosystems) was used. The procedure has been done according to the manufacturer 

recommended user manual. 

 

 

2.27. Gene expression analysis 

The determination of the gene expression has been performed by qPCR with gene-specific primers. The 

used mouse/human primer sequences for the amplification of Gapdh/GAPDH (glyceraldehyde 3-

phosphate dehydrogenase), Actb (Actin-β), Il1β, Il6, Il10, Tnf, Slc7a5, Slc7a6, Slc7a7, Slc7a8, Slc7a10, 

Slc7a11, Il19, IFNγ, Chil3, Mgl1, Mcp-1, Mrc1, Retnla, iNos, Kc, SLC3A2, and SLC7A5 are listed in 

Table S3. qPCR was carried out using the SsoFast™ EvaGreen® Supermix (Bio-Rad Laboratories) 

according to the manufacturer recommended user manual. The PCR-reactions were run as a 10 μl 

reactions in 384-well plates on a ViiA 7 Real-Time PCR System (Applied Biosystems). 15 ng – 25 ng 

of cDNA was used per reaction. To determine the relative gene expression, the cycle threshold (Ct) 

values computed by the ViiA7 Software v1.2 (Applied Biosystems) was used. Normalization of a gene 

of interest to the housekeeping genes Gapdh or Actb was calculated by the 2-ΔCt method. All reactions 

were run in triplicates, and the mean 2-ΔCt was calculated for each gene. Genes with a Ct-values > 35 

were considered to be below the detection limit. The smallest possible 2-ΔCt value of the detection limit 

of an experiment was used for the graphical presentation of gene expression data on a logarithmic scale. 

This value is defined as ΔCt (detection limit) = ΔCtmax (gene of interest) – ΔCtmin (housekeeping gene), 

where ΔCtmax (gene of interest) equals 35, and where ΔCtmin (housekeeping gene) is the smallest Ct value 

of a housekeeping gene observed in the specific experiment. 
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2.28. Single-cell RNA-sequencing 

Initial data analysis was supported by Dr. Julien Roux, Department of Biomedicine, University of Basel, 

Basel, Switzerland. 

 

For single-cell RNA-seq, lamina propria cells positive for Ccr2 and/or Cd64 were sorted from 4 control 

mice and 4 induced CD98hcCX3CR1 mice and counted. Cell suspensions volumes aiming at a targeted 

recovery of ~ 3,000 cells were loaded on the wells of a 10× Genomics Chromium Single Cell Controller 

(one well per mouse replicate). Single-cell capture, and cDNA and library preparation were performed 

with a Single Cell 3’ v2 Reagent Kit (10× Genomics) according to manufacturer’s instructions. 

Sequencing was performed on one flow-cell of an Illumina NexSeq 500 machine at the Genomics 

Facility Basel of the ETH Zurich. Paired-end reads were obtained, and their quality was assessed with 

the FastQC tool (version 0.11.5). The length of the first read was 26-mers, composed of individual cells 

barcodes (16nt) and molecular barcodes (unique molecular identifiers; 10nt). The length of the second 

read, composed of the transcript sequence, was 58-mers. The samples in the different wells were 

identified using sample barcodes of 8nt. Sequencing files were processed with the Cell Ranger software 

(version 2.1.0, provided by 10× Genomics and available at https://support.10xgenomics.com/single-

cell-gene-expression/software/downloads/latest) to perform sample and cell demultiplexing, read 

alignment to the mouse mm10 genome assembly with STAR, and to generate read count table. Default 

settings and parameters were used, except for the version of STAR updated to 2.5.3a, and the STAR 

parameters outSAMmultNmax set to 1 and alignIntronMax set to 10000. The reference transcriptome 

“refdata-cellranger-mm10-1.2.0”, provided by 10× Genomics and based on Ensembl release 84 (Zerbino 

et al., 2018), was used (available at c http://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-

mm10-1.2.0.tar.gz). Because the mouse strain includes a fluorescent reporter gene, a generic EYFP 

sequence obtained from https://www.addgene.org/browse/sequence_vdb/6394/ was added to the 

reference transcriptome before mapping. Samples were merged with the “cellranger aggregate” 

procedure without downsampling.  

 

https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
http://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-mm10-1.2.0.tar.gz
http://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-mm10-1.2.0.tar.gz
https://www.addgene.org/browse/sequence_vdb/6394/
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Further analysis was performed starting from the unique molecular identifiers (UMI) counts matrix 

using the scran (version 1.8.4) and scater (version 1.8.4)(McCarthy et al., 2017) Bioconductor packages, 

following mostly the steps illustrated in the simpleSingleCell Bioconductor workflow (version 1.2.1) 

(Lun et al., 2016). 

 

Based on the clearly bimodal distributions observed across cells, cells with log10 library sizes less than 

2.8 (i.e., a minimum of 630 reads), with log10 total number of features detected less than 2.6 (i.e., a 

minimum of 399 genes detected), with more than 5% of UMI counts attributed to the mitochondrial 

genes (Ilicic et al., 2016), or with any read attributed to the Hemoglobin genes were filtered out. Low-

abundance genes with average log2 CPM (counts per million reads) values lower than 0.005 were filtered 

out. The resulting filtered dataset included expression values for 11,947 genes for 3,213 cells, ranging 

from 83 to 724 cells per sample, for a total of 1,863 control cells, and 1,350 CD98 cKO cells. An average 

of 1,645 genes was detected per cell. 

 

The raw UMI counts were normalized with the size factors estimated from pools of cells to avoid the 

dominance of zeros in the matrix (Lun et al., 2016; Vallejos et al., 2017). A mean-dependent trend was 

fitted to the variances of the log expression values of endogenous genes to distinguish between genuine 

biological variability and technical noise (Brennecke et al., 2013), under the assumption that most genes 

are not differentially expressed across cells, and their variance is mainly technical (trendVar function of 

the scran package with loess trend and span of 0.05 to better fit the sparse data). The fitted technical 

noise was subtracted, and the residual “biological” component of the gene variance was used to denoise 

the PCA with the denoisePCA function of the scran package. A t-stochastic neighbor embedding (t-

SNE) was built with a perplexity of 30 using the top 500 most variable genes and the denoised expression 

matrix as input. 

 

Clustering of cells into putative subpopulations was done on normalized log-counts values using 

hierarchical clustering on the Euclidean distances between cells (with Ward’s criterion to minimize the 

total variance within each cluster; package cluster version 2.0.7-1). The clusters of cells were identified 
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by applying a dynamic tree cut (package dynamicTreeCut, version 1.63-1), which resulted in 9 clusters. 

Marker genes specific for each cluster were identified with the findMarkers function of the scran 

package, which fits a linear model to the expression values for each gene using the limma framework. 

Differential expression between cKO and control cells stratified by differentiation stage was performed 

by summing the UMI counts of cells from each sample in each cluster when at least 20 cells could be 

aggregated. This resulted in a total of 32 aggregated samples, and at least 3 replicates per condition for 

each cluster. The genes were filtered to keep those with CPM (counts per million reads sequenced) 

values higher than 1 in at least 3 samples and detected in at least 20 individual cells. The aggregated 

samples were then treated as bulk RNA-seq samples (Lun and Marioni, 2017): the package edgeR 

(version 3.24.2) (Robinson et al., 2010) was used to perform TMM normalization (Robinson and 

Oshlack, 2010), and to test for differential expression with the Generalized Linear Model (GLM) 

framework. Genes with a false discovery rate lower than 5% were considered differentially expressed. 

Gene set enrichment analysis was performed with the function camera (Wu and Smyth, 2012) using the 

default parameter value of 0.01 for the correlations of genes within gene sets, on gene sets from the 

Hallmark collection (Liberzon et al., 2015) of the Molecular Signature Database (MSigDB, version 6.0) 

(Subramanian et al., 2005). We considered only sets containing more than 10 genes and gene sets with 

a false discovery rate lower than 5% were considered significant. 

 

Following (Duò et al., 2018) the building of a self-organizing map (SOM) and its minimal spanning tree 

was performed using the FlowSOM Bioconductor package (version 1.14.0) (Van Gassen et al., 2015), 

using the 30 first principal components of the denoised PCA as input, and a 9×9 grid. 

Two-dimensional cell densities were calculated with the kde2d function of the MASS package (version 

7.3-50). Differential cell densities on pairs of principal components were calculated as the log2 of the 

ratio of the density of cKO cells over the density of control cells (after a prior count of 1e-03 was added 

to the density estimates) 

 

Remaining statistical analysis on the expression dataset analysis and plotting were performed using the 

R software (version 3.5.1).  
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The scRNA-seq dataset is available in the GEO database under accession GSE126574. The data are 

available under the following link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126574 

Data will be private until the submitted manuscript is accepted. 

 

 

2.29. Quantitative determination of nitrite and nitrate 

The Nitric Oxide Assay Kit (Invitrogen) was used to determine nitrite and nitrate in BMDMs culture 

supernatant of non-stimulated, LPS + IFNγ, and IL-4 + IL-13 stimulated macrophages. The procedure 

has been done according to the companies recommended user manual. Data were acquired with the 

BioTekTM SynergyTM H1 Hybrid Multi-Mode All Detection Modes Microplate Readers. 

 

 

2.30. Statistics 

The data were analyzed with GraphPad Prism software (version 7.03) and are presented as dot plots in 

which the median of each experimental group is presented in addition to the individual samples. 

Statistical significance was calculated using the Mann–Whitney U test for two groups or using the 

Kruskal–Wallis test followed by the Dunn's correction test for multiple comparisons. When the data are 

presented as a time course, the arithmetic means ± standard deviation (SD) is shown. Statistical 

significance was calculated using two-way ANOVA with the Sidak's correction. Outliers were identified 

with the Grubb test during the analysis of data acquired from samples from the Swiss IBD Cohort only. 

The p-values are indicated as follows: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001. 

 

  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126574
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3 RESULTS 

3.1. High CD98hc expression by colonic lamina propria macrophages and their 

progenitors 

Recent reports suggested that the overexpression of CD98hc by intestinal epithelial cells leads to more 

severe colitis and colitis-associated cancer (Nguyen et al., 2011), and the oral administration of 

nanoparticles loaded with CD98 small interfering RNA attenuates the severity of colitis. The cellular 

uptake of these nanoparticles leads to a decreased CD98 expression by intestinal macrophages and 

epithelial cells (Xiao et al., 2014). Nevertheless, the expression levels of CD98 by intestinal 

macrophages and their progenitors have not been studied to date in detail. The first aim of the study was 

to define CD98 expression levels by the monocyte-macrophage dendritic cell progenitors (MDP), the 

common monocyte progenitors (cMoP), and the monocytes (Mo) in the bone marrow (BM) (Hettinger 

et al., 2013). Therefore, flow cytometry was used to analyze BM cells from unmanipulated mice. The 

BM cells could be distinguished in Lin- (CD3, CD19, NK1.1, Ly6G, Ter119) CD115+ CD117+ CD135+ 

Ly6C- CD11b- MDPs, in Lin- CD115+ CD117+ CD135- Ly6C+ CD11b- cMoPs, and in Lin- CD115+ 

CD117+ CD135+ CD11b+ monocytes, which could be further discriminated in Ly6Chigh, Ly6Cmid, and 

Ly6Clow monocytes (Figure 3.1A). About all the cells of MDPs, cMoPs, and Ly6Chigh monocytes were 

CD98 positive. The Ly6Cmid and Ly6Clow monocytes reveal a slight decrease in CD98 positive cells, 

which is also shown by the median fluorescence intensity (MFI) (Figure 3.1B and 3.1C). Furthermore, 

t-distributed stochastic neighbor embedding (t-SNE) analysis visualizing the highly complex multi-

dimensional flow cytometry dataset, showed the distribution of the different characterized cell 

populations in the BM. These different t-SNE clusters were also positive for the CD98 (Figure 3.1D). 

The major cLP macrophages originate from the extravasation of Ly6Chigh blood monocytes into the cLP. 

These cells pass through the well described ‘monocyte waterfall’ during the differentiation phase into 

intestinal macrophages (Schridde et al., 2017). The cLP cells can be distinguished in Lin- CD11b+ 

CCR2+, and in Lin- CD11b+ CD64+ populations. The CCR2+ population exhibit the ‘monocyte waterfall’ 

from Ly6Chigh MHC II- via Ly6Cmid MHC II+, towards to Ly6Clow MHC II+ subpopulations, which 

correspond to extravasated blood monocytes. The CD64+ population exhibit two subpopulations, which 

are either Ly6Clow MHC II- or Ly6Clow MHC II+. These subpopulations have typical features of tissue 
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macrophages (Tamoutounour et al., 2012) (Figure 3.1E). The distinct subpopulations of the cLP showed 

high CD98 expression level and the CD98 MFI was not significantly impaired (Figure 3.1F and 3.1G). 

Also, the t-SNE clusters of the colonic mononuclear cells could confirm the high CD98 expression of 

the monocyte and macrophage subpopulations (Figure 3.1H). 

 

 

Figure 3.1: Monocytes, Macrophages, and their progenitors express CD98. Bone marrow cells were isolated from C57Bl/6 

wild type (WT) mice. Monocyte and dendritic cell progenitors (MDP), common monocyte progenitors (cMoP) and monocytes 

were analyzed for CD98 expression. (A) After gating on viable, and lineage negative cells (CD3, CD19, NK1.1, Ly6G, Ter119), 
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MDPs were identified as CD115+, CD117+, CD135+, Ly6C-, and CD11b- cells. cMoPs were defined as CD115+, CD117+, 

CD135-, Ly6C+, and CD11b- cells, and monocytes characterized as CD115+, CD117-, CD135-, and CD11b+ cells with Ly6Chigh, 

Ly6Cmid, and Ly6Clow expression. (B) Expression and (C) median fluorescence intensity (MFI) of the glycoprotein CD98 by 

indicated monocytes and their progenitors. Red histograms represent the fluorescence minus one (FMO) control, blue 

histograms represent CD98 stained cells. Numbers in histogram plots indicated the percentage of CD98+ cells. Each dot 

represents one animal; the mean is indicated. The data were analyzed by Kruskal-Wallis test followed by Dunn’s correction. 

*p<0.05, ***p<0.001. (D) t-distributed stochastic neighbor embedding (t-SNE) of CD98 expression by indicated bone marrow 

cells. Colonic lamina propria cells were isolated from WT animals, and CD98 expression determined by monocytes, their 

intermediates, and macrophages. (E) After gating of viable cells and lineage exclusion (CD3, CD19, NK1.1, Ly6G, Ter119), 

CD11b+ cells were identified. CCR2/CD64 dot plots were obtained by gating on CD11b+ cells to discriminate CCR2+ 

monocytes (Mo) from CD64+/CCR2- macrophages (Mφ), which were further distinguished by Ly6C and MHC class II staining.  

(F) Expression and (G) MFI of CD98 of indicated populations. FMO controls are indicated by red histograms, blue histograms 

indicate CD98 stained cells. Numbers in histogram plots indicated the percentage of CD98+ cells. Each dot represents one 

animal; the mean is indicated. (H) t-SNE shows the distribution of CD98+ clusters in colonic lamina propria. 

 

The glycoprotein CD98 is a disulfide-bonded heterodimeric complex composed of the genes SLC3A2 

for human and Slc3a2 for mice and SLC7A5/Slc7a5 which is also known as the large neutral amino acid 

transporter (LAT1). The 4F2hc/CD98 heavy chain of the LAT1 is encoded by the SLC3A2 and the 

CD98 light chain by the SLC7A5. This membrane transporter protein preferentially transports branched-

chain (valine, leucine, isoleucine) and aromatic (tryptophan, tyrosine) amino acids (Nicklin et al., 2009). 

Thus, the expression levels of the amino acid transporters in the cLP of unmanipulated as well as colitic 

mice were assessed. Consequently, chosen known amino acid transporters such as Slc7a5, Slc7a6, 

Slc7a7, Slc7a8, Slc7a10, and Slc7a11 were analyzed. The amino acid transporters Slc7a5, Slc7a7, and 

Slc7a10 carry neutral branched and aromatic amino acids into the cell, the Slc7a6 and Slc7a8 transport 

cationic amino acids through the cell membrane, and the Slc7a11 is an antiporter of cysteine and 

glutamate. All amino acid transporters are highly expressed in the cLP of unmanipulated mice as well 

as in dextran sodium sulfate (DSS)-induced colitis mice, where only reduced expression of Slc7a6 was 

observed. However, no significant expression levels of Slc7a5, Slc7a7, Slc7a8, Slc7a10, and Slc7a11 

between unmanipulated and DSS-treated mice were found (Figure 3.2A). Moreover, 

immunofluorescence revealed that CX3CR1+/GFP+ mononuclear phagocytes and IECs of the cLP 
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express CD98 (Figure 3.2B). Additionally, to determine the expression level of CD98 in vitro, BM was 

isolated and bone marrow-derived macrophages (BMDM) were generated in the presence of M-CSF. 

Afterward, the differentiated BMDMs were either non-stimulated or stimulated with LPS and IFN-γ or 

with IL-4 and IL-13 to polarize the cells into pro-inflammatory or anti-inflammatory. Flow cytometric 

analysis of non-stimulated and stimulated BMDMs showed that LPS and IFN-γ, as well as the IL-4 and 

IL-13 stimulation of the BMDMs, did not have any influence on CD98 expression compared to the non-

stimulated BMDMs (Figure 3.2C and 3.2D).  

 

 

Figure 3.2: CD98 is expressed in small and large intestine. (A) RNA was isolated, and reverse transcribed from non-inflamed 

C57BL/6 WT mice and from inflamed WT mice on day 7, after receiving 2% DSS in the drinking water for 5 days which was 

exchanged to normal drinking water for another 2 days. The expression level of Slc7a5, Slc7a6, Slc7a7, Slc7a8, Slc7a10, and 

Slc7a11 was determined by RT-qPCR. Each dot indicates one individual animal; dotted line shows the detection limit. Data 

were analyzed by two-way ANOVA followed by Sidak’s correction; *p<0.05. (B) The small intestine and the colon of 

unmanipulated Cx3cr1-GFP mice were stained for CD98hc and counterstained with NucBlue. (C and D) Bone marrow-derived 

macrophages (BMDM) were stimulated either with LPS + IFN-γ or with IL-4 + IL-13 and surface CD98 expression measured 

by flow cytometry. Histogram and mean fluorescence intensity (MFI) are shown.  

 

Further, as tissue-resident macrophages may originate from an early stage of embryonic development, 

the CD98 expression was determined in the embryonic yolk sac (E8.5), liver Kupffer cells and epidermal 

Langerhans cells. The macrophages of the yolk sac revealed a significant lower CD98 expression 
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compared to the tissue-resident macrophages such as Kupffer cells and Langerhans cells which exhibit 

CD98 of more than 95% (Figure 3.3A – 3.3C). Taken together, our results show that mononuclear 

phagocytes and their progenitors express CD98 in steady state as well as under inflammatory conditions.  

 

 

Figure 3.3: CD98 is expressed in tissue-resident macrophages. (A) Histogram and (B) MFI of yolk sac macrophages from 

embryos (E8.5), CD11cneg and CD11cpos liver Kupffer cells and epidermal Langerhans cells isolated from unmanipulated adult 

mice and stained for CD98. Red histograms show FMO control, blue histograms cells stained for CD98. Number within plots 

indicated the percentage of CD98+ macrophages, Kupffer cells, and Langerhans cells. (C) Gating strategy for the identification 

of the yolk sac macrophages, CD11cneg, and CD11cpos liver Kupffer cells and epidermal Langerhans cells. Statistical 

significance was analyzed with a Kruskal-Wallis test followed by Dunn’s correction; *p<0.05, **p<0.01. 
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3.2. Excision of CD98 in colonic macrophages in CD98hcΔCX3CR1 mice  

Given that mononuclear phagocytes express CD98 in steady state as well as in inflamed conditions, we 

next wanted to establish a mouse model, which allows silencing of CD98hc specifically in CX3CR1+ 

mononuclear phagocytes. The colonic macrophages are characterized by high expression levels of the 

chemokine receptor CX3CR1, whose corresponding ligand fractalkine/CX3CL1 is expressed by 

intestinal epithelial cells (Muehlhoefer et al., 2000; Niess et al., 2005). Therefore, CD98hcΔCX3CR1 mice 

were generated by breeding Cx3cr1CreER mice with CD98hcflox/flox mice to delete the expression of CD98 

in intestinal CX3CR1+ mononuclear phagocytes. Of note, the injection of tamoxifen into pregnant 

CD98hcΔCX3CR1 mice was intrauterine lethal to the offspring (data not shown), which elucidated that a 

complete knock-out is embryonic lethal. Tamoxifen was administered every 24 hours for a total of five 

consecutive days, and the CD98 expression level by the ‘monocyte waterfall’ subpopulations as well as 

the tissue macrophage subpopulations was determined for 21 days. On day 2 after the first tamoxifen 

injection, a decreased percentage of CD98+ cells in the subpopulations of the cLP was observed (Figure 

3.4A and 3.4B). The lowest percentage of CD98+ monocytes and macrophages in the cLP appeared at 

day 7 which indicates the optimal timeframe of CD98 silencing. Within 14 days after the first tamoxifen 

injection, the percentage of CD98+ Ly6Chigh and Ly6Cmid monocytes normalized, whereas the percentage 

of CD98+ Ly6Clow monocytes recovered within 21 days. By contrast, the CD98 expression of MHC II- 

and MHC II+ macrophages in the cLP did not fully recover within 21 days after the first i.p. injection of 

tamoxifen. Of note, histogram plots of macrophages obtained 14 days after tamoxifen injection shows 

a biphasic distribution suggesting that CD98 silenced macrophages are replaced with newly recruited 

CD98+ precursor cells (Figure 3.4B).  

 

As yolk-sac-derived myeloid progenitors (Gomez Perdiguero et al., 2015), fetal-liver-derived 

monocytes, and hematopoietic stem cell (HSC)-derived myeloid precursors contribute to the 

development of tissue-resident macrophages such as Kupffer cells, the CD98 expression by CD11cneg 

and CD11cpos Kupffer cells was also determined after tamoxifen-induced CD98 deletion. The tamoxifen 

treatment led to a significant reduction of CD98 expression by CD11cneg and CD11cpos Kupffer cells 

already on day 2 after the first i.p. injection. Interestingly, this CD98 silencing induced by tamoxifen 
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treatment over five consecutive days recovered again within 28 days, indicating that Kupffer cells are 

partially replenished by extravasated blood monocytes (Scott et al., 2016) (Figure 3.4C and 3.4E). The 

decrease in CD98 expression at day 7 was notably less pronounced in Kupffer cells compared to the 

‘monocyte waterfall’ subsets and the MHC II+ macrophage in the cLP. Moreover, injection of tamoxifen 

did not affect the CD98 expression by epidermal Langerhans cells (Figure 3.4D and 3.4E).  

 

 

Figure 3.4: Tamoxifen injection into CD98hcΔCX3CR1 animals leads to the excision of CD98 in monocytes and 

macrophages. Monocytes and macrophages were isolated from the colonic lamina propria (cLP) and analyzed for CD98 

expression by flow cytometry after intraperitoneal tamoxifen injection into CD98hcΔCX3CR1 animals. (A) Percentage of CD98+ 

monocytes (Mo) and macrophages (Mφ) at indicated time points (n=3). The data is shown as the mean (±SD) and analyzed by 

two-way ANOVA followed by Sidak’s correction; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. (B) Histogram plots of 
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indicated monocytes and macrophages from the colonic lamina propria at indicated time points after tamoxifen injection into 

CD98hcΔCX3CR1 mice. FMO control is represented by red histograms, CD98 stained cells by blue histograms. Numbers in 

histogram plots indicated the percentage of CD98+ cells. (C) Mean (±SD) percentage of CD98+ CD11cneg, and CD11cpos liver 

Kupffer cells and (D) epidermal Langerhans cells at indicated days after intraperitoneal tamoxifen injection into CD98hcΔCX3CR1 

animals (n=3). The results were analyzed by two-way ANOVA followed by Sidak’s correction; *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. (E) Histogram plots of CD11cneg and CD11cpos liver Kupffer cells and of epidermal Langerhans 

cells at indicated time points after tamoxifen injection into CD98hcΔCX3CR1 mice. Red histograms display FMO controls, blue 

histograms CD98+ cells; Numbers in histograms show the percentage of CD98+ cells.  

 

Macrophages, monocytes, T cell subsets, NK cells, dendritic cells (DC), and platelets also express the 

fractalkine receptor, CX3CR1 (Gerlach et al., 2016). Therefore, to investigate the effect of tamoxifen 

treatment on other CX3CR1+ cell populations found in the intestine, flow cytometry analysis was 

performed to determine the CD98 expression of cLP macrophages, B cells, CD4+ and CD8+ T cells, 

DCs, neutrophils, and NK cells. Interestingly, cLP macrophages but not B cells, CD4+ and CD8+ T cells, 

DCs, neutrophils, and NK cells showed a significant decrease of CD98 expression after the tamoxifen 

treatment (Figure 3.5A). Furthermore, as CD98hc also binds to integrin β1 (CD29) and mediates the 

integrin activation, cell spreading, cell survival, and cell growth, the CD98 silencing did not affect the 

CD29 expression of the ‘monocyte waterfall’ and macrophage subpopulations in the cLP of DSS-

induced colitic mice (Figure 3.5B). These results suggest that tamoxifen injection in CD98hcΔCX3CR1 

animals silenced the expression of the glycoprotein CD98. Thus, we have established a mouse model 

which allows successful silencing of CD98 in monocytes and macrophages. 
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Figure 3.5: Tamoxifen-induced Cre-mediated excision of CD98 in CD98hcΔCX3CR1 animals deletes CD98 in monocytes 

and macrophages but not in T cells. (A) Percentage of CD98 expression by B cells, CD4+ and CD8+ T cells, dendritic cells 

(DC), macrophages (Mφ), and neutrophils isolated from the colonic lamina propria of corn oil- or tamoxifen-treated C57BL/6 

WT or CD98hcΔCX3CR1 animals. (B) Percentage of integrin β1/CD29+ monocytes and macrophages in indicated mouse lines 

treated with corn oil or tamoxifen. Data were analyzed by two-way ANOVA followed by Sidak’s correction; *p<0.05, 

****p<0.0001. 

 

 

3.3. Loss of CD98 by macrophages leads to attenuated colitis  

We next determined whether the silencing of CD98 by ‘monocyte waterfall’ subsets and macrophage 

subset of the cLP affects the development of DSS-induced colitis. Both CD98hcΔCX3CR1 and 

CD98hcflox/flox animals were treated either with tamoxifen or the tamoxifen carrier corn oil. As a result, 

tamoxifen-treated CD98hcΔCX3CR1 mice showed significantly reduced clinical signs such as body weight 

loss (Figure 3.6A) and reduced disease activity index (Figure 3.6B), reduced histological signs of colitis 

(Figure 3.6C and 3.7B), and decreased colon shortening (Figure 3.6D and 3.6F). Further, the flow 

cytometry analysis and immunofluorescence staining confirmed the successful silencing of CD98 by 

tamoxifen treatment in CD98hcΔCX3CR1 animals (Figure 3.6E and 3.7A).  
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Figure 3.6: Attenuated colitis after CD98 silencing by monocytes and macrophages. Colitis was induced by adding 2.5% 

dextran sodium sulfate (DSS) to CD98hcflox/flox and CD98hcΔCX3CR1 mice which were treated either with corn oil or with 

tamoxifen. (A) The mean percentage of body weight change (±SD) and (B) disease activity index are shown. The data were 

analyzed by two-way ANOVA followed by Sidak’s correction; ***p<0.001. (C) Histological scores were assessed in a blinded 

fashion by two independent investigators. The mean histological score was determined for each animal after H&E staining of 

colonic tissues, presented as individual dot and analyzed with a Mann-Whitney U test; *p<0.05. (D) The colon length was 

determined at day 7 after the start of DSS administration, colon length is shown for each individual animal, the mean indicated 

and analyzed with a Mann-Whitney U test; *p<0.05. (E) Percentage of CD98+ monocytes (Mo) and macrophages (Mφ) of 

indicated groups 7 days after start of DSS administration. Each dot represents one animal. Data were analyzed by two-way 

ANOVA followed by Sidak’s correction; *p<0.05, **p<0.01, ***p<0.001. (F) A representative image of the colon from each 

group is shown. 

 

The immunofluorescence staining of colon sections obtained from CD98hcΔCX3CR1 and CD98hcflox/flox 

mice treated either with tamoxifen or corn oil during DSS-induced colitis depict that mononuclear 

phagocytes and epithelial cells express CD98 with a reduced staining intensity in tamoxifen-treated 

CD98hcΔCX3CR1 mice (Figure 3.7A). Hematoxylin and eosin (H&E) staining (Figure 3.7B) and 

colonoscopy (Figure 3.7C) confirmed the decreased severity of DSS-induced colitis in tamoxifen-

treated CD98hcΔCX3CR1 mice, compared to mice treated with the carrier corn oil.  
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Figure 3.7: Reduced CD98 staining intensity and attenuated colitis in tamoxifen-treated CD98hcΔCX3CR1 mice. (A) CD98 

staining, (B) H&E staining of colonic tissues, and (C) endoscopic images from indicated groups. 

 

Furthermore, the CD98hcflox/flox and CD98hcΔCX3CR1 animals were fed with 10% higher amino acid chow 

(5% more L-leucine and 5% more L-isoleucine) to induce an increased inflammation on a CD98 

dependent manner compared to conventional chow. The disease activity index (DAI) showed an 

increased inflammation in untreated, tamoxifen- or corn-oil-treated CD98flox/flox mice, and corn-oil-

treated CD98hcΔCX3CR1 mice (all control groups), whereas silencing of CD98 attenuated the severity of 

DSS-induced colitis in CD98hcΔCX3CR1 mice fed with control diet as shown before (Figure 3.8A left 
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panel). The control groups fed with enriched amino acid diet revealed similar DAI as those fed with the 

control diet. Interestingly, tamoxifen-treated CD98hcΔCX3CR1 mice which were fed with amino acid 

enriched diet had a significantly increased DAI compared to tamoxifen-treated CD98hcΔCX3CR1 mice fed 

with control diet likely due to an increased amino acid influx in a CD98 dependent manner, which results 

in a rapidly upregulation and probably higher expression of the CD98hc as shown by Yan and Lamb in 

2010. Thus, infiltrating immune cells such as neutrophils or DCs might be more activated due to the 

higher amino acid influx or compensate the arbitrary immunological behavior of CD98 deleted 

monocytes and macrophages which leads to increased inflammatory response and a more severe clinical 

sign of colonic inflammation. 

 

Further, the control groups, as well as the tamoxifen-treated CD98hcΔCX3CR1 mice, fed with amino acid 

enriched diet showed tendentially colon shortening compared to the mice fed with control diet (Figure 

3.8A middle panel) which is additionally indicated by representative images (Figure 3.8B). 

Furthermore, the histological score revealed an increased inflammation in tamoxifen-treated 

CD98hcΔCX3CR1 mice fed with the enriched amino acid diet compared to the tamoxifen-treated 

CD98hcΔCX3CR1 mice fed with the control diet. However, the control groups, fed either with control diet 

or amino acid diet, showed similar increased histological scores (Figure 3.8 A right panel), which is 

additionally indicated by H&E staining (Figure 3.8C). Hence, histological signs of colitis showed 

increased disruption of the mucosal architecture in untreated CD98hcflox/flox mice fed with both control 

and amino acid enriched diet, and in tamoxifen- and corn-oil-treated CD98hcflox/flox mice, as well as in 

corn-oil-treated CD98hcΔCX3CR1 mice fed with amino acid enriched diet. In contrast, histological analysis 

of tamoxifen-treated CD98hcΔCX3CR1 mice fed with control diet did not show DSS-induced severity of 

colitis in that extent. Further, compared to the control diet, tamoxifen-treated CD98hcΔCX3CR1 mice fed 

with amino acid-enriched diet revealed a tendentially increased histological sign of colonic 

inflammation (Figure 3.8). Taken together, these results elucidate that the loss of CD98 in monocytes 

and macrophages of the cLP attenuated the severity of chemically induced colitis in mice. Moreover, 

the increased influx of amino acids by amino acid-enriched diet leads to a tendentially elevated colonic 

inflammation by infiltrating immune cells such as granulocytes and DCs. 



45 

 

 

 

Figure 3.8: Amino acid enriched diet potentially increased DSS-induced colitis in a CD98 dependent manner. 

Tamoxifen- or corn-oil-treated CD98hcflox/flox and CD98hcΔCX3CR1 mice were fed with control or amino acid chow following 

2.5% DSS-induced colitis. (A) Disease activity index (DAI), colon length, and histological scores are shown. Each dot presents 

an individual animal. (B) A representative image of the colon from each group is shown. (C) H&E staining of colonic biopsies. 
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3.4. Single-cell RNA sequencing suggests a developmental trajectory of monocytes to 

macrophages in the colonic lamina propria  

Unmanipulated and healthy female mice were used for transcriptomic investigations to analyze the 

behavior of colonic monocytes and macrophages on a CD98 dependent manner. Therefore, CCR2+ and 

CD64+ cell populations were sorted together from CD98hcΔCX3CR1 mice after the treatment with 

tamoxifen or corn oil which were further analyzed by single-cell RNA sequencing (scRNA-seq).  

 

Cell suspensions volumes aiming at a targeted recovery of ~ 3,000 cells were loaded on the wells of a 

10× Genomics Chromium Single Cell Controller (one well per mouse replicate by at least 3 mice per 

condition). The resulting filtered dataset included expression values for 11,947 genes for 3,213 cells, 

ranging from 83 to 724 cells per sample, for a total of 1,863 control cells, and 1,350 CD98 cKO cells. 

An average of 1,645 genes was detected per cell. Differential expression between control and cKO cells 

stratified by differentiation stage when at least 20 cells could be aggregated. This resulted in a total of 

32 aggregated samples, and at least 3 replicates per condition for each cluster. The genes were filtered 

to keep those with CPM (counts per million reads sequenced) values higher than 1 in at least 3 samples 

and detected in at least 20 individual cells. We considered only sets containing more than 10 genes and 

gene sets with a false discovery rate of lower than 5% as significant. 

 

The scRNA-seq data analysis of unsupervised hierarchical clustering of specific genes (Figure 3.9A) as 

well as hypervariable genes (Figure 3.9B) revealed the presence of nine distinct clusters. Further, the 

data analysis suggested a hierarchically structured lineage tree from cluster 2, via cluster 1 and 4, 

towards to cluster 6 and 3. Moreover, the t-SNE analysis indicated a close relationship between clusters 

1 to 4, whereas cluster 5, 7, 8, and 9 seem to be distinctly separated from every single cluster and are 

not related to the lineage tree clusters (Figure 3.9C). In addition to that, cluster 6 seems to be also 

separated. Nevertheless, cluster 6 corresponds to the CD64+ MHC class II-negative cells described by 

flow cytometry. 
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Figure 3.9: Single-cell RNA sequencing suggests a developmental trajectory from monocytes to macrophages in the 

colonic lamina propria. CCR2+ and CD64+ colonic lamina propria cells that include the ‘monocyte waterfall’ intermediates 

and macrophages from CD98hcΔCX3CR1 mice treated with corn oil or with tamoxifen were sorted after gating on viable, lineage 

negative (CD3, CD19, NK1.1, Ly6G, Ter119), and CD11b+ cells and further analyzed by single-cell RNA-sequencing (scRNA-

seq). scRNA-seq was performed in quadruples. (A) Heatmap of cluster-specific genes and (B) heatmap of hypervariable genes 

by cells from corn oil (control) and tamoxifen (cKO) treated animals. Nine individual clusters were identified and shown in 

different colors. (C) The t-SNE analysis depicts the distribution of the nine different clusters and indicates their relationship. 
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For the identification of the individual clusters of the lineage tree clusters, genes were selected that are 

allocated expressed by monocytes or macrophages. Genes like Ccr2, Cd14, and Ly6c2 are expressed by 

cluster 1, 2, and in a lower extent in cluster 4 suggesting that these clusters are monocyte subpopulations 

of the cLP. Cd72, Cd74, Cd81, Cx3cr1, and Adgre1 (EMR1, F4/80) are prominently expressed by cluster 

3 and 6 indicating that cluster 3 and 6 are the macrophage subpopulations (Figure 3.10A). The non-

related clusters 5, 7, 8, and 9 expresses in a higher extent the genes Cd63, Ly6a, Ly6c1, and Cst3 

suggesting a possible ‘contamination’ with granulocytes and dendritic cells (Figure 3.9B). 

Consequently, the ‘contaminating’ clusters 5, 7, 8, and 9 were excluded and neglected for the specific 

analysis of cLP monocytes and macrophages. Flow cytometry analysis of chosen genes from the 

heatmap of genes characteristic for monocytes and macrophages (Figure 3.10A) confirmed that MHC 

II- and MHC II+ macrophages have higher CD81 expression compared to Ly6Chigh and Ly6Cmid 

monocytes. Additionally, monocytes and macrophages expressed CD14 and CD72 (Figure 3.10B and 

3.10C). The deletion of CD98 in monocytes and macrophage of the cLP did not significantly affect the 

expression of CD14, CD72, and CD81. Merely CD98 silenced Ly6Chigh monocytes showed lower CD14 

expression and CD98 silenced Ly6Clow monocytes increased CD81 expression (Figure 3.10B and 

3.10C). Further, the principal component analysis (PCA) suggested the development of monocytes to 

macrophages via intermediates within these nine different clusters (Figure 3.11A). Relative density 

plots generated by overlying the transcriptome of control and CD98-deficient clusters indicated a block 

in the ‘monocyte waterfall’-development to mature colonic macrophages in tamoxifen-treated 

CD98hcΔCX3CR1 mice. In these animals, CD98-deficient cells accumulated in the first two clusters of the 

‘monocyte waterfall’ whereas the control cells showed higher density in cluster 3 (Figure 3.11B). The 

FlowSOM analysis also suggested a developmental trajectory from monocytes towards macrophages of 

the lineage tree clusters (Figure 3.11C). The calculation of the relative proportion of cells per cluster 

indicated an enrichment of CD98-deficient cells in cluster 2 compared to the control cells which are 

more concentrated in the clusters 1 and 3 (Figure 3.10D). Further, FlowSOM analysis with pie charts 

that depict the relative proportion of CD98-deficient cells from tamoxifen-treated CD98hcΔCX3CR1 mice 

and control cells from corn-oil-treated CD98hcΔCX3CR1 mice indicated that CD98-deficient cells are 
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enriched in the early developmental stages of monocytes to gut macrophages in the colonic lamina 

propria whereas control cells are concentrated in cluster 3 (Figure 3.11D).  

 

 

Figure 3.10: Identification of the individual clusters. (A) Genes that are characteristic for monocytes and macrophages were 

depicted and presented as a heatmap. The heatmap of top cluster-specific genes consists of the union of the top 10 genes from 

each between-clusters pairwise comparison. (B) Percentage of CD14+, CD81+, and CD72+ colonic lamina propria monocytes 

(Mo) and macrophages (Mφ) determined by flow cytometry. One individual dot represents an individual animal in the dot 

plots. Data were analyzed by two-way ANOVA followed by Sidak’s correction; ***p<0.001, ****p<0.0001. (C) Histogram 

of monocytes (Mo) and macrophages (Mφ) after CD14, CD81, and CD72 staining. Red histograms are the FMO control, blue 

histograms the CD14+, CD81+, or CD72+ cells. Numbers in histograms indicate the percentage of CD14+, CD81+, and CD72+ 

monocytes and macrophages. (D) Relative frequency of control and cKO cells within the different clusters in the scRNA-seq 

experiment. 
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Figure 3.11: Trajectory from monocytes towards macrophages of the lineage tree clusters. (A). Principal component 

analysis (PCA) of single-cells is based on the 500 most variable genes across all cells. The colors represent cells from different 

clusters. Contour lines indicate the density of the cells in the PCA space. (B) The color of the differential 2D density plot 

represents the log2 ratio of 2D densities of cKO cells over control cells. (C) FlowSOM analysis shows also the distribution of 

the 6 individual clusters. Clusters 5, 7, 8, and 9, which are possible granulocyte and DC contaminants, were omitted from the 

FlowSOM analysis. (D) Pie charts within the FlowSOM tree indicate the relative enrichment of cKO cells over control cells. 

 

 

3.5. Increased apoptotic signatures after silencing of CD98  

To further gain insights into the molecular mechanisms involved in the developmental arrest in CD98 

deficient macrophages, genes which were differentially expressed between tamoxifen- or corn oil-

treated CD98hcΔCX3CR1 mice within each cluster along the developmental trajectory were analyzed in 

detail (Lun and Marioni, 2017). For this analysis, the “pseudo-bulk” samples were used. These samples 

were first controlled on a PCA. Next, the first principal components separated the samples according to 

their differentiation stage. Interestingly, on principal components 3 and 4 the control and CD98 cKO 

samples within each cluster are clearly separated (Figure 3.12). Table S7 lists the genes in each 
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individual cluster that were significantly up- or down-regulated (absolute log2 fold-change > |1| and 

FDR < 0.05) between tamoxifen- or corn oil-treated CD98hcΔCX3CR1 mice. 

 

 

Figure 3.12: Clusters distribution of tamoxifen- or corn oil-treated CD98hcΔCX3CR1. Per cluster different expressed genes 

between control and cKO animals were retrospectively analyzed and presented in a principal component analysis (PCA) plots. 

 

Further, a heatmap of genes which are involved in apoptosis pathways was generated. The heatmap 

depicts apoptosis genes which were chosen from the heatmap of hypervariable genes. The analysis 

indicates increased expression of the significant differential expressed genes Osm, Bcl2l11, and Tnf in 

clusters 1 and 2 correspondings to CD98 silenced monocyte populations (Figure 3.13A). Additionally, 

Gene Set Enrichment Analysis (GSEA) shows apoptosis-related up- or down-regulated genes in cluster 

2 but not in cluster 1 and clusters 3, 4, and 6 of tamoxifen-treated CD98hcΔCX3CR1 mice (Figure 3.13B). 

Monocytes of cluster 1 and 2 had higher expression levels of selected apoptosis-related genes compared 

to monocytes of cluster 4 and macrophages of cluster 3 and 6. Cells of cluster 2 had an increased Osm 

expression after excision of CD98 (Figure 3.13C). 
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Figure 3.13: Enrichment of apoptosis-related genes in CD98 cKO cells. (A) Regulation of genes associated with apoptosis 

was displayed. (B) Gene Set Enrichment Analysis (GSEA) indicates enrichment of differential expresses genes in CD98 cKO 

cells over control cells in indicated signatures per cluster. (C) Expression of Bcl2l11, Casp3, Osm, Fos, Tnf and Fas by CD98 

cKO cells and control cells per individual cluster.  

 

Furthermore, flow cytometry analysis of an independent experiment in mice using the DSS-induced 

colitis model indicated increased apoptosis after CD98 deletion (Figure 3.14A and 3.14B). According 

to that, the excision of CD98 by injection of tamoxifen over five consecutive days resulted in reduced 

Ly6Clow monocyte and MHC class II-positive macrophage cell numbers on day 2 and day 7 after the 

first tamoxifen injection (Figure 3.15A and 3.15B).  
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Figure 3.14: Deletion of CD98 leads to increased apoptosis in colonic macrophages. (A) Percentage of apoptotic cells 

determined by flow cytometry after Annexin V/viability staining by indicated monocytes (Mo) and macrophages (Mφ) after 

treatment of CD98hcflox/flox or CD98hcΔCX3CR1 animals with corn oil- or tamoxifen. (B) Flow cytometry dot plots indicated 

experimental groups after Annexin V/viability staining. Each dot represents one animal. Data was analyzed by two-way 

ANOVA followed by Sidak’s correction; **p<0.01, ***p<0.001, ****p<0.0001.  
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Figure 3.15: Deletion of CD98 leads to reduced cell number in colonic macrophages. (A) Absolute cell numbers of 

monocytes (Mo) and macrophages (Mφ) at indicated time points after tamoxifen injection in CD98hcΔCX3CR1 mice. Monocyte 

and macrophage cell numbers in the colonic lamina propria (LP) of CD98hcΔCX3CR1 animals (n=3) is shown as the mean (±SD) 

and analyzed by two-way ANOVA followed by Sidak’s correction; **p<0.01, ***p<0.001, ****p<0.0001. The variability in 

total isolated cell numbers from colonic digests of CD98hcΔCX3CR1 animals (n=3) is shown as the mean (±SD) and analyzed by 

Kurskal-Wallis test followed by Dunn’s correction; **p<0.01. (B) Ratios of colonic lamina propria monocytes (Mo) and 

macrophages (Mφ) between CD98hcΔCX3CR1 animals before tamoxifen treatment, during tamoxifen treatment, and after 

tamoxifen treatment at indicated time points. 

 

 

3.6. Reduced macrophage numbers after silencing of CD98 in the cLP 

The scRNA-seq revealed an impaired ‘monocyte waterfall’-development into mature gut macrophages 

in the cLP. Therefore, daily intraperitoneal injection of tamoxifen into CD98hcΔCX3CR1 animals 

throughout 28 days was performed. The experiment aimed to silence CD98 constantly in the monocyte 

and macrophage subpopulations without being replenished by BM-derived cells newly entering the cLP 

(Figure 3.16A). Interestingly, extravasated Ly6Chigh monocytes and Ly6Cmid monocytes showed a 

significant CD98 silencing over time. However, the absolute cell number of Ly6Chigh monocytes and 

Ly6Cmid monocytes was not decreased. Similar results are observed of the MHC II- macrophages which 

show also a significantly reduced expression of CD98 but no impaired cell number. In contrast, Ly6Clow 
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monocytes and MHC II+ macrophages showed a significant CD98 silencing as well as prominent 

decreased cell number of both Ly6Clow monocytes by day 14 and MHC II+ macrophages by day 7 after 

the first tamoxifen injection (Figure 3.16B and 3.16C).  

 

 

Figure 3.16: Deletion of CD98 in monocytes and macrophages leads to reduced macrophage numbers in the colonic 

lamina propria. Percentage of monocytes and macrophages that express CD98 and total monocyte and macrophage number 

in the colonic lamina propria of CD98hcΔCX3CR1 mice was determined after receiving tamoxifen for 28 days. (A) Percentage of 

CD98+ monocytes (Mo) and macrophages (Mφ), and (B) total monocyte (Mo) and macrophage (Mφ) numbers in the colonic 

lamina propria of CD98hcΔCX3CR1 animals (n=3) is shown as the mean (±SD) and analyzed by two-way ANOVA followed by 

Sidak’s correction; ****p<0.0001. The variability in total isolated cell numbers from colonic digests of CD98hcΔCX3CR1 animals 

(n=3) is shown as the mean (±SD) and analyzed by Kurskal-Wallis test followed by Dunn’s correction; not significant.  

(C) Ratios of colonic lamina propria monocytes (Mo) and macrophages (Mφ) between CD98hcΔCX3CR1 animals before 

tamoxifen treatment and during tamoxifen treatment at indicated time points. 
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Additionally, BMDMs obtained from CD98hcΔCX3CR1 mice were generated to investigate the effect of 

CD98 deletion in vitro. Therefore, tamoxifen was administered into M-CSF differentiated BMDMs. 

Astonishingly, in vitro silencing of CD98 ultimately resulted in cell death on day 7 of differentiation of 

non-stimulated, LPS + IFNγ, or IL-4 + IL-13 stimulated BMDMs (Figure 3.17A). Furthermore, nitric 

oxide synthetase and arginase-I are prototypic markers of pro-inflammatory and anti-inflammatory 

macrophages (Coburn et al., 2016; Tsumura et al., 2012). Additionally, a further characteristic of pro-

inflammatory and anti-inflammatory macrophages is the metabolism of arginine (Ginhoux et al., 2016; 

Hesse et al., 2001; Mosser and Zhang, 2008). Measurement of nitric oxide indicates the impact of CD98 

silencing on macrophage metabolism of arginine by the administration of 10 mM D-phenylalanine, a 

natural inhibitor of SLC3A2-SLC7A5 activity (Schuster et al., 2015), into M-CSF differentiated and 

non-stimulated, LPS + IFNγ, or IL-4 + IL-13 stimulated BMDMs. The in vitro treatment of BMDMs 

with D-phenylalanine revealed in a slight increase of nitrate production in the culture supernatant of 

non-stimulated and pro-inflammatory BMDMs (Figure 3.17B). Taken together, our data confirm that 

the silencing of CD98 leads to an impairment of the ‘monocyte waterfall’-development into tissue-

resident macrophages in the cLP. Thus, the cell numbers of Ly6Clow monocytes and mature MHC II+ 

macrophages were significantly diminished. Furthermore, in vitro inhibition of the SLC3A2-SLC7A5 

activity indicates stimulation of pro-inflammatory macrophages. 
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Figure 3.17: In vitro deletion of CD98 results in cell death. (A) Non-stimulated, LPS + IFNγ, or IL-4 + IL-13 stimulated 

bone marrow-derived macrophages (BMDM) were cultured in RPMI 1640 medium containing: none (control), 100 µg dimethyl 

sulfoxide (DMSO control), 2.5 µg, 5 µg, and 10 µg tamoxifen dissolved in DMSO. Viability, cell death, apoptotic cells, and 

percentage of CD98 expression was determined by flow cytometry after Annexin V/ viability staining and CD98 staining. (B) 

Slc3a2-Slc7a5 activity in BMDMs was inhibited with 10 mM D-phenylalanine and nitrite/nitrate production measured. 

 

 

3.7. High CD98 expression in patients with inflammatory bowel disease (IBD) 

The chronic intestinal inflammatory disease has two main known forms: (1) Crohn’s disease (CD), and 

(2) ulcerative colitis (UC) (Uhlig and Powrie, 2018), in which CD98 might play a crucial role (Laroui 

et al., 2014; Nguyen et al., 2011). Therefore, the Swiss IBD Cohort provided biopsies from patients with 

quiescent and active UC and patients with quiescent and active CD which were taken from the inflamed 

regions of the intestine to determine the expression level of CD98 heavy chain (CD98hc/SLC3A2) and 

CD98 light chain (CD98lc/SLC7A5). Interestingly, RT-qPCR analysis revealed a very high CD98hc as 

well as CD98lc expression in both UC and CD patients without any significant difference between 

quiescent or active disease. (Figure 3.18A). Furthermore, immunofluorescence staining was realized to 
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investigate the CD98hc expression in human intestinal tissue of both UC and CD patients. The 

immunofluorescence staining in non-inflamed and inflamed tissue confirmed the expression of CD98hc 

by intestinal epithelial cells as well as lamina propria cells (Figure 3.18B and 3.18C). The CD98 

staining intensity underpins the bright CD98hc expression of IECs and lamina propria cells of non-

inflamed and inflamed biopsies of both UC and CD patient (Figure 3.18B and 3.18C). Therefore, these 

results implicated that CD98 is highly expressed in steady state as well as under inflamed conditions in 

human cLP.  

 

 

Figure 3.18: Inflammatory bowel disease patients express CD98. The Swiss IBD cohort provided colonic or ileal biopsies 

from Crohn’s disease (CD) or ulcerative colitis (UC) patients which were in remission (quiescent) or with active disease.  

(A) CD98hc/SLC3A2 and CD98lc/SLC7A5 expression was determined by RT-qPCR. (B) CD98hc fluorescence intensity of 

staining of biopsies from CD and UC patients. (C) Cryosections of inflamed and non-inflamed regions of the same CD and UC 

patients (patient identification numbers in brackets) were stained for CD98 and counterstained with NucBlue.  

  



59 

 

4 DISCUSSION 

In this study, we show that the CD98 is highly expressed by BM progenitor cells as well as by intestinal 

mononuclear phagocytes in the steady state. Additionally, CD98 is also highly expressed under 

inflammatory conditions. In the gut, monocytes and macrophages survey the intestinal content by 

clearing apoptotic cell bodies and microorganisms that have crossed the epithelial barrier (Mowat et al., 

2017), and that extravasated blood monocytes give rise to gut macrophages through different 

intermediate stages (Schridde et al., 2017). Our results show the intestinal ‘monocyte waterfall’-

development on a transcriptomic level by scRNA-seq. Further, macrophages are essential for tissue 

repair and restoration of intestinal homeostasis during intestinal inflammation (Arnold et al., 2016; 

Joeris et al., 2017). Interestingly, the deletion of the CD98hc in intestinal mononuclear phagocytes 

resulted in attenuated severity of DSS-induced colitis. Additionally, the expression level of CD29 was 

not affected by the tamoxifen-induced CD98 deletion. The transcriptomic analysis revealed that the 

silencing of CD98 results in a block of the ‘monocyte waterfall’-development into gut macrophages. 

Thus, the impaired monocyte-macrophage-development is associated with increased apoptosis signature 

in the CD98hc deleted monocytes and macrophages. Consequently, the absolute cell number of Ly6Clow 

monocytes (P3) and MHC IIpos macrophages (P5) is significantly reduced. Furthermore, as CD98 

correlates with IBD (Laroui et al., 2014; Nguyen et al., 2011), CD98hc is highly expressed in colonic 

tissue of patients with CD and UC. Therefore, targeting the glycoprotein CD98, which is associated with 

gut homeostasis and the intestinal innate immune responses (Yadav et al., 2016), represents a potential 

therapeutic target for the treatment of IBD. 

 

 

4.1. CD98 expression of mononuclear phagocytes and their progenitors 

The expression levels of CD98 by intestinal macrophages and their progenitors have not been studied 

to date in detail. Therefore, we characterized first the progenitors in the bone marrow (BM) and 

elucidated their CD98 expression, as the glycoprotein 4F2/CD98, encoded by the genes SLC3A2/Slc3a2 

in human/mice, is ubiquitously expressed in many cell types and in almost all cell lines (Cantor and 
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Ginsberg, 2012; Haynes et al., 1981). We could show, in accordance with the previous findings that the 

MDPs, cMoPs, and monocytes of the BM (Hettinger et al., 2013) also express CD98. Moreover, these 

cells show more than 96% CD98 positivity. Further, analysis of the mononuclear phagocytes in the 

colonic lamina propria revealed a high expression level of CD98. Merely the immature CD64+ MHC II- 

subpopulation showed less CD98 positive cells (~ 85%), which might be due to the differentiation and 

in this way, shape-changing development from the CCR2+ Ly6Clow MHC II+ monocytes towards to 

CD64+ MHC II+ tissue macrophages. Additionally, chosen CD98lc were also highly expressed in the 

colonic tissue in steady state as well as under inflammatory conditions. Moreover, high CD98 expression 

levels of BMDMs did not show any differences by stimulating with pro- or anti-inflammatory cytokines. 

Interestingly, analysis of the ontogeny of tissue-resident macrophages and their CD98 expression 

showed, that embryonic macrophages have very low CD98 expression. The amino acid transporter is 

increased expressed in adult tissue-resident macrophages such as Kupffer cells and Langerhans cells. 

Here, we could show that CD98 is highly expressed in mononuclear phagocytes in the gut, liver, and 

epidermis. 

 

 

4.2. ‘Monocyte waterfall’-development and the effect of CD98 deletion 

The expression of CD98 is required for the development of Ly6Chigh monocytes into gut-resident 

macrophages because the deletion of CD98 had three main impacts: 

 

First, extravasated Ly6Chigh monocytes are impaired in their genetic development into tissue-resident 

macrophages. Additionally, the blockage of monocyte differentiation is associated with increased 

expression of apoptosis-related genes, which indicates an earlier cell death of Ly6Chigh/mid monocytes in 

the cLP.  

 

Second, the impairment of Ly6Chigh monocytes to differentiate into macrophages resulted in 

significantly reduced numbers of Ly6Clow monocytes and mature macrophages in CX3CR1+ cells. 
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Third, deletion of CD98 by addition of tamoxifen into in vitro culture of BMDMs resulted in increased 

cell death. 

 

The deletion of CD98 specifically in monocytes and macrophages leads to attenuated colitis in mice. 

Whether this is due to genetic varieties or not, had not been investigated before. In this study, we 

analyzed the ‘monocyte waterfall’-development into gut-resident macrophages by single-cell RNA 

sequencing (scRNA-seq). For that, CD98hcΔCX3CR1 mice treated with tamoxifen versus the carrier corn 

oil were compared. The results suggest nine different clusters of immune cell types in the cLP. Further, 

a developmental trajectory of monocytes to gut-resident macrophages on a single-cell transcriptome 

level is suggested by the expression of genes allocated to monocytes (cluster 1, 2, and 4 expressing 

Ly6c2, Ccr2, Cd14) or to macrophages (cluster 3 and 6 expressing Cd63, Cd72, Cd74, Cd81, Cx3cr1, 

Adgre1 (EMR1, F4/80)). The chronology of the lineage tree: cluster 2 (Population 1 (P1)), cluster 1 

(P2), cluster 4 (P3), cluster 6 (P4), and cluster 3 (P5). Moreover, the t-SNE analysis indicated a close 

relationship between the clusters characterized as monocytes and macrophages, whereas the remaining 

clusters 5, 7, 8, and 9 are not related to the lineage tree clusters. These clusters express Cd63, Ly6a, 

Ly6c1, and Cst3 suggesting a possible ‘contamination’ with granulocytes and DCs (Varol et al., 2010), 

which is likely that these cell types are detected due to contaminating GALT. As this study is focusing 

on monocytes and macrophages in the cLP, the ‘contaminating’ clusters were excluded and neglected. 

Flow cytometry was used to confirm chosen genes (CD14, CD72, and CD81) expressed by monocytes 

and/or macrophages. Unlike on the transcriptomic level which revealed a high expression of CD14 in 

monocytes and CD72 in macrophages, flow cytometry analysis indicated that CD14 and CD72 are at 

the same extent expressed on the cell surface of monocytes and macrophages. Merely CD81 was 

increasingly expressed from monocytes towards to macrophages. Additionally, the deletion of CD98 

did not interfere with the cell surface expression of CD14, CD72, and CD81. Interestingly, relative 

density plots and the relative proportion of cells indicated an accumulation of Ly6Chigh monocytes in 

CD98hcΔCX3CR1 animals treated with tamoxifen compared to the CD98hcΔCX3CR1 animals treated with 

corn oil. These findings indicate that the expression of CD98 is required for the differentiation of 

Ly6Chigh monocytes into gut-resident macrophages. Thus, in CD98 deleted mice the ‘monocyte 
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waterfall’-development in the gut is significantly impaired. Given that the Ly6Chigh monocytes are 

blocked in their development, we investigated in more detail the expression of genes associated with 

apoptosis. Therefore, selected genes were analyzed and revealed an increased expression of Fas, 

Bcl2l11, Tnf, and Osm in clusters 1 and 2 correspondings to CD98 deleted monocytes. Moreover, Gene 

Set Enrichment Analysis (GSEA) shows apoptosis-related up- or down-regulated genes which are more 

prominent expressed in cluster 2 but not in cluster 1, 3, 4, and 6 of tamoxifen-treated CD98hcΔCX3CR1 

mice. Further, these selected apoptosis-related genes are highly expressed in monocytes of cluster 1 and 

2. Especially Osm is more pronounced expressed in cluster 2 after the excision of CD98. Cluster 4, 3, 

and 6 do not show significantly distinguishable apoptosis-related gene expression. Thus, the impairment 

of the ‘monocyte waterfall’-development might be due to increased apoptotic gene expression in CD98 

deficient cells.  

 

Because of increased apoptosis-related genes in CD98 deleted cells, flow cytometry analysis was carried 

out to explore apoptotic cells in the subpopulations of intestinal monocytes and macrophages. Indeed, 

our investigations indicated also that CD98 deletion not only leads to increased apoptotic gene 

expression, but also to increased apoptosis of the colonic monocytes and macrophages. Further, analysis 

of the cell numbers indicated a significantly reduced Ly6clow monocyte and MHC II+ macrophage 

numbers after silencing CD98. This effect accompanies with the kinetics of CD98 silencing in which 

day 7 revealed the optimum of CD98 deletion. Consequently, the lowest cell population number of MHC 

II+ macrophages occurred on day 7. In addition, the silencing of CD98 over 28 days by daily tamoxifen 

treatment in CD98hcΔCX3CR1 mice revealed a permanent decreased cell number of Ly6Clow monocytes 

and MHC II+ macrophages. Moreover, Ly6Chigh monocytes showed a tendency of accumulation over 

the time of CD98 deletion. Besides, the in vitro model could show that the addition of different 

concentrations of tamoxifen into cultures of M-CSF differentiated BMDMs obtained from 

CD98hcΔCX3CR1 mice resulted in cell death. Furthermore, in vitro treatment of BMDMs with 10 mM  

D-phenylalanine, which is a natural inhibitor of the SLC3A2-SLC7A5 activity (Schuster et al., 2015), 

revealed in a slight increase of non-stimulated ‘resting’ BMDMs into pro-inflammatory BMDMs 

indicated by elevated nitrate expression. Hence, in vitro CD98 deletion by D-phenylalanine changed the 
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metabolism of arginine in ‘resting’ macrophages to the metabolism of pro-inflammatory macrophages. 

Thus, arginine is metabolized to nitric oxide. However, D-phenylalanine did not show any impairment 

of the metabolism of anti-inflammatory BMDMs, which metabolize arginine to ornithine (Ginhoux et 

al., 2016; Hesse et al., 2001; Martinez and Gordon, 2014; Mosser and Zhang, 2008).  

 

 

4.3. Deletion of CD98hc 

Given that CD98 is highly expressed in monocytes and macrophages of the cLP, we next deleted 

specifically CD98hc in CX3CR1+ mononuclear phagocytes. For that, we used the inducible Cre-loxP 

system that controls the Cre system by the temporal inducer tamoxifen, which is systemically 

administered by intraperitoneal injection. In this system, tamoxifen modifies Cre protein which fuses 

with estrogen receptor containing a mutated ligand binding domain (also known as CreERT). Usually, 

the CreERT binds to the heat shock protein 90 (HSP90), which is disrupted when it binds to the synthetic 

steroid tamoxifen. Furthermore, this nuclear translocation leads to the interaction of CreERT with loxP 

sites (Kim et al., 2018). The use of the CrERT system led us to delete CD98hc only in CX3CR1+ 

monocytes and macrophages of CD98hcΔCX3CR1 animals. The i.p. injection of tamoxifen over five 

consecutive days led to decreased CD98hc expression of colonic mononuclear phagocytes as well as 

Kupffer cells, which primarily seed from fetal liver-derived monocytes and maintain through self-

renewal (Hoeffel et al., 2015), in a time-dependent manner. However, i.p. injection of tamoxifen did not 

affect the CD98 expression of Langerhans cells which develop prenatally independent of the monocyte 

pool (Yona et al., 2013). This might be due to several reasons:  

 

Half-life of the active metabolites of tamoxifen (Jahn et al., 2018) 

Tamoxifen is a prodrug with little affinity for the estrogen receptor. It is metabolized in the liver by the 

cytochrome P450 isoform CYP2D6 and CYP3A4 into the active metabolites afimoxifene (4-

hydroxytamoxifen; 4-OHT), N-desmethyl-tamoxifen (NDM-TAM) and endoxifen (N-desmethyl-4-

hydroxytamoxifen), with a 30-100 times greater affinity for the estrogen receptor. The half-life of i.p. 
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injected TAM and its metabolites are ~ 40h in the serum after a single dose of TAM with TAM (9.9 h), 

4-OH-TAM (15.8 h), NMD-TAM (19.9 h), and END (33.2 h). 

 

Application and distribution of tamoxifen (Bosenberg et al., 2006; Vasioukhin et al., 1999). 

Tamoxifen can be applied by different routes: orally, intraperitoneally, or by topical application on the 

skin. Thus, in the mouse organism, the active metabolites of tamoxifen are systemically distributed. 

Moreover, Vasioukhin and co-workers showed that TAM is detectable in all layers of the skin epidermis. 

Hence, the inhibition of CD98 silencing by the tamoxifen injection in Langerhans cells might be due to 

another mechanism. 

 

Embryonic development of mononuclear phagocytes (Yona et al., 2013). 

Myeloid cells, including mononuclear phagocytes, are known to arise by a series of waves from 

primitive hematopoiesis (early embryogenesis) to definitive hematopoiesis (late fetal stages). 

Macrophages from the primitive origin (e.g., microglia) maintain themselves throughout adult life by 

limited self-renewal as well as longevity without any input from definitive hematopoiesis. The 

fractalkine gene Cx3cr1 is broadly expressed within the mononuclear phagocyte system. Epidermal 

Langerhans cells derive from primitive macrophages and fetal liver cells. Indeed, during adulthood, this 

compartment maintains itself independent from bone marrow-derived blood monocyte input compared 

to Kupffer cells, which are partially replenished by blood monocytes shown by Scott and co-workers in 

2016. Further, the expression of the fractalkine receptor/CX3CR1 is discontinued during maturation. 

Thus, in adulthood, epidermal Langerhans cells are CX3CR1 negative.  

 

Therefore, due to the lack of CX3CR1 in epidermal Langerhans cells, CD98hc is not deleted by the i.p. 

injection of tamoxifen, signifying the high CD98hc expression. Additionally, analysis of other cell types 

like B cells, CD4+ and CD8+ T cells, DCs, neutrophils, and NK cells for their CD98 expression 

elucidated that the specifical deletion of CD98hc only occurs in colonic macrophages and not in other 

immune cells harbored in the cLP. Further, the optimal silencing revealed around day 7 after the first 

injection of tamoxifen. However, as in the cLP the CD98 expression could be restored within 14 to 21 
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days, tissue-resident Kupffer cells needed up to 28 days. These findings suggest that CX3CR1+ 

macrophages in the cLP are constantly replenished by circulating blood monocytes. Nevertheless, blood 

monocytes might replenish Kupffer cells, which stay in this niche usually as long-lived self-renewing 

cells (David et al., 2016; Scott et al., 2016). Possibly, the silencing of CD98 in CX3CR1 expressing 

mononuclear phagocytes inhibits the restoration of gut macrophages and Kupffer cells due to cell death 

of monocyte intermediates. CD98 mediates not only the uptake of branched-chain amino acids (BCAA), 

it also binds to the cytoplasmic tail of integrin tails such as β1A and β3 integrins to regulate the integrin 

signaling (Cantor and Ginsberg, 2012). Investigation for the expression of integrin β1 (CD29) during 

tamoxifen treatment showed no alteration of the CD29 expression. Therefore, we did not investigate the 

CD98 and CD29 interaction in detail. 

 

 

4.4. Deletion of CD98 protects mice from DSS induced colitis 

The overexpression of CD98 in epithelial cells leads to an increased proliferation of IECs combined 

with an impaired barrier function. Further, the overexpression of CD98 leads also to a more severe colitis 

and colitis-associated cancer (Nguyen et al., 2011). It has been shown, that the treatment of animals with 

nanoparticles carrying small interfering RNAs directed against CD98 could reduce the CD98 expression 

in macrophages and colonic epithelial cells in vitro. In mice, the application of single chain CD98 

(scCD98)-functionalized small interfering CD98 RNA (siCD98)-loaded nanoparticles by hydrogels 

reduced colon expression of CD98. Thus, colitis severity has been reduced (Xiao et al., 2014). In this 

study, we used a genetically engineered cKO mouse in which the floxed CD98 sequence is cut out by 

the tamoxifen-induced Cre activation. Thus, CD98hc is specifically deleted in CX3CR1+ monocytes and 

macrophages. In contrast, Xiao and co-workers used scCD98-functionalized siCD98-loaded 

nanoparticles which have an affinity for CD98-overexpressing cells to significantly reduce the CD98 

expression. In comparison to our specific tamoxifen-induced CD98 deletion, the siCD98-loaded 

nanoparticles reduce the CD98 expression not only in CD98-overexpressing colonic epithelial cells and 

macrophages but also in all other cell types harbored in the cLP. Further, previous work showed also 

that the silencing of CD98 in regulatory T cells (Treg) leads to reduced Treg cell number and an impaired 
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suppressive function in the gut, which is likely due to reduced uptake of BCAA and not by CD29-

mediated adhesion (Ikeda et al., 2017). As the optimal time frame of CD98 silencing was given, DSS-

induced colitis experiment was realized. Our results showed, that the deletion of CD98 in CD98hcΔCX3CR1 

animals leads to attenuation of colitis indicated by the clinical signs of body weight loss, disease activity 

index (DAI), colon shortening, histological signs, and endoscopically. Further, the decreased severity 

of colitis indicates that the expression of CD98 by intestinal epithelial cells (Nguyen et al., 2011) and 

macrophages mediates colitis. Moreover, as the reduced uptake of BCAA attenuates the severity of 

colitis, feeding mice with 10% higher amino acid chow (5% more L-leucine and 5% more L-isoleucine) 

compared to conventional chow revealed a tendency of increased intestinal inflammation in tamoxifen-

treated CD98hcΔCX3CR1 mice. Thus, the influx of BCAA leads to a rapidly higher expression of the amino 

acid transporter CD98hc (Yan and Lamb, 2010) supporting the inflammatory response of intestinal 

immune cells which might compensate the impaired immunological behavior of CD98 deficient colonic 

monocytes and macrophages. 

 

 

4.5. CD98 in human inflammatory bowel disease 

CD98 is highly expressed in steady state as well as under inflammatory conditions in the mouse 

intestine. Thus, the high CD98hc expression might be due to the ingestion of amino acids which results 

in a rapid and transient upregulation of the amino acid transporter CD98 (Yan and Lamb, 2010). As 

CD98 strongly correlates with IBD (Laroui et al., 2014; Nguyen et al., 2011), we investigated the 

expression levels of SLC3A2 and SLC7A5 in human IBD patients. Therefore, biopsies from patients with 

quiescent and active UC and patients with quiescent and active CD were taken by the Swiss 

Inflammatory Bowel Disease Cohort Study. The results indicated also in humans that SLC3A2 and 

SLC7A5 are highly expressed in patients with quiescent and active UC or in patients with quiescent and 

active CD. Further, immunofluorescence staining additionally showed that CD98hc is ubiquitously 

expressed by IECs as well as lamina propria cells of the colon. The intensity per area showed no 

significant difference between non-inflamed or inflamed colon samples of UC or CD patients. Thus, 
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RT-qPCR analysis, as well as immunofluorescence staining, support mutually the high CD98 expression 

in human.  

 

4.6. Concluding remarks 

In conclusion, this study indicates that monocytes develop into gut-resident macrophages through 

different intermediates. These intermediates are characterized as two main population which express 

either CCR2 or CD64. The CCR2+ population is further distinguished into Ly6Chigh monocytes (P1), 

Ly6Cmid monocytes (P2), and Ly6Clow monocytes (P3), and the CD64+ population into immature MHC 

II- macrophages (P4) and mature MHC II+ macrophages (P5).  

 

It has been shown that the conditional deletion of CD98 inhibits the clonal proliferation of T cells in 

response to antigens and prevent the establishment of autoimmune disease (Cantor et al., 2011) or to 

abrogate the ability of B cells to respond to mitogens which leads to defects in plasma cell formation 

(Cantor et al., 2009). We observed that the conditional deletion of CD98 impairs the differentiation of 

monocytes into macrophages in the colonic lamina propria. Moreover, the cell numbers of Ly6Clow 

monocytes, as well as MHC II+ macrophages, were significantly reduced in vivo. Thus, the development 

of resident intestinal macrophages partially depends on the expression of CD98 (Figure 4.1). As a 

consequence, DSS-induced colitis was significantly attenuated in CD98hcΔCX3CR1 animals treated with 

tamoxifen. 

 

In the future, targeting the glycoprotein CD98, which is associated with gut homeostasis and the 

intestinal innate immune responses (Yadav et al., 2016), as well as strongly correlates with IBD (Laroui 

et al., 2014; Nguyen et al., 2011), represents a potential therapeutic target for the treatment of IBD. 

Moreover, molecular pathways that are involved in the ‘monocyte waterfall’-development but also in 

the maturation of gut macrophages need to be better described. Additionally, understanding the 

mechanism of development of macrophages in the intestinal lamina propria may also provide attractive 

molecular therapeutic targets for the treatment of IBD. 
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Figure 4.1: Schematic representation. The ‘monocyte waterfall’-development into gut macrophages in C57BL/6 WT and 

CD98hc deficient mouse. 
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6 APPENDIX 

6.1. Supplementary Data  

Table S1: IBD patient characteristics used for expression analysis 

  

Baseline Group characteristics 

 Crohn’ disease Ulcerative colitis 

 Quiescent (n=20) Active (n=11) Quiescent (n=20) Active (n=11) 

Gender, male/female, n (%) 
60/40 % 

12 male, 8 females 

36/64% 

4 m, 7 f 

35/65% 

12 m, 8 f 

54/45% 

6 m, 5 f 

Median age (range), yr 56 (32-81) 39 (31-71) 58 (31-81) 53 (24-68) 

Mean BMI (SD), kg/m2 24.15 (3) 25.55 (4.9) 24.70 (2.99) 23.89 (4.08) 

Median age at diagnosis 

(range), yr 
33.5 (18-60) 21 (14-34) 28.5 (14-65) 30 (16-60) 

Median disease duration 

(range), yr 
21.5 (6-45) 19 (7-37) 26 (8-44) 16 (7-38) 

CD extent, n (%) 

Ileum isolated 5 (25%) 2 (18%)   

Colon isolated 2 (10%) 3 (27%)   

Ileocolonic 2 (10%) 5 (46%)   

Unknown 11 (55%) 1 (9%)   

UC extent, n (%) 

Proctitis   1 (5%) 1 (10%) 

Left-sided colitis   3 (20%) 5 (45%) 

Pancolitis   5 (25%) 5 (45%) 

Unknown     

Current medical treatment, n (%) 

No treatment 5 (25%)  5 (25%) 1 (9%) 

5-ASA 6 (30%)  13 (65%) 9 (81%) 

Steroids  6 (54%)  4 (36%) 

Immunosuppressants 11 (55%) 1 (9%) 4 (20%) 1 (9%) 

Anti-TNF  1 (9%)  3 (27%) 

     

Smoking status 

Non-smoker, n (%) 12 (60%) 6 (54%) 15 (75%) 9 (81%) 

Active smoker, n (%) 6 (30%) 5 (46%) 1 (5%) 1 (9.5%) 

Unknown 2 (10%) 0  4 (20%) 1(9.5%) 
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Table S2: IBD patient characteristics used for CD98hc immunofluorescence 

 

 Ulceritive colitis Crohn's 

Sample # 504 535 619 558 568 620 

Gender female female unknown female male female 

Age 50 71 unknown 72 68 69 

BMI 25,6 27,3 unknown 19 32 21,6 

Age at 

diagnosis 
34 56 unknown 23 52 56 

Smoking 

status 
unknown unknown unknown 

non-

smoker 
active active 

Localisation 

inflamed 

(B) sigmoid/ 

rectum 

(B) rectum/ 

sigmoid 

(B) sigmoid/ 

rectum 
unknown (C) sigmoid 

(B) term. 

Ileum 

Localisation 

non-inflamed 

(A) transversal 

colon 
(A) colon 

(A) ascendens/ 

trans 
(B) rectum 

(B) colon 

desc. 

(A) col. 

ascendens 

Medical 

treatment at 

time of study 

none none 

none at time 

of study,  

but received 

Salofalk 10 

days before 

Quantalan, 

Immodium 

Spiricort, 

Aldactone, 

Orfiril 

unknown 

Clinical 

disease 

activity index 

5 6 unknown unknown 74 70 
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Table S3: Primer sequences for RT-qPCR 

 

Primer (mouse) Sequence (5‘-3‘) Tm (°C) Product size (bp) 

Actβ-fwd TTC TTT GCA GCT CCT TCG TT 56,4 
149 

Actβ-rev ATG GAG GGG AAT ACA GCC C 59,5 

Il1β-fwd TGT GAA ATG CCA CCT TTT GA 54,3 
94 

Il1β-rev GGT CAA AGG TTT GGA AGC AG 58,4 

Il6-fwd 
TCG GAG GCT TAA TTA CAC ATG TTC 

T 
62,5 

94 

Il6-rev GCA TCA TCG TTG TTC ATA CAA TCA 60,3 

Il10-fwd ATC GAT TTC TCC CCT GTG AA  56,4 
108 

Il10-rev TGT CAA ATT CAT TCA TGG CCT  55,4 

Tnf-fwd CCA CCA CGC TCT TCT GTC TAC 63,2 
103 

Tnf-rev AGG GTC TGG GCC ATA GAA CT 60,5 

Slc7a5-fwd ATG TGG CTC CGA TTC AAG A 56,4 
61 

Slc7a5-rev GGA GGG CCA GAT TCA CCT  58,3 

Slc7a6-fwd CTG CTG CCT GCG TAT GTC 58,6 
64 

Slc7a6-rev ACT CGT GTG CCC CAC TTG 59,9 

Slc7a7-fwd CAC CCC AGT GTG CTG CTA 60,8 
91 

Slc7a7-rev GAA GAC CTT CAC CAG CTT GC 59,6 

Slc7a8-fwd GCT GGA AGA AGC CTG ACA TT 58,2 
78 

Slc7a8-rev AGG CCC AGA ACA GCA GGT A 60,5 

Slc7a10-fwd GGG ACT ACG CCT ATG TCA CTG  59,9 
75 

Slc7a10-rev TGA TGA GGA CAG CAC TCC AG 59,1 

Slc7a11-fwd GAT TCA TGT CCA CAA GCA CAC  57,8 
71 

Slc7a11-rev AGA GCA TCA CCA TCG TCA GA 58,5 

Il19-fwd CTG GGC ATG ACG TTG ATT CT 58,3 
185 

Il19-rev TCTCCAGGCTTAATGCTCCT 58,1 

IFNγ-fwd ACA GCA AGG CGA AAA AGG AT 56,4 
90 

IFNγ-rev TGA GCT CAT TGA ATG CTT GG 56,4 

Chil3-fwd AGG AAG CCC TCC TAA GGA CA 60,5 
82 

Chil3-rev CTC CAC AGA TTC TTC CTC AAA AGC 63,6 

Mgl1-fwd TGA GAA AGG CTT TAA GAA CTG GG 60,9 
101 

Mgl1-rev GAC CAC CTG TAG TGA TGT GGG 63,2 
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Mcp-1-fwd AGG TCC CTG TCA TGC TTC TG 60,5 
249 

Mcp-1-rev TCT GGA CCC ATT CCT TCT TG 58,4 

Mrc1-fwd CTC TGT TCA GCT ATT GGA CGC 61,2 
136 

Mrc1-rev CGG AAT TTC TGG GAT TCA GCT TC 62,9 

Retnla-fwd CCA ATC CAG CTA ACT ATC CCT CC 64,6 
188 

Retnla-rev CCA GTC AAC GAG TAA GCA CAG 61,2 

iNos-fwd GTT CTC AGC CCA ACA ATA CAA GA 60,9 
127 

iNos-rev GTG GAC GGG TCG ATG TCA C 61,6 

Kc-fwd CTG GGA TTC ACC TCA AGA ACA TC 62,9 
117 

Kc-rev CAG GGT CAA GGC AAG CCT C 61,6 

Primer (human) Sequence (5‘-3‘) Tm (°C) Product size (bp) 

GAPDH-fwd TCG ACA GTC AGC CGC ATC TTC TTT 65,2 
104 

GAPDH-rev GCC CAA TAC GAC CAA ATC CGT TGA 65,2 

SLC3A2-fwd GAC CCC TGT TTT CAG CTA CG 60,5 
108 

SLC3A2-rev TCA GGG AAG CTG GAC TCA TC 60,5 

SLC7A5-fwd TCC TGG ATC ATC CCC GTC TT 60,5 
88 

SLC7A5-rev CCA CGA AGA AGA GCC TGG AG 62,5 

fwd – forward, rev – reverse, Tm – melting temperature 

 

 

Table S4: Monoclonal antibodies for flow cytometry, surface antigens 

Specificity 

(mouse) 

Conjugated Isotype Clone Company Catalogue 

Number 

Final Conc. 

CD3 Biotin 
Armenian 

hamster IgG  
145-2C11 BioLegend 100303 0.6 µg/ml 

CD19 Biotin Rat IgG2a, κ 6D5 BioLegend 115503 5.0 µg/ml 

NK1.1 Biotin Mouse IgG2a, κ PK136 BioLegend 108703 0.6 µg/ml 

Ly6G Biotin Rat IgG2a, κ 1A8 BioLegend 127603 0.6 µg/ml 

Ter119 Biotin Rat IgG2b, κ TER-119 BioLegend 116203 0.6 µg/ml 

F4/80 Biotin Rat IgG2a, κ BM8 BioLegend 123105 5.0 µg/ml 

I-A/I-E AF700 Rat IgG2b, κ M5/114.15.2 BioLegend 107622 2.5 µg/ml 

Ly6C PerCP/Cy5.5 Rat IgG2c, κ HK1.4 BioLegend 128011 0.5 µg/ml 

CD11b PE/Cy7 Rat IgG2b, κ M1/70 BioLegend 101215 2.0 µg/ml 

CD98 PE Rat IgG2a, κ RL388 BioLegend 128207 0.25 µg/ml 

CD64 BV711 Mouse IgG1, κ X54-5/71 BioLegend 139311 1.0 µg/ml 

F4/80 APC Rat IgG2a, κ BM8 BioLegend 123116 4.0 µg/ml 

CD29 Pacific Blue 
Armenian 

hamster IgG 
HMβ1-1 BioLegend 102224 2.5 µg/ml 

CD3 AF700 Rat IgG2b, κ 17A2 BioLegend 100216 5.0 µg/ml 

CD4 BV510 Rat IgG2a, κ RM4-5 BioLegend 100559 2.0 µg/ml 
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CD8 PerCP Rat IgG2a, κ 53-6.7 BioLegend 100732 2.0 µg/ml 

CD8 PerCP/Cy5.5 Rat IgG2a, κ 53-6.7 BioLegend 100734 2.0 µg/ml 

CD11c APC/Fire750 
Armenian 

hamster IgG 
N418 BioLegend 117352 4.0 µg/ml 

Ly6G APC Rat IgG2a, κ 1A8 BioLegend 127613 1.0 µg/ml 

CD19 BV785 Rat IgG2a, κ 6D5 BioLegend 115543 0.6 µg/ml 

CD207 APC Mouse IgG2a, κ 4C7 BioLegend 144205 2.0 µg/ml 

CCR2 APC Rat IgG2b 475301 R&D Systems FAB5538A 10 µl/test 

CD45 
Super Bright 

436 
Rat IgG2b, κ 30-F11 Invitrogen 62-0451-82 1 µl/test 

CD16/32 

(FcγRII/III) 
purified Rat IgG2a, λ 93 Invitrogen 14-0161-85 5.0 µg/ml 

CD117 BB515 Rat IgG2b, κ 2B8 
BD 

Bioscience 
564481 1.0 µg/ml 

CD115 PE/Dazzle Rat IgG2a, κ AFS98 BioLegend 135528 0.5 µg/ml 

CD135 APC Rat IgG2a, κ A2F10 BioLegend 135310 2.0 µg/ml 

CD14 PE/Dazzle Rat IgG2a, κ Sa14-2 BioLegend 123326 2.0 µg/ml 

CD72 BV786 Mouse IgG2b, κ K10.6 
BD 

Bioscience 
740940 2.0 µg/ml 

CD81 PerCP/Cy5.5 
Armenian 

Hamster IgG 
Eat-2 BioLegend 104911 2.0 µg/ml 

 

 

Table S5: Monoclonal antibodies for flow cytometry, intracellular antigens 

Specificity 

(mouse) 

Conjugated Isotype Clone Company Catalogue 

Number 

Final Conc. 

IL-6 APC Rat IgG1, κ MP5-20F3 BioLegend 504508 2.0 µg/ml 

IL-10 PE Rat IgG2b, κ JES5-16E3 BioLegend 505007 2.0 µg/ml 

TNF APC/Cy7 Rat IgG1, κ MP6-XT22 BioLegend 506343 2.0 µg/ml 

 

 

Table S6: Primer sequences for genotyping Cd98hcflox/flox and Cx3cr1cre animals (PCR) 

Primer Sequence (5‘-3‘) Tm (°C) Product size (bp) 

Slc3a2-wt-fwd CAG ATT GTC AGT AAC AGA CA 54,3 
400 

Slc3a2-wt-rev GTT ACC TCC ACT ATG AAT GC 56,4 

Slc3a2-mut-fwd CAG ATT GTC AGT AAC AGA CA 54,3 
600 

Slc3a2-mut-rev TCA TGC GTG AGC GTA ATT TT 54,3 

Cx3cr1-wt-fwd AGG ATG TTG ACT TCC GAG TTG 59,5 
695 

Cx3cr1-wt-rev AAG ACT CAC GTG GAC CTG CT 60,5 

Cx3cr1-mut-fwd AGG ATG TTG ACT TCC GAG TTG 59,5 
300 

Cx3cr1-mut-rev CGG TTA TTC AAC TTG CAC CA 56,4 

WT – wild type, Mut – mutant, fwd – forward, rev – reverse, Tm – melting temperature 
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Table S7: Differentially expressed genes in CD98hc cKO cells over control cells for each cluster of the 

scRNA-seq data. 

Cluster 1: Gene ID Symbol Gene Name log2FC adj.P.Val 

ENSMUSG00000028037 Ifi44 interferon-induced protein 44 1,7 5,9E-09 

ENSMUSG00000091144 Phf11c PHD finger protein 11C 2,0 5,9E-09 

ENSMUSG00000073491 Pydc4 interferon activated gene 213 2,1 1,2E-08 

ENSMUSG00000090231 Cfb complement factor B 2,1 1,2E-08 

ENSMUSG00000025498 Irf7 interferon regulatory factor 7 2,6 2,5E-08 

ENSMUSG00000046687 Gm5424 argininosuccinate synthase pseudogene 2,6 2,5E-08 

ENSMUSG00000076441 Ass1 argininosuccinate synthetase 1 2,6 2,5E-08 

ENSMUSG00000030107 Usp18 ubiquitin specific peptidase 18 2,0 2,5E-08 

ENSMUSG00000044703 Phf11a PHD finger protein 11A 1,9 2,5E-08 

ENSMUSG00000037849 Gm4955 signaling mucin HKR1-like 1,9 3,7E-08 

ENSMUSG00000068245 Phf11d PHD finger protein 11D 1,9 4,6E-08 

ENSMUSG00000091649 Phf11b PHD finger protein 11B 1,9 6,8E-08 

ENSMUSG00000066677 Pydc3 interferon activated gene 208 1,7 6,8E-08 

ENSMUSG00000075602 Ly6a lymphocyte antigen 6 complex, locus A 2,3 2,9E-07 

ENSMUSG00000035692 Isg15 ISG15 ubiquitin-like modifier 2,4 2,9E-07 

ENSMUSG00000033213 AA467197 expressed sequence AA467197 2,7 3,8E-07 

ENSMUSG00000020641 Rsad2 
radical S-adenosyl methionine domain 

containing 2 
1,9 6,2E-07 

ENSMUSG00000089929 Bcl2a1b 
B cell leukemia/lymphoma 2 related protein 

A1b 
1,5 1,0E-06 

ENSMUSG00000029561 Oasl2 2'-5' oligoadenylate synthetase-like 2 1,7 1,3E-06 

ENSMUSG00000022586 Ly6i lymphocyte antigen 6 complex, locus I 1,8 1,3E-06 

ENSMUSG00000079017 Ifi27l2a interferon, alpha-inducible protein 27 like 2A 1,5 1,9E-06 

ENSMUSG00000073409 H2-Q6 histocompatibility 2, Q region locus 8 1,6 2,2E-06 

ENSMUSG00000029379 Cxcl3 chemokine (C-X-C motif) ligand 3 2,2 2,4E-06 

ENSMUSG00000033355 Rtp4 receptor transporter protein 4 1,5 4,1E-06 

ENSMUSG00000060550 H2-Q7 histocompatibility 2, Q region locus 7 1,6 4,5E-06 

ENSMUSG00000033880 Lgals3bp 
lectin, galactoside-binding, soluble, 3 

binding protein 
1,3 5,5E-06 

ENSMUSG00000091971 Hspa1a heat shock protein 1A -1,5 8,7E-06 

ENSMUSG00000041827 Oasl1 2'-5' oligoadenylate synthetase-like 1 1,8 1,1E-05 

ENSMUSG00000021208 Ifi27l2b interferon, alpha-inducible protein 27 like 2B 1,9 1,1E-05 

ENSMUSG00000054203 Ifi205 interferon activated gene 205 1,6 2,1E-05 

ENSMUSG00000026536 Mnda interferon activated gene 211 1,7 2,2E-05 

ENSMUSG00000066861 Oas1g 2'-5' oligoadenylate synthetase 1G 1,4 3,0E-05 

ENSMUSG00000000204 Slfn4 schlafen 4 1,5 3,0E-05 

ENSMUSG00000074896 Ifit3 
interferon-induced protein with 

tetratricopeptide repeats 3 
1,8 3,0E-05 

ENSMUSG00000035352 Ccl12 chemokine (C-C motif) ligand 12 1,9 3,0E-05 

ENSMUSG00000024644 Cndp2 
CNDP dipeptidase 2 (metallopeptidase M20 

family) 
1,6 3,0E-05 

ENSMUSG00000034459 Ifit1 
interferon-induced protein with 

tetratricopeptide repeats 1 
1,7 3,0E-05 

ENSMUSG00000021281 Tnfaip2 
tumor necrosis factor, alpha-induced protein 

2 
1,3 3,2E-05 
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ENSMUSG00000062488 Ifit3b 
interferon-induced protein with 

tetratricopeptide repeats 3B 
1,5 3,5E-05 

ENSMUSG00000041324 Inhba inhibin beta-A 1,6 4,1E-05 

ENSMUSG00000082976 Gm15056 predicted gene 15056 2,7 5,2E-05 

ENSMUSG00000000318 Clec10a C-type lectin domain family 10, member A -1,5 5,5E-05 

ENSMUSG00000069516 Lyz2 lysozyme 2 -1,1 6,5E-05 

ENSMUSG00000027399 Il1a interleukin 1 alpha 2,7 7,1E-05 

ENSMUSG00000000957 Mmp14 
matrix metallopeptidase 14 (membrane-

inserted) 
1,5 7,8E-05 

ENSMUSG00000020407 Upp1 uridine phosphorylase 1 1,2 8,5E-05 

ENSMUSG00000052776 Oas1a 2'-5' oligoadenylate synthetase 1A 1,3 1,0E-04 

ENSMUSG00000093930 Hmgcs1 
3-hydroxy-3-methylglutaryl-Coenzyme A 

synthase 1 
-1,1 1,1E-04 

ENSMUSG00000038156 Spon1 
spondin 1, (f-spondin) extracellular matrix 

protein 
1,4 1,3E-04 

ENSMUSG00000046718 Bst2 bone marrow stromal cell antigen 2 1,1 1,3E-04 

ENSMUSG00000031488 Rab11fip1 RAB11 family interacting protein 1 (class I) 1,3 1,3E-04 

ENSMUSG00000028459 Cd72 CD72 antigen 1,4 1,5E-04 

ENSMUSG00000102037 Bcl2a1a 
B cell leukemia/lymphoma 2 related protein 

A1a 
1,5 1,5E-04 

ENSMUSG00000026875 Traf1 TNF receptor-associated factor 1 1,2 1,8E-04 

ENSMUSG00000000184 Ccnd2 cyclin D2 1,3 2,2E-04 

ENSMUSG00000090272 Mndal myeloid nuclear differentiation antigen like 1,3 2,3E-04 

ENSMUSG00000027514 Zbp1 Z-DNA binding protein 1 1,3 2,3E-04 

ENSMUSG00000026357 Rgs18 regulator of G-protein signaling 18 -1,1 2,3E-04 

ENSMUSG00000026981 Il1rn interleukin 1 receptor antagonist 1,8 2,3E-04 

ENSMUSG00000045932 Ifit2 
interferon-induced protein with 

tetratricopeptide repeats 2 
1,2 2,3E-04 

ENSMUSG00000049103 Ccr2 chemokine (C-C motif) receptor 2 -1,2 2,4E-04 

ENSMUSG00000022126 Irg1 aconitate decarboxylase 1 1,7 3,1E-04 

ENSMUSG00000002108 Nr1h3 
nuclear receptor subfamily 1, group H, 

member 3 
1,5 3,8E-04 

ENSMUSG00000038067 Csf3 colony stimulating factor 3 (granulocyte) 1,3 3,9E-04 

ENSMUSG00000038393 Txnip thioredoxin interacting protein -1,2 4,9E-04 

ENSMUSG00000099974 Bcl2a1d 
B cell leukemia/lymphoma 2 related protein 

A1d 
1,3 4,9E-04 

ENSMUSG00000074743 Thbd thrombomodulin -1,2 6,2E-04 

ENSMUSG00000035929 H2-Q4 histocompatibility 2, Q region locus 4 1,2 6,6E-04 

ENSMUSG00000040950 Mgl2 
macrophage galactose N-acetyl-

galactosamine specific lectin 2 
-1,6 8,5E-04 

ENSMUSG00000027368 Dusp2 dual specificity phosphatase 2 1,1 9,3E-04 

ENSMUSG00000017002 Slpi secretory leukocyte peptidase inhibitor 2,4 1,2E-03 

ENSMUSG00000045551 Fpr1 formyl peptide receptor 1 1,2 1,2E-03 

ENSMUSG00000040483 Xaf1 XIAP associated factor 1 1,3 1,3E-03 

ENSMUSG00000079018 Ly6c1 lymphocyte antigen 6 complex, locus C1 1,5 1,3E-03 

ENSMUSG00000068631 Gm7676 NA 1,4 1,4E-03 

ENSMUSG00000043263 Pyhin1 interferon activated gene 209 1,2 1,5E-03 

ENSMUSG00000025383 Il23a interleukin 23, alpha subunit p19 1,4 1,6E-03 

ENSMUSG00000037580 Gch1 GTP cyclohydrolase 1 1,2 1,8E-03 

ENSMUSG00000067235 H2-Q10 histocompatibility 2, Q region locus 10 1,2 2,0E-03 

ENSMUSG00000070501 BC094916 interferon activated gene 214 1,1 2,4E-03 
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ENSMUSG00000031604 Msmo1 methylsterol monoxygenase 1 -1,1 2,6E-03 

ENSMUSG00000035042 Ccl5 chemokine (C-C motif) ligand 5 2,5 2,9E-03 

ENSMUSG00000042265 Trem1 
triggering receptor expressed on myeloid 

cells 1 
1,1 3,3E-03 

ENSMUSG00000026193 Fn1 fibronectin 1 -1,1 3,4E-03 

ENSMUSG00000001348 Acp5 acid phosphatase 5, tartrate resistant 1,2 3,5E-03 

ENSMUSG00000035828 Pim3 proviral integration site 3 1,1 4,3E-03 

ENSMUSG00000047945 Marcksl1 MARCKS-like 1 1,5 4,6E-03 

ENSMUSG00000053820 Bcl2a1c 
B cell leukemia/lymphoma 2 related protein 

A1c 
1,2 4,6E-03 

ENSMUSG00000034353 Ramp1 
receptor (calcitonin) activity modifying 

protein 1 
-1,1 4,9E-03 

ENSMUSG00000075010 AW112010 expressed sequence AW112010 1,1 5,2E-03 

ENSMUSG00000028214 Gem 
GTP binding protein (gene overexpressed in 

skeletal muscle) 
1,1 6,4E-03 

ENSMUSG00000022584 Ly6c2 lymphocyte antigen 6 complex, locus C2 1,7 6,7E-03 

ENSMUSG00000030342 Cd9 CD9 antigen 1,2 7,0E-03 

ENSMUSG00000027315 Spint1 serine protease inhibitor, Kunitz type 1 1,2 7,0E-03 

ENSMUSG00000030142 Clec4e C-type lectin domain family 4, member e 1,3 7,5E-03 

ENSMUSG00000029084 Cd38 CD38 antigen 1,2 7,5E-03 

ENSMUSG00000034158 Lrrc58 leucine rich repeat containing 58 1,2 8,8E-03 

ENSMUSG00000019970 Sgk1 serum/glucocorticoid regulated kinase 1 1,1 1,2E-02 

ENSMUSG00000032487 Ptgs2 prostaglandin-endoperoxide synthase 2 1,3 1,3E-02 

ENSMUSG00000019987 Arg1 arginase, liver 1,9 1,3E-02 

ENSMUSG00000063234 Gpr84 G protein-coupled receptor 84 1,2 1,4E-02 

ENSMUSG00000015568 Lpl lipoprotein lipase -1,6 2,1E-02 

ENSMUSG00000035678 Tnfsf9 
tumor necrosis factor (ligand) superfamily, 

member 9 
1,1 2,3E-02 

ENSMUSG00000001131 Timp1 tissue inhibitor of metalloproteinase 1 1,5 2,3E-02 

ENSMUSG00000091955 Gm9844 NA 1,1 2,5E-02 

ENSMUSG00000006818 Sod2 superoxide dismutase 2, mitochondrial 1,1 3,9E-02 

ENSMUSG00000074115 Saa1 serum amyloid A 1 1,3 4,2E-02 

ENSMUSG00000069439 Gm8444 NA 1,1 4,4E-02 

ENSMUSG00000031609 Sap30 sin3 associated polypeptide 1,1 4,4E-02 

ENSMUSG00000097971 Gm26917 NA 1,1 4,8E-02 

ENSMUSG00000017009 Sdc4 syndecan 4 1,1 4,9E-02 

Cluster 2: Gene ID Symbol Gene Name log2FC adj.P.Val 

ENSMUSG00000056529 Ptafr platelet-activating factor receptor 1,8 5,0E-07 

ENSMUSG00000089929 Bcl2a1b 
B cell leukemia/lymphoma 2 related protein 

A1b 
1,8 5,0E-07 

ENSMUSG00000075602 Ly6a lymphocyte antigen 6 complex, locus A 2,6 2,1E-06 

ENSMUSG00000029379 Cxcl3 chemokine (C-X-C motif) ligand 3 2,7 2,2E-06 

ENSMUSG00000060550 H2-Q7 histocompatibility 2, Q region locus 7 2,0 3,6E-06 

ENSMUSG00000102037 Bcl2a1a 
B cell leukemia/lymphoma 2 related protein 

A1a 
1,9 1,5E-05 

ENSMUSG00000079017 Ifi27l2a interferon, alpha-inducible protein 27 like 2A 1,4 2,0E-05 

ENSMUSG00000024644 Cndp2 
CNDP dipeptidase 2 (metallopeptidase M20 

family) 
2,1 2,9E-05 

ENSMUSG00000099974 Bcl2a1d 
B cell leukemia/lymphoma 2 related protein 

A1d 
1,8 2,9E-05 

ENSMUSG00000000204 Slfn4 schlafen 4 2,2 2,9E-05 
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ENSMUSG00000073409 H2-Q6 histocompatibility 2, Q region locus 8 1,8 3,0E-05 

ENSMUSG00000031613 Hpgd 
hydroxyprostaglandin dehydrogenase 15 

(NAD) 
-1,7 3,0E-05 

ENSMUSG00000034158 Lrrc58 leucine rich repeat containing 58 1,7 7,4E-05 

EYFP EYFP NA -1,5 9,2E-05 

ENSMUSG00000024014 Pim1 proviral integration site 1 1,5 9,8E-05 

ENSMUSG00000047945 Marcksl1 MARCKS-like 1 2,3 1,3E-04 

ENSMUSG00000025498 Irf7 interferon regulatory factor 7 1,9 1,3E-04 

ENSMUSG00000028037 Ifi44 interferon-induced protein 44 1,5 1,3E-04 

ENSMUSG00000079018 Ly6c1 lymphocyte antigen 6 complex, locus C1 2,3 1,4E-04 

ENSMUSG00000090231 Cfb complement factor B 1,7 2,8E-04 

ENSMUSG00000002103 Acp2 acid phosphatase 2, lysosomal 1,3 5,5E-04 

ENSMUSG00000066677 Pydc3 interferon activated gene 208 1,5 5,8E-04 

ENSMUSG00000091144 Phf11c PHD finger protein 11C 1,4 5,8E-04 

ENSMUSG00000073491 Pydc4 interferon activated gene 213 1,5 7,4E-04 

ENSMUSG00000030342 Cd9 CD9 antigen 1,8 7,8E-04 

ENSMUSG00000046687 Gm5424 argininosuccinate synthase pseudogene 1,8 9,0E-04 

ENSMUSG00000021208 Ifi27l2b interferon, alpha-inducible protein 27 like 2B 2,1 9,7E-04 

ENSMUSG00000017009 Sdc4 syndecan 4 2,0 9,7E-04 

ENSMUSG00000035692 Isg15 ISG15 ubiquitin-like modifier 1,7 9,8E-04 

ENSMUSG00000027315 Spint1 serine protease inhibitor, Kunitz type 1 1,6 9,8E-04 

ENSMUSG00000002985 Apoe apolipoprotein E -1,1 1,0E-03 

ENSMUSG00000029580 Actb actin, beta 1,1 1,0E-03 

ENSMUSG00000046718 Bst2 bone marrow stromal cell antigen 2 1,1 1,5E-03 

ENSMUSG00000026875 Traf1 TNF receptor-associated factor 1 1,2 1,5E-03 

ENSMUSG00000026981 Il1rn interleukin 1 receptor antagonist 1,8 1,5E-03 

ENSMUSG00000027399 Il1a interleukin 1 alpha 2,7 1,7E-03 

ENSMUSG00000029810 Tmem176b transmembrane protein 176B -1,1 1,7E-03 

ENSMUSG00000018476 Kdm6b KDM1 lysine (K)-specific demethylase 6B 1,2 1,9E-03 

ENSMUSG00000091955 Gm9844 NA 1,6 1,9E-03 

ENSMUSG00000019850 Tnfaip3 
tumor necrosis factor, alpha-induced protein 

3 
1,5 2,0E-03 

ENSMUSG00000029552 Tes testis derived transcript 1,3 2,0E-03 

ENSMUSG00000076441 Ass1 argininosuccinate synthetase 1 1,7 2,0E-03 

ENSMUSG00000021025 Nfkbia 
nuclear factor of kappa light polypeptide 

gene enhancer in B cells inhibitor, alpha 
1,3 2,1E-03 

ENSMUSG00000044703 Phf11a PHD finger protein 11A 1,3 2,2E-03 

ENSMUSG00000040552 C3ar1 complement component 3a receptor 1 1,3 2,3E-03 

ENSMUSG00000034226 Rhov ras homolog family member V 1,3 3,4E-03 

ENSMUSG00000040950 Mgl2 
macrophage galactose N-acetyl-

galactosamine specific lectin 2 
-1,1 3,7E-03 

ENSMUSG00000066861 Oas1g 2'-5' oligoadenylate synthetase 1G 1,1 4,1E-03 

ENSMUSG00000068245 Phf11d PHD finger protein 11D 1,3 4,6E-03 

ENSMUSG00000032691 Nlrp3 NLR family, pyrin domain containing 3 1,2 4,9E-03 

ENSMUSG00000009633 G0s2 G0/G1 switch gene 2 1,9 5,3E-03 

ENSMUSG00000063779 Chil4 chitinase-like 4 1,4 5,3E-03 

ENSMUSG00000021281 Tnfaip2 
tumor necrosis factor, alpha-induced protein 

2 
1,1 5,6E-03 

ENSMUSG00000027533 Fabp5 fatty acid binding protein 5, epidermal 2,3 6,6E-03 
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ENSMUSG00000052776 Oas1a 2'-5' oligoadenylate synthetase 1A 1,1 7,4E-03 

ENSMUSG00000031488 Rab11fip1 RAB11 family interacting protein 1 (class I) 1,3 7,5E-03 

ENSMUSG00000070691 Runx3 runt related transcription factor 3 1,2 8,0E-03 

ENSMUSG00000016496 Cd274 CD274 antigen 1,3 8,3E-03 

ENSMUSG00000022895 Ets2 E26 avian leukemia oncogene 2, 3' domain 1,2 8,4E-03 

ENSMUSG00000038467 Chmp4b charged multivesicular body protein 4B 1,2 8,8E-03 

ENSMUSG00000001627 Ifrd1 interferon-related developmental regulator 1 1,1 9,8E-03 

ENSMUSG00000007872 Id3 inhibitor of DNA binding 3 1,2 1,1E-02 

ENSMUSG00000027398 Il1b interleukin 1 beta 1,3 1,2E-02 

ENSMUSG00000032661 Oas3 2'-5' oligoadenylate synthetase 3 1,1 1,3E-02 

ENSMUSG00000068631 Gm7676 NA 1,3 1,4E-02 

ENSMUSG00000034855 Cxcl10 chemokine (C-X-C motif) ligand 10 1,7 1,4E-02 

ENSMUSG00000037580 Gch1 GTP cyclohydrolase 1 1,2 1,6E-02 

ENSMUSG00000022126 Irg1 aconitate decarboxylase 1 1,6 1,7E-02 

ENSMUSG00000017002 Slpi secretory leukocyte peptidase inhibitor 2,1 1,7E-02 

ENSMUSG00000030142 Clec4e C-type lectin domain family 4, member e 1,4 1,7E-02 

ENSMUSG00000027660 Skil SKI-like 1,1 1,8E-02 

ENSMUSG00000030156 Cd69 CD69 antigen 1,1 1,8E-02 

ENSMUSG00000031652 N4bp1 NEDD4 binding protein 1 1,2 1,8E-02 

ENSMUSG00000026536 Mnda interferon activated gene 211 1,1 1,9E-02 

ENSMUSG00000032487 Ptgs2 prostaglandin-endoperoxide synthase 2 1,5 1,9E-02 

ENSMUSG00000020869 Lrrc59 leucine rich repeat containing 59 1,1 2,0E-02 

ENSMUSG00000054203 Ifi205 interferon activated gene 205 1,1 2,0E-02 

ENSMUSG00000037820 Tgm2 transglutaminase 2, C polypeptide 1,4 2,1E-02 

ENSMUSG00000026193 Fn1 fibronectin 1 -1,1 2,1E-02 

ENSMUSG00000035929 H2-Q4 histocompatibility 2, Q region locus 4 1,1 2,1E-02 

ENSMUSG00000037849 Gm4955 signaling mucin HKR1-like 1,1 2,4E-02 

ENSMUSG00000001131 Timp1 tissue inhibitor of metalloproteinase 1 1,8 2,5E-02 

ENSMUSG00000022584 Ly6c2 lymphocyte antigen 6 complex, locus C2 1,6 2,6E-02 

ENSMUSG00000042190 Cmklr1 chemokine-like receptor 1 1,1 2,8E-02 

ENSMUSG00000058427 Cxcl2 chemokine (C-X-C motif) ligand 2 1,5 3,1E-02 

ENSMUSG00000043953 Ccrl2 chemokine (C-C motif) receptor-like 2 1,1 3,2E-02 

ENSMUSG00000030747 Dgat2 diacylglycerol O-acyltransferase 2 1,1 3,5E-02 

ENSMUSG00000022586 Ly6i lymphocyte antigen 6 complex, locus I 1,1 3,5E-02 

ENSMUSG00000035828 Pim3 proviral integration site 3 1,1 3,6E-02 

ENSMUSG00000030203 Dusp16 dual specificity phosphatase 16 1,1 3,7E-02 

ENSMUSG00000062742 Gm5239 NA 1,1 3,7E-02 

ENSMUSG00000042265 Trem1 
triggering receptor expressed on myeloid 

cells 1 
1,1 4,0E-02 

ENSMUSG00000031444 F10 coagulation factor X 1,2 4,3E-02 

ENSMUSG00000043421 Hilpda hypoxia inducible lipid droplet associated 1,5 4,7E-02 

Cluster 3: Gene ID Symbol Gene Name log2FC adj.P.Val 

ENSMUSG00000079017 Ifi27l2a interferon, alpha-inducible protein 27 like 2A 2,9 7,5E-14 

ENSMUSG00000037849 Gm4955 signaling mucin HKR1-like 2,7 1,3E-11 

ENSMUSG00000075602 Ly6a lymphocyte antigen 6 complex, locus A 3,5 1,4E-11 

ENSMUSG00000073491 Pydc4 interferon activated gene 213 2,6 2,5E-11 

ENSMUSG00000024675 Ms4a4c 
membrane-spanning 4-domains, subfamily 

A, member 4C 
2,7 2,5E-11 
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ENSMUSG00000044703 Phf11a PHD finger protein 11A 2,3 2,1E-09 

ENSMUSG00000033355 Rtp4 receptor transporter protein 4 2,2 2,4E-09 

ENSMUSG00000025498 Irf7 interferon regulatory factor 7 2,9 4,6E-09 

ENSMUSG00000054203 Ifi205 interferon activated gene 205 2,4 6,2E-09 

ENSMUSG00000040809 Chil3 chitinase-like 3 2,4 6,2E-09 

ENSMUSG00000078763 Slfn1 schlafen 1 2,0 6,2E-09 

ENSMUSG00000091144 Phf11c PHD finger protein 11C 2,1 6,2E-09 

ENSMUSG00000026536 Mnda interferon activated gene 211 2,4 6,2E-09 

ENSMUSG00000068245 Phf11d PHD finger protein 11D 2,2 1,1E-08 

ENSMUSG00000029322 Plac8 placenta-specific 8 2,9 1,2E-08 

ENSMUSG00000035692 Isg15 ISG15 ubiquitin-like modifier 2,7 3,0E-08 

ENSMUSG00000074896 Ifit3 
interferon-induced protein with 

tetratricopeptide repeats 3 
2,9 3,0E-08 

ENSMUSG00000025492 Ifitm3 interferon induced transmembrane protein 3 2,1 3,0E-08 

ENSMUSG00000091649 Phf11b PHD finger protein 11B 2,1 3,0E-08 

ENSMUSG00000029561 Oasl2 2'-5' oligoadenylate synthetase-like 2 2,0 6,0E-08 

ENSMUSG00000090272 Mndal myeloid nuclear differentiation antigen like 2,1 7,5E-08 

ENSMUSG00000022584 Ly6c2 lymphocyte antigen 6 complex, locus C2 3,2 1,9E-07 

ENSMUSG00000062488 Ifit3b 
interferon-induced protein with 

tetratricopeptide repeats 3B 
2,4 1,9E-07 

ENSMUSG00000044309 Apol7c apolipoprotein L 7c -2,6 2,5E-07 

ENSMUSG00000066861 Oas1g 2'-5' oligoadenylate synthetase 1G 1,9 2,6E-07 

ENSMUSG00000028037 Ifi44 interferon-induced protein 44 1,7 3,7E-07 

ENSMUSG00000052776 Oas1a 2'-5' oligoadenylate synthetase 1A 1,7 1,7E-06 

ENSMUSG00000032661 Oas3 2'-5' oligoadenylate synthetase 3 1,2 1,8E-06 

ENSMUSG00000030107 Usp18 ubiquitin specific peptidase 18 1,9 1,9E-06 

ENSMUSG00000076441 Ass1 argininosuccinate synthetase 1 2,2 2,1E-06 

ENSMUSG00000079523 Tmsb10 thymosin, beta 10 1,8 2,8E-06 

ENSMUSG00000043263 Pyhin1 interferon activated gene 209 1,8 3,4E-06 

ENSMUSG00000016283 H2-M2 histocompatibility 2, M region locus 2 -2,2 3,9E-06 

ENSMUSG00000046687 Gm5424 argininosuccinate synthase pseudogene 2,1 9,8E-06 

ENSMUSG00000066677 Pydc3 interferon activated gene 208 1,4 1,1E-05 

ENSMUSG00000027078 Ube2l6 ubiquitin-conjugating enzyme E2L 6 1,4 1,4E-05 

ENSMUSG00000027514 Zbp1 Z-DNA binding protein 1 1,6 1,7E-05 

ENSMUSG00000068631 Gm7676 NA 1,9 2,5E-05 

ENSMUSG00000022586 Ly6i lymphocyte antigen 6 complex, locus I 1,5 2,6E-05 

ENSMUSG00000091955 Gm9844 NA 1,8 3,0E-05 

ENSMUSG00000073489 Ifi204 interferon activated gene 204 1,6 3,3E-05 

ENSMUSG00000039997 Ifi203 interferon activated gene 203 1,3 4,1E-05 

ENSMUSG00000022587 Ly6e lymphocyte antigen 6 complex, locus E 1,2 4,4E-05 

ENSMUSG00000030149 Klrk1 
killer cell lectin-like receptor subfamily K, 

member 1 
1,3 7,6E-05 

ENSMUSG00000040483 Xaf1 XIAP associated factor 1 1,7 7,8E-05 

ENSMUSG00000034459 Ifit1 
interferon-induced protein with 

tetratricopeptide repeats 1 
1,9 1,6E-04 

ENSMUSG00000000204 Slfn4 schlafen 4 1,3 1,9E-04 

ENSMUSG00000000386 Mx1 MX dynamin-like GTPase 1 1,4 2,3E-04 

ENSMUSG00000070501 BC094916 interferon activated gene 214 1,4 2,4E-04 



89 

 

ENSMUSG00000045932 Ifit2 
interferon-induced protein with 

tetratricopeptide repeats 2 
1,6 2,5E-04 

ENSMUSG00000020641 Rsad2 
radical S-adenosyl methionine domain 

containing 2 
1,6 3,0E-04 

ENSMUSG00000050578 Mmp13 matrix metallopeptidase 13 -2,5 3,2E-04 

ENSMUSG00000022106 Rcbtb2 

regulator of chromosome condensation 

(RCC1) and BTB (POZ) domain containing 

protein 2 

-1,4 3,9E-04 

ENSMUSG00000079298 Klrb1b 
killer cell lectin-like receptor subfamily B 

member 1B 
-1,5 4,5E-04 

ENSMUSG00000079018 Ly6c1 lymphocyte antigen 6 complex, locus C1 1,6 5,1E-04 

ENSMUSG00000002204 Napsa napsin A aspartic peptidase 1,1 5,4E-04 

ENSMUSG00000039236 Isg20 interferon-stimulated protein 1,1 5,4E-04 

ENSMUSG00000078920 Ifi47 interferon gamma inducible protein 47 1,4 6,3E-04 

ENSMUSG00000009185 Ccl8 chemokine (C-C motif) ligand 8 -1,5 1,1E-03 

ENSMUSG00000003541 Ier3 immediate early response 3 -1,2 1,2E-03 

ENSMUSG00000046879 Irgm1 
immunity-related GTPase family M member 

1 
1,4 1,2E-03 

ENSMUSG00000054072 Iigp1 interferon inducible GTPase 1 1,4 1,3E-03 

ENSMUSG00000027962 Vcam1 vascular cell adhesion molecule 1 -1,6 1,7E-03 

ENSMUSG00000041827 Oasl1 2'-5' oligoadenylate synthetase-like 1 1,6 1,7E-03 

ENSMUSG00000026222 Sp100 nuclear antigen Sp100 1,2 2,3E-03 

ENSMUSG00000038400 Pmepa1 
prostate transmembrane protein, androgen 

induced 1 
-1,4 2,5E-03 

ENSMUSG00000021208 Ifi27l2b interferon, alpha-inducible protein 27 like 2B 1,4 3,2E-03 

ENSMUSG00000023031 Cela1 chymotrypsin-like elastase family, member 1 -1,3 4,6E-03 

ENSMUSG00000001467 Cyp51 cytochrome P450, family 51 -1,2 4,7E-03 

ENSMUSG00000047250 Ptgs1 prostaglandin-endoperoxide synthase 1 -1,2 4,8E-03 

ENSMUSG00000070327 Rnf213 ring finger protein 213 1,1 4,8E-03 

ENSMUSG00000038156 Spon1 
spondin 1, (f-spondin) extracellular matrix 

protein 
1,2 4,8E-03 

ENSMUSG00000025279 Dnase1l3 deoxyribonuclease 1-like 3 -1,5 6,2E-03 

ENSMUSG00000015396 Cd83 CD83 antigen -1,1 6,2E-03 

ENSMUSG00000047798 Cd300lf CD300 molecule like family member F 1,1 6,8E-03 

ENSMUSG00000090231 Cfb complement factor B 1,1 7,2E-03 

ENSMUSG00000052837 Junb jun B proto-oncogene -1,1 7,5E-03 

ENSMUSG00000038418 Egr1 early growth response 1 -1,2 8,1E-03 

ENSMUSG00000031613 Hpgd 
hydroxyprostaglandin dehydrogenase 15 

(NAD) 
-1,5 8,1E-03 

ENSMUSG00000045294 Insig1 insulin induced gene 1 -1,1 8,2E-03 

ENSMUSG00000025351 Cd63 CD63 antigen -1,1 8,6E-03 

ENSMUSG00000078922 Tgtp1 T cell specific GTPase 1 1,3 9,3E-03 

ENSMUSG00000042770 Hebp1 heme binding protein 1 -1,2 1,1E-02 

ENSMUSG00000027637 
1110008F13

Rik 
RIKEN cDNA 1110008F13 gene 1,1 1,1E-02 

ENSMUSG00000032554 Trf transferrin -1,2 1,1E-02 

ENSMUSG00000024644 Cndp2 
CNDP dipeptidase 2 (metallopeptidase M20 

family) 
1,3 1,2E-02 

ENSMUSG00000026365 Cfh complement component factor h -1,2 1,2E-02 

ENSMUSG00000001025 S100a6 S100 calcium binding protein A6 (calcyclin) 1,1 1,3E-02 

ENSMUSG00000031762 Mt2 metallothionein 2 -1,2 1,3E-02 

ENSMUSG00000038467 Chmp4b charged multivesicular body protein 4B 1,1 1,3E-02 
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ENSMUSG00000033066 Gas7 growth arrest specific 7 -1,1 1,3E-02 

ENSMUSG00000031765 Mt1 metallothionein 1 -1,3 1,3E-02 

ENSMUSG00000031029 Eif3f 
eukaryotic translation initiation factor 3, 

subunit F 
1,3 1,4E-02 

ENSMUSG00000029373 Pf4 platelet factor 4 -1,3 1,4E-02 

ENSMUSG00000003545 Fosb FBJ osteosarcoma oncogene B -1,1 1,4E-02 

ENSMUSG00000078921 Tgtp2 T cell specific GTPase 2 1,2 1,6E-02 

ENSMUSG00000015852 Fcrls Fc receptor-like S, scavenger receptor -1,1 1,6E-02 

ENSMUSG00000030737 Slco2b1 
solute carrier organic anion transporter 

family, member 2b1 
-1,1 3,0E-02 

Cluster 4: Gene ID Symbol Gene Name log2FC adj.P.Val 

ENSMUSG00000036896 C1qc 
complement component 1, q subcomponent, 

C chain 
-1,5 9,9E-05 

ENSMUSG00000079017 Ifi27l2a interferon, alpha-inducible protein 27 like 2A 1,5 1,1E-04 

ENSMUSG00000035692 Isg15 ISG15 ubiquitin-like modifier 2,4 2,4E-04 

ENSMUSG00000078921 Tgtp2 T cell specific GTPase 2 2,5 6,2E-04 

ENSMUSG00000069516 Lyz2 lysozyme 2 -1,3 6,2E-04 

ENSMUSG00000021281 Tnfaip2 
tumor necrosis factor, alpha-induced protein 

2 
1,6 1,1E-03 

ENSMUSG00000078922 Tgtp1 T cell specific GTPase 1 2,5 1,3E-03 

ENSMUSG00000074896 Ifit3 
interferon-induced protein with 

tetratricopeptide repeats 3 
2,9 1,4E-03 

ENSMUSG00000025498 Irf7 interferon regulatory factor 7 2,1 2,1E-03 

ENSMUSG00000029379 Cxcl3 chemokine (C-X-C motif) ligand 3 2,3 2,9E-03 

ENSMUSG00000073491 Pydc4 interferon activated gene 213 1,9 6,3E-03 

ENSMUSG00000091971 Hspa1a heat shock protein 1A -1,3 1,1E-02 

ENSMUSG00000052776 Oas1a 2'-5' oligoadenylate synthetase 1A 1,5 1,1E-02 

ENSMUSG00000066861 Oas1g 2'-5' oligoadenylate synthetase 1G 1,4 2,1E-02 

ENSMUSG00000036905 C1qb 
complement component 1, q subcomponent, 

beta polypeptide 
-1,1 2,7E-02 

ENSMUSG00000054072 Iigp1 interferon inducible GTPase 1 2,1 2,7E-02 

ENSMUSG00000033355 Rtp4 receptor transporter protein 4 1,5 3,8E-02 

ENSMUSG00000024675 Ms4a4c 
membrane-spanning 4-domains, subfamily 

A, member 4C 
1,2 3,9E-02 

ENSMUSG00000037849 Gm4955 signaling mucin HKR1-like 1,6 3,9E-02 

ENSMUSG00000029561 Oasl2 2'-5' oligoadenylate synthetase-like 2 1,6 4,5E-02 

ENSMUSG00000023367 Tmem176a transmembrane protein 176A -1,2 4,5E-02 

ENSMUSG00000054203 Ifi205 interferon activated gene 205 1,4 4,5E-02 

ENSMUSG00000027800 Tm4sf1 transmembrane 4 superfamily member 1 1,6 4,5E-02 

Cluster 6: Gene ID Symbol Gene Name log2FC adj.P.Val 

ENSMUSG00000079017 Ifi27l2a interferon, alpha-inducible protein 27 like 2A 2,1 9,2E-08 

ENSMUSG00000061100 Retnla resistin like alpha -5,4 5,7E-04 

ENSMUSG00000024675 Ms4a4c 
membrane-spanning 4-domains, subfamily 

A, member 4C 
2,2 5,7E-04 

ENSMUSG00000025498 Irf7 interferon regulatory factor 7 2,7 1,2E-03 

ENSMUSG00000025492 Ifitm3 interferon induced transmembrane protein 3 1,5 2,3E-03 

ENSMUSG00000091971 Hspa1a heat shock protein 1A -1,9 2,4E-03 

ENSMUSG00000035692 Isg15 ISG15 ubiquitin-like modifier 2,3 1,4E-02 

ENSMUSG00000075602 Ly6a lymphocyte antigen 6 complex, locus A 2,0 1,4E-02 

ENSMUSG00000037649 H2-DMa histocompatibility 2, class II, locus DMa -1,1 2,4E-02 
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