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Summary 

Background: Global trade of plant products is a major driving force for the unintended spread 

of economically harmful insect pests. This PhD thesis aimed at (i) developing and 

implementing molecular tools for the on-site identification of invasive insect pests at points of 

entry (POEs) for plant import products as a prevention measure; and (ii) investigating the 

invasion history of the mosaic leafhopper Orientus ishidae, a potential vector of grapevine 

Flavescence dorée phytoplasma.  

Methods: To achieve the first goal, loop-mediated isothermal amplification (LAMP)-based 

genetic assays for the rapid on-site identification of Bemisia tabaci, Thrips palmi and several 

invasive fruit flies of the genera Bactrocera and Zeugodacus were developed. Using publicly 

available DNA sequences, LAMP primers were designed to specifically target a fragment of 

the mitochondrial cytochrome c oxidase subunit 1 gene.  

To address the second goal of this PhD thesis, the invasion genetics of O. ishidae was studied, 

an invasive insect species that spread from its native range from in East Asia to North America 

in the first half of the 20th century and only recently colonised Europe. Possible source 

populations and invasion pathways were investigated by assessing the genetic structure of 41 

O. ishidae populations from Asia, Europe, and North America based on a mitochondrial marker 

and 641 single nucleotide polymorphisms (SNPs) generated by double digest restriction-site 

associated DNA (ddRAD) sequencing. 

Results: Validation performed under laboratory and on-site conditions demonstrated the 

robustness and reliability of the developed LAMP identification assays. Analysing 319 insect 

specimens, the overall diagnostic test efficiency was 98% and the overall diagnostic test 

specificity was 100%. The small number of false-negative results (2%) originated either from 

previously unknown biotypes, not included in the initial primer design, or from handling errors 

during LAMP preparation.  

The results from the molecular genetic analyses of O. ishidae revealed a clear genetic 

separation between a native population from Asia and the non-native populations from Europe 
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and North America. Among the non-native populations, only faint signals of spatial genetic 

structuring were found. However, when comparing non-native populations from Europe and 

North America, elevated levels of admixture of genetically distant mitochondrial haplotypes 

were observed for European populations. 

Conclusion: Characterised by high analysis speed (<1 h) and simplicity in use (only 1 pipetting 

step), the validated LAMP assays were found to be suitable identification tools for on-site 

application by plant health inspectors. Since completion of the validation phase, the developed 

identification assays are routinely deployed in the phytosanitary import control process of 

Switzerland.  

The considerable genetic separation between native and non-native populations of O. ishidae 

together with the strikingly high genetic similarity of European and North American populations 

suggest an invasion scenario in which North American populations served as source for the 

European invasion. A slightly reduced genetic structure combined with increased admixture of 

genetically distant mitochondrial haplotypes furthermore indicate that the European 

colonisation history was shaped by multiple introductions from North America, complemented 

by frequent intra-European gene flow. Taken together, it is hypothesised that the overall 

genetic complexity of non-native populations was strongly driven by frequent international 

trade of plants infested by O. ishidae. 
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Zusammenfassung 

Hintergrund: Der weltweite Handel von pflanzlichen Produkten gilt als einer der Hauptgründe 

für die ungewollte Verbreitung von wirtschaftlich gefährlichen Insektenschädlingen. Das Ziel 

dieser Dissertation war (i) die Entwicklung und Implementierung eines molekularen 

Schnelltests zur Identifikation von invasiven Insektenschädlingen an Ersteintrittspunkten von 

pflanzlichen Importprodukten und (ii) die Untersuchung der Invasionswege der Mosaik-

Zwergzikade Orientus ishidae, einem potentiellen Überträger der Phytoplasmen-Krankheit 

«Goldgelben Vergilbung» der Rebe.  

Methoden: Für das Erreichen des ersten Ziels dieser Arbeit wurden «loop-mediated 

isothermal amplification (LAMP)»-basierte, genetische Tests zur Schnellidentifikation von 

Bemisia tabaci, Thrips palmi und mehreren Fruchtfliegen der Gattungen Bactrocera und 

Zeugodacus entwickelt. Die LAMP Primer wurden dabei so konstruiert, dass sie spezifisch ein 

Fragment des mitochondrialen «Cytochrome c oxidase subunit 1» Gens der jeweiligen 

Zielorganismen erkennen.  

Im zweiten Teil dieser Arbeit wurde die Invasionsgenetik von O. ishidae untersucht. Diese 

invasive Insekten-Spezies stammt ursprünglich aus Ostasien, wurde in der ersten Hälfte des 

20. Jahrhunderts nach Nordamerika eingeschleppt, und hat erst kürzlich Europa besiedelt. Um 

mögliche Ursprungspopulationen und Invasionswege der Zwergzikade zu identifizieren wurde 

die genetische Struktur von 41 O. ishidae Populationen aus Asien, Europa und Nordamerika 

miteinander verglichen. Die Analysen basierten dabei auf einem mitochondrialen Marker, 

sowie 641 Einzelnukleotid-Polymorphismen, welche mit «double-digest restriction-site 

associated DNA (ddRAD) sequencing» generiert wurden. 

Resultate: Validierungen unter Labor- und «on-site»-Bedingungen zeigen, dass die 

entwickelten Schnelltests stabil und zuverlässig funktionieren. Bei der Identifikation von 319 

Insekten-Proben mittels der neu entwickelten Schnelltests konnte eine diagnostische Test-

Effizienz von 98%, sowie eine diagnostische Test-Spezifität von 100% festgestellt werden. Die 

wenigen falsch-negativen Resultate (2%) stammten einerseits aus Analysen von zuvor 
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unbekannten Schädlingsbiotypen, welche nicht in die ursprüngliche Entwicklung der Tests 

einbezogen wurden, und andererseits von Bedienungsfehlern in der Durchführung der 

Schnelltests. 

Die molekulargenetischen Analysen von O. ishidae haben gezeigt, dass sich Populationen aus 

dem natürlichen Verbreitungsgebiet klar von den invasiven Populationen aus Europa und 

Nordamerika unterscheiden. Für die Populationen aus dem neu besiedelten Gebiet sind nur 

schwache Signale von geografisch-genetischer Strukturierung gefunden worden. Allerdings 

haben Vergleiche von Populationen aus Europa und Nordamerika gezeigt, dass europäische 

Populationen einen erhöhten Anteil an «Admixture» von genetisch weit distanzierten 

mitochondrialen Haplotypen aufweisen. 

Schlussfolgerung: Insgesamt konnte gezeigt werden, dass die entwickelten Schnelltests 

dank ihrer Geschwindigkeit in der Durchführung (<1 h) und Einfachheit in der Handhabung 

(nur 1 Pipettier-Schritt) geeignete Werkzeuge zur Identifikation von regulierten Insekten-

schädlingen an Ersteintrittspunkten von pflanzlichen Importprodukten darstellen. Seit 

Abschluss der Validierungsphase werden die entwickelten Schnelltests routinemässig in der 

phytosanitären Einfuhrkontrolle der Schweiz eingesetzt. 

Die ausgeprägte genetische Trennung zwischen natürlichen und eingeschleppten 

Populationen von O. ishidae sowie die starke genetische Ähnlichkeit zwischen den 

europäischen und nordamerikanischen Populationen deuten auf ein Invasions-Szenario hin, 

in welchem nordamerikanische Populationen als Quelle für die europäische Invasion gedient 

haben. Zusätzlich lässt die leicht reduzierte genetische Struktur, sowie das lokale 

Zusammentreffen von genetisch weit entfernten mitochondrialen Haplotypen darauf 

schliessen, dass die europäische Besiedlung von O. ishidae durch mehrere Einschleppungen 

aus Nordamerika, sowie regelmässigen intra-europäischen Genfluss geprägt wurde. 

Insgesamt führten die ermittelten Resultate zur Hypothese, dass die komplexe genetische 

Struktur der invasiven Populationen stark geprägt wurde durch den internationalen Handel von 

mit O. ishidae befallenen Pflanzen. 
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1. Introduction 

1.1. Biological invasions 

1.1.1. Definition 

The term biological invasion describes the process by which an organism is translocated from 

its native range to a new, often distant area, where it proliferates, spreads and successfully 

manages to persist (Mack et al., 2000). Traditionally, invasion processes are subdivided into 

three particular stages (Fig. 1.1): First, an arrival stage at which the organism is translocated 

to a new area distant from the native range. Second, an establishment stage at which the non-

native organism successfully establishes a new population at a size that extinction is unlikely. 

Third, a spread stage at which the organism expands from the invaded area into new areas 

(Dobson and May, 1986; Liebhold et al., 1995; Liebhold and Tobin, 2008).  

Figure 1.1. Three stages of the biological invasion process. Figure is adapted from Liebhold 

and Tobin (2008). 

 

1.1.2. Translocation of non-native species 

Biological invasions are not considered to be a novel phenomenon (Mack et al., 2000; 

Saccaggi et al., 2016). Already from the 16th century on, European explorers and settlers 

started to release numerous non-native plant and animal species across the world (Seebens 

et al., 2017). In contrast, many non-native plant species were introduced to Europe in the 19th 

century for domestic and ornamental purposes (Seebens et al., 2017). However, the 

geographic scope and the rate at which humans transport foreign species into new areas 

accelerated considerably during the past two centuries (Mack et al., 2000; Seebens et al., 

2017). A recent study analysing first records of non-native organisms of the last 200 years 

Arrival

Establishment

Spread
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revealed that 37% of reported introduction events occurred in the period from 1970-2014 

(Seebens et al., 2017). The observed increase is thought to be driven by the expanding 

international transport and commerce, consequences of ongoing globalisation (Mack et al., 

2000; Bacon et al., 2012; Seebens et al., 2017). Because the transport volume of goods and 

people around the world is still expanding, it is expected that also the number of invasions will 

further increase (Bacon et al., 2012; Saccaggi et al., 2016). 

1.1.3. Introduction pathways 

The release of non-native organisms into a new area can occur intentionally such as for 

biocontrol agents or unintentionally as in the case of the introduction of pest species (Hulme 

et al., 2008; Saccaggi et al., 2016). Literature distinguishes between six major pathways for 

non-native species introduction with different levels of human influence. These are (i) unaided; 

(ii) corridor; (iii) stowaway; (iv) contaminant; (v) escape; and (vi) release (Fig. 1.2) (Hulme et 

al., 2008; Essl et al., 2015). 

Figure 1.2. Six major introduction pathways for non-native species. Arrow indicates the 

increasing amount of human assistance in the invasion process. Figure is adapted from Hulme 

et al. (2008). 

 

The importance of the individual introduction pathways varies strongly among different taxa. 

Aquatic plant invasions are frequently associated with the corridor pathway (e.g. via canal 

networks), whereas invasions of terrestrial plants are more often found to be associated with 

the intentional release for landscaping and pasture improvements (Hulme et al., 2008). In 

contrast, invasive arthropods are most often found to be introduced as contaminants of specific 

commodities (e.g. agricultural products, livestock and pets) and as stowaways of transport 
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vectors such as vehicles, containers, packaging material and passenger baggage (Kenis et 

al., 2007; Hulme et al., 2008; Saccaggi et al., 2016) . 

1.1.4. Impacts 

The unintentional translocation of species as by-product of globalisation has caused 

homogenisation in floras and faunas across the world and thereby reshaped biogeographic 

boundaries (Winter et al., 2009; Seebens et al., 2017). In the recent past, biological invasions 

were reported to have negatively affected native biodiversity, ecosystem functions, public 

health, as well as economy (Hulme, 2009; Pyšek and Richardson, 2010; Seebens et al., 2017). 

In many cases, more than one of these subject areas were affected and the induced processes 

are usually irreversible (Kenis et al., 2007). As an example, the yellow star thistle (Centaurea 

solstitalis) invaded 8,000,000 ha of California’s grassland, resulting in a change of the local 

biodiversity and the ecosystem as a whole, and it led to a complete loss of the grassland 

productivity of this area (Pimentel et al., 2005). Biological invasions may also affect human 

health such as in the case of the pollen allergy-inducing invasive plant Ambrosia artemisiifolia 

(Pyšek and Richardson, 2010). The economic consequences of biological invasions can be 

subdivided into two categories: (i) direct economic losses due to reduction of potential yields 

in crop production or from fishery; and (ii) indirect economic losses resulting from costs 

invested for management measures such as quarantine, control and elimination (Mack et al., 

2000). In a study from 2004, the annual US costs for total environmental damages and 

economic losses due to invasive species were estimated to be approximately US$ 120 billion 

(Pimentel et al., 2005; Marbuah et al., 2014).  

1.2. Invasive insects 

Insects are regarded as the most diverse and therefore largest group of living organisms on 

the Earth (Kenis et al., 2007; Feng et al., 2009). Hence, it is not surprising that they are also 

involved in a major part of the problems arising from biological invasion (Kenis et al., 2007). 

Early events of human-mediated movement of insect species already happened at the time, 

when Europeans conquered far distant corners of the world (Liebhold and Tobin, 2008). Upon 



22 
 

arrival at a new destination, settlers intentionally introduced domestic species such as the 

honey bee, but also insects unintentionally moved as stowaways on their vessels such as 

cockroaches (Liebhold and Tobin, 2008). Numerous studies reported a significant increase of 

insect introductions over the past 200 years (Hurley et al., 2016; Roques et al., 2016; Javal et 

al., 2017). The observed trend is thought to be directly linked with increasing global trade and 

transport, the homogenisation of host plant distribution, as well as with climate change (Hurley 

et al., 2016; Roques et al., 2016; Javal et al., 2017).  

Exploring historical introduction records of non-native insects in Europe, Roques et al. (2016) 

recently reported that the annual establishing rate of non-native insects has almost doubled 

over the past 60 years, from an annual average of 10.9 species per year to an annual average 

of 19.6 species per year. Only 14% of the total introductions were intentional (mainly for 

biocontrol purposes), however, the majority of insect species were introduced accidentally 

(Roques et al., 2016). The pattern of mainly unintentional introductions of insect species 

observed in Europe is similar to those reported from other world regions (Kumschick et al., 

2016; Roques et al., 2016). In general, the observed pattern differs from that seen in invasion 

processes of other invasive organisms such as plants and vertebrates, where species were 

more often introduced intentionally, e.g., for ornamental or domestic reasons (Kenis et al., 

2007; Kumschick et al., 2016). Insect invasions further differ from those of plants and 

vertebrates, in that their introduction phase is mostly not detectable. In addition, whereas plant 

invasions are often characterised by a “lag-phase” after introduction, invasive insects can 

spread quickly across new areas (Kenis et al., 2007). 

It is known that only a small fraction of the accidently translocated insect species can 

successfully establish and expand outside their native ranges (McCullough et al., 2006). 

Founder populations are often small and therefore at high risk of extinction (Liebhold and 

Tobin, 2008). Already in the 1930s, it was recognised that an invasive founder population must 

comprise a minimum number of individuals to survive in the invaded area (Allee, 1931; 

Liebhold and Tobin, 2008). This phenomenon, known as “Allee effect”, is thought to be driven 

by consequences of the lack of local mating partners (Berec et al., 2001), inbreeding 
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depression (Lande, 1998), as well as impaired cooperative feeding (Clark and Stanley, 1997; 

Liebhold and Tobin, 2008).  

Nowadays, studies investigating establishment successes of invasive species often assess 

the propagule pressure, a composite measure incorporating the absolute number of arrived 

individuals (propagule size), together with the number of introduction events (propagule 

number) (Lockwood et al., 2005). In this concept, an increase in propagule size or propagule 

number is thought to be positively linked with an increase of the propagule pressure (Lockwood 

et al., 2005). A positive correlation of propagule pressure on non-native population 

establishment based on experimental and observational data was so far reported for species 

of several taxonomic groups, including insects released for biocontrol purposes (Lockwood et 

al., 2005; Simberloff, 2009).  

It is widely accepted that the international trade of plants and plant products is one of the main 

drivers of the unintentional movement of invasive insects (Haack, 2001; Bacon et al., 2012; 

Liebhold et al., 2012). In the past, non-native insects were often found to be introduced on 

import commodities such as living plants, fruits, vegetables, cut flowers, seeds, wood packing 

materials or lumber (Haack, 2001; McCullough et al., 2006; Horton et al., 2013). An 

assessment of the non-native insect fauna of Austria and Switzerland estimated that 

approximately 43% of the analysed species were introduced via plant trade (Kenis et al., 2007; 

Liebhold et al., 2012). Examining different types of plant import commodities associated with 

non-native insect interceptions at European borders between 1995 and 2004, Kenis et al. 

(2007) reported that 29% of the foreign insects where found on cut flowers, 20% on vegetables, 

15% on plants for planting and 11% on traded fruits. The remaining 25% of non-native insect 

interceptions were associated with import commodities containing aquarium plants, bonsai 

trees, seeds, stored food products, as well as wood and wood derivates (Kenis et al., 2007). 

1.3. Invasive insect pests 

1.3.1. Definition 

Per definition, a pest species is defined as an organism that has the potential to disturb 

ecosystems resulting in significant ecological or economic harm (Kirk et al., 2013). In this PhD 
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thesis, the term “invasive insect pests” is used to refer to invasive insect species with the 

potential to cause substantial economic loss to agriculture.  

1.3.2. Examples 

Invasive insect pests can harm crops directly by feeding damage or indirectly by the 

transmission of plant pathogens such as bacteria, fungi and viruses (MacLeod et al., 2004; 

Chuche and Thiéry, 2014). An example of an invasive insect pest directly harming crops is 

given by the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) (Fig. 1.3A) (Deole 

and Paul, 2018; Feldmann et al., 2019). Native to the Americas, S. frugiperda was accidentally 

introduced to Africa in 2016, where the species represents now a key pest of maize (Deole 

and Paul, 2018; Feldmann et al., 2019). In contrast, the melon thrips, Thrips palmi 

(Thysanoptera: Thripidae) (Fig. 1.3B) harms crops directly by feeding damage but also 

indirectly by the transmission of harmful viruses such as the watermelon silver mottle virus 

(MacLeod et al., 2004). Originating most probably from Southeast Asia, T. palmi invaded many 

tropical, subtropical and moderate regions of the world (MacLeod et al., 2004; Walsh et al., 

2005). 

 

Figure 1.3. Examples of invasive insect pests. (A) Mature larva of the fall armyworm. 

Photograph by Lyle J. Buss, University of Florida, http://entnemdept.ufl.edu/creatures/field/ 

fall_armyworm.htm. (B) Adult Thrips palmi. Photograph by Stan Diffie, University of Georgia, 

https://www.forestryimages.org/browse/detail.cfm?imgnum=5186065. 
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1.3.3. Economic impact 

Globally, invasive insect pests are among the main vectors for crop damages (Ziska et al., 

2011). The dimension can be illustrated using the example of the US state of Hawaii: in 1990, 

the number of identified native insect species was estimated to be 5,246 (Pimentel et al., 2005). 

An additional 2,582 insect species were estimated to originate from previous introduction 

events (Pimentel et al., 2005). Interestingly, those non-native insects accounted for 98% of the 

total pest insects (Pimentel et al., 2005). Focusing on the entire USA, the annual loss in crop 

production due to insect pests was found to be 13% when estimated in 2001 (Pimentel et al., 

2005). Given the fact that approximately 40% of the US insect pests were non-native, an 

annual crop loss of US$ 13 billion was estimated to be caused by invasive insect pests 

(Pimentel et al., 2005). Moreover, additional costs of approximately US$ 500 million per year 

were invested for their control by pesticide applications (Pimentel et al., 2005). As a more 

specific example, Japan reported an average annual introduction of four non-native insects 

over the past 50 years, of which 74% became economic pests (Kiritani, 1998; Armstrong and 

Ball, 2005). The costs for the elimination of only two of those unintentionally introduced 

species, the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae) and the melon fly 

Zeugodacus cucurbitae (Diptera: Tephritidae) was estimated to be equivalent to more than € 

200 million (Kiritani, 1998; Armstrong and Ball, 2005).  

1.3.4. Prevention 

The management of introduction and spread of invasive insect pests can be divided into four 

parts, depending on the particular invasion step targeted: (i) prevention of introduction; (ii) early 

detection and fast response to recent introductions; (iii) elimination; and (iv) controlling of 

spread (Saccaggi et al., 2016). It is more and more accepted that the focus should be set on 

prevention measures, as they are more cost-effective than control and elimination measures 

conducted after successful insect pest establishment (Saccaggi et al., 2016). Prevention 

measures allow detecting foreign species at the initial stage of invasion events and provide 

therefore the possibility to implement rapid responses counteracting establishment and spread 

(Epanchin-Niell and Liebhold, 2015; Poland and Rassati, 2018).  
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Preventing the dispersal of invasive insect pests is a challenging task and requires cooperation 

of many different stakeholders involved in complex trade and transport processes (Garnas et 

al., 2016). International agreements such as the “International Plant Protection Convention 

(IPPC)” of the Food and Agricultural Organization of the United Nations (FAO) and the 

“Agreement on the Application of Sanitary and Phytosanitary Measures (SPS)” of the World 

Trade Organization (WTO) were formulated to mitigate the dispersal of harmful pests (Floyd 

et al., 2010; Saccaggi et al., 2016). In doing so, those agreements promote the adoption of 

phytosanitary regulations, while ensuring fairness of trade (Floyd et al., 2010; Saccaggi et al., 

2016).  

Phytosanitary regulations include prevention and quarantine measures such as post-harvest 

treatments (e.g. by exposure to heat), restrictions on type of goods to be imported and 

phytosanitary inspections of import commodities as a last line of defence (Bacon et al., 2012; 

Simberloff et al., 2013; Saccaggi et al., 2016). In general, phytosanitary inspections are 

conducted at the main points of entry (POEs) for import products, such as sea- and airports, 

and focus mainly on regulated invasive insects pests known to seriously harm agriculture 

(Bacon et al., 2012; Poland and Rassati, 2018). Import commodities suspected to harbour 

harmful insect pests are visually screened by plant health inspectors (Saccaggi et al., 2016; 

Blaser et al., 2018b; Poland and Rassati, 2018). In case of detection of a regulated pest, 

inspectors may prevent introduction directly by rejecting or destroying the infested imports 

(Blaser et al., 2018b; Poland and Rassati, 2018). 

1.4. Identification of invasive insect pests 

Once a suspicious insect species is intercepted, reliable and fast identification is needed to 

take a decision whether the infested consignment should be destroyed or not, as well as to 

inform decision makers (Saccaggi et al., 2016). In order to respect obligations associated with 

international treaties, destruction or refusal of infested cargo can only be implemented in case 

regulated pest species are intercepted (Floyd et al., 2010). However, the morphological 

differentiation between the vast range of regulated and non-regulated insect species is time-

consuming and difficult, especially for plant health inspectors with limited taxonomic training 
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(Floyd et al., 2010; Saccaggi et al., 2016; Blaser et al., 2018b). It becomes even more difficult 

in case insects arrive at early development stages such as eggs or larvae (Floyd et al., 2010; 

Blaser et al., 2018b). Only few POEs are equipped with qualified taxonomists and species 

identification is therefore often outsourced to research institutions or private agencies, where 

specimens are analysed using morphological or molecular methods (Navia et al., 2010; 

Saccaggi et al., 2016; Blaser et al., 2018b).  

1.4.1. Morphology-based identification 

Morphological identifications are traditionally performed using a dichotomous key (Saccaggi et 

al., 2016). Such analyses depend on profound taxonomic knowledge and are mainly applicable 

for the identification of adult insect specimens (Armstrong and Ball, 2005; Saccaggi et al., 

2016). This represents a major drawback of the method, as invasive insect pests are often 

intercepted at immature stages (Armstrong and Ball, 2005; Saccaggi and Pieterse, 2013; 

Saccaggi et al., 2016). Additional problems arise if insect specimens are damaged resulting in 

the lack of particular diagnostic characteristics needed for their accurate identification 

(Saccaggi et al., 2016). Recently, more user-friendly, interactive and multiple-choice-based 

taxonomic methods (e.g. online keys) were presented (Miller et al., 2014; Saccaggi et al., 

2016). However, thus far, such keys have only be developed for few insect groups and their 

application still relies on a certain level of taxonomic experience (Saccaggi et al., 2016).  

1.4.2. Molecular identification 

Molecular methods represent powerful tools for the identification of invasive insect pests 

(Garnas et al., 2016). Compared to morphological identification, molecular assays do not 

depend on specific taxonomic knowledge and are generally not limited by the life stage of the 

intercepted insects (Saccaggi et al., 2016). In the recent past, a variety of different molecular 

identification methods were developed (Armstrong and Ball, 2005). These include antibody-

based, protein-based and molecular genetic-based approaches (Armstrong and Ball, 2005). 

Antibody-based methods rely on the development of monoclonal antibodies specific for 

proteins of particular insect pest species, which can be applied for their identification in an 
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enzyme-linked immunosorbent assay (ELISA) (Symondson et al., 1999). In protein-based 

assays, electrophoretic profiles of salivary proteins are used to distinguish between 

morphologically similar insect species (Soares et al., 2000). Both antibody- and protein-based 

assays are not frequently used due to the difficulty to adapt them for the identification of 

different organisms, as well as their dependency on qualitatively high and fresh insect tissue 

(Armstrong and Ball, 2005).  

1.4.3. Molecular genetic-based identification 

Most of the molecular identification assays for insect pests are based on DNA amplification 

using polymerase chain reaction (PCR) (Armstrong and Ball, 2005). Compared to methods 

discussed above, this approach was proven to work also for low-quality samples such as 

incomplete or dried specimens. Nowadays, several different PCR-based methods are being 

used for insect pest identification, including species-specific PCR (Zhang et al., 2016), PCR 

restriction fragment length polymorphism (PCR-RFLP) (Armstrong et al., 1997), real-time PCR 

(Zhang et al., 2016) and DNA barcoding (Armstrong and Ball, 2005; Saccaggi et al., 2016; 

Zhang et al., 2016).  

In species-specific PCRs, oligonucleotide primers hybridise to species-specific DNA regions 

and hence, initiate DNA amplification, an enzyme-driven process performed in consecutive 

thermal cycles (Yang and Rothman, 2004; Lauri and Mariani, 2009). The result of DNA 

amplification can be visualised by agarose gel electrophoresis using a DNA stain (e.g. ethidium 

bromide) (Lauri and Mariani, 2009). In case the expected DNA amplification product (amplicon) 

is present, the result of the test is considered to be positive (Lauri and Mariani, 2009). In PCR-

RFLP analyses, the resulting amplicons are digested by restriction enzymes and differences 

in the length variation pattern of restriction fragments are used to differentiate between taxa 

(Armstrong et al., 1997; Arimoto et al., 2013). In contrast to PCR and PCR-RFLP, no agarose 

gel electrophoresis step is needed to validate the output of real-time PCR analyses (Lauri and 

Mariani, 2009). In this method, PCR reaction is performed using a reaction mix supplemented 

with fluorescent DNA stain and DNA amplification is performed in a thermal cycler able to 

detect and quantify fluorescence (Lauri and Mariani, 2009). During the PCR reaction, DNA 
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amplification can be quantified in real-time after each thermal cycle (Lauri and Mariani, 2009). 

In case dye quenched probes are used, this method even allows to identify several different 

taxa in a single assay (Lauri and Mariani, 2009; Zhang et al., 2016).  

PCR-based identification tools such as those described above have the disadvantage that they 

are mostly developed specifically for particular taxonomic groups, and hence, there exists only 

limited potential to apply them to other species (Armstrong and Ball, 2005). In contrast, DNA 

barcoding represents an identification method that can easily be standardised between 

different laboratories and has the power to reliably identify the entire taxonomic range of insect 

pests using one single method (Armstrong and Ball, 2005; Floyd et al., 2010; Hodgetts et al., 

2016). In this method, a “barcoding” sequence fragment of the mitochondrial cytochrome c 

oxidase subunit 1 gene (CO1) is amplified, using universal primers, and is subsequently 

sequenced (Armstrong and Ball, 2005; Floyd et al., 2010). The obtained “barcoding” sequence 

is then compared to a database containing reference sequence records of previously identified 

specimens, such as the Barcode of Life Data System (BOLD) or Q-bank (Sujeevan and Hebert, 

2007; Bonants et al., 2013; Blaser et al., 2018b). The main weaknesses of this method are (i) 

the need for primer sequences that are specific for the target species – for thus far unknown 

species this information may be lacking and hence amplification may fail; and (ii) genetic 

differentiation on the barcoding fragment among some species may not allow to discriminate 

them reliably – such species need to be addressed as species groups (Armstrong and Ball, 

2005; Boykin et al., 2012; Kirk et al., 2013).  

1.4.4. Molecular genetic-based on-site identification 

Due to the difficulty to morphologically identify the overwhelming range of different insect taxa 

associated with global trade, suspicious specimens intercepted during regular border import 

controls are mostly analysed in external laboratories (Saccaggi et al., 2016; Blaser et al., 

2018b). The shipment of specimens to the laboratory as well as the subsequent molecular 

genetic analyses generally require at least 2-3 working days (Blaser et al., 2018b). Until results 

are available, the import products that were controlled are held at the POE (Mumford et al., 

2016; Blaser et al., 2018b). Considering that invasive insects are mostly intercepted on 
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perishable import products such as cut flowers, fruits and vegetables, resulting import delays 

may cause substantial economic losses for exporters and importers alike (Kenis et al., 2007; 

Mumford et al., 2016; Blaser et al., 2018b). It has recently been reported that a delay of 24 h 

is already sufficient to adversely affect quality and thus value of such products (Mumford et al., 

2016). Additionally, time delays resulting from pending identification results furthermore 

increase the risk of insect pest escape (Floyd et al., 2010).  

Hence, a great need exists for on-site identification tools that can be performed directly at 

POEs (Blaser et al., 2018b). In order to be applicable, such on-site diagnostic methods need 

to be accurate, fast, and simple to perform. Furthermore, it should be possible to easily adjust 

them to different taxa in order to allow for standardisation (Blaser et al., 2018b). 

1.4.5. Loop-mediated isothermal amplification-based identification 

A method attracting more and more attention as suitable candidate for on-site identification of 

invasive insect pests is loop-mediated isothermal amplification (LAMP) (Notomi et al., 2000; 

Huang et al., 2009; Poland and Rassati, 2018). Compared to PCR-driven analyses, this 

method is based on DNA amplification at a constant temperature using strand displacement 

polymerase, and hence, can be performed without unwieldy and costly thermo cyclers 

(Hodgetts et al., 2015; Poland and Rassati, 2018). Instead of using only one primer pair such 

as in PCR-based methods, LAMP includes a combination of three specific primer pairs 

rendering the method highly specific to its target organisms (Hodgetts et al., 2015). 

Furthermore, due to the robustness of the method against inhibitors, there is no need for any 

DNA purification step prior to DNA amplification (Kogovšek et al., 2015; Blaser et al., 2018b). 

LAMP is very fast; successful identification of plant pathogens has recently been reported to 

be possible within 20 min (Poland and Rassati, 2018). The method is especially promising for 

on-site identification, because amplification and subsequent read-out can be performed in 

laboratory-free environments using portable and battery-powered platforms such as Genie® II 

(Blaser et al., 2018b; Poland and Rassati, 2018). Such platforms allow to quantify DNA 

amplification in real-time in case SYBR Green-containing reaction mixes are used (Maeda et 

al., 2005; Hodgetts et al., 2015). Applied for the detection of plant pathogens such as bacteria 
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(Bühlmann et al., 2013; Hodgetts et al., 2015) and fungi (Tomlinson et al., 2010), as well as 

for the identification of insect pests (Huang et al., 2009), it has been shown that LAMP can be 

performed successfully with only basic laboratory training . Due to the mentioned properties 

including robustness, simplicity and speed, LAMP represents a promising method for on-site 

identification of invasive insect pests at POEs.  

1.5. Invasion genetics of insect pests 

1.5.1. Reconstructing routes of invasion 

Understanding pathways followed by invasive insect pests is crucial for pest management and 

prevention of further spread (Estoup and Guillemaud, 2010; Correa et al., 2019). Outcomes of 

pest management strategies highly depend on reliable information of pest invasion histories 

(Estoup and Guillemaud, 2010). As an example, if a non-native species is found to be 

introduced repeatedly, it is more cost-effective to invest in prevention measures (e.g. import 

controls) than in management options such as elimination or containment (Estoup and 

Guillemaud, 2010). In case source populations and transport vectors of introduced species are 

known, it is furthermore possible to define quarantine measures precisely targeting the 

identified invasion pathway (Estoup and Guillemaud, 2010). Moreover, elucidating routes of 

invasion provides important information for the understanding of evolutionary and ecological 

processes underlying successful biological invasions (Estoup and Guillemaud, 2010; Javal et 

al., 2019).  

Information on invasion pathways and source populations can be obtained using two different 

approaches: (i) direct methods, which are based on historical species observational records 

(presence/absence data); and (ii) indirect methods relying on population genetic data (Estoup 

and Guillemaud, 2010; Boissin et al., 2012). Observational data used for direct methods often 

originate from pest interception records of quarantine services (Boissin et al., 2012). However, 

an interception record does not per se imply that the captured insect has the potential to 

successfully establish in a certain area (Estoup and Guillemaud, 2010). Furthermore, 

observational data are often considered to be incomplete (Boissin et al., 2012). Due to these 
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limitations, it remains difficult to precisely elucidate invasion routes solely using direct methods 

(Estoup and Guillemaud, 2010; Boissin et al., 2012). 

1.5.2. Invasion genetics 

Indirect methods for retracing invasion histories and identification of source populations rely 

on analysing genetic patterns within and between populations based on molecular markers 

(Darling et al., 2008; Estoup and Guillemaud, 2010; Boissin et al., 2012). Population genetic 

patterns can vary strongly between different invasion scenarios (Garnas et al., 2016; Javal et 

al., 2019). It was shown that founder populations in invasive areas are often characterised by 

reduced genetic diversity resulting from the limited number of introduced genotypes (founder 

effect) and subsequent population bottlenecks (Dlugosch and Parker, 2008; Boissin et al., 

2012; Javal et al., 2019). However, recent findings suggested that successful biological 

invasions often originate from multiple rather than single introduction events (Dlugosch and 

Parker, 2008; Javal et al., 2019). Recurrent and multiple introductions are thought to reduce 

impacts of founder and bottleneck effects by partially restoring genetic diversity (Dlugosch and 

Parker, 2008; Javal et al., 2019). Lately, several publications assessing invasion histories of 

non-native insect species reported “bridgehead” scenarios (Lombaert et al., 2010; Garnas et 

al., 2016; Javal et al., 2019; Lesieur et al., 2019). The bridgehead effect describes an invasion 

process in which a previously invasive population serves as a source for a secondary extra-

range expansion (Lombaert et al., 2010; Garnas et al., 2016). Recurrent and multiple 

introductions, as well as impacts of bridgehead effects, may considerably complicate the 

population genetic structure of invaders (Garnas et al., 2016; Javal et al., 2019).  

1.5.3. Invasion genetics of insect pests 

Over the past several years, molecular methods were successfully applied to elucidate 

invasion histories of several insect pests (Estoup and Guillemaud, 2010). An early example 

was reported by Miller et al. (2005) deciphering the invasion route of the western corn rootworm 

Diabrotica virgifera virgifera (Coleoptera: Chrisomelidae) in Europe. First detected in former 

Yugoslavia, it was assumed for several years that subsequent introductions in France and Italy 
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resulted from intra-European invasion processes (Miller et al., 2005). However, based on 

molecular genetic analyses, Miller et al. (2005) demonstrated that the Western European 

populations originated from multiple North American introduction events rather than from 

Yugoslavian bridgehead populations (Estoup and Guillemaud, 2010; Kirk et al., 2013).  

Later on, Pascual et al. (2007) assessed the genetic invasion pathway of the fruit fly pest 

Drosophila subobscura (Diptera: Drosophilidae) from Europe to the Americas (Estoup and 

Guillemaud, 2010). Results revealed an invasion history with a first introduction event in South 

America, followed by a bridgehead effect, in which South American populations served as 

source for the subsequent North American introduction (Pascual et al., 2007; Estoup and 

Guillemaud, 2010). The results stemming from the molecular analyses confirmed hypotheses 

formulated based on observational data (Pascual et al., 2007; Estoup and Guillemaud, 2010).  

In a very recent example, Correa et al. (2019) investigated the worldwide genetic invasion 

history of the obscure mealybug Pseudococcus viburni (Hemiptera: Pseudococcidae). The 

study revealed that European populations most probably originated from South America 

(Correa et al., 2019). After their successful establishment, European populations served as 

bridgehead for the colonisation of North America, New Zealand and South Africa (Correa et 

al., 2019).  

1.5.4. Molecular methods for reconstructing routes of invasion 

Various analysis methods and software tools are available to assess invasion history based 

on molecular genetic markers (Estoup and Guillemaud, 2010; Kirk et al., 2013; Cristescu, 

2015). These methods include traditional population genetics approaches such as 

phylogenetic trees, calculations of population genetic measurements (e.g. nucleotide 

diversity), analyses of molecular variance (AMOVAs), and parsimony networks (e.g. haplotype 

networks) (Meirmans, 2006; Estoup and Guillemaud, 2010; Leigh and Bryant, 2015). In 

addition, clustering approaches such as implemented in the software STRUCTURE (Pritchard 

et al., 2000) were demonstrated to be useful for assigning multi locus genotypes of invasive 

species into discrete genetic clusters (Cristescu, 2015; Roe et al., 2018; Javal et al., 2019). 

Moreover, STRUCTURE can describe levels of genetic admixture between different 
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populations and thus has the potential to inform about multiple introduction events (Pritchard 

et al., 2000; Javal et al., 2019). In principal component analyses (PCAs), genotypes are 

clustered using an alternative multivariate approach (Roe et al., 2018). Here, genetic variation 

is explained using a reduced selection of axes reflecting best the observed variation 

(Novembre and Stephens, 2008; Roe et al., 2018). In case such analyses reveal a clear 

clustering of an introduced population with a potential source population, conclusions about 

the possible invasion pathway can be drawn (Estoup and Guillemaud, 2010). Finally, a method 

gaining more and more attention for retracing invasion histories is Approximate Bayesian 

Computation (ABC) (Beaumont et al., 2002). ABC-based methods allow statistical testing of 

different invasion scenarios by estimating their likelihoods (Beaumont et al., 2002; Boissin et 

al., 2012). In order to increase accuracy, ABC models may also incorporate historical 

observational data (Boissin et al., 2012). 

1.5.5. Molecular markers for reconstructing routes of invasion 

The increased understanding of invasion histories over the past several years was strongly 

driven by advances in sequencing technologies resulting in the availability of more powerful 

markers for population genetic analyses (Davey et al., 2011; Garnas et al., 2016). Traditionally, 

studies reconstructing molecular invasion routes of insects were often based on mitochondrial 

CO1 data (Kirk et al., 2013; Garnas et al., 2016). Due to the haploid nature of mitochondrial 

DNA, CO1 sequence information can be obtained without extensive sequencing efforts (Hurst 

and Jiggins, 2005). An additional quality of the CO1 marker is its high evolutionary rate, which 

has the potential to resolve recent historical events (Hurst and Jiggins, 2005). Limitations arise 

from the strictly maternal inheritance of the mitochondrial genome – the observed population 

genetics patterns therefore correspond only to the population history of the female portion. 

Furthermore, in rare cases, the occurrence of nuclear mitochondrial pseudogenes (NUMTS) 

in the nuclear genome can confound the outcome of population genetic analyses (Hurst and 

Jiggins, 2005; Garnas et al., 2016).  

In order to overcome these limitations, CO1 data were often combined with nuclear markers 

such as microsatellites (Kirk et al., 2013; Chown et al., 2015; Garnas et al., 2016). Also known 
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as simple sequence repeats (SSR), microsatellites are short (1-6 bp) tandem repeats 

frequently occurring in nuclear genomes of many organisms (Selkoe and Toonen, 2006). 

Despite high evolutionary rates in the repeat regions, such elements can be easily amplified 

by targeting conserved flanking regions (Selkoe and Toonen, 2006).  

The recent advent of next-generation sequencing (NGS) has paved the way for studying 

invasion genetics based on genome-wide distributed single nucleotide polymorphisms (SNPs) 

(Davey et al., 2011; Garnas et al., 2016). High-throughput methods such as restriction-site-

associated DNA sequencing (RAD) (Hohenlohe et al., 2010) and genotyping-by-sequencing 

(GBS) (Elshire et al., 2011) allow sequencing of large data sets of SNPs for hundreds of 

individuals at moderate costs (Davey et al., 2011; Chown et al., 2015). For both methods, 

specific restriction enzymes are used to sequence a representative subsample of the genome 

(Davey et al., 2011; Chown et al., 2015). Because RAD and GBS do not depend on a reference 

genome, both methods can easily be used to genotype non-model organisms (Hohenlohe et 

al., 2010; Elshire et al., 2011; Chown et al., 2015). 

1.5.6. Limitations 

In recent years, molecular genetics methods were widely applied to retrace invasion pathways 

of insect pest species (Miller et al., 2005; Kirk et al., 2013; Lesieur et al., 2019). In many cases, 

such analyses were shown to provide helpful insights into dispersal mechanisms important for 

pest management, as well as for the prevention of further introductions events (Miller et al., 

2005; Kirk et al., 2013). However, while exploring invasion genetics with currently available 

methods, several drawbacks were identified (Kirk et al., 2013). These include insufficient 

power of some of the applied statistical models, limitations in describing population genetic 

processes using solely putatively neutral molecular markers and the appearance of complex 

and unexplainable genetic patterns (Kirk et al., 2013; Lesieur et al., 2019). In addition, due to 

the sometimes very condensed timescales of human-mediated species migration, molecular 

genetics approaches can fail to accurately resolve invasion dynamics (Fitzpatrick et al., 2012; 

Cristescu, 2015).  
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1.6. Goals and specific objectives of the PhD 

The overarching goals of this PhD are (i) to develop rapid diagnostic tools for the on-site 

identification of invasive insect pests; (ii) to implement the tools in the regular phytosanitary 

control process of the Swiss Plant Protection Service (SPPS); (iii) to validate the tools under 

laboratory and on-site conditions; and (iv) to investigate the invasion genetics of a recently 

introduced insect pest. 

There are four intertwined specific objectives of the PhD: 

(i) To develop loop-mediated isothermal amplification (LAMP)-based assays for the 

rapid identification of the regulated insect pests Bemisia tabaci (Hemiptera: 

Aleyrodidae), Thrips palmi (Thysanoptera: Thripidae), and several fruit flies of the 

genera Bactrocera and Zeugodacus (Diptera: Tephritidae). 

(ii) To implement the LAMP assays in the regular phytosanitary control process at the 

Swiss POE Zurich Airport. To achieve this, the assays were specifically adapted for 

on-site application by plant health inspectors with minimal laboratory training. 

(iii) To validate the diagnostic accuracy of the LAMP assays under laboratory and on-

site conditions. 

(iv) To apply molecular genetics methods for retracing the invasion history of Orientus 

ishidae (Hemiptera: Cicadellidae), a potential leafhopper pest recently introduced 

to Europe. 
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5.1. Abstract 

Native to East Asia, the mosaic leafhopper Orientus ishidae (Matsumura, 1902) invaded North 

America in the 1920s and has recently spread across the European continent within less than 

20 years. Recent studies indicated a potential vector competence of this species for the 

transmission of Flavescence dorée phytoplasma, the causing pathogen of the economically 

important grapevine yellows disease. Using a fragment of the mitochondrial cytochrome 

oxidase subunit 1 gene and 641 single nucleotide polymorphism markers generated by double-

digest restriction-site associated DNA sequencing, we studied the genetic structure of native 

and non-native populations of O. ishidae, placing particular emphasis on Europe. Our findings 

revealed a strong genetic separation between native and non-native populations. The 

considerable genetic similarity between European and North American populations suggests 

a role of North America as bridgehead for the European invasion. Furthermore, slightly reduced 

structure and signs of admixture of genetically distant haplogroups in European populations 

indicate the occurrence of recurrent invasion events from North America, as well as gene flow 

between European populations. We hypothesise that the observed genetic structure of 

European populations was driven by frequent intra-continental trade of living plants such as 

ornamentals. Our study provides for the first time insight into the global invasion history of O. 

ishidae and hence, the findings may contribute to the prevention of future insect pest 

introductions. 

 

Keywords: Bridgehead effect, Flavescence dorée phytoplasma, insect pest, invasion, 

Orientus ishidae, population genetics 
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5.2. Introduction 

The rate of human-mediated spread of species beyond their native ranges has increased 

considerably in the recent past (Seebens et al., 2017; Javal et al., 2019; Lesieur et al., 2019). 

It is widely acknowledged that the increasing movement of goods and people across the world 

is the main driver for the growing number of introductions of non-native invasive species 

(Fisher et al., 2012; Garnas et al., 2012; Garnas et al., 2016). Once introduced and 

successfully established, invaders may become serious threats to the native biota, 

ecosystems, public health, as well as the economy (Kenis et al., 2009; Seebens et al., 2017; 

Lesieur et al., 2019). The invasion process can be subdivided into three phases; namely (i) an 

initial dispersal phase in which an organism moves from its native range into a new range 

outside of its home range; ii) a phase in which the invading organism establishes a self-

sustaining population in the new range; and iii) a phase in which the organism spreads from 

the invaded range into surrounding areas (Kolar and Lodge, 2001; Puth and Post, 2005).  

Insects represent a class of organisms for which a particularly large increase of successful 

introduction events has been observed (Roques, 2010; Roques et al., 2016). For instance, in 

Europe, the establishing rate of invasive, non-native insects was reported to have almost 

doubled when comparing the period from 1950 to 1974 (estimated annual average of 10.9 

species) with that from 2000 to 2008 (estimated annual average of 19.6 species) (Roques, 

2010; Roques et al., 2016).  

Among the invasive insects are economically harmful pests such as the Western corn 

rootworm (Diabrotica virgifera) and the Colorado potato beetle (Leptinotarsa decemlineata), 

both causing considerable yield losses through direct feeding on crops (Roques et al., 2009; 

Bacon et al., 2012). Beside direct damages, non-native insect pests can also harm indirectly 

by vectorising plant diseases. An example is Scaphoideus titanus, a Nearctic leafhopper, 

which represents nowadays the main vector of Flavescence dorée phytoplasma, an 

intracellular bacterium highly pathogenic to several major grapevine cultivars in Europe 

(Papura et al., 2012).  
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The long-distance spread of invasive insect pests is often associated with the global trade of 

plant products (Haack, 2001; McCullough et al., 2006; Horton et al., 2013). Indeed, invasive 

pests are carried along trading networks as stowaways of import commodities such as 

agricultural goods, plants for planting, cut flowers, or wooden products and packaging material 

(Haack, 2001; McCullough et al., 2006). In addition, pests hitchhike along anthropogenic 

corridors (e.g. roads, railways and seaways) in transport vehicles such as lorries, trains and 

ships (Dobbs and Brodel, 2004; Hulme, 2009; Blaser et al., 2018).  

Once arrived, the establishment of pest populations in new territories is facilitated by the 

homogenisation of landscapes due to urbanisation and intensive agriculture (Estoup and 

Guillemaud, 2010). For example maize crops provide relatively uniform habitats in many 

regions around the world (Estoup and Guillemaud, 2010). Such uniform and globally very 

similar landscapes greatly reduce the extent of evolutionary response needed for a successful 

adaptation (Estoup and Guillemaud, 2010; Papura et al., 2012; Seebens et al., 2017). 

Profound knowledge of pest introduction pathways are key for the adoption of effective 

quarantine measures preventing pest introduction, as well as to define appropriate control 

strategies after their establishment. Pathways may be identified using direct methods based 

on historical observation data or indirectly by studying the population genetics of the invading 

insects (Estoup and Guillemaud, 2010; Garnas et al., 2016). While deciphering invasion routes 

and demography of invasive insect pests using molecular genetic approaches, previous 

studies revealed how complex and counter-intuitive such processes can be (Miller et al., 2005; 

Lombaert et al., 2010). However, the reconstruction of invasions pathways may be challenging 

due the stochasticity of demographic and genetic events (e.g. admixture and founder events) 

resulting in complex genetic signals (Guillemaud et al., 2010; Rius and Darling, 2014; Lesieur 

et al., 2019). 

An example of a globally invasive insect species is represented by Orientus ishidae 

(Hemiptera: Auchenorrhyncha: Cicadellidae), an extremely polyphagous leafhopper feeding 

on many wild and cultivated shrubs and trees such as the common hazel (Corylus avellana) 

(Nickel 2010; Parise 2017), willows (Salix sp.) (Guglielmino 2005; Nickel 2010) and orchard 
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apple trees (Malus domestica) (Klejdysz et al. 2017). Probably overwintering in eggs laid on 

plant tissues, the mosaic leafhopper is thought to have one generation per year (univoltine) 

(Valley and Wheeler Jr 1985; Nickel 2010; Lessio et al. 2016).  

Previous studies revealed a vector function of O. ishidae for the transmission of “Candidatus 

Phytoplasma pruni”, the causing agent of the Peach X disease in North America (Rosenberger 

and Jones 1978). In addition, recent findings of O. ishidae specimens infected by “Candidatus 

Phytoplasma vitis”-related phytoplasma strains belonging to the 16SrV ribosomal group (Mehle 

et al. 2010; Gaffuri et al. 2011; Trivellone et al. 2015) and their experimental transmission in 

laboratory experiments (Lessio et al. 2016) indicated furthermore a potential role of this 

leafhopper species in vectorising grapevine Flavescence dorée in European vineyards. 

Interestingly, while studying ecology of Flavescence dorée phytoplasma in a vineyard agro-

ecosystem of southern Switzerland, Casati et al. (2017) collected O. ishidae specimens on 

wild C. avellana and Salix sp. plants infected by “Candidatus Phytoplasma vitis”-related 

phytoplasma strains. Situated in close proximity to vineyards, infected wild host plants of O. 

ishidae therefore may serve as reservoirs for the grapevine Flavescence dorée disease (Casati 

et al. 2017). 

O. ishidae is considered to originate from East Asia and was first described in Japan in 1902 

(Matsumura, 1902). In 1919, the leafhopper was recorded for the first time outside its native 

range; in New Jersey, USA, where it was probably introduced in the egg stage on ornamental 

plants of the genus Aralia (Felt and Bromley, 1941). In 1955, O. ishidae was reported to be 

introduced also into southern Ontario, Canada (Hamilton, 1983). In 1967, the species occured 

in several additional U.S. states, namely District of Columbia, Long Island, Maryland, New 

Hampshire, New York, Ohio and Pennsylvania (Metcalf, 1967). In Europe, O. ishidae was first 

discovered in the northern part of Italy in 1998 (Guglielmino, 2005). Within 20 years, O. ishidae 

colonised many European countries ranging from southwestern France to southern Romania 

(see Table S8.4 for a detailed overview on occurrence reports from Europe) (Nickel, 2010; 

Chireceanu et al., 2017; Klejdysz et al., 2017). As for other invasive Auchenorrhyncha species, 

the rapid dispersal of O. ishidae in Europe is thought to be governed by the trade of fruit trees, 
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vine cuttings and ornamental plants, thereby translocating eggs associated with plant tissue 

(Mifsud et al., 2010). This hypothesis is supported by the fact that presence of O. ishidae was 

often reported from sub-urban and urban areas in proximity to trading networks (Günthart et 

al., 2004; Mifsud et al., 2010; Nickel, 2010; Klejdysz et al., 2017). However, the source of the 

European O. ishidae populations is unknown. 

In the present study, we used the combination of a 573 bp long DNA marker fragment from the 

mitochondrial cytochrome oxidase subunit 1 (CO1) gene and a genome wide single nucleotide 

polymorphism (SNP) marker set generated by double-digest restriction-site associated DNA 

(ddRAD) sequencing (Peterson et al., 2012), to analyse population genetics across 41 O. 

ishidae populations from Asia, Europe, and North America. The objectives of this study were 

(i) to investigate the worldwide population genetic structure placing a particular emphasis on 

European populations; (ii) to assess the likely source of the European invasion; and (iii) to 

study whether the European invasion proceeded from one or multiple introduction events. 

5.3. Materials and methods  

5.3.1. Samples and DNA extraction 

We analysed a total of 283 O. ishidae specimens originating from 41 sampling sites across 

three continents (Asia, Europe and North America) (Fig. 5.1, Table 5.1). Morphological species 

identification was confirmed by DNA barcoding (Hebert et al., 2003) using the mitochondrial 

CO1 marker described below. The final data set comprised mitochondrial CO1 data for 274 

specimens and ddRAD data for 254 specimens (for the detailed list of specimens, see chapter 

8.3.3.1). In order to reduce effects of unwanted bias during sample preparation (e.g. batch 

effects), specimens were initially randomised using the RAND function implemented in 

Microsoft® Excel® 2013. DNA extraction was performed nondestructively without any 

mechanical disruption step from whole specimens using the BioSprint 96 DNA Blood Kit 

(Qiagen AG, Hilden, Germany). The proteinase K digestion step was performed over night and 

the extracted DNA was eluted in a final volume of 100 µl Buffer AE. Visualisation of the 

sampling locations was performed using the R-package ggplot2 (R Core Team, 2016; 

Wickham, 2016).  
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Figure 5.1. Distribution of sampling sites on a global scale, b North American scale,  

c European scale, d and e Swiss scale and f Japanese scale. Numbers correspond to 

sampling sites specified in Table 5.1. 
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Table 5.1. Specimens included in the CO1 and ddRAD analyses. 

SSITE ID Country NRAD NCOI Lat Lon 

1 JPN-UNN Japan 4 5 35.283 132.900 

2 CAN-CAM Canada 7 7 43.369 -80.316 

3 USA-DOY USA 1 1 40.354 -75.109 

4 USA-HE1 USA 1 1 40.568 -75.341 

4 USA-HE2 USA 0 1 40.581 -75.330 

5 USA-PAX USA 2 2 40.430 -88.109 

6 USA-PIC USA 2 3 41.278 -76.716 

7 USA-SHA USA 2 2 40.840 -76.826 

8 USA-TAK USA 2 2 38.980 -77.015 

9 AUT-BAI Austria 6 7 46.872 15.929 

10 CZE-BRN Czech Republic 11 11 49.184 16.678 

11 DEU-GOD Germany 5 6 49.213 8.082 

12 FRA-BOM France 12 11 44.547 -0.356 

13 FRA-HAT France 2 1 48.011 7.300 

14 HUN-BUD Hungary 11 11 47.552 18.936 

15 ITA-CAS Italy 10 10 44.784 8.015 

16 ITA-ROV Italy 7 7 45.171 9.486 

16 ITA-VAL Italy 5 6 45.176 9.464 

17 ROU-BUC Romania 10 11 44.502 26.069 

18 SVN-NOV Slovenia 10 10 45.957 13.653 

19 CHE-AAR Switzerland 10 12 47.246 7.760 

20 CHE-AES Switzerland 11 11 47.468 7.573 

21 CHE-ART Switzerland 1 2 47.067 8.537 

22 CHE-ARZ Switzerland 9 11 45.868 8.937 

23 CHE-BER Switzerland 9 10 47.495 9.413 

24 CHE-CHA Switzerland 5 5 46.400 6.234 

25 CHE-CHY Switzerland 2 1 46.457 6.886 

26 CHE-FLA Switzerland 10 12 47.418 9.186 

27 CHE-GIO Switzerland 3 9 46.397 8.878 

28 CHE-HER Switzerland 1 1 47.603 8.914 

29 CHE-HUE Switzerland 11 11 47.176 8.434 

30 CHE-MEN Switzerland 2 3 45.860 9.003 

31 CHE-OBE Switzerland 13 13 47.446 8.124 

32 CHE-OES Switzerland 2 2 47.129 7.612 

33 CHE-RIE Switzerland 9 10 47.579 7.650 

34 CHE-ROV Switzerland 10 10 45.935 8.978 

35 CHE-STA Switzerland 12 12 45.855 8.927 

36 CHE-TOR Switzerland 0 1 46.059 8.922 

37 CHE-WAE Switzerland 12 12 47.222 8.677 

38 CHE-WEI Switzerland 1 1 47.583 9.090 

39 CHE-WIL Switzerland 11 10 47.611 8.511 

SSITE, position on map; ID, population identifier; NRAD, number of specimens included in ddRAD 

data set; NCOI, number of specimens included in mitochondrial CO1 data set; Lat, latitude; Lon, 

longitude. Geographic coordinates are specified using the world geodetic system (WGS) 84. 

Sampling site of ITA-ROV and ITA-VAL, as well as of USA-HE1 and USA-HE2 were plotted 

together due to their close spatial proximities. 

 

5.3.2. Mitochondrial DNA sequencing 

As a marker for mitochondrial DNA diversity and population structure, a 701 bp fragment of 

the mitochondrial CO1 gene located at the 5’ prime end of the gene was amplified using the 
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primers OI_Folmer_F (5’-CAAATCACAAAGATATCGG-3’) and OI_Folmer_R (5’-

TAAACTTCAGGGTGTCCGAAGAACC-3’). Those primers are a modified version of the primer 

combination LCO1490 and HCO2198 (Folmer et al., 1994). 

Polymerase chain reaction (PCR) was carried out on a thermocycler (Senso-Quest GmbH, 

Göttingen, Germany) in a total reaction volume of 20 µl with 1x HotStarTaq Master Mix (Qiagen 

AG, Hilden, Germany), 0.4 μM of each primer and 1 μl of DNA extract. The cycling conditions 

were the following: 15 min at 95°C, followed by 35 cycles of 40 sec at 95°C, 15 sec at 45°C, 5 

sec at 60°C and 2 min at 72°C. After a final elongation step for 7 min at 72°C, the reaction was 

hold at 10°C. The PCR product was cleaned using the NucleoFast® 96 PCR system 

(Marcherey-Nagel GmbH, Düren, Germany) according to the manufacturer’s protocol. Linear 

amplification was performed on a thermocycler (Senso-Quest) in a total reaction volume of  

10 µl containing 1x BigDye® Terminator version 1.1 Ready Reaction Mix (Applied Biosystems, 

Carlsbad, CA, USA), 0.2 μM of either forward or reverse primer (see above) and 0.3 µl of 

purified PCR product. For the linear amplification, the following cycling conditions were applied: 

15 min at 95°C, followed by 35 cycles of 15 sec at 95°C, 15 sec at 45°C and 2 min at 72°C. 

The linear amplification product was separated from unincorporated dye terminators using the 

DyeEx 96 kit according to the manufacturer’s protocol (Qiagen AG) and the clean product was 

sequenced on a SeqStudio Genetic Analyzer (Applied Biosystems). Forward and reverse 

sequences of each specimen were assembled using the de-novo assembly function 

implemented in Geneious® version 10.0.9 (Kearse et al., 2012) and aligned with the multiple 

alignment function of the same software. 

5.3.3. ddRAD library preparation and sequencing 

Library preparation was performed using a protocol modified from Peterson et al. (2012) and 

Lam et al. (2018) (for the detailed protocol, see chapter 8.3.1.1). In brief, extracted DNA was 

double-digested with the restriction enzymes EcoRI and NlaIII. Indexing of individual 

specimens was ensured (i) by ligating uniquely indexed adapter to the digested DNA 

fragments; and (ii) by amplifying the ligation products with uniquely indexed, adapter-matching 

Illumina PCR primers. After pooling samples into a single library, an automated size selection 
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step for fragments with a length of approximately 430 bp was performed using BluePippin 

(Sage Science, Beverly, MA, USA). The profile of the final library was then analysed using 

Fragment Analyzer (Agilent Technologies Inc., Santa Clara, CA, USA) and sequenced in six 

consecutive runs on an Illumina MiSeq platform using v3 kits (Illumina Inc., San Diego, CA, 

USA). 

5.3.4. ddRAD sequence processing and SNP calling 

After combining raw ddRAD sequencing data from the consecutive Illumina MiSeq runs, 

sequencing reads were demultiplexed and de-novo assembled using ipyrad version 0.7.28 

(https://ipyrad.readthedocs.io/, accessed 10 November 2018). For this analysis, the minimal 

depth for statistical base calling was set to five, the minimal depth for majority-rule base calling 

to four, the maximum number of SNPs per locus to 80 (for forward and reverse reads each), 

the maximum number of insertions and deletions (indels) per locus to 32 (for forward and 

reverse reads each), and the minimum percentage of individuals per population sharing a locus 

was set to 10. Default settings were used for all other parameters. After the demultiplexing 

step, samples were additionally filtered by applying a cut off for weak read coverage 

(<100,000) resulting in the removal of 33 specimens from the ddRAD data set. Finally, the 

software vcftools version 0.1.15 (Danecek et al., 2011) was employed to remove SNPs with 

missing data higher than 50% and minor allele counts less than two.  

The Bayesian simulation method of Beaumont and Balding implemented in BAYESCAN 

version 2.1 (Foll and Gaggiotti, 2008) was used to filter the data set for polymorphic loci under 

selection (Beaumont and Balding, 2004). The analysis was performed with 100,000 iterations, 

a burn-in of 50,000, a prior odds value of 10 and the number of pilot runs was set to 20. To 

avoid bias in the subsequent population genetic analyses, two significant outlier loci (q-value 

< 0.05) were removed from the data set (Fig. S8.2). The software PGDSpider version 2.1.1.5 

(Lischer and Excoffier, 2011) was used to transform the final SNP data set in formats used for 

different population genetic analyses.  
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5.3.5. Population genetics 

5.3.5.1. CO1 data set 

Mitochondrial genetic diversity estimates, such as the number of polymorphic sites, the number 

of haplotypes, haplotype diversity, nucleotide diversity and the average number of nucleotide 

differences were calculated using DnaSP version 5.0 (Librado and Rozas, 2009). In order to 

investigate relationships between haplotypes, TCS networks (Clement et al., 2000) were 

drawn in PopART (Leigh and Bryant, 2015). Closely related haplotypes were summarised as 

haplogroups and geographic frequency distributions of haplogroups were plotted on a map 

using the R-packages “maps” (R Core Team, 2016) and “plotrix” (Lemon, 2006). 

5.3.5.2. ddRAD data set 

In order to assess the population structure, pairwise differentiation among populations was 

estimated for populations with a minimum sample size of four, using the FST–pairwise genetic 

distance method implemented in Arlequin version 3.5 (Excoffier and Lischer, 2010) with a 

significance assessment based on 1,023 permutations. The same software was applied to 

determine hierarchical levels of genetic structure among groups of populations from different 

geographic regions conducting hierarchical analyses of molecular variance (AMOVAs) 

(Excoffier et al., 1992). Significance testing of AMOVA was performed using 1,023 

permutations. To investigate the genetic diversity among individuals, a principal component 

analysis (PCA) was performed using the R-package “adegenet” (Jombart, 2008; Jombart and 

Ahmed, 2011). Results of this multivariate and model-free method were plotted using the R-

package “ggplot2” (Wickham, 2016).  

A Bayesian clustering analysis was performed to identify genetically homogenous groups of 

individuals in the data set using STRUCTURE version 2.3.4 (Pritchard et al., 2000). The 

analysis was run with 10 independent replicates each comprising 100,000 iterations and 

100,000 burn-in steps. The number of clusters (K) tested ranged from 1-10 and the most 

informative K was determined using the delta K estimation method of Evanno et al. (2005), 

implemented in Structure Harvester (Earl, 2012). Results from the independent replicates were 
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subsequently combined using the “FullSearch” algorithm of CLUMPP version 1.2.2 (Earl, 

2012) and visualised using DISTRUCT version 1.1 (Rosenberg, 2004). The R-package “plotrix” 

(Lemon, 2006) was used to display cluster assignment probabilities on maps. 

PartitionFinder version 2.0 (Lanfear et al., 2016) was applied to select the best substitution 

model for individual-based phylogenetic analyses. The “greedy” algorithm was employed 

together with Akaike information criterion corrected (AICC) to select among the following 

substitution models: (i) General time reversible (GTR); (ii) GTR + gamma distribution (GTR+G); 

and (iii) GTR + G + proportion of invariable sites (GTR+G+I). Based on the results of the 

PartitionFinder analysis, a maximum likelihood analysis using the GTR+G model was 

performed with RAxML version 8.2.12 (Stamatakis, 2014). Tree support was assessed by 

performing nonparametric bootstrapping with 1,000 iterations. The RAxML output was 

visualised using FigTree version 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree, accessed: 30 

December 2019). 

Population-based evolutionary relationships were investigated using the software TreeMix 

version 1.12 (Pickrell and Pritchard, 2012). The R-package “dartR” (Gruber et al., 2018) was 

used to transform the data set into the TreeMix format. The subsequent phylogenetic analysis 

was performed using a sliding windows size of 100 kb and tree support was calculated by 

performing 1,000 bootstraps using a python wrapper (https://github.com/mgharvey/misc_pytho 

n/blob/master/bin/TreeMix/treemix_tree_with_bootstraps.py, accessed: 30 January 2019) 

together with the “summtrees.py” function of the python library DendroPy version 4.4.0 

(Sukumaran and Holder, 2010). 

In order to assess for associations between population structuring and geographic distances 

on the European continent, an isolation by distance (IBD) analysis was performed. First, 

coordinates of sampling sites were transformed from the world geodetic system (WGS 84) 

format to the Universal Transverse Mercator (UTM) system using the R-package “rgdal” 

(Bivand et al., 2014). Second, a mantel test (Mantel, 1967) with 100,000 permutations was 

performed with the R-package “adegenet” to test significance of association between Edward’s 

genetic distances and Euclidean geographic distances among the populations.  

http://tree.bio.ed.ac.uk/software/figtree
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5.4. Results 

5.4.1. Mitochondrial and genomic data 

For the mitochondrial CO1 gene fragment, a trimmed alignment of 573 bp from 274 specimens 

was retained. The combined output of six MiSeq runs sequencing the same ddRAD library 

comprised 122 million reads. After ipyrad filtering, de-novo assembly, applying a minimal 

coverage cut-off and BAYESCAN filtering, a total of 153 ddRAD loci, including 641 SNPs for 

254 specimens was recovered. 

5.4.2. Genetic diversity and population structure 

5.4.2.1. CO1 data set 

Analyses of the mitochondrial CO1 sequence fragment from 41 sampling sites revealed 17 

different haplotypes (Fig. S8.3a-c). Genetic diversity measures were only calculated for O. 

ishidae populations with a minimum sample size of three specimens. The number of 

polymorphic sites within the CO1 sequence fragments from each sampling site ranged from 

zero to 13 (Table S8.5). The number of haplotypes within each population was found to range 

from one to five, the haplotype diversity from zero to 0.9 and the nucleotide diversity from zero 

to 0.01 (Table S8.5). The average number of nucleotide differences ranged from zero to six 

(Table S8.5).  

TCS networks represent the genetic relatedness, the relative abundance of the identified 

haplotypes, as well as their geographic occurrence at the global, European and Swiss scales 

(Fig. S8.3a-c). The haplotypes occurring with the highest frequencies were Hap_1 (47.5%, 

N=130), Hap_3 (20.4%, N=56), and Hap_6 (12.4%, N=34) (Table S8.6a). Eight haplotypes 

were found to be singletons (Fig. S8.3a, Table S8.6a, b).  

In order to assess the geographic diversity, related haplotypes were grouped together resulting 

in six haplogroups (Fig. 5.2e, Table S8.6a). The haplogroups with the highest frequencies were 

haplogroup A (61.0%, N=167), haplogroup F (21.2%, N=58), and haplogroup B (6.9%, N=19) 

(Table S8.6b). Haplogroup A was clearly separated from the other haplogroups by five 

mutations to the nearest node connecting this haplogroup with haplogroups B and C  
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(Fig. 5.2e).The distribution of haplogroups indicated a clear separation between the native 

population from Japan and the non-native populations from North America and Europe, while 

only weak signals of spatial structuring were found within the invasive populations (Fig. 5.2a-

d). Haplogroup C occurred only in the Japanese population (frequency=100%, N=5), whereas 

haplogroup E was only found in the European populations (frequency=4.4%, N=11) (Fig. 5.2a-

d). Haplogroup A occurred in the US populations (frequency=33.3%, N=12) and represented 

the major haplogroup in Europe with a frequency of 65.2% (N=163) (Fig. 5.2a-d). Haplogroup 

B was only present in the US populations USA-HE1 and USA-HE2, as well as in some 

populations originating from Switzerland (Fig. 5.2a, b, d). In contrast, haplogroups D and F 

were more widely distributed and found to be present in the populations from North America 

and several European countries (Fig. 5.2a-d). In Switzerland, haplogroup B was only found in 

the populations north of the Alps, whereas haplogroups D and E occurred solely in the 

populations south of the Alps (Fig. 5.2d). Interestingly, the frequency of haplogroup A in Swiss 

populations was strikingly high (27.3-100%, N=1-13), except for the populations CHE-RIE 

(10.0%, N=10) and CHE-TOR (0%, N=1) (Fig. 5.2d).  
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Figure 5.2. Spatial distribution of mitochondrial CO1 haplogroup frequencies at a global scale, 

b North American scale, c European scale and d Swiss scale. Colours correspond to 

haplogroups specified in the TCS haplogroup network. Frequencies were mapped for 

populations with a minimum sample size of two specimens. US populations USA-HE1 and 

USA-HE2, as well as Swiss populations CHE-ARZ, CHE-MEN and CHE-STA were combined 

due to their close geographic proximities. e TCS haplogroup network of a 573 bp mitochondrial 

CO1 gene fragment. Haplotypes are shown as pie charts representing proportional 

frequencies. Colours represent groups of related haplotypes. 

 

5.4.2.2. ddRAD data set 

Results of the AMOVA revealed limited partitioning of molecular variance among O. ishidae 

populations from different geographic regions. When comparing molecular variance between 

European, North American and Japanese populations, 19.6% (p<0.001) of the variation was 

found between groups, 3.6% (p<0.001) among populations within groups, and 76.7% 

(p<0.001) within populations (Table 5.2a). However, when comparing molecular variance of 

the Japanese population against the populations from Europe and North America, 53.5% 

(p<0.05) of variation was assigned to between-group variation, 2.2% (p<0.001) to among-

populations-within-group variation, and 44.3% (p<0.001) to within-populations variation (Table 
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5.2b). In order to identify the potential origin of the European populations, partitioning of 

molecular variance was also tested between European and North American, as well as 

between European and Japanese populations. For European versus North American 

populations, the among-group variation was 1.4% (p=0.07), the among-populations-within-

groups variation 4.5% (p<0.001) and the within-populations variation 94.2% (p<0.001)  

(Table 5.2c). However, testing molecular variance between European and Japanese 

populations revealed an among-groups variation of 54.1% (p<0.05), an among-populations-

within-groups variation of 2.1% (p<0.001) and a within-population variation of 43.6% (p<0.001) 

(Table 5.2d).  

 

Table 5.2. Analyses of molecular variance (AMOVAs) for the ddRAD data set. a molecular 

variance between European, North American and Japanese populations, b molecular variance 

of Japanese population versus populations from Europe and North America, c molecular 

variance between European and North American populations and d molecular variance 

between European and Japanese populations. 

 
Source of Variation Df 

Sum of 
squares 

Variance 
components 

Percentage of  
variation 

Fixation  
index 

P-value 

a Among groups 2 263.9 2.96 19.6% 0.233 <0.001 

 Among populations within groups 36 676.7 0.55 3.6% 0.045 <0.001 

 Within populations 469 5434.4 11.59 76.7% 0.196 <0.001 

 Total 507 6375.1 15.10    

        

b Among groups 1 236.9 14.01 53.5% 0.557 0.031 

 Among populations within groups 37 703.7 0.57 2.2% 0.047 <0.001 

 Within populations 469 5434.4 11.59 44.3% 0.535 <0.001 

 Total 507 6375.1 26.17    

        

c Among groups 1 27.0 0.17 1.4% 0.058 0.070 

 Among populations within groups 36 676.7 0.55 4.5% 0.045 <0.001 

 Within populations 462 5351.9 11.58 94.2% 0.014 <0.001 

 Total 499 6055.6 12.30    

        

d Among groups 1 235.5 13.97 54.1% 0.561 0.022 

 Among populations within groups 30 581.8 0.54 2.1% 0.046 <0.001 

 Within populations 442 5010.0 11.34 43.9% 0.521 <0.001 

 Total 473 5827.3 25.85    

  Df, degrees of freedom. 
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Calculations of pairwise fixation indices (FST) revealed an average value of 0.11 ± 0.01 (mean 

± standard error) and 50% of all comparisons were statistically significant (Table S8.7). 

Comparatively high differentiation was found between the Japanese population JPN-UNN and 

populations from Europe and North America with FST values ranging from 0.62 to 0.75 (Table 

S8.7). Between European populations, the average FST value was 0.09 ± 0.004 (Table S8.7).  

The results of the PCA analysis agreed with the results from the AMOVA and FST calculations 

by clearly separating the Japanese from the of European and North American specimens with 

the first principal component (PC) explaining 9.6% of the total variance (Fig. S8.4a). PC2 and 

PC3 explained 3.7% and 2.7% of the total variance respectively, but identify neither additional 

genetic structure at the global nor at the European scale (Fig. S8.4a-c).  

A cluster analysis using STRUCTURE indicated a K-value of three as the optimal model for 

the data (Fig. 5.3e). Congruent with the other analyses, there was a clear structure found 

between Japanese samples and samples from Europe and North America (Fig. 5.3a, f). 

While the samples from Japan were assigned solely to cluster I, European and North American 

specimens contained admixture of cluster I-III (Fig. 5.3a-d, f). A potential pattern of genetic 

structuring was identified for the populations CHE-AAR, CHE-AES, CHE-OBE, CHE-RIE and 

CHE-WAE originating from the north-eastern part of Switzerland, where probabilities of 

assignment to cluster III were strikingly higher (54.8-85.4%) compared to those of the other 

European populations (Fig. 5.3c-d, f). Furthermore, three of those populations, CHE-AAR, 

CHE-AES and CHE-OBE, harboured the highest probabilities (6.7-12.8%) of assignment to 

cluster I within Europe (Fig. 5.3c-d, f). 
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Figure 5.3. Distribution of clusters identified by STRUCTURE based on the ddRAD data set 

visualised at a global scale, b North American scale, c European scale and d Swiss scale. 

Probability plots are drawn as circles, which are proportional to the sample size.  

e STRUCTURE output for individual specimens. Each bar represents the composition of 

individual genotypes. Colours reflect the probability of the assignment to a certain cluster: 

cluster I, green; cluster II, orange; cluster III, purple. f STRUCTURE assessment of the optimal 

number of population clusters (K). The red arrow indicates the K-value explaining the largest 
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part of the present population structure. Delta K is calculated according to the method of 

Evanno et al. (2005). 

 

The maximum likelihood based phylogenetic analysis performed by RAXML confirmed a clear 

separation (bootstrap support value=96) of the Japanese specimens from the North American 

and European samples (Fig. S8.5). Similar results were obtained when constructing a 

population-based maximum likelihood tree using TreeMix (Fig. 5.4). In this analysis, the 

Japanese population was separated from European and North American populations with a 

bootstrap support value of 100 (Fig. 5.4).  

Figure 5.4. Results of a TreeMix phylogenetic analysis based on the ddRAD data set. 

Maximum likelihood tree of population relationships was generated for populations with sample 

size N>3. Due to samples sizes N< 3, US populations were summarised as USA-ALL. Branch 

lengths are proportional to the drift of each population. Population JPN-UNN was used as the 

outgroup to root the tree. 
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Indicated by the low bootstrap values, both approaches were not able to reliably resolve the 

phylogenetic relationships between individuals and populations originating from North America 

and Europe (Fig. 5.4, Fig. S8.5).  

Finally, while investigating for signals of IBD on the European continent using the ddRAD data 

set, no significant correlation between genetic and geographic distances was detected (Mantel 

R=-0.62, p-value=0.96) (Fig. S8.6). 

5.5. Discussion 

Understanding population genetics of invasive pest species is crucial for the elaboration of 

appropriate quarantine, management, and biocontrol programmes (Garnas et al., 2016). Here, 

we assessed the population genetic structure of O. ishidae using both a mitochondrial CO1 

marker and SNP data generated by ddRAD sequencing. Analysing populations from native 

(Asia) and invaded ranges (Europe and North America), our study is the first describing the 

worldwide genetic structure and relatedness of this potential pest species. We placed particular 

emphasis on European populations, where O. ishidae has been recently introduced. 

Our ddRAD data demonstrated a clear genetic separation between invasive North American 

and European populations from the one from Japan situated in the native range of the species. 

These results were confirmed by the mitochondrial CO1 data. Drawing TCS haplogroup 

networks, Japanese specimens were assigned to only one haplogroup, which was not found 

in invasive populations from Europe and North America. The absence of closely shared 

ancestry between native and non-native populations shown by CO1 and ddRAD, however, 

might be an artefact of the limited sampling, including only one population from Asia. Hence, 

the results should be treated with caution when drawing region-wide conclusions. 

Studying spatial population structuring between European and North American populations 

revealed a similar pattern. All mitochondrial haplogroups present in Europe were also found in 

North American, except of haplogroup B, which was unique to Switzerland (Fig. 5.2). The 

STRUCTURE analysis performed based on the ddRAD data identified for both regions a 

similar genetic pattern with admixture between clusters II and III together with only few signals 

from cluster I (Fig 5.3). However, whereas for invasive populations in European countries the 



83 
 

probability of assignment was always elevated for cluster II, five populations (CHE-AAR, CHE-

AES, CHE-OBE, CHE-RIE, CHE-OBE and CHE-AES) located in the northern part of 

Switzerland showed an opposite pattern. Furthermore, two of those populations (CHE-AAR 

and CHE-OBE) showed a strikingly high admixture content of cluster I, compared to the other 

European populations. The observed deviation from the general European structure was also 

underlined by the distribution of the mitochondrial haplogroup B which, in Europe, was solely 

found in this particular area (Fig. 5.2). These findings suggest that populations from the 

northern part of Switzerland might have originated from another source than the remaining 

populations in Europe. 

Considering the strong genetic similarity observed for European and Nord American 

populations and their substantial genetic separation from the native population from Japan, an 

invasion scenario in which North American populations served as source for the European 

invasion seems highly likely. The mechanism, by which a previously invasive population serves 

as source for new invasions has been termed a “bridgehead” effect and has recently been 

linked to large-scale invasions of other invasive insect pests, such as the Asian long-horned 

beetle (Anoplophora glabripennis) (Javal et al., 2019), the obscure mealybug (Pseudococcus 

viburni) (Correa et al., 2019) and the Western conifer seed bug (Leptoglossus occidentalis) 

(Lesieur et al., 2019). A bridgehead effect was first reported while studying the invasion of the 

harlequin ladybird beetle (Harmonia axyridis) (Lombaert et al., 2010) and the effect is 

increasingly considered as a driver for the accelerated spread of invasive species (Garnas et 

al., 2016). As suggested for other species, a bridgehead effect in O. ishidae could have been 

favoured by an evolutionary shift in the non-native North American populations increasing the 

invasive potential, by trading networks, or both (Garnas et al., 2016).  

Our findings revealed that North American populations share mainly one or two closely related 

mitochondrial haplogroups per population. In contrast, the presence of genetically distant 

haplogroups (e.g. haplogroups A and F), together with the homogenous pattern found in the 

STRUCTURE and phylogenetic analyses, suggest that the structural pattern seen in Europe 
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originates from recurrent introduction events with gene flow between the introduced 

populations.  

Similar findings with limited population structure have recently been reported from invasive 

populations of the spotted-wing fruit fly, Drosophila suzukii (Carvajal 2010; Adrion et al. 2014; 

Tait et al. 2017). As for O. ishidae, the extra-range dispersal of D. suzukii is thought to be 

anthropogenic as a result of the global trade (Cini et al. 2014; Tait et al. 2017) and strongly 

favoured by the fly’s wide range of host plants (Walsh et al. 2011; Rota-Stabelli et al. 2013). 

Multiple introductions with gene flow between introduced populations such as supposed for D. 

suzukii and O. ishidae can maintain or even increase the genetic diversity in the invaded zone 

and have thereby the potential to counteract against genetic bottlenecks (Dlugosch and Parker 

2008; Javal et al. 2019). 

Furthermore, an increase in genetic diversity due to multiple introductions can strengthen the 

ability of an invasive species to adapt to selection pressures in the new environment (Dlugosch 

and Parker, 2008; Javal et al., 2019). 

In the case of O. ishidae, dispersal is thought to be particularly driven by the trade of living 

plants, such as ornamentals and fruit trees (Mifsud et al., 2010). Italy, the country where O. 

ishidae was reported for the first time on the European continent, is a key import country for 

woody perennial plants within the EU (Eschen et al., 2015). First introduction events of O. 

ishidae from North America therefore might have occurred via direct plant imports. Recently, 

the complexity of the intra-European trade network of ornamentals was documented using the 

example of Acer spp. plants (Eschen et al., 2015). Only in 2009, Dutch tree nurseries exported 

plants with partially foreign origin to 26 other European countries. In this perspective, it seems 

likely that the homogenous genetic structure found among European populations of O. ishidae 

is governed by frequent intra-European trade of ornamentals. Genetic exchange between 

spatially separated populations by trade might be additionally favoured by the broad host plant 

range of this species.  

Multiple introduction events and frequent exchange between populations as indicated by our 

analyses pose considerable challenges for potential pest management strategies of O. ishidae 
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within Europe. Same as for other highly invasive insect pests such as D. suzukii, elimination 

and containment measures would probably only have limited success due to the potential 

recurrence of the invasion events, as well as the wide spread of this species (Cini et al. 2012; 

Cini et al. 2014) 

The results of our study highlight the problem of the non-intended movement of pest species 

by the transport of plant material, which is especially pronounced within the EU as there are 

no phytosanitary inspections of movements between the member countries (Eschen et al., 

2015). The relatively short colonisation time of O. ishidae across Europe (<20 years) is in line 

with observations of other invasive insect species (e.g. L. occidentalis) that recently invaded 

the continent (Roques et al., 2016; Lesieur et al., 2019). The observed trend of increasing 

dispersal speed is thought to be strongly supported by the lack of EU internal controls. (Roques 

et al., 2016; Lesieur et al., 2019). Experience and lessons from previous invasions call for more 

stringent phytosanitary measures to avoid introductions and delay the spread of insect pests 

on the European continent.  

Further efforts in studying the invasion history of O. ishidae should include a denser, worldwide 

sampling with larger sample sizes per population, particularly in the ancestral range (Asia) and 

regions where primary invasions occurred (North America), to unambiguously confirm the 

potential source(s) of non-native populations. In addition, repeated sampling in areas where 

invasion occurred recently is warranted to confirm the presence of gene flow between non-

native populations and to test if recurrent invasions are in indeed at play. Our study revealed 

the need for a very high number of SNPs to elucidate the pathway of O. ishidae in recently 

invaded areas. Future studies should include large numbers of loci or even full genomes to 

better understand the invasion route(s) at fine scale. Finally, combining denser sampling and 

increased genetic resolution, different invasion scenarios might be tested using approximate 

Bayesian computation, a method that was recently used to successfully decipher pathways of 

other invasive insect pests (Correa et al., 2019; Javal et al., 2019; Lesieur et al., 2019). 
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6. Discussion and perspectives 

6.1. On-site diagnostics of invasive insect pests 

Phytosanitary import controls at POEs for plant products are key to prevent introduction and 

spread of invasive insect pests unintentionally translocated by global trade (Mumford et al., 

2016; Saccaggi et al., 2016). In case suspicious insect specimens are intercepted, rapid 

identification is needed to ensure a timely import process, as well as to implement quarantine 

or elimination measures with minimal delay (Floyd et al., 2010; Mumford et al., 2016). However, 

visual differentiation between regulated and non-regulated species is exceedingly difficult and 

generally requires expert knowledge. Furthermore, if identification is outsourced to external 

specialist institutions, delays of up to several days are to be expected. Hence, there is a 

pressing need for novel on-site identification tools (Floyd et al., 2010; Saccaggi et al., 2016; 

Blaser et al., 2018b). The first part of this PhD was thus aimed at developing and validating 

rapid molecular identification assays for invasive insect pests that can be applied directly at 

POEs. 

6.1.1. LAMP – a reliable and rapid tool for on-site identification 

Already successfully deployed for detection of other plant pathogens (Hodgetts et al., 2015; 

Kogovšek et al., 2015), we were able to demonstrate that LAMP represents also a suitable 

candidate method for the on-site identification of insect pests. In doing so, we developed LAMP 

assays for the identification of the most commonly intercepted insect pests at Swiss POEs; 

namely, B. tabaci, T. palmi and several fruit fly species of the genera Bactrocera and 

Zeugodacus. After initial development, the assays were thoroughly validated under laboratory 

and on-site conditions at a Swiss POE. While analysing a total of 319 insect specimens, the 

overall diagnostic test efficiency was 98%. Rare false-negative results (2%) were shown to 

originate from previously undescribed pest biotypes not included in the initial primer design, as 

well as from mistakes during LAMP assay preparation. Similar to other LAMP diagnostics 

studies, the test specificity of our assays was strikingly high (overall diagnostic test specificity 

= 100%) (Mori and Notomi, 2009; Bühlmann et al., 2013; Hodgetts et al., 2015; Kogovšek et 
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al., 2015). Compared to conventional PCR-based identification methods using only one primer 

pair, the test specificity of LAMP seems to considerably benefit from the use of multiple primer 

pairs (2-3) reducing likelihood of cross-reactivity with non-target organisms (Mori and Notomi, 

2009; Hodgetts et al., 2015).  

Invasive insect pests such as B. tabaci or fruit flies of the genus Bactrocera successfully 

established in many regions across the globe (Stephens et al., 2007; Hadjistylli et al., 2016; 

Qin et al., 2018). Against this vastly variable genetic background, identification assays need to 

be sensitive for a wide range of invasive pest biotypes intercepted on plant imports from many 

different countries. In order to tackle the problems regarding high genetic diversity within 

individual species or species complexes, our identification assays were designed using 

degeneracy in primers. In addition, where needed to ensure diagnostic accuracy, several 

primer sets were combined in one assay. In case of B. tabaci, we were able to show that it is 

possible to combine up to three different primer sets within one LAMP assay without finding 

any negative impact on test performance. After first evaluating accuracy of primers by in-silico 

specificity analyses based on publicly available DNA sequences, laboratory validations 

revealed that the assays were able to successfully handle the genetic diversity of insect pests 

intercepted on internationally traded goods.  

A major proportion of insects intercepted during phytosanitary import controls are immature, in 

overwintering forms, or damaged (Saccaggi et al., 2016). To be applicable, molecular on-site 

assays therefore need to have a low analytical sensitivity (detection limit) to ensure 

identification of small quantities of insect tissue. Using the example of B. tabaci, we have 

demonstrated that our LAMP assay is able to detect sample DNA diluted to 100 fg per µl. This 

corresponds to a 1:1,000 dilution of the total DNA extracted from B. tabaci larvae with a 

diameter less than 1 mm. 

Rapid pest identification is crucial for prompt decision-making (Floyd et al., 2010; Saccaggi et 

al., 2016). We were able to show that all developed identification assays can be performed on-

site within 1 h from tissue sampling to test result. During development and validation, LAMP 

reactions were conducted using GspSSD LF DNA polymerase. Very recently, a modified 
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version of this enzyme (GspSSD2.0 LF DNA) was released on the market (OptiGene, 2018). 

Announced as world’s fastest LAMP polymerase (OptiGene, 2018), the enzyme was indeed 

found to excel with very short reaction times (Best et al., 2018). First trials using the novel 

polymerase for the identification of T. palmi were promising and suggest that the modified 

protocol has the potential to reduce reaction times of our insect pest identification assays by 

half (unpublished data). However, rigorous validation is required to assess test specificity and 

sensitivity, before the modified assays can be implemented in routine diagnostic processes. 

6.1.2. Successful integration into plant health control system 

In a recent review discussing new diagnostic technologies in plant biosecurity, Mumford et al. 

(2016) highlighted the importance of evaluating newly introduced methods in terms of how they 

are deployed rather than how they perform in stand-alone comparisons with existing methods. 

If directly compared to DNA barcoding regarding diagnostic accuracy, the developed LAMP 

assays for the on-site identification of insect pests would clearly perform less well than the 

sequencing-based method due to the rare occurrence of false-negative results. However, if 

the LAMP assays are correctly integrated into a multi-stage identification system, a diagnostic 

test sensitivity of 100 % can be ensured, while exploiting LAMP features such as speed, 

specificity, simplicity and cost-effectiveness.  

To achieve this, we designed a two-stage identification system by which LAMP negatively 

tested specimens are cross-validated at an external institution by DNA barcoding, whilst LAMP 

positive results can directly be used for decision-making. The possibility of taking fast action 

when harmful insect pest are intercepted, provides important benefits. First, accelerated 

decision-making reduces the likelihood of pest escaping from POEs and allows the adoption 

of early management measures (Floyd et al., 2010). Second, timely diagnostic results 

accelerate the import process by reducing the waiting time of perishable import products 

(Hodgetts et al., 2016; Mumford et al., 2016). Third, our findings reveal the power of on-site 

identification in reducing costs for external analyses. Assessing the results of the on-site 

validation, we could demonstrate that plant health inspectors applied the assays mainly as a 

confirmatory test after careful visual species identification. Thus, 80% of tested specimens 
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were LAMP-positive. Hence, only every fifth specimen had to be sent to the external laboratory 

under the conditions of the two-stage identification process described above. Finally, beside 

direct prevention of introduction events due to false negatives, the sequencing step included 

in the cross-validation of negative LAMP results also allows to update the LAMP primer set in 

case novel insect pest biotypes are encountered that led to a false-negative test result.  

6.1.3. Translational aspects – from laboratory to POE 

Over the last decades, a vast range of scientific papers reporting development of novel 

diagnostic approaches for the identification of plant pathogens and pests were published 

(Mumford et al., 2016). Many of those approaches were successfully implemented for 

laboratory use, but only few of them are nowadays deployed for on-site diagnostics (Mumford 

et al., 2016). When assessing factors crucial for the successful uptake of novel on-site 

identification technologies into regular control systems, the two main drivers were found to be: 

(i) an existing need for a clearly defined application; and (ii) the early engagement of the end 

user in the development process (Mumford et al., 2016).  

Considering those observations, our LAMP assays were specifically designed as a response 

to the existing need for rapid on-site identification of B. tabaci, T. palmi and several harmful 

fruit fly species which account for approximately 70% of the insect pest interceptions at Swiss 

POEs (Blaser et al., 2018b). The early involvement of plant health inspectors in designing the 

protocol was extremely helpful to tailoring the assays for optimal integration into the import 

control process. Frequent exchange with the end users furthermore allowed us to understand 

their fears associated with the handling of molecular assays and helped us figuring out how to 

best address them. The use of a stain for the visualisation of small amounts of liquid, as well 

as the development of a Microsoft Excel-based application to validate the LAMP output 

represent examples of modifications evolved from such interdisciplinary exchange.  

After the technology transfer from the laboratory to the POE, plant health inspectors were 

individually trained to perform LAMP analyses. This knowledge translation step was recently 

further improved by publishing a step-by-step video protocol for the on-site identification of  

B. tabaci (Blaser et al., 2018a).  
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Finally, after successful technology and knowledge transfer, long-term support is key to ensure 

the persistence of diagnostic assays (Mumford et al., 2016). By transferring the protocols for 

the production of ready-to-use LAMP kits in the hands of a commercial entity (OptiGene Ltd), 

we were able to lay the foundation for the long-term availability of the developed assays.  

6.1.4. Video publications – a new format for knowledge and information transfer  

Peer-reviewed video journals are more and more considered as the next generation of 

scientific publishing (Pasquali, 2006, 2007; Stern, 2013). In the recent past, the use of scientific 

video publications was found to be particularly important in experimental studies to ensure 

reproducibility of protocols, but also for short communications to explain specific research 

findings to a wider audience (Krieger et al., 2012; Winkler et al., 2012; Xu et al., 2018).  

In this PhD thesis, we exploited the format of peer-reviewed videos with two different intentions: 

(i) to publish a video protocol to support and improve reproducibility in the use of the developed 

LAMP assays; and (ii) to create a video sensitising stakeholders, policymakers and community 

about the dimension of global movement of fruit fly pests by international trade. The second 

video approach was furthermore used as a platform promoting the adoption of LAMP assays 

as prevention measure against insect pest introductions. In accordance with existing literature, 

we experienced that video articles allow including more information (e.g. colour, duration and 

motion) than conventional scientific articles, which is especially favourable for the publication 

of technical protocols (Pasquali, 2007). Although more time-consuming in the production 

phase, we additionally demonstrated that short communication videos have the potential to 

share scientific knowledge beyond the scientific community.  

6.1.5. Perspectives of on-site identification 

A drawback of LAMP is that this method can only identify a predetermined range of insect pest 

biotypes (Hodgetts et al., 2016). As for all DNA amplification-based methods, a profound 

knowledge of the genetic diversity within the target species is therefore crucial to prevent false-

negative results (Blaser et al., 2018b). However, because of the limited availability of pest 

sequence information and considering that plant import products originate from a diverse and 
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constantly changing range of geographic regions, rare false-negative LAMP results due to 

primer mismatches have to be expected (Blaser et al., 2018b). In order to ensure diagnostic 

reliability during on-site testing, the developed LAMP assays were therefore integrated into the 

two-stage identification system described above.  

The issue of false-negative results due to the emergence of previously unknown insect pest 

biotypes could be avoided by the development and implementation of on-site sequencing-

based methods. Beside improved diagnostic reliability, such methods would remove the need 

for ongoing development and evaluation of molecular stand-alone tests targeting single or 

small groups of species (Hodgetts et al., 2016; Blaser et al., 2018b). Finally, next-generation 

based sequencing approaches may be designed without the need for specific primers, thus 

enabling its use on all pest species, including new, formerly not encountered ones.  

A potential candidate platform for on-site sequencing applications is represented by the 

pocket-sized MinION sequencing device from Oxford Nanopore Technologies (Branton et al., 

2008; Hoenen et al., 2016). Recently, this platform was successfully applied as on-site 

diagnostic tool during an Ebola virus outbreak in West Africa (Hoenen et al., 2016). Although 

constantly evolving, current Oxford Nanopore sequencing protocols still lack simplicity to be 

deployed by plant health inspectors with only limited laboratory training. First trials using the 

MinION sequencing platform for the identification of insect pests revealed the risk of carry-over 

contaminations in the current library preparation protocol (unpublished data). However, with 

VolTRAX, Oxford Nanopore Technologies recently released a fully automated library 

preparation system, which may bring the technology a further step forward towards simplified 

on-site sequencing (Oxford Nanopore Technologies, 2019). Nevertheless, in view of its 

simplicity and speed, LAMP will probably continue to be the rapid, reliable and robust on-site 

identification tool of choice in the foreseeable future.  

6.2. Invasion genetics of O. ishidae 

Understanding pathways followed by invasive species is crucial for their successful 

management and supports the prevention of new invasion events (Puth and Post, 2005; Wilson 

et al., 2009; Lombaert et al., 2010). In the second part of this PhD thesis, we applied molecular 
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methods to investigate the genetic invasion history of O. ishidae, a potential leafhopper pest 

that was unintentionally introduced from Southeast Asia to North America and only recently 

colonised Europe (Lessio et al., 2016).  

6.2.1. Invasion history of O. ishidae in Europe 

Using different population genetic approaches based on a mitochondrial CO1 marker and SNP 

data generated by ddRAD, we were able to demonstrate that invasive populations from Europe 

and North America are clearly separated from a native population of Japan. Overall, only little 

spatial structuring was found between and within European and North American populations. 

The strong genetic similarity found in populations from these geographically separated regions 

provides evidence that primary invasive populations from North America served as source for 

the European introduction. The observed pattern of secondary invasion is described as 

bridgehead effect and was recently reported for several other insect pest invasions (Correa et 

al., 2019; Javal et al., 2019; Lesieur et al., 2019). Secondary invasions may be favoured by 

evolutionary shifts in bridgehead populations increasing their invasiveness and are more and 

more considered to play a major role in the observed accelerated dispersal of invasive species. 

In-depth analyses of the mitochondrial haplotype distribution in Europe and North America 

furthermore revealed stronger spatial structuring within North American populations. Whereas 

primary invasive populations were found to be mainly composed of closely related haplotypes, 

the invasive populations from Europe were more diverse and characterised by co-occurrence 

of genetically distant haplotypes. These findings suggest that the European colonisation of O. 

ishidae originates from multiple introduction events and indicate furthermore the presence of 

strong gene flow among European populations. Multiple introductions could have enhanced 

the leafhoppers ability to adapt to new environments due to increased genetic diversity and 

may have counteracted against adverse genetic founder effects (e.g. genetic bottlenecks). 

Therefore, recurrent introduction events could have substantially contributed to the 

exceptionally fast colonisation observed for O. ishidae in Europe (< 20 years). 
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6.2.2. Consequences for management 

It was hypothesised that the dispersal of O. ishidae is mainly vectorised by international trade 

of living plants (Felt and Bromley, 1941; Mifsud et al., 2010). Thereby, leafhopper eggs laid on 

tissues of translocated plants (e.g. ornamentals) are thought to serve as propagules for further 

spread (Felt and Bromley, 1941; Mifsud et al., 2010). It is known that intra-European spread 

of invasive insects via plant trade is strongly favoured by the absence of phytosanitary import 

controls between EU member countries (Roques et al., 2016). Our findings go along with those 

hypotheses and suggest that the complex genetic structure with gene flow between 

geographically distant O. ishidae populations indeed originates from frequent trade of living 

plants. From a pest management point of view, our results imply that elimination and control 

measures within Europe would most probably be useless due to the current wide distribution 

and the recurrence of introduction events. However, because the pest potential of O. ishidae 

is thought to mainly rely on its ability to transmit grapevine Flavescence dorée phytoplasma, 

quarantine measures such as phytosanitary trade controls could be adopted to reduce the risk 

of further spread of this economically harmful disease from infested areas. 

6.2.3. Perspectives 

To further deepen the understanding of the invasion history of O. ishidae on a global scale, as 

well as to reliably confirm source populations of European introductions, future studies should 

increase the sampling towards including more sites located in the ancestral range (Asia) and 

in regions where primary introductions occurred (North America). In addition, upcoming studies 

should use an enlarged SNP dataset in order to increase the resolution of the population 

genetic analyses. Due to the short evolutionary time since introduction and strong genetic 

exchange between populations, very high SNP numbers or even whole genomes will be 

needed to resolve the population structure of European populations at fine scale. Finally, 

forthcoming investigations could study associations between O. ishidae genotypes and 

different levels of vectorial phytoplasma transmission capacities – work that could directly 

impact future pest management strategies. 
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6.3. Thesis contribution to innovation, validation and application 

Research and development activities at the Swiss TPH operate along the innovation chain, 

which is defined by three domains: (i) innovation; (ii) validation; and (iii) application (Swiss 

TPH, 2014). In this context, innovation includes basic research, development of novel tools, 

and the elaboration of novel concepts for epidemiology and public health. Once developed, 

suitability of novel tools and concepts is thoroughly validated under “field” conditions. Finally, 

successfully validated tools and concepts may be integrated into public health systems. 

The present PhD thesis contributed to the first two domains of the chain, the specific 

contributions of the individual chapters are summarised in Table 6.1.  
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Table 6.1. Contribution of the PhD thesis to the Swiss TPH value chain of “innovation, 

validation and application”. 
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6.4. General conclusion 

Rapid diagnostics at POEs for import products have the potential to reduce the ongoing global 

spread of invasive insect pests by international trade (Saccaggi et al., 2016). A promising 

candidate method for such on-site testing is represented by LAMP, a very robust and easy-to-

perform molecular identification tool based on isothermal DNA amplification (Blaser et al., 

2018b). In the first part of this PhD thesis, we evaluated the suitability of this method by 

designing LAMP assays for several regulated and harmful invasive insect pests. Validations 

under laboratory and on-site conditions at a Swiss POE for plant import products demonstrated 

the reliability of this method if correctly integrated into the control process. Manageable by 

plant health inspectors with little laboratory experiences within only 1 h, the developed assays 

were shown to represent powerful tools for the on-site identification of invasive insect pests. 

Since completing the validations, the novel LAMP assays are routinely used in the Swiss import 

control process. Successfully validated for several regulated insects pests, the method may 

be adapted for the on-site identification of other plant pests or human and veterinary 

pathogens. 

The second part of this PhD thesis aimed at investigating the invasion history of  

O. ishidae, a leafhopper species suspected to vectorise the grapevine Flavescence dorée 

disease. Originating from East Asia, O. ishidae was introduced in the first half of the 20th 

century to North America and only recently invaded Europe. Using molecular genetic analyses, 

we showed that European populations of O. ishidae most probably originated from North 

American introduction events. The genetic pattern of European populations suggests the 

occurrence of multiple trans-Atlantic introductions and indicates the presence of frequent and 

recurrent intra-European gene flow. Overall, the observed population structure is thought to be 

strongly shaped by frequent movement of O. ishidae via international trade of living plants. To 

reduce the risk of future insect pest invasions via trade, more stringent phytosanitary 

inspections programmes of living plant imports at POEs are therefore needed.  
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6.5. Open research needs 

In view of the experiences and findings from the present PhD thesis, the following research 

needs arise: 

(i) To circumvent the problem of rare false-negative LAMP results due to undescribed 

pest biotypes, as well as to develop an identification system covering the whole 

range of pest species in one method, future diagnostics projects should focus on 

the development of on-site sequencing methods that can be deployed directly at 

POEs. Besides developing robust and rapid sequencing protocols for on-site 

application, efforts are also needed to design an automated bioinformatics pipeline 

analysing the generated sequencing data. Furthermore, to ensure precise pest 

identification, a reliable database of reference sequences needs to be established. 

(ii) To confirm our result of the population genetic study of O. ishidae, as well as to 

resolve the pathways of its global invasion at a finer scale, future studies should be 

performed including (i) more sample sites (especially in the native range); and (ii) 

an increased SNP dataset.  

(iii) To improve the understanding of the phytosanitary risk posed by O. ishidae, further 

transmission experiments should be performed to confirm the vector function of the 

leafhopper for specific Flavescence dorée-causing phytoplasma strains, as well as 

to assess the vector capacities of different O. ishidae genotypes.  

(iv) Our findings suggest frequent intra-European exchange between geographically 

separated O. ishdiae populations via trade of living plants. Specific surveys of plant 

import products could be performed to confirm our findings and to identify the 

translocation pathways of O. ishidae at the species level of the traded plants. Such 

work has the potential to improve future phytosanitary inspection programmes. 
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8. Appendices 

8.1. Supporting information chapter 2 

8.1.1. Supplementary figures 

 

Figure S8.1. Pairwise genetic similarity matrices of insect specimens included in the on-site 

evaluation of (A) the fruit fly assay, (B) the B. tabaci assay, (C) the T. palmi assay based on a 

fragment of the mitochondrial CO1 gene. Numbers represent the percentage of bases that are 

identical. Length of the assessed CO1 fragments: fruit fly assay, 386 bp; B. tabaci assay, 521 

bp; T. palmi assay, 364bp.  
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Anatrichus  sp. (Sri Lanka, no.  11538)

Zeugodacus cucurbitae  (Sri Lanka, no.  11514) 79.79

Zeugodacus cucurbitae  (Vietnam, no.  11531) 79.79 100.00

Bactrocera dorsalis  (Cameroon, no.  11512) 83.94 83.68 83.68

Bactrocera dorsalis  (Cameroon, no.  11513) 83.94 83.68 83.68 100.00

Bactrocera dorsalis  (Cameroon, no.  11519) 83.94 84.72 84.72 98.96 98.96

Bactrocera dorsalis  (Malaysia, no.  20484) 83.94 84.46 84.46 98.96 98.96 99.48

Bactrocera dorsalis  (Sri Lanka, no.  11549) 84.2 84.46 84.46 99.22 99.22 99.74 99.74

Bactrocera dorsalis  (Thailand, no.  11504) 83.68 84.46 84.46 99.22 99.22 99.74 99.22 99.48

Bactrocera latifrons  (Thailand, no.  20496) 81.09 80.57 80.57 86.01 86.01 86.53 86.01 86.27 86.27

Bactrocera latifrons (Vietnam, no.  11524) 81.09 80.57 80.57 86.01 86.01 86.53 86.01 86.27 86.27 100.00

Ceratitis cosyra  (Cameroon, no.  11536) 83.68 83.42 83.42 82.9 82.9 83.16 83.16 83.42 82.9 81.61 81.61

Ceratits capitata  (Zimbabw e, no.  11521) 86.01 83.42 83.42 85.49 85.49 85.75 85.75 86.01 85.75 84.46 84.46 87.31

Rhagoletis cerasi  (Armenia, no.  11520) 85.49 84.72 84.72 85.75 85.75 86.27 85.75 86.01 86.01 83.42 83.42 84.2 88.6
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8.1.2. Supplementary tables 

Table S8.1. Overview of types and positions of degeneracies used for LAMP primer design.  

 

A, Adenine; C, cytosine; G, guanine; T, thymine; M, A or C, R, A or G; W, A or T; Y, C or T. 

  

LAMP assay Primer Degeneracy and position (distant to 3' end) Primer length (bp)

Bactrocera dorsalis group B3 Y(P10) 26

Bactrocera dorsalis group BIP R(P11), W(P41) 50

Bactrocera dorsalis group F3 no 22

Bactrocera dorsalis group FIP R(P1), Y(P31) 48

Bactrocera dorsalis group LoopB no 28

Bactrocera dorsalis group LoopF R(P10) 27

Bactrocera correcta /Z. cucurbitae B3 W(P6), W(P9), M(P15) 25

Bactrocera correcta /Z. cucurbitae BIP Y(P4), Y(P7), R(P11), W(P13), W(P30), Y(P33), Y(P39), W(P42), M(P45), R(P48) 48

Bactrocera correcta /Z. cucurbitae F3 W(P7), Y(P9), Y(P12), Y(P19), Y(P22) 25

Bactrocera correcta /Z. cucurbitae FIP Y(P7), R(P12), W(P13), W(P19), R(P27), R(P33), W(P36), K(P42), R(P48) 48

Bactrocera correcta /Z. cucurbitae LoopB Y(P4), W(P9), Y(P10) 23

Bactrocera correcta /Z. cucurbitae LoopF W(P4), K(P10), R(P16), R(P20) 21

B. tabaci Set 1 B3 no 22

B. tabaci Set 1 BIP no 49

B. tabaci Set 1 F3 R(P8) 20

B. tabaci Set 1 FIP Y(P26) 41

B. tabaci Set 1 LoopB no 27

B. tabaci Set 1 LoopF R(P4), R(P16) 30

B. tabaci Set 2 B3 no 22

B. tabaci Set 2 BIP no 51

B. tabaci Set 2 F3 no 22

B. tabaci Set 2 FIP no 45

B. tabaci Set 2 LoopB no 27

B. tabaci Set 2 LoopF no 30

B. tabaci Set 3 B3 Y(P4), Y(P13) 22

B. tabaci Set 3 BIP Y(P8), R(P11), Y(P23), Y(P29), Y(P32), 49

B. tabaci Set 3 F3 W(P2), Y(P11) 20

B. tabaci Set 3 FIP R(P15), R(P24), Y(P29), W(P32), Y(P35), R(P41) 41

B. tabaci Set 3 LoopB R(P25) 27

B. tabaci Set 3 LoopF R(P4), R(P28) 30

T. palmi B3 R(P2), W(P4) 22

T. palmi BIP M(P26), R(P29), R(P35), Y(P41) 45

T. palmi F3 R(P8) 21

T. palmi FIP R(P7), R(P22), W(P30) 42

T. palmi LoopB Y(P6) 31

T. palmi LoopF R(P12) 26
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Table S8.2. GenBank accession numbers of partial CO1 sequences from insect specimens 

analysed during the on-site evaluation process. 

Sample ID GenBank accession number 

no.11538   MG727962 

no.11514   MG727963 

no.11531   MG727964 

no.11519   MG727965 

no.11512   MG727966 

no.11513   MG727967 

no.20484   MG727968 

no.11549   MG727969 

no.11504   MG727970 

no.20496   MG727971 

no.11524   MG727972 

no.11536   MG727973 

no.11521   MG727974 

no.11520   MG727975 

no.20500   MG727976 

no.20493   MG727977 

no.20492   MG727978 

no.11544   MG727979 

no.11502   MG727980 

no.20499   MG727981 

no.20487   MG727982 

no.20494   MG727983 

no.20491   MG727984 

no.20490   MG727985 

no.11551   MG727986 

no.20488   MG727987 

no.11530   MG727988 

no.11534   MG727989 

no.11545   MG727990 

no.11511   MG727991 

no.11529   MG727992 

no.11535   MG727993 

no.20497   MG727994 

no.11542_1 MG727995 

no.11542_2  MG727996 

no.11543   MG727997 

no.11526   MG727998 
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Table S8.3. Primer mismatch analyses of false-negatively tested laboratory evaluation 

specimens.  

 

A, Adenine; C, cytosine; G, guanine; T, thymine; bp, base pair. 

LAMP assay Primer description Type of mismatch and position (distant to 3' end) Primer length (bp)

B. tabaci Set 1 B3 C/A (P4), C/A (P16), C/T (P22) 22

B. tabaci Set 1 F3 C/T (P10), C/T (P19) 20

B. tabaci Set 1 LoopB G/A (P1), T/C (P19), A/G (P22), A/G (P27) 27

B. tabaci Set 1 LoopF A/T (P5), C/A (P7), C/A (P22), G/A (P28) 30

T. palmi B3 A/T (P4) 22
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8.2. Supporting information chapter 3 

8.2.1. Materials list 
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8.3. Supporting information chapter 5 

8.3.1. Supplementary methods S1 

8.3.1.1. ddRAD protocol 

This is a modified version of protocols published by Peterson et al (2012) (Double Digest 

RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and 

Non-Model Species) and Lam et al (2017) (Phylogeography and population genomics of a lotic 

water beetle across a complex tropical landscape). Sequences of ddRAD adapters and ddRAD 

PCR primers used for multiplexing are specified in chapter 8.3.2.  

1.) Prepare ddRAD adapters 

a.) Prepare hybridisation buffer (10x): 

Hybridisation buffer (10x)  

UltraPure™ Tris-HCI (1M, Thermo Fisher Scientific, 

Waltham, MA, USA) 
50 µl 

NaCl (5M, Thermo Fisher Scientific) 50 µl 

Ultrapure EDTA, ph8 (0.5M, Thermo Fisher Scientific)  10 µl 

ddH2O 390 µl 

b.) Produce 10 µM stock of hybridised P1 and P2 adapters 

c.) Prepare hybridisation mix P1 and P2: 

P1 hybridisation mix  

Adaptor_1* (100 µM) 10 µl 

Adaptor_1b* (100 µM) 10 µl 

hybridisation buffer (10x) 10 µl 

ddH2O 70 µl 

 

P2 hybridisation mix  

Adaptor_2.1* (100 µM) 10 µl 

Adaptor_2.2* (100 µM) 10 µl 

hybridisation buffer (10x) 10 µl 

ddH2O 70 µl 

 

d.) Vortex and centrifuge 
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e.) Use a thermoblock to perform the annealing process by heating the hybridisation mixes 

up to 97.5°C for 2.5 min, then cool them down to 21°C at a rate not higher than 3°C/min 

(=0.05°C/sec). Then, hold at 4°C. 

2.) Double restriction enzyme digest 

a.) Prepare Mastermix RE: 

Mastermix RE-Digest 1x 

CutSmart® Buffer (1x, New England BioLabs (NEB) Inc., 

Ipswich, MA, USA) 
0.9 µl 

NlaIII (10,000 units/ml, NEB) 0.1 µl 

EcoRI-HF® (20,000 units/ml, NEB) 0.1 µl 

H2O 1.9 µl 

b.) Mix and quickspinn Mastermix RE-Digest 

c.) Add 6 µl of sample DNA into each well of a 96-well plate 

d.) Add 3 µl of Digest-Master mix plate by gently pipetting up and down 

e.) Cover and seal plate, centrifuge, and incubate at 37°C for 3 h 

f.) Heat kill enzyme by heating up to 65°C for 20 min  

g.) Keep reaction at 4°C. 

3.) Adaptor ligation 

a.) Thaw P1 and P2 adapters  

b.) Prepare Mastermix ADAPT-LIG: 

Mastermix ADAPT-LIG 1x 

Cut Smart Buffer (10x, NEB) 0.4 µl 

ATP (10 mM, NEB) 1.3 µl 

Adapter P2 (10 µM) 0.3 µl 

T4 DNA Ligase (400’000 units/ml, NEB) 0.2 µl 

ddH2O 1.4 µl 

c.) Add 3.6 µl of Mastermix ADAPT-LIG to the RE-digestion product and mix by pipetting 

up and down 

d.) Add 0.3 µl of Adapter P1 to each well 

e.) Softly vortex and quickspinn 
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f.) Incubate at 16°C for 3 h in a thermocycler (Lid of cycler heated to 50°) 

g.) Heat inactivate reaction at 65°C for 10 min 

h.) Hold reaction at 4°C 

4.) Ampure clean-up step 

a.) Clean ligation product by performing an AMPure XP purification (Beckman Coulter Inc., 

Brea, CA, USA) with a beads ratio of 0.8x according to the AMPure XP manual 

b.) Elute the cleaned ligation product in 40 µl of Elution Buffer (EB) from Qiagen 

5.) RAD-PCR I (Perform in duplicate) 

a.) Prepare Mastermix RAD-PCR I: 

Mastermix RAD-PCR I 1x 

Q5® Reaction Buffer (5x, NEB) 2 µl 

dNTPs Solution Mix (10 mM, NEB) 0.2 µl 

PCR RAD primer 1* 0.4 µl 

GC enhancer 2 µl 

Q5 0.1 µl 

ddH2O 1.9 µl 

b.) Dispense 6.6 µl of RAD-PCR I Mastermix into each well of a fresh 96-well plate  

c.) Add 0.4 µl of indexed RAD-PCR primers 2 into each well of the 96-well plate  

d.) Add 3 µl of cleaned ligation product into each well of the 96-well plate 

e.) RAD-PCR I thermocycler protocol: 

1 30 sec at 98°C 

2 20 cycles of (20 sec at 98°C, 30 sec at 60°C, 40 sec at 72 °C) 

3 10 min at 72°C 

4 Hold at 4°C 

6.) RAD-PCR II (Final cycle, perform in duplicates) 

a.) Prepare Mastermix RAD-PCR II: 

Mastermix RAD-PCR II 1x 

Q5® Reaction Buffer (5x, NEB) 0.2 µl 

dNTPs Solution Mix (10 mM, NEB) 0.2 µl 

RAD PCR primer I 0.3 µl 

b.) Add 0.7 µl of Mastermix RAD-PCR II to each RAD-PCR I product  

c.) Add 0.3 µl of PCR primer II (indexed) to each RAD-PCR I product 

d.) RAD-PCR II: 
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1 3 min at 98°C 

2 2 min at 60°C 

3 12 min at 72°C 

7.) Pool amplicons from RAD-PCR II reaction performed in duplicate and verify 

amplification success 

a.) Pool RAD-PCR II reaction products performed in duplicate 

b.) Perform an agarose gel-electrophoresis to verify amplification success 

8.) Pool samples and concentrate pools 

a.) Pool always 48 samples in one tube (use 15 µl of each sample, final volume=720 µl) 

b.) Speedvac each pool to a volume of ~200 µl 

9.) Ampure cleaning-up step 

a.) Clean ligation product by performing an AMPure XP purification (Beckman Coulter Inc.) 

with a beads ratio of 1.0x according to the AMPure XP manual 

b.) Elute the cleaned ligation product in 40 µl of ddH2O 

10.) Measure DNA concentration and pool combined ddRAD library 

a.)  Quantify DNA concentration of each pool with the Qubit 4 fluorometer (Thermo Fisher 

Scientific) according to the producers manual 

b.) Pool sub-pools equimolarly into the combined ddRAD library 

11.) Concentrate final ddRAD library 

a.) Speedvac final ddRAD library to get a final concentration of ~140 ng/µl 

12.) Analyse ddRAD library profile and perform size selection 

a.) Analyse ddRAD library profile using the Fragment Analyzer (Agilent Technologies Inc., 

Santa Clara, CA, USA) 

b.) Perform automated size selection using BluePippin with a 2% Agarose cassette (Sage 

Science, Beverly, MA, USA) 

c.) Verify size selection success using Fragment Analyzer (Agilent Technologies Inc., 

Santa Clara, CA, USA) 

13.) Sequence ddRAD library with Illumina Miseq 
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a.) Sequence ddRAD library in six consecutive Illumina MiSeq runs using the v3 kit 

(Illumina Inc., San Diego, CA, USA) 

8.3.2. Supplementary methods S2 

8.3.2.1. ddRAD PCR primers 

Primer name Index Oligo sequence 

RAD-PCR_1 No index AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG 

RAD-PCR_2_Idx_1 ATCACG CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGC 

RAD-PCR_2_Idx_2 CGATGT CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGC 

RAD-PCR_2_Idx_3 TTAGGC CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTGC 

RAD-PCR_2_Idx_4 TGACCA CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGTGC 

RAD-PCR_2_Idx_5 ACAGTG CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGC 

RAD-PCR_2_Idx_6 GCCAAT CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGC 

RAD-PCR_2_Idx_7 CAGATC CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGC 

RAD-PCR_2_Idx_8 ACTTGA CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGC 

RAD-PCR_2_Idx_9 GATCAG CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTGTGC 

RAD-PCR_2_Idx_10 TAGCTT CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTGTGC 

RAD-PCR_2_Idx_11 GGCTAC CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGTGC 

RAD-PCR_2_Idx_12 CTTGTA CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGC 

 

8.3.2.2. ddRAD adapters 

Adapter name Barcode Oligo sequence 

NlaIII_P2.1 no barcode GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCATG 

NlaIII_P2.2 no barcode /5Phos/AGATCGGAAGAGCGAGAACAA 

EcoRI_P1.1_Idx_1 GCATG ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCATG 

EcoRI_P1.1_Idx_2 AACCA ACACTCTTTCCCTACACGACGCTCTTCCGATCTAACCA 

EcoRI_P1.1_Idx_3 CGATC ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGATC 

EcoRI_P1.1_Idx_4 TCGAT ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCGAT 

EcoRI_P1.1_Idx_5 TGCAT ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGCAT 

EcoRI_P1.1_Idx_6 CAACC ACACTCTTTCCCTACACGACGCTCTTCCGATCTCAACC 

EcoRI_P1.1_Idx_7 GGTTG ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGTTG 

EcoRI_P1.1_Idx_8 AAGGA ACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGGA 

EcoRI_P1.1_Idx_9 AGCTA ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCTA 

EcoRI_P1.1_Idx_10 ACACA ACACTCTTTCCCTACACGACGCTCTTCCGATCTACACA 

EcoRI_P1.1_Idx_11 AATTA ACACTCTTTCCCTACACGACGCTCTTCCGATCTAATTA 

EcoRI_P1.1_Idx_12 ACGGT ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGGT 

EcoRI_P1.1_Idx_13 ACTGG ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGG 

EcoRI_P1.1_Idx_14 ACTTC ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTTC 

EcoRI_P1.1_Idx_15 ATACG ACACTCTTTCCCTACACGACGCTCTTCCGATCTATACG 

EcoRI_P1.1_Idx_16 ATGAG ACACTCTTTCCCTACACGACGCTCTTCCGATCTATGAG 

EcoRI_P1.1_Idx_17 ATTAC ACACTCTTTCCCTACACGACGCTCTTCCGATCTATTAC 

EcoRI_P1.1_Idx_18 CATAT ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATAT 

EcoRI_P1.1_Idx_19 CGAAT ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGAAT 

EcoRI_P1.1_Idx_20 CGGCT ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGGCT 
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EcoRI_P1.1_Idx_21 CGGTA ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGGTA 

EcoRI_P1.1_Idx_22 CGTAC ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGTAC 

EcoRI_P1.1_Idx_23 CGTCG ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGTCG 

EcoRI_P1.1_Idx_24 CTGAT ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGAT 

EcoRI_P1.1_Idx_25 CTGCG ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGCG 

EcoRI_P1.1_Idx_26 CTGTC ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGTC 

EcoRI_P1.1_Idx_27 CTTGG ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTTGG 

EcoRI_P1.1_Idx_28 GACAC ACACTCTTTCCCTACACGACGCTCTTCCGATCTGACAC 

EcoRI_P1.1_Idx_29 GAGAT ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAGAT 

EcoRI_P1.1_Idx_30 GAGTC ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAGTC 

EcoRI_P1.1_Idx_31 GCCGT ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCCGT 

EcoRI_P1.1_Idx_32 GCTGA ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTGA 

EcoRI_P1.2_Idx_1 GCATG /5Phos/AATTCATGCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_2 AACCA /5Phos/AATTTGGTTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_3 CGATC /5Phos/AATTGATCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_4 TCGAT /5Phos/AATTATCGAAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_5 TGCAT /5Phos/AATTATGCAAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_6 CAACC /5Phos/AATTGGTTGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_7 GGTTG /5Phos/AATTCAACCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_8 AAGGA /5Phos/AATTTCCTTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_9 AGCTA /5Phos/AATTTAGCTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_10 ACACA /5Phos/AATTTGTGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_11 AATTA /5Phos/AATTTAATTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_12 ACGGT /5Phos/AATTACCGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_13 ACTGG /5Phos/AATTCCAGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_14 ACTTC /5Phos/AATTGAAGTAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_15 ATACG /5Phos/AATTCGTATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_16 ATGAG /5Phos/AATTCTCATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_17 ATTAC /5Phos/AATTGTAATAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_18 CATAT /5Phos/AATTATATGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_19 CGAAT /5Phos/AATTATTCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_20 CGGCT /5Phos/AATTAGCCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_21 CGGTA /5Phos/AATTTACCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_22 CGTAC /5Phos/AATTGTACGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_23 CGTCG /5Phos/AATTCGACGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_24 CTGAT /5Phos/AATTATCAGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_25 CTGCG /5Phos/AATTCGCAGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_26 CTGTC /5Phos/AATTGACAGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_27 CTTGG /5Phos/AATTCCAAGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_28 GACAC /5Phos/AATTGTGTCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_29 GAGAT /5Phos/AATTATCTCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_30 GAGTC /5Phos/AATTGACTCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_31 GCCGT /5Phos/AATTACGGCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

EcoRI_P1.2_Idx_32 GCTGA /5Phos/AATTTCAGCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 
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8.3.3. Supplementary methods S3 

8.3.3.1. Individuals included into final CO1 and ddRAD data 

Ind ID Pop ID CO1 NCBI No. RAD EcoRI adapter RAD-PCR_2 primer 

AUT-BAI-S0001 AUT-BAI yes MK778089 yes EcoRI_Idx_29 RAD-PCR_2_Idx_5 

AUT-BAI-S0002 AUT-BAI yes MK778090 yes EcoRI_Idx_6 RAD-PCR_2_Idx_6 

AUT-BAI-S0003 AUT-BAI yes MK778091 yes EcoRI_Idx_10 RAD-PCR_2_Idx_11 

AUT-BAI-S0004 AUT-BAI yes MK778092 no n.a. n.a. 

AUT-BAI-S0005 AUT-BAI yes MK778093 yes EcoRI_Idx_5 RAD-PCR_2_Idx_7 

AUT-BAI-S0006 AUT-BAI yes MK778094 yes EcoRI_Idx_16 RAD-PCR_2_Idx_10 

AUT-BAI-S0007 AUT-BAI yes MK778095 yes EcoRI_Idx_13 RAD-PCR_2_Idx_3 

CAN-CAM-S0001 CAN-CAM yes MK778096 yes EcoRI_Idx_30 RAD-PCR_2_Idx_2 

CAN-CAM-S0002 CAN-CAM yes MK778097 yes EcoRI_Idx_3 RAD-PCR_2_Idx_9 

CAN-CAM-S0003 CAN-CAM yes MK778098 yes EcoRI_Idx_15 RAD-PCR_2_Idx_8 

CAN-CAM-S0004 CAN-CAM yes MK778099 yes EcoRI_Idx_31 RAD-PCR_2_Idx_2 

CAN-CAM-S0005 CAN-CAM yes MK778100 yes EcoRI_Idx_19 RAD-PCR_2_Idx_1 

CAN-CAM-S0006 CAN-CAM yes MK778101 yes EcoRI_Idx_23 RAD-PCR_2_Idx_3 

CAN-CAM-S0007 CAN-CAM yes MK778102 yes EcoRI_Idx_4 RAD-PCR_2_Idx_3 

CHE-AAR-R1000 CHE-AAR yes MK778103 yes EcoRI_Idx_4 RAD-PCR_2_Idx_4 

CHE-AAR-R1002 CHE-AAR yes MK778104 yes EcoRI_Idx_12 RAD-PCR_2_Idx_4 

CHE-AAR-R1004 CHE-AAR yes MK778105 yes EcoRI_Idx_2 RAD-PCR_2_Idx_3 

CHE-AAR-R1006 CHE-AAR yes MK778106 yes EcoRI_Idx_12 RAD-PCR_2_Idx_1 

CHE-AAR-R1007 CHE-AAR yes MK778107 yes EcoRI_Idx_18 RAD-PCR_2_Idx_3 

CHE-AAR-R1009 CHE-AAR yes MK778108 yes EcoRI_Idx_8 RAD-PCR_2_Idx_3 

CHE-AAR-R1012 CHE-AAR yes MK778109 no n.a. n.a. 

CHE-AAR-R1018 CHE-AAR yes MK778110 yes EcoRI_Idx_8 RAD-PCR_2_Idx_2 

CHE-AAR-R1019 CHE-AAR yes MK778111 yes EcoRI_Idx_3 RAD-PCR_2_Idx_10 

CHE-AAR-R1020 CHE-AAR yes MK778112 yes EcoRI_Idx_23 RAD-PCR_2_Idx_1 

CHE-AAR-R1021 CHE-AAR yes MK778113 no n.a. n.a. 

CHE-AAR-R1022 CHE-AAR yes MK778114 yes EcoRI_Idx_20 RAD-PCR_2_Idx_2 

CHE-AES-R0234 CHE-AES yes MK778115 yes EcoRI_Idx_3 RAD-PCR_2_Idx_7 

CHE-AES-R0235 CHE-AES yes MK778116 yes EcoRI_Idx_15 RAD-PCR_2_Idx_5 

CHE-AES-R0236 CHE-AES yes MK778117 yes EcoRI_Idx_12 RAD-PCR_2_Idx_2 

CHE-AES-R0247 CHE-AES yes MK778118 yes EcoRI_Idx_6 RAD-PCR_2_Idx_10 

CHE-AES-R0254 CHE-AES yes MK778119 yes EcoRI_Idx_7 RAD-PCR_2_Idx_5 

CHE-AES-R0255 CHE-AES yes MK778120 yes EcoRI_Idx_4 RAD-PCR_2_Idx_1 

CHE-AES-R0370 CHE-AES yes MK778121 no n.a. n.a. 

CHE-AES-R0373 CHE-AES no n.a. yes EcoRI_Idx_24 RAD-PCR_2_Idx_9 

CHE-AES-R0381 CHE-AES yes MK778122 yes EcoRI_Idx_28 RAD-PCR_2_Idx_3 

CHE-AES-R0390 CHE-AES yes MK778123 yes EcoRI_Idx_14 RAD-PCR_2_Idx_9 

CHE-AES-R0395 CHE-AES yes MK778124 yes EcoRI_Idx_5 RAD-PCR_2_Idx_9 

CHE-AES-R0404 CHE-AES yes MK778125 yes EcoRI_Idx_19 RAD-PCR_2_Idx_11 

CHE-ART-R1023 CHE-ART yes MK778126 yes EcoRI_Idx_21 RAD-PCR_2_Idx_10 

CHE-ART-R1024 CHE-ART yes MK778127 no n.a. n.a. 

CHE-ARZ-R0688 CHE-ARZ yes MK778128 yes EcoRI_Idx_6 RAD-PCR_2_Idx_8 

CHE-ARZ-R0690 CHE-ARZ yes MK778129 yes EcoRI_Idx_27 RAD-PCR_2_Idx_5 

CHE-ARZ-R0692 CHE-ARZ yes MK778130 no n.a. n.a. 

CHE-ARZ-R0693 CHE-ARZ yes MK778131 no n.a. n.a. 

CHE-ARZ-R0694 CHE-ARZ yes MK778132 yes EcoRI_Idx_11 RAD-PCR_2_Idx_4 

CHE-ARZ-R0699 CHE-ARZ yes MK778133 yes EcoRI_Idx_14 RAD-PCR_2_Idx_3 

CHE-ARZ-R0700 CHE-ARZ yes MK778134 yes EcoRI_Idx_5 RAD-PCR_2_Idx_1 

CHE-ARZ-R0709 CHE-ARZ yes MK778135 yes EcoRI_Idx_13 RAD-PCR_2_Idx_6 

CHE-ARZ-R0711 CHE-ARZ yes MK778136 yes EcoRI_Idx_2 RAD-PCR_2_Idx_11 

CHE-ARZ-R0724 CHE-ARZ yes MK778137 yes EcoRI_Idx_27 RAD-PCR_2_Idx_3 

CHE-ARZ-R0729 CHE-ARZ yes MK778138 yes EcoRI_Idx_17 RAD-PCR_2_Idx_1 

CHE-BER-R0941 CHE-BER no n.a. yes EcoRI_Idx_19 RAD-PCR_2_Idx_7 
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CHE-BER-R0943 CHE-BER yes MK778139 no n.a. n.a. 

CHE-BER-R0944 CHE-BER yes MK778140 no n.a. n.a. 

CHE-BER-R0945 CHE-BER yes MK778141 yes EcoRI_Idx_2 RAD-PCR_2_Idx_7 

CHE-BER-R0947 CHE-BER yes MK778142 yes EcoRI_Idx_25 RAD-PCR_2_Idx_2 

CHE-BER-R0949 CHE-BER yes MK778143 yes EcoRI_Idx_24 RAD-PCR_2_Idx_1 

CHE-BER-R0951 CHE-BER yes MK778144 yes EcoRI_Idx_14 RAD-PCR_2_Idx_2 

CHE-BER-R0953 CHE-BER yes MK778145 yes EcoRI_Idx_3 RAD-PCR_2_Idx_8 

CHE-BER-R0954 CHE-BER yes MK778146 yes EcoRI_Idx_24 RAD-PCR_2_Idx_10 

CHE-BER-R0955 CHE-BER yes MK778147 yes EcoRI_Idx_21 RAD-PCR_2_Idx_12 

CHE-BER-R0957 CHE-BER yes MK778148 yes EcoRI_Idx_17 RAD-PCR_2_Idx_12 

CHE-CHA-R0873 CHE-CHA yes MK778149 yes EcoRI_Idx_10 RAD-PCR_2_Idx_10 

CHE-CHA-R0874 CHE-CHA yes MK778150 yes EcoRI_Idx_1 RAD-PCR_2_Idx_10 

CHE-CHA-R0875 CHE-CHA yes MK778151 yes EcoRI_Idx_10 RAD-PCR_2_Idx_3 

CHE-CHA-R0877 CHE-CHA yes MK778152 yes EcoRI_Idx_8 RAD-PCR_2_Idx_1 

CHE-CHA-R0878 CHE-CHA yes MK778153 yes EcoRI_Idx_22 RAD-PCR_2_Idx_9 

CHE-CHY-S0001 CHE-CHY yes MK778154 yes EcoRI_Idx_21 RAD-PCR_2_Idx_2 

CHE-CHY-S0002 CHE-CHY no n.a. yes EcoRI_Idx_15 RAD-PCR_2_Idx_9 

CHE-FLA-R0918 CHE-FLA yes MK778155 yes EcoRI_Idx_13 RAD-PCR_2_Idx_4 

CHE-FLA-R0920 CHE-FLA yes MK778156 yes EcoRI_Idx_15 RAD-PCR_2_Idx_10 

CHE-FLA-R0922 CHE-FLA yes MK778157 no n.a. n.a. 

CHE-FLA-R0924 CHE-FLA yes MK778158 yes EcoRI_Idx_22 RAD-PCR_2_Idx_4 

CHE-FLA-R0927 CHE-FLA yes MK778159 yes EcoRI_Idx_12 RAD-PCR_2_Idx_6 

CHE-FLA-R0928 CHE-FLA yes MK778160 yes EcoRI_Idx_10 RAD-PCR_2_Idx_12 

CHE-FLA-R0929 CHE-FLA yes MK778161 yes EcoRI_Idx_5 RAD-PCR_2_Idx_6 

CHE-FLA-R0930 CHE-FLA yes MK778162 yes EcoRI_Idx_15 RAD-PCR_2_Idx_4 

CHE-FLA-R0931 CHE-FLA yes MK778163 yes EcoRI_Idx_23 RAD-PCR_2_Idx_5 

CHE-FLA-R0932 CHE-FLA yes MK778164 no n.a. n.a. 

CHE-FLA-R0933 CHE-FLA yes MK778165 yes EcoRI_Idx_21 RAD-PCR_2_Idx_1 

CHE-FLA-R0934 CHE-FLA yes MK778166 yes EcoRI_Idx_3 RAD-PCR_2_Idx_6 

CHE-GIO-R0125 CHE-GIO yes MK778167 no n.a. n.a. 

CHE-GIO-R0128 CHE-GIO no n.a. yes EcoRI_Idx_32 RAD-PCR_2_Idx_1 

CHE-GIO-R0129 CHE-GIO yes MK778168 no n.a. n.a. 

CHE-GIO-R0130 CHE-GIO yes MK778169 no n.a. n.a. 

CHE-GIO-R0131 CHE-GIO yes MK778170 no n.a. n.a. 

CHE-GIO-R0132 CHE-GIO yes MK778171 no n.a. n.a. 

CHE-GIO-R0133 CHE-GIO yes MK778172 no n.a. n.a. 

CHE-GIO-R0840 CHE-GIO yes MK778173 yes EcoRI_Idx_11 RAD-PCR_2_Idx_2 

CHE-GIO-R0841 CHE-GIO yes MK778174 no n.a. n.a. 

CHE-GIO-R0842 CHE-GIO yes MK778175 yes EcoRI_Idx_10 RAD-PCR_2_Idx_5 

CHE-HER-R1066 CHE-HER yes MK778176 yes EcoRI_Idx_31 RAD-PCR_2_Idx_5 

CHE-HUE-R1037 CHE-HUE yes MK778177 yes EcoRI_Idx_15 RAD-PCR_2_Idx_2 

CHE-HUE-R1038 CHE-HUE yes MK778178 yes EcoRI_Idx_16 RAD-PCR_2_Idx_11 

CHE-HUE-R1039 CHE-HUE yes MK778179 yes EcoRI_Idx_22 RAD-PCR_2_Idx_10 

CHE-HUE-R1040 CHE-HUE yes MK778180 yes EcoRI_Idx_29 RAD-PCR_2_Idx_4 

CHE-HUE-R1041 CHE-HUE yes MK778181 yes EcoRI_Idx_26 RAD-PCR_2_Idx_4 

CHE-HUE-R1042 CHE-HUE yes MK778182 yes EcoRI_Idx_2 RAD-PCR_2_Idx_5 

CHE-HUE-R1043 CHE-HUE yes MK778183 yes EcoRI_Idx_9 RAD-PCR_2_Idx_7 

CHE-HUE-R1044 CHE-HUE yes MK778184 yes EcoRI_Idx_10 RAD-PCR_2_Idx_7 

CHE-HUE-R1046 CHE-HUE yes MK778185 yes EcoRI_Idx_32 RAD-PCR_2_Idx_5 

CHE-HUE-R1047 CHE-HUE yes MK778186 yes EcoRI_Idx_3 RAD-PCR_2_Idx_11 

CHE-HUE-R1049 CHE-HUE yes MK778187 yes EcoRI_Idx_18 RAD-PCR_2_Idx_12 

CHE-MEN-R0883 CHE-MEN yes MK778188 yes EcoRI_Idx_15 RAD-PCR_2_Idx_12 

CHE-MEN-R0884 CHE-MEN yes MK778189 yes EcoRI_Idx_25 RAD-PCR_2_Idx_5 

CHE-MEN-R0885 CHE-MEN yes MK778190 no n.a. n.a. 

CHE-OBE-R0890 CHE-OBE yes MK778191 yes EcoRI_Idx_19 RAD-PCR_2_Idx_4 

CHE-OBE-R0891 CHE-OBE yes MK778192 yes EcoRI_Idx_7 RAD-PCR_2_Idx_4 

CHE-OBE-R0892 CHE-OBE yes MK778193 yes EcoRI_Idx_27 RAD-PCR_2_Idx_2 

CHE-OBE-R0893 CHE-OBE yes MK778194 yes EcoRI_Idx_13 RAD-PCR_2_Idx_2 

CHE-OBE-R0899 CHE-OBE yes MK778195 yes EcoRI_Idx_9 RAD-PCR_2_Idx_8 
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CHE-OBE-R0900 CHE-OBE yes MK778196 yes EcoRI_Idx_14 RAD-PCR_2_Idx_6 

CHE-OBE-R0902 CHE-OBE yes MK778197 yes EcoRI_Idx_32 RAD-PCR_2_Idx_2 

CHE-OBE-R0904 CHE-OBE yes MK778198 yes EcoRI_Idx_30 RAD-PCR_2_Idx_4 

CHE-OBE-R0905 CHE-OBE yes MK778199 yes EcoRI_Idx_27 RAD-PCR_2_Idx_4 

CHE-OBE-R0907 CHE-OBE yes MK778200 yes EcoRI_Idx_24 RAD-PCR_2_Idx_4 

CHE-OBE-R0909 CHE-OBE yes MK778201 yes EcoRI_Idx_4 RAD-PCR_2_Idx_10 

CHE-OBE-R0910 CHE-OBE yes MK778202 yes EcoRI_Idx_5 RAD-PCR_2_Idx_10 

CHE-OBE-R0911 CHE-OBE yes MK778203 yes EcoRI_Idx_30 RAD-PCR_2_Idx_3 

CHE-OES-R0888 CHE-OES yes MK778204 yes EcoRI_Idx_9 RAD-PCR_2_Idx_11 

CHE-OES-R0889 CHE-OES yes MK778205 yes EcoRI_Idx_28 RAD-PCR_2_Idx_4 

CHE-RIE-R0977 CHE-RIE yes MK778206 yes EcoRI_Idx_2 RAD-PCR_2_Idx_4 

CHE-RIE-R0984 CHE-RIE yes MK778207 yes EcoRI_Idx_22 RAD-PCR_2_Idx_11 

CHE-RIE-R0986 CHE-RIE yes MK778208 yes EcoRI_Idx_24 RAD-PCR_2_Idx_5 

CHE-RIE-R0988 CHE-RIE yes MK778209 no n.a. n.a. 

CHE-RIE-R0992 CHE-RIE yes MK778210 yes EcoRI_Idx_23 RAD-PCR_2_Idx_6 

CHE-RIE-R0994 CHE-RIE yes MK778211 yes EcoRI_Idx_5 RAD-PCR_2_Idx_12 

CHE-RIE-R0995 CHE-RIE yes MK778212 yes EcoRI_Idx_27 RAD-PCR_2_Idx_1 

CHE-RIE-R0996 CHE-RIE yes MK778213 yes EcoRI_Idx_20 RAD-PCR_2_Idx_9 

CHE-RIE-R0997 CHE-RIE yes MK778214 yes EcoRI_Idx_16 RAD-PCR_2_Idx_8 

CHE-RIE-R0999 CHE-RIE yes MK778215 yes EcoRI_Idx_22 RAD-PCR_2_Idx_6 

CHE-ROV-R0649 CHE-ROV yes MK778216 yes EcoRI_Idx_24 RAD-PCR_2_Idx_7 

CHE-ROV-R0650 CHE-ROV yes MK778217 yes EcoRI_Idx_32 RAD-PCR_2_Idx_3 

CHE-ROV-R0651 CHE-ROV yes MK778218 yes EcoRI_Idx_17 RAD-PCR_2_Idx_2 

CHE-ROV-R0655 CHE-ROV yes MK778219 no n.a. n.a. 

CHE-ROV-R0659 CHE-ROV yes MK778220 yes EcoRI_Idx_28 RAD-PCR_2_Idx_2 

CHE-ROV-R0665 CHE-ROV yes MK778221 yes EcoRI_Idx_12 RAD-PCR_2_Idx_11 

CHE-ROV-R0673 CHE-ROV yes MK778222 yes EcoRI_Idx_20 RAD-PCR_2_Idx_12 

CHE-ROV-R0678 CHE-ROV no n.a. yes EcoRI_Idx_9 RAD-PCR_2_Idx_3 

CHE-ROV-R0681 CHE-ROV yes MK778223 yes EcoRI_Idx_2 RAD-PCR_2_Idx_10 

CHE-ROV-R0682 CHE-ROV yes MK778224 yes EcoRI_Idx_18 RAD-PCR_2_Idx_4 

CHE-ROV-R0683 CHE-ROV yes MK778225 yes EcoRI_Idx_14 RAD-PCR_2_Idx_1 

CHE-STA-R0732 CHE-STA yes MK778226 yes EcoRI_Idx_25 RAD-PCR_2_Idx_6 

CHE-STA-R0733 CHE-STA yes MK778227 yes EcoRI_Idx_26 RAD-PCR_2_Idx_6 

CHE-STA-R0735 CHE-STA yes MK778228 yes EcoRI_Idx_6 RAD-PCR_2_Idx_3 

CHE-STA-R0736 CHE-STA yes MK778229 yes EcoRI_Idx_9 RAD-PCR_2_Idx_5 

CHE-STA-R0737 CHE-STA yes MK778230 yes EcoRI_Idx_11 RAD-PCR_2_Idx_5 

CHE-STA-R0741 CHE-STA yes MK778231 yes EcoRI_Idx_9 RAD-PCR_2_Idx_4 

CHE-STA-R0742 CHE-STA yes MK778232 yes EcoRI_Idx_16 RAD-PCR_2_Idx_3 

CHE-STA-R0751 CHE-STA yes MK778233 yes EcoRI_Idx_16 RAD-PCR_2_Idx_6 

CHE-STA-R0752 CHE-STA yes MK778234 yes EcoRI_Idx_23 RAD-PCR_2_Idx_4 

CHE-STA-R0799 CHE-STA yes MK778235 yes EcoRI_Idx_11 RAD-PCR_2_Idx_6 

CHE-STA-R0805 CHE-STA yes MK778236 yes EcoRI_Idx_18 RAD-PCR_2_Idx_5 

CHE-STA-R0828 CHE-STA yes MK778237 yes EcoRI_Idx_3 RAD-PCR_2_Idx_2 

CHE-TOR-R0887 CHE-TOR yes MK778238 no n.a. n.a. 

CHE-WAE-R1050 CHE-WAE yes MK778239 yes EcoRI_Idx_7 RAD-PCR_2_Idx_12 

CHE-WAE-R1051 CHE-WAE yes MK778240 yes EcoRI_Idx_26 RAD-PCR_2_Idx_5 

CHE-WAE-R1052 CHE-WAE yes MK778241 yes EcoRI_Idx_22 RAD-PCR_2_Idx_2 

CHE-WAE-R1053 CHE-WAE yes MK778242 yes EcoRI_Idx_31 RAD-PCR_2_Idx_3 

CHE-WAE-R1054 CHE-WAE yes MK778243 yes EcoRI_Idx_20 RAD-PCR_2_Idx_4 

CHE-WAE-R1055 CHE-WAE yes MK778244 yes EcoRI_Idx_20 RAD-PCR_2_Idx_3 

CHE-WAE-R1056 CHE-WAE yes MK778245 yes EcoRI_Idx_4 RAD-PCR_2_Idx_9 

CHE-WAE-R1058 CHE-WAE yes MK778246 yes EcoRI_Idx_15 RAD-PCR_2_Idx_6 

CHE-WAE-R1059 CHE-WAE yes MK778247 yes EcoRI_Idx_12 RAD-PCR_2_Idx_5 

CHE-WAE-R1060 CHE-WAE yes MK778248 yes EcoRI_Idx_4 RAD-PCR_2_Idx_8 

CHE-WAE-R1061 CHE-WAE yes MK778249 yes EcoRI_Idx_17 RAD-PCR_2_Idx_10 

CHE-WAE-R1064 CHE-WAE yes MK778250 yes EcoRI_Idx_17 RAD-PCR_2_Idx_4 

CHE-WEI-R0643 CHE-WEI yes MK778251 yes EcoRI_Idx_28 RAD-PCR_2_Idx_5 

CHE-WIL-R0959 CHE-WIL yes MK778252 yes EcoRI_Idx_22 RAD-PCR_2_Idx_1 

CHE-WIL-R0960 CHE-WIL yes MK778253 yes EcoRI_Idx_31 RAD-PCR_2_Idx_1 
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CHE-WIL-R0961 CHE-WIL yes MK778254 yes EcoRI_Idx_9 RAD-PCR_2_Idx_12 

CHE-WIL-R0962 CHE-WIL yes MK778255 yes EcoRI_Idx_3 RAD-PCR_2_Idx_1 

CHE-WIL-R0964 CHE-WIL yes MK778256 yes EcoRI_Idx_6 RAD-PCR_2_Idx_2 

CHE-WIL-R0966 CHE-WIL yes MK778257 yes EcoRI_Idx_8 RAD-PCR_2_Idx_11 

CHE-WIL-R0968 CHE-WIL no MK778258 yes EcoRI_Idx_7 RAD-PCR_2_Idx_11 

CHE-WIL-R0970 CHE-WIL yes MK778259 yes EcoRI_Idx_14 RAD-PCR_2_Idx_11 

CHE-WIL-R0972 CHE-WIL yes MK778260 yes EcoRI_Idx_11 RAD-PCR_2_Idx_7 

CHE-WIL-R0975 CHE-WIL yes MK778261 yes EcoRI_Idx_2 RAD-PCR_2_Idx_9 

CHE-WIL-R0976 CHE-WIL yes MK778262 yes EcoRI_Idx_11 RAD-PCR_2_Idx_11 

CZE-BRN-S0001 CZE-BRN yes MK778263 yes EcoRI_Idx_20 RAD-PCR_2_Idx_10 

CZE-BRN-S0002 CZE-BRN yes MK778264 yes EcoRI_Idx_10 RAD-PCR_2_Idx_1 

CZE-BRN-S0003 CZE-BRN yes MK778265 yes EcoRI_Idx_20 RAD-PCR_2_Idx_6 

CZE-BRN-S0004 CZE-BRN yes MK778266 yes EcoRI_Idx_3 RAD-PCR_2_Idx_12 

CZE-BRN-S0005 CZE-BRN yes MK778267 yes EcoRI_Idx_12 RAD-PCR_2_Idx_9 

CZE-BRN-S0006 CZE-BRN yes MK778268 yes EcoRI_Idx_32 RAD-PCR_2_Idx_4 

CZE-BRN-S0007 CZE-BRN yes MK778269 yes EcoRI_Idx_25 RAD-PCR_2_Idx_4 

CZE-BRN-S0008 CZE-BRN yes MK778270 yes EcoRI_Idx_18 RAD-PCR_2_Idx_8 

CZE-BRN-S0009 CZE-BRN yes MK778271 yes EcoRI_Idx_5 RAD-PCR_2_Idx_4 

CZE-BRN-S0010 CZE-BRN yes MK778272 yes EcoRI_Idx_3 RAD-PCR_2_Idx_5 

CZE-BRN-S0011 CZE-BRN yes MK778273 yes EcoRI_Idx_7 RAD-PCR_2_Idx_7 

DEU-GOD-S2418 DEU-GOD yes MK778274 no n.a. n.a. 

DEU-GOD-S2589 DEU-GOD yes MK778275 yes EcoRI_Idx_10 RAD-PCR_2_Idx_9 

DEU-GOD-S2590 DEU-GOD yes MK778276 yes EcoRI_Idx_11 RAD-PCR_2_Idx_12 

DEU-GOD-S2593 DEU-GOD yes MK778277 yes EcoRI_Idx_23 RAD-PCR_2_Idx_8 

DEU-GOD-S2617 DEU-GOD yes MK778278 no n.a. n.a. 

DEU-GOD-S2619 DEU-GOD yes MK778253 yes EcoRI_Idx_10 RAD-PCR_2_Idx_8 

DEU-GOD-S2621 DEU-GOD no n.a. yes EcoRI_Idx_24 RAD-PCR_2_Idx_8 

FRA-BOM-S0001 FRA-BOM no n.a. yes EcoRI_Idx_27 RAD-PCR_2_Idx_6 

FRA-BOM-S0002 FRA-BOM yes MK778279 yes EcoRI_Idx_20 RAD-PCR_2_Idx_5 

FRA-BOM-S0003 FRA-BOM yes MK778280 yes EcoRI_Idx_15 RAD-PCR_2_Idx_3 

FRA-BOM-S0004 FRA-BOM yes MK778281 yes EcoRI_Idx_17 RAD-PCR_2_Idx_11 

FRA-BOM-S0005 FRA-BOM yes MK778282 yes EcoRI_Idx_14 RAD-PCR_2_Idx_10 

FRA-BOM-S0006 FRA-BOM yes MK778283 yes EcoRI_Idx_24 RAD-PCR_2_Idx_11 

FRA-BOM-S0007 FRA-BOM yes MK778284 yes EcoRI_Idx_9 RAD-PCR_2_Idx_2 

FRA-BOM-S0008 FRA-BOM yes MK778285 yes EcoRI_Idx_6 RAD-PCR_2_Idx_4 

FRA-BOM-S0009 FRA-BOM yes MK778286 yes EcoRI_Idx_28 RAD-PCR_2_Idx_1 

FRA-BOM-S0010 FRA-BOM yes MK778287 yes EcoRI_Idx_8 RAD-PCR_2_Idx_9 

FRA-BOM-S0011 FRA-BOM yes MK778288 yes EcoRI_Idx_6 RAD-PCR_2_Idx_7 

FRA-BOM-S0012 FRA-BOM yes MK778289 yes EcoRI_Idx_21 RAD-PCR_2_Idx_6 

FRA-HAT-S2578 FRA-HAT yes MK778290 yes EcoRI_Idx_24 RAD-PCR_2_Idx_3 

FRA-HAT-S2580 FRA-HAT no n.a. yes EcoRI_Idx_18 RAD-PCR_2_Idx_2 

HUN-BUD-S0001 HUN-BUD yes MK778291 yes EcoRI_Idx_26 RAD-PCR_2_Idx_3 

HUN-BUD-S0002 HUN-BUD yes MK778292 yes EcoRI_Idx_19 RAD-PCR_2_Idx_3 

HUN-BUD-S0003 HUN-BUD yes MK778293 yes EcoRI_Idx_17 RAD-PCR_2_Idx_6 

HUN-BUD-S0004 HUN-BUD yes MK778294 yes EcoRI_Idx_22 RAD-PCR_2_Idx_3 

HUN-BUD-S0005 HUN-BUD yes MK778295 yes EcoRI_Idx_19 RAD-PCR_2_Idx_6 

HUN-BUD-S0006 HUN-BUD yes MK778296 yes EcoRI_Idx_6 RAD-PCR_2_Idx_12 

HUN-BUD-S0007 HUN-BUD yes MK778297 yes EcoRI_Idx_29 RAD-PCR_2_Idx_1 

HUN-BUD-S0009 HUN-BUD yes MK778298 yes EcoRI_Idx_12 RAD-PCR_2_Idx_10 

HUN-BUD-S0010 HUN-BUD yes MK778299 yes EcoRI_Idx_11 RAD-PCR_2_Idx_3 

HUN-BUD-S0011 HUN-BUD yes MK778300 yes EcoRI_Idx_21 RAD-PCR_2_Idx_4 

HUN-BUD-S0012 HUN-BUD yes MK778301 yes EcoRI_Idx_30 RAD-PCR_2_Idx_5 

ITA-CAS-S0001 ITA-CAS yes MK778302 yes EcoRI_Idx_26 RAD-PCR_2_Idx_2 

ITA-CAS-S0003 ITA-CAS yes MK778303 yes EcoRI_Idx_22 RAD-PCR_2_Idx_8 

ITA-CAS-S0004 ITA-CAS yes MK778304 yes EcoRI_Idx_29 RAD-PCR_2_Idx_6 

ITA-CAS-S0005 ITA-CAS yes MK778305 yes EcoRI_Idx_22 RAD-PCR_2_Idx_5 

ITA-CAS-S0006 ITA-CAS yes MK778306 yes EcoRI_Idx_14 RAD-PCR_2_Idx_7 

ITA-CAS-S0007 ITA-CAS yes MK778307 yes EcoRI_Idx_5 RAD-PCR_2_Idx_8 

ITA-CAS-S0008 ITA-CAS yes MK778308 yes EcoRI_Idx_23 RAD-PCR_2_Idx_2 
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ITA-CAS-S0009 ITA-CAS yes MK778309 yes EcoRI_Idx_5 RAD-PCR_2_Idx_5 

ITA-CAS-S0010 ITA-CAS yes MK778310 yes EcoRI_Idx_17 RAD-PCR_2_Idx_3 

ITA-CAS-S0011 ITA-CAS yes MK778311 yes EcoRI_Idx_11 RAD-PCR_2_Idx_1 

ITA-ROV-S0001 ITA-ROV yes MK778312 yes EcoRI_Idx_30 RAD-PCR_2_Idx_1 

ITA-ROV-S0002 ITA-ROV yes MK778313 yes EcoRI_Idx_16 RAD-PCR_2_Idx_5 

ITA-ROV-S0003 ITA-ROV yes MK778314 yes EcoRI_Idx_7 RAD-PCR_2_Idx_10 

ITA-ROV-S0004 ITA-ROV yes MK778315 yes EcoRI_Idx_7 RAD-PCR_2_Idx_9 

ITA-ROV-S0005 ITA-ROV yes MK778316 yes EcoRI_Idx_30 RAD-PCR_2_Idx_6 

ITA-ROV-S0006 ITA-ROV yes MK778317 yes EcoRI_Idx_4 RAD-PCR_2_Idx_2 

ITA-ROV-S0007 ITA-ROV yes MK778318 yes EcoRI_Idx_8 RAD-PCR_2_Idx_10 

ITA-VAL-S0002 ITA-VAL yes MK778319 yes EcoRI_Idx_23 RAD-PCR_2_Idx_10 

ITA-VAL-S0003 ITA-VAL yes MK778320 no n.a. n.a. 

ITA-VAL-S0004 ITA-VAL yes MK778321 yes EcoRI_Idx_20 RAD-PCR_2_Idx_11 

ITA-VAL-S0005 ITA-VAL yes MK778322 yes EcoRI_Idx_12 RAD-PCR_2_Idx_12 

ITA-VAL-S0006 ITA-VAL yes MK778323 yes EcoRI_Idx_26 RAD-PCR_2_Idx_1 

ITA-VAL-S0007 ITA-VAL yes MK778324 yes EcoRI_Idx_16 RAD-PCR_2_Idx_1 

JPN-UNN-S0001 JPN-UNN yes MK778325 yes EcoRI_Idx_9 RAD-PCR_2_Idx_9 

JPN-UNN-S0002 JPN-UNN yes MK778326 no n.a. n.a. 

JPN-UNN-S0003 JPN-UNN yes MK778327 yes EcoRI_Idx_18 RAD-PCR_2_Idx_9 

JPN-UNN-S0004 JPN-UNN yes MK778328 yes EcoRI_Idx_17 RAD-PCR_2_Idx_9 

JPN-UNN-S0005 JPN-UNN yes MK778329 yes EcoRI_Idx_24 RAD-PCR_2_Idx_6 

ROU-BUC-S0001 ROU-BUC yes MK778330 yes EcoRI_Idx_8 RAD-PCR_2_Idx_7 

ROU-BUC-S0002 ROU-BUC yes MK778331 yes EcoRI_Idx_24 RAD-PCR_2_Idx_12 

ROU-BUC-S0003 ROU-BUC yes MK778332 no n.a. n.a. 

ROU-BUC-S0004 ROU-BUC yes MK778333 yes EcoRI_Idx_29 RAD-PCR_2_Idx_2 

ROU-BUC-S0005 ROU-BUC yes MK778334 yes EcoRI_Idx_19 RAD-PCR_2_Idx_12 

ROU-BUC-S0006 ROU-BUC yes MK778335 yes EcoRI_Idx_4 RAD-PCR_2_Idx_12 

ROU-BUC-S0007 ROU-BUC yes MK778336 yes EcoRI_Idx_18 RAD-PCR_2_Idx_1 

ROU-BUC-S0008 ROU-BUC yes MK778337 yes EcoRI_Idx_7 RAD-PCR_2_Idx_3 

ROU-BUC-S0009 ROU-BUC yes MK778338 yes EcoRI_Idx_16 RAD-PCR_2_Idx_7 

ROU-BUC-S0010 ROU-BUC yes MK778339 yes EcoRI_Idx_7 RAD-PCR_2_Idx_6 

ROU-BUC-S0011 ROU-BUC yes MK778340 yes EcoRI_Idx_13 RAD-PCR_2_Idx_7 

SVN-NOV-S0001 SVN-NOV yes MK778341 yes EcoRI_Idx_4 RAD-PCR_2_Idx_5 

SVN-NOV-S0002 SVN-NOV yes MK778342 yes EcoRI_Idx_2 RAD-PCR_2_Idx_8 

SVN-NOV-S0004 SVN-NOV yes MK778343 yes EcoRI_Idx_1 RAD-PCR_2_Idx_1 

SVN-NOV-S0005 SVN-NOV yes MK778344 yes EcoRI_Idx_10 RAD-PCR_2_Idx_4 

SVN-NOV-S0006 SVN-NOV yes MK778345 yes EcoRI_Idx_1 RAD-PCR_2_Idx_6 

SVN-NOV-S0007 SVN-NOV yes MK778346 yes EcoRI_Idx_19 RAD-PCR_2_Idx_10 

SVN-NOV-S0008 SVN-NOV yes MK778347 yes EcoRI_Idx_2 RAD-PCR_2_Idx_6 

SVN-NOV-S0009 SVN-NOV yes MK778348 yes EcoRI_Idx_13 RAD-PCR_2_Idx_12 

SVN-NOV-S0011 SVN-NOV yes MK778349 yes EcoRI_Idx_2 RAD-PCR_2_Idx_2 

SVN-NOV-S0012 SVN-NOV yes MK778350 yes EcoRI_Idx_23 RAD-PCR_2_Idx_11 

USA-DOY-R1078 USA-DOY yes MK778351 yes EcoRI_Idx_31 RAD-PCR_2_Idx_4 

USA-HE1-R1076 USA-HE1 yes MK778352 yes EcoRI_Idx_13 RAD-PCR_2_Idx_1 

USA-HE2-R1079 USA-HE2 yes MK778353 no n.a. n.a. 

USA-PAX-S0001 USA-PAX yes MK778354 yes EcoRI_Idx_22 RAD-PCR_2_Idx_12 

USA-PAX-S0002 USA-PAX yes MK778355 yes EcoRI_Idx_15 RAD-PCR_2_Idx_7 

USA-PIC-R1073 USA-PIC yes MK778356 no n.a. n.a. 

USA-PIC-R1074 USA-PIC yes MK778357 yes EcoRI_Idx_2 RAD-PCR_2_Idx_12 

USA-PIC-R1075 USA-PIC yes MK778358 yes EcoRI_Idx_8 RAD-PCR_2_Idx_6 

USA-SHA-R1071 USA-SHA yes MK778359 yes EcoRI_Idx_6 RAD-PCR_2_Idx_1 

USA-SHA-R1072 USA-SHA yes MK778360 yes EcoRI_Idx_18 RAD-PCR_2_Idx_6 

USA-TAK-S0001 USA-TAK yes MK778361 yes EcoRI_Idx_9 RAD-PCR_2_Idx_6 

USA-TAK-S0002 USA-TAK yes MK778362 yes EcoRI_Idx_13 RAD-PCR_2_Idx_10 
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8.3.4. Supplementary figures 

Figure S8.2  

 

Figure S8.2. Plot of a Bayescan 2.1 analysis scanning all polymorphic loci of the ddRAD set. 

Plotting FST against log10 of the posterior odds (q-value) revealed two outlier markers under 

selection that were removed from the dataset.   
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Figure S8.3 

a 
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b 
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c 

 

Figure S8.3. TCS haplogroup network of a 573 bp mitochondrial CO1 gene fragment on a 

Global scale, b European scale and c Swiss scale. Haplotypes are shown as circles, which 

are proportional to their frequencies. 
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Figure S8.4.  
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Figure S8.4. Principal component analysis (PCA) analysis plots based on individual ddRAD 

genotypes visualised on a global scale, b global scale without Japanese specimens, c 

European scale and d Swiss scale. PC1 explains 9.64%, PC2 3.67%, and PC1 2.72% of total 

variation. 
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Figure S8.5  

Figure S8.5. Maximum likelihood tree based on the ddRAD dataset generated by RAXML. 

Best topology was assessed by validating 1000 bootstrap replicates. Numbers represent 

bootstrap support values higher than 50. Scale bar indicates number of amino acid changes 

per site. Colours represent geographic origins of specimens: Black, Europe and North 

America; red, Japan. 
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Figure S8.6 

 

Figure S8.6. Results of an isolation by distance (IBD) analysis of European specimens based 

on the ddRAD dataset. Correlation between Edward’s genetic distances and Euclidean 

geographic distances between populations were assessed using Mantel test implemented in 

the R-package Adegenet, Mantel R=-0.261, p-value=0.960. 
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8.3.5. Supplementary tables 

Table S8.4. Occurrence reports of O. ishidae in Europe. 

Country Year Reference 

Italy 1998 (Guglielmino, 2005) 

Switzerland 2000 (Günthart et al., 2004) 

Germany 2002 (Nickel, 2010) 

Slovenia 2002 (Seljak, 2004) 

Czech Republic 2004 (Malenovsky and Lauterer, 2010) 

Austria 2007 (Nickel, 2010) 

Belgium 2008 (Anonymous, 2015) 

France 2009 (Mifsud et al., 2010) 

The Netherland 2009 (den Bieman and Klink, 2015) 

Hungary 2010 (Koczor et al., 2013) 

Spain 2012 (Anonymous, 2015) 

Slovakia 2012 (Anonymous, 2015) 

United Kingdom 2011 (Anonymous, 2015) 

Poland 2014 (Klejdysz et al., 2017) 

Romania 2016 (Chireceanu et al., 2017) 
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Table S8.5. Genetic diversity measures of mitochondrial CO1 sequences. 

ID NCOI NPS NHAP HDIV HDIV (SD) π π (SD) K K (VAR) 

AUT-BAI 7 13 4 0.714 0.181 0.010 0.002 5.619 2.617 

CAN-CAM 7 7 3 0.524 0.209 0.004 0.002 2.381 0.581 

CHE-AAR 12 10 2 0.300 0.147 0.005 0.003 3.030 0.470 

CHE-AES 11 12 3 0.618 0.104 0.009 0.001 5.345 1.405 

CHE-ART 2 1 2 n.a. n.a. n.a. n.a. n.a. n.a. 

CHE-ARZ 11 10 3 0.727 0.068 0.008 0.002 4.582 1.066 

CHE-BER 10 13 4 0.644 0.152 0.009 0.002 5.356 1.573 

CHE-CHA 5 9 2 0.600 0.175 0.009 0.003 5.400 3.697 

CHE-CHY 1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

CHE-FLA 12 9 2 0.485 0.106 0.008 0.002 4.364 0.886 

CHE-GIO 9 12 3 0.667 0.132 0.010 0.002 5.667 1.970 

CHE-HER 1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

CHE-HUE 11 13 4 0.709 0.099 0.010 0.001 5.527 1.493 

CHE-MEN 3 0 1 0.000 0.000 0.000 0.000 0.000 0.000 

CHE-OBE 13 11 3 0.500 0.136 0.003 0.002 2.000 0.216 

CHE-OES 2 10 2 n.a. n.a. n.a. n.a. n.a. n.a. 

CHE-RIE 10 12 4 0.711 0.117 0.008 0.002 4.400 1.106 

CHE-ROV 10 11 4 0.644 0.152 0.006 0.002 3.600 0.777 

CHE-STA 12 10 3 0.621 0.087 0.009 0.009 5.045 1.147 

CHE-TOR 1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

CHE-WAE 12 10 3 0.682 0.079 0.006 0.002 3.258 0.532 

CHE-WEI 1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

CHE-WIL 10 11 5 0.844 0.080 0.010 0.001 5.467 1.633 

CZE-BRN 11 0 1 0.000 0.000 0.000 0.000 0.000 0.000 

DEU-GOD 6 9 3 0.600 0.215 0.005 0.003 3.000 1.033 

FRA-BOM 11 10 2 0.182 0.144 0.003 0.003 1.818 0.224 

FRA-HAT 1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

HUN-BUD 11 9 2 0.182 0.144 0.003 0.002 1.636 0.189 

ITA-CAS 10 9 2 0.533 0.095 0.008 0.001 4.800 1.292 

ITA-ROV 7 12 3 0.714 0.127 0.010 0.002 6.000 2.952 

ITA-VAL 6 10 3 0.733 0.155 0.009 0.002 5.000 5.000 

JPN-UNN 5 4 4 0.900 0.161 0.004 0.001 2.200 0.762 

ROU-BUC 11 9 2 0.436 0.133 0.007 0.002 3.927 0.812 

SVN-NOV 10 9 2 0.467 0.132 0.007 0.000 4.200 4.200 

USA-DOY 1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

USA-HE1 1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

USA-HE2 1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

USA-PAX 2 0 1 n.a. n.a. n.a. n.a. n.a. n.a. 

USA-PIC 3 6 2 0.667 0.314 0.007 0.003 4.000 4.190 

USA-SHA 2 1 2 n.a. n.a. n.a. n.a. n.a. n.a. 

USA-TAK 2 1 0 n.a. n.a. n.a. n.a. n.a. n.a. 

ID, Population identifier; NCOI, Number of CO1 sequences; NPS, number of polymorphic sites, 

NHAP, number of haplotype; HDIV, haplotype diversity; HDIV (SD), standard deviation of HDIV; π, 

nucleotide diversity Pi; π (SD), standard deviation of π; K, number of nucleotide differences; 

K (VAR), sampling variance of K. 
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Table S8.6. Frequency and haplogroup assignment of mitochondrial CO1 haplotypes. a 

Frequencies of haplotypes and haplogroup assignment. b Haplogroup frequencies. 

a 

H N FREQ HGROUP 

Hap_1 130 47.45 A 

Hap_2 13 4.74 D 

Hap_3 56 20.44 F 

Hap_4 10 3.65 E 

Hap_5 1 0.36 D 

Hap_6 34 12.41 A 

Hap_7 17 6.12 D 

Hap_8 2 0.72 D 

Hap_9 2 0.72 F 

Hap_10 1 0.36 A 

Hap_11 1 0.36 A 

Hap_12 1 0.36 E 

Hap_13 2 0.72 C 

Hap_14 1 0.36 C 

Hap_15 1 0.36 C 

Hap_16 1 0.36 C 

Hap_17 1 0.36 A 

b 

HGROUP N FREQ 

A 167 60.95 

B 19 6.93 

C 5 1.82 

D 14 5.11 

E 11 4.01 

F 58 21.17 

H, haplotype; N, number of specimens; FREQ, frequency; HGROUP, haplogroup. 
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Table S8.7. Pairwise FST estimates for populations with sample size N>3 based on the ddRAD 

dataset. Significant values are shaded in grey. 
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