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Introduction

Machine learning (ML) is a general term used to identify a set of algorithms and computing techniques
that, although theorized in the last decades of the last century, have been widely developed in the last
twenty years thanks both to technological improving of hardwares, and to optimization of algorithms.
The goal of ML is to detect deep abstract features and patterns from data, in order to develop a model
capable of predicting features of new, unobserved data. This goal is achieved through a set of hidden
parameters which values have to be determined from data. ML techniques are divided into two main
cathegories depending on the available dataset: supervised machine learning (SML) and unsupervised
machine learning (UML). The former is used when labeled input data are available; they are used to
set the values of the hidden parameters, hence to label new unseen data according to the abstract
detected pattern. The latter is used when dealing with unlabeled data from which one wishes to
extract features.

Several applications of Machine Learning have been investigated recently through research and techno-
logical contexts. ML have been successfully applied to image recognition [14], image segmentation [15],
human speech recognition and elaboration [16, 17], grammatical processing of natural speaking [18],
recognition of semantic patterns and authomatic translation [19], subatomic particle detection [20],
diagnosis and prognosis problems in medicine [21], and many more.

Very recently, the physicists community has begun to study machine learning on two sides: both
applying it to detect features of physical problems, and applying physical tools to understand deep
properties of the algorithms. The focus of this work is on the former research line, and in particular
we investigate some physical problems that can be addressed with machine learning. Starting from a
physical question, we present the main techniques that can be used to answer, then we apply them to
simple systems with well known properties, such as Ising, Potts and XY models. For every question,
we not only provide a summary of the state of the art but we also implement all the algorithms
ourselves, using different languages for different tasks, in particular C++, Wolfram Mathematica 12.0
and Python. The most relevant code lines for each topic are collected in Appendix, so that the
interested reader is encouraged to reproduce and eventually improve our results.

The thesis is organized as follows. Chapter 1 summarizes the main properties of the physical models
that we have used as a benchmark throughout the work, and it gives an overview of Monte Carlo
sampling, explaining how we have built up the starting datasets. Chapter 2 deals with the problem of
designing the simplest physical model compatible with a given set of configurations and the relative
energies. We show that such problem can be easily solved by determining the coupling constants of
the model with a linear regression. The problem though is more subtle than a simple linear fit: since
there are many parameters to determine, and since we want a model which is able to predict energies
of unseen configurations in the phase space, we encounter the problem of overfitting. In order to avoid
overfitting we introduce regularized regressions, that are the simplest examples of machine learning
tasks, so we can introduce the first key concepts of ML.

Chapter 3 and 4 discuss the physical problem of predicting the phase of a given configuration (or-
dered or disordered) in a system undergoing phase transition. More generally we face the problem of
labeling data. In Chapter 3 we use a labeled dataset to build a classifier that can label a new unseen
configuration. The basic tools to face this problem are neural networks. In this chapter we discuss in
detail some basic neural network architectures (feed forward and convolutional), we study how they
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learn to classify and we compare their efficiencies. The starting problem here is just a basic example
to get familiar with these tools, but in principle they can be extended to more ambitious tasks (pre-
dicting the most likely sampling temperature of a given configuration, predicting energy, generating
large systems etc.) and to other fields of physics. In Chapter 4 we perform data labeling without
having previously labeled data available (unsupervised learning). The task can be accomplished with
a dimensional reduction of the input, namely representing each n-dimensional data-point (described
through n features) with a much smaller number of most relevant features. Another basic tool of UML
analyzed in Chapter 4 is clustering, a process that allows classification of data into clusters made by
neighbouring points in phase space.
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Chapter 1

Overview of spin models and Monte
Carlo sampling

This chapter is organized as follows. The first part is dedicated to a brief overview of some of the
most relevant spin models studied in Statistical Physics. In particular we will focus on the Ising,
Potts and XY models, which are object of study in the following chapters. A review of the main
theoretical results about symmetry properties and critical behaviour of the models is provided. The
last part is dedicated to a general introduction to Monte Carlo tecniques for sampling equilibrium
configurations of the models, with a detailed description of the Metropolis-Hastings algorithm, that
we have implemented to extract samples for further analysis.

1.1 Ising model

The Ising model was originally introduced and solved by Ernst Ising in 1924 for modeling the para-
magnetic to ferromagnetic phase transition in some materials. It has achieved resounding success not
only because it can be solved (i.e. the partition function and associated thermodynamical properties
can be found exactly in simple geometries), but because many physical models have the same critical
properties and belong to the same universality class. Moreover, since its properties are well-known
and relatively simple, this model can be used as a test-bed for any theoretical and computational
tecniques.

The dynamical variables of the model are called spins, and they can be either +1 or −1. They form
a discrete set which is organized in a d-dimensional lattice where a notion of distance is introduced.
The Ising Hamiltonian is

H = −J
∑
〈ij〉

SiSj −H
∑
i

Si (1.1)

where J is the coupling constant between spins and H is an external uniform field. The notation 〈ij〉
means that i and j are nearest neighbors sites of the lattice. When the system is not coupled to an
external field (H = 0), then the Hamiltonian (H0) is invariant under flipping of all spins. In other
words the free Hamiltonian has a global Z2 symmetry.

The partition function is the sum of the canonical Boltzmann probabilities on all the possible config-
urations

Z(J, T,H) =
∑
{S}

e−βH ≡ Tr
[
e−βH

]
(1.2)

where β = 1/kBT and from now on we will use the convention kB = 1. The ensemble average of
any observable A can be computed using the partition function, namely 〈A〉 = Z−1 Tr

[
Ae−βH

]
. An

interesting physical observable is the sum of all spins, called magnetization (M) and its ensemble
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(a) Magnetization per site in one dimensional Ising
model as a function of the external magnetic field
at different temperatures. Dots are data generated
with Metropolis-Hastings algorithm with N = 40,
solid lines are exact predictions.

(b) Magnetic susceptibility obtained by the simula-
tion (dots) and theoretical function (solid line) of the
1-dimensional Ising model.

average is then given by

〈M〉 =
Tr
[
Me−β(H0−HM)

]
Z(J, T,H)

(1.3)

A state with M = 0 is called disordered (or paramagnetic phase); a state with M 6= 0 is then ordered
(or ferromagnetic phase). In the thermodynamic limit (i.e. when the number of lattice sites N →∞),
the magnetization of an ordered state could in principle diverge, so we will often use the magnetization
per site m = M/N which is always finite.

Another interesting quantity is the magnetic susceptibility χ = ∂M/∂H|H=0. This quantity is related
to the equilibrium fluctuations of magnetization

χ =
∂M

∂H

∣∣∣∣
H=0

=
∂

∂H

Tr
[
MeβH0−HM

]
Z(T,H)

∣∣∣∣∣
H=0

= β
(〈
M2
〉
− 〈M〉2

)
(1.4)

In terms of the magnetization per site and of the rescaled external field h = βH we get

χ = βN
∂m

∂h

∣∣∣∣
h=0

= βN2
(〈
m2
〉
− 〈m〉2

)
. (1.5)

The expectation value of a product of two spins separated by a distance ~r in the lattice is called
correlation function and indicated by Γ(~r). In some cases the correlation function exponentially
decays as Γ(r) ∼ e−r/ξ. In these cases ξ is called correlation length and in principle it depends on J ,
T and H. This function is useful when studying the critical behaviour of the system, not only in the
Ising case.

Let’s now consider a one dimensional lattice with periodic boundary conditions (SN+1 = S1). In this
simple geometry, the partition function can be exactly computed using the transfer matrix method.
The resulting magnetization per site is

m(K,h) =
sinhh+ sinhh coshh√

sinhh2+e−4K

coshh+
√

sinhh2 + e−4K
(1.6)

where K = βJ . From this result it is clear that when h = 0, the magnetization per site vanishes at
all temperatures. In other words, when the one dimensional system has a global Z2 symmetry, the
ground state is always disordered and it is invariant under the spin flipping as well. In the language
of group theory this means that there is no spontaneous symmetry breaking of Z2 and no phase
transition between paramagnet and ferromagnet occurs. In Fig. 1.1a we show a comparison between
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Figure 1.2: Average ensemble magnetization as a function of temperature at zero external magnetic field. The dots are
the results obtained by Metropolis-Hastings algorithm with L = 40; the solid line is Onsager’s exact solution. The phase
transition is observed.

theoretical results and the outcome of the Monte Carlo simulation (discussed in the following) for the
magnetization per site.

Using Eqs. 1.5 and 1.6 we can find an exact expression for the magnetic susceptibility by deriving the
magnetization which respect to h. Moreover, we can use the right hand side of Eq. 1.5 to compute
the susceptibility by numerical simulations. A comparison between these two results is shown in Fig.
1.1b.

It is also possible to prove that when h = 0 the correlation length is given by

ξ = − 1

log tanhK
(1.7)

for an infinite lattice. Since in the simulations we have to choose a finite size N , the correlation length
provides a lower limit for the temperature at which we take our samples. In particular we need ξ � N ,
otherwise we would see a fictitious ordered phase which is related to the finite size of the system. The
temperatures at which we can consistently sample spin configurations is then (after inverting Eq. 1.7)

T � 2J

log e1/N+1
e1/N−1

(1.8)

Let’s now consider an Ising model in a two dimensional square lattice of size L with N = L2 sites, peri-
odic boundary conditions and no external field. An exact solution for this model in the thermodynamic
limit N →∞ was found by Onsager in 1944 with the transfer matrix method

m(K, 0) =

{
±
[
1− sinh−4K

]1/8
if T < Tc

0 if T ≥ Tc
(1.9)

where Tc is the critical temperature Tc = 2J/ log (1 +
√

2) ≈ 2.269J . As it is clear from Eq. 1.9,
this model undergoes a phase transition at T = Tc between a ferromagnetic phase (T < Tc) and
a paramagnetic phase (T > Tc). Since at T < Tc the system is mostly magnetized upwards (or
downwards), the ground state does not have the same Z2 symmetry as the Hamiltonian and hence
there is a spontaneous symmetry breaking. The magnetization per site is a suitable order parameter
for this transition, and since it is a continuous function of T , the transition is second order. In Fig.
1.2 we compare Monte Carlo simulations (see next sections) with the Onsager solution of Eq. 1.9.

A key concept in statistical physics is that a system can undergo a phase transition only in the
thermodynamic limit. The reason is that a phase transition, by definition, occurs when the partition
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function is not analytic at some values of its variables. In a finite size system though, the partition
function is a finite sum of exponentials and then it is always analytic. When the system is infinite the
sum of infinite terms can in principle diverge and a phase transition is possible. A central problem that
arises from this fact is that since we can only perform simulations of finite sized systems, in principle
we should never observe any phase transitions. In practice, even though the partition function of a
finite system is analytic, we observe an ordered phase when the correlation length is comparable to
the lattice size ξ ∼ L. The correlation length close to the phase transition scales in general as a power
law of T − Tc and the critical exponent is indicated by ν

ξ ∼ (T − Tc)−ν (1.10)

where ν = 1 in the two dimensional Ising model, and ν > 0 in general. If the transition temperature
of the finite system T ∗ is close to the critical value (T ∗ − Tc � Tc), then from ξ ∼ L we get

T ∗−Tc
Tc
∼ L−1/ν → T ∗(L) = Tc + k

L1/ν (1.11)

where k is a constant depending on the details of the model. A consequence of this property is that
critical properties of the infinite system can be deduced by extrapolation from the result of numerical
simulations at increasing lattice sizes.

1.2 Potts model

The Potts model is a generalization of the Ising model which extends the Z2 symmetry of the free
Ising Hamiltonian (Eq. 1.1 at H = 0) to an Hamiltonian invariant under the action of the group Zq
(group of the permutations of q ≥ 2 objects). The Hamiltonian of the model is

H = −J
∑
〈ij〉

δσi,σj (1.12)

where σ = 0, 1, ..., q − 1 is a variable which can assume q different values, J is the nearest neighbors
interaction energy. Since the case q = 2 can easily be mapped into an Ising model, as we will prove
at the end of this section, we start focusing on the q ≥ 3 case. In particular we present a mean field
approach to the solution.

Let xσ be the fraction of sites in the state σ, the probability that a lattice site be in a given state σ̄
can be written as

p(σ) =
∑
ρ

xρδρ,σ = xσ (1.13)

We now have to write down the average free energy F = 〈H〉−T 〈S〉 of the system using this probability.
The average entropy is the sum of the entropies associated to every lattice site −

∑
σ xσ log xσ, so that

〈S〉 = −N
∑
σ

xσ log xσ (1.14)

The average internal energy is easy in the mean field approximation for
〈
δσi,σj

〉
≈
∑

σ 〈δσi,σ〉
〈
δσj ,σ

〉
=∑

σ 〈δσi,σ〉
2. The average can be computed using the probability distribution introduced above

〈δσi,σ〉 =
∑
σi

p(σi)δσi,σ = p(σ) = xσ

In mean field this quantity is assumed to be independent on the lattice size, so that

〈H〉 = −J
∑
〈ij〉

∑
σ

x2
σ = −JNz

2

∑
σ

x2
σ, (1.15)
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where z is the coordination number of the lattice and the factor 2 avoids double counting. At this
point we can make an educated guess on xσ

x0 = 1+(q−1)s
q xσ = 1−s

q
(1.16)

where s ∈ [0, 1[ is an order parameter, which takes into account the Zq spontaneous symmetry breaking:
if s = 0 the system is disordered, since xσ = 1/q ∀σ; while if s 6= 0 the majority of the lattice sites
are in the state σ = 0, and the symmetry is broken. Moreover the consistency constraint

∑
σ xσ = 1

is satisfied.

After some calculations one can finally write the free energy per site f = F/N as a function of s
(neglecting an additive constant):

βf(s) =
1 + (q − 1)s

q
log [1 + (q − 1)s] +

(q − 1)(1− s)
q

log (1− s)− q − 1

2q
zKs2 (1.17)

where K = βJ as previously defined. The order parameter as a function of the temperature is obtained
solving f ′(s) = 0, since it is the minimum of the free energy. This leads to the implicit equation

log
1 + (q − 1)s

1− s
= zKs (1.18)

This equation has only the trivial solution s = 0 for small values of zK (high temperature), three
solutions s = 0, s = s1(zK) and s = s2(zK) (with s1 < s2) in an intermediate range of zK, and two
solutions s = 0 and s = s2(zK) for large values of zK (low temperature). One can also check that s2

is always a local minimum of the function, but not necessarily a global minimum.

The global minimum of f(s) is s = 0 for small values of zK, and becomes s = s2(zK) when increasing
zK above a critical value zKc, meaning that the system undergoes a phase transition. Since s2(zKc) ≡
sc 6= 0, the global minimum changes abruptly from s = 0 to s = sc: the phase transition is then first
order (see Fig. 1.3).

Since f(0) = 0, the critical valuesKc and sc are found by solving f(s) = 0 and f ′(s) = 0 simultaneously,
and the solutions are

zKc = 2 q−1
q−2 log (q − 1) sc = q−2

q−1 . (1.19)

The critical temperature in units of zJ is then

kBTc =
q − 2

2(q − 1) log (q − 1)
zJ. (1.20)

In particular, for a two dimensional square lattice z = 4 and in the limit of large q, one obtains
kbTc ≈ 2J/ log q.

It is important to remark that the mean field theory is a good approximation for high dimensional
systems (d ≥ 3), or for systems with large q and d = 2; while it fails for d = 1 (see [10] for details).
However in a d = 2 square lattice, an exact solution exists for every q and is proved to be

kBTc =
1

log (1 +
√
q)
J. (1.21)

In the limit q � 1 this becomes kBTc ≈ 2J/ log q, as predicted in mean field approximation. Moreover,
the transition is continuous for q < 4 and first order for q ≥ 4 (in higher dimensions the critical value
of q marking the border between first order and continuous transition decreases). Details on the proof
and extensions to other geometries and dimensions is provided in [10,12].

As a final remark, we show that the q = 2 Potts model can be mapped into an Ising model. Let
σi = ±1 be the feature at site i in a two-state Potts model. Taking the following identity into account

δσi,σj =
1 + σiσj

2
, (1.22)
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Figure 1.3: [Color online]. Plot of the free energy of the Potts model for q = 5 at three different temperatures: T > Tc
for the blue dashed line, T = Tc for the orange solid line and T < Tc for the dot-dashed red line.

one can rewrite the Potts Hamiltonian as follows

H = −JPotts
∑
〈ij〉

δσi,σj = −JPotts
∑
〈ij〉

1 + σiσj
2

= H0 − JIsing
∑
〈ij〉

σiσj , (1.23)

where H0 is an irrelevant constant term and JI = Jp/2. This is clearly the Ising Hamiltonian 1.1 and
we have found the correct mapping between the models. From Eq. 1.21 we can thus recover Onsager’s
critical temperature:

kBTc =
1

log (1 +
√

2)
JPotts =

2

log (1 +
√

2)
JIsing.

1.3 XY model

The XY model is a generalization of the Ising model where the spins are considered as two dimensional
vectors and hence the dynamical variables are a set of real numbers representing the angles between
a spin and the x̂ axis. The Hamiltonian is

H = −J
∑
〈ij〉

~Si · ~Sj = −J
∑
〈ij〉

cos (θi − θj) (1.24)

The symmetry group of this Hamiltonian is O(2), which is a continuous Lie group and this is the main
difference which respect to the Ising and Potts models, whose symmetry groups are discrete (Zq). The
Mermin-Wagner theorem states that a spontaneous symmetry breaking of a continuous symmetry
group is not possible in systems with dimensionality d ≤ 2. Since we will focus on the XY model in a
two dimensional square lattice, this theorem states that the ferromagnetic phase with non-vanishing
magnetization is not possible in our system.

The interesting feature of this model is that it shows signs of critical behaviour, even if a symmetry
breaking is not possible. This phase transition has been investigated and explained in detail by
Kosterlitz and Thouless and was worth the Nobel prize in Physics in 2016. Here we present only the
key features of this transition without going into details of calculations.

The first important aspect concerns the spin correlation function

Γ(~r) =
〈
~S0 · ~S~r

〉
= 〈cos (θ0 − θ~r)〉 (1.25)

where ~r represents the vector position of a site which respect to the origin. Let a be the lattice
spacing, then it turns out that the long distance behaviour of Γ(r) strongly depends on temperature,
in particular

Γ(r) ≈r�a

{ (
a
r

)kBT/2πJ T � TKT

e−
r
a

log
kBT

J T � TKT
(1.26)
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Figure 1.4: Equilibrium configurations of the XY model in a two dimensional square lattice of size L = 20. A high-
temperature configuration at kBT = 1.6J is shown in the left panel, the disordered structure with uncoupled vortices
and antivortices of small size is presented. A low-temperature configuration at kBT = 0.45J is shown in the right panel:
the quasi-ordered structure with no vortices of small size is shown.

Eq. 1.26 shows that, as expected, the high temperature behaviour of spin correlations decays exponen-
tially with a characteristic length ξ(T ) = a/ log (kBT/J) which is smaller when increasing temperature.
In the opposite limit of low temperatures, the spin correlation is much stronger as it decays with a
power law with a temperature dependent exponent η(T ) = kBT/2πJ . Since a power law decay of
correlations is known to be a marker of critical behaviour, we deduce that a phase transition with no
spontaneous symmetry breaking occurs at kBT = kBTKT ≈ 0.89J .

The nature of such a phase transition is topological, since it concerns topological structures of spins
called vortices, which are typical of two dimensional systems. Approximating the discrete set of real
variables θi with a continuous vector field θ(~r) we can provide a good definition of vortex based on the
result of integration over a closed loop of ∇θ. Given a closed curve C with winding number γC = 1 in
the two dimensional space, the following identity holds

∮
C

∇θ · d~l = 2πq (1.27)

where q is an integer. This is a consequence of the fact that θ = 0, 2π, 4π etc. represent the same
physical angle. We say by definition that a closed curve C contains a vortex of charge q, and if q < 0
we call them antivortices. The basic idea of Kosterlitz and Thouless is that at low temperatures a
vortex and an antivortex are bound together, namely it is possible to choose a path C surrounding
a relatively small region such that q = 0. This produces a quasi-ordered structure called spin wave
where the spin orientations at long distances are correlated. When increasing the temperature, the
vortex-antivortex pairs tend to occupy larger regions and eventually, when T ≈ TKT these regions
have a typical diameter comparable to the lattice size and the pairs are decoupled. When considering
paths that surround relatively small regions, one observes a proliferation of (anti)vortices. At high
temperatures the pairs are completely decoupled and the quasi-ordered spin wave structure is broken,
leading to small long range correlations. Fig. 1.4 presents two configurations, extracted above and
below the critical temperature and displays what we have discussed so far. For more details on these
results and further reading we invite the interested reader to Refs. [2], [6].



14 CHAPTER 1. OVERVIEW OF SPIN MODELS AND MONTE CARLO SAMPLING

1.4 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a Monte Carlo technique which is used to sample independent
configurations of a system in thermal equilibrium. It is based on a Markovian and homogeneous
stochastic process that, starting from any configuration, leads the system to thermal equilibrium with
a characteristic time τr.

Let t be a discrete time variable labeling the steps of this process, and let C and C ′ be two configu-
rations of the system. We call Pt(C) the probability that the system is in configuration C at time t
and T (C → C ′) the transition rate from C to C ′ (this does not depend on time since the process is
supposed to be homogeneous). The Master equation of this process is in general

Pt+1(C)− Pt(C) =
∑
C′

[
T (C ′ → C)Pt(C

′)− T (C → C ′)Pt(C)
]
. (1.28)

If the system is in contact with a thermal bath at temperature T , then an equilibrium configuration
has the canonical probability

Peq(C) =
e−βH(C)

Z
(1.29)

where H(C) is the Hamiltonian of the system and β = 1/kBT .

If we want the system to relax at a stationary equilibrium state when t � τr, we have to choose
the transition rates properly. In the stationary state Pt+1(C) − Pt(C) = 0 ∀t, and if this state is
an equilibrium state, then Pt(C) = Peq(C). This is certainly consistent if the transition rates satisfy
detailed balance for every C and C ′: from Eqs. 1.28 and 1.29 we get

T (C ′ → C)Peq(C) = T (C → C ′)Peq(C
′) (1.30)

T (C → C ′)

T (C ′ → C)
= exp

[
−β
(
H(C ′)−H(C)

)]
= e−β∆H. (1.31)

The conclusion is that if we choose the transition rate in such a way that it satisfies Eq. 1.31 for every
C and C ′, the Monte Carlo dynamics will relax to equilibrium for sufficiently long times. One of the
most common choices is

T (C → C ′) = Γ min(1, e−β∆H), (1.32)

which straightforwardly satisfies Eq. 1.31. We remark that this is not the only possible choice, but
it is one of the most used in literature, and so we use it throughout this work. For more information
and other algorithms we invite the interested reader to Ref. [9].

The general steps one has to make when implementing a Metropolis-Hastings algorithm are the fol-
lowing:

� make a trial move, namely choose a new configuration C ′ different from C with some rule;

� accept the new configuration (make the system switch to C ′) with probability

Paccept = Γ−1T (C → C ′) = min(1, e−β∆H); (1.33)

� repeat these steps untill equilibrium is reached.

It is important to point out that, once equilibrium is reached (say when t ≈ 10τr), all the configu-
rations generated after that time are all equilibrium states, but they are strongly correlated because
the configuration C ′ is choosen from C with a predefined rule. So, if we want to get statistically
independent samples (which is often the case), we have to compute the autocorrelation time τA of
the observable A we are interested in, and then choose one sample at least every τA iterations of the
process. To this scope we introduce the time autocorrelation function GA(τ) of the observable A

GA(τ) =
〈AtAt+τ 〉 − 〈A〉2

〈A2〉 − 〈A〉2
, (1.34)
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Figure 1.5: Magnetization as a function of temperature at null external magnetic field. Below T ≈ 0.8J the finite size
effects become relevant and the simulation is no longer reliable since ξ � L, and hence a fictitious magnetization occurs.

where the expectation value is the average over all times such that 10τr < t < t̄ − τ (t̄ being the
final time at which the process stops). This function is typically an exponential decaying function, so
GA(τ) ≈ e−τ/τA , from which we can compute τA.

In some situations the autocorrelation time can be really high and sampling a reasonable number
of independent configurations can be computationally challenging: this problem is known as critical
slowing down, since it is typical of systems near criticality. In some cases, the problem can be solved
by smartly choosing the transition rate T (C → C ′) (taking into account the constraint in Eq. 1.31)
and implementing more sophisticated algorithms.

Let’s now discuss how we have implemented the algorithm on the specific cases of the previously
discussed models.

Ising model

After initializing a random spin configuration {Si} (for example Si = +1 ∀i), the algorithm consists
in the following steps:

� propose a new configuration C ′ with a trial move, namely flip a randomly chosen spin Si0 (change
its sign);

� compute the energy difference between the new and the old spin configurations ∆H, then accept
the new configuration with the probability given in Eq. 1.33.

� repeat these steps t̄ times.

Since the Ising model can be exactly solved when d = 1 and d = 2, we can compare our Monte Carlo
simulation with exact resulsts for magnetization and susceptibility.

The simulations of the one dimensional system are performed at temperatures T > 0.8J , well above the
lower temperature limit stated in Eq. 1.8, which is 0.45J for L = 40. In this way we are guaranteed
that the correlation length is much smaller than the system size ξ � L. Fig. 1.5 shows that the
magnetization is essentialy zero at all the sampling temperatures and the fictitious ordered phase does
not appear. In Fig. 1.1a we compare the theoretical and computational results for magnetization
as functions of the external field at different temperatures. In Fig. 1.1b we compare the magnetic
susceptibility obtained by the simulation with the theoretical result as functions of temperature. Eq.
1.5 shows how one can compute both these quantities.

An analysis of the relaxation characteristic time τr shows that one should discard the first 10L Monte
Carlo iterations for every sampled temperature for the system to reach equilibrium. Moreover, plotting
the autocorrelation function of the magnetization, one can compute τm, which depends on temperature
and is larger at lower temperatures. Since τm ≈ 100L at the lowest sampled temperature T = 0.8J ,
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Figure 1.6: Correlation function of the magnetization per site Gm(τ) as function of Monte Carlo sweeps (τ/L) at different
temperatures. The largest correlation time is ≈ 100L for the lowest temperature.

as shown in Fig. 1.6, we sampled one spin configuration every 3τm, so that the expected correlation
is lower than 0.05.

For the two dimensional system, the analysis of the characteristic times of the Metropolis-Hastings
algorithm shows that τr ≈ 30L2, so we sampled after waiting ≈ 100L2 steps. The autocorrelation
function of magnetization Gm(τ) decays with τm ≈ 15L2 at temperatures far from the critical tem-
perature, but the decay is slowed down at the critial point and τm ≈ 200L2. This is the already
mentioned critical slowing down, which implies great computational cost, especially for large lattices.
A compromise between statistical independence of data and reasonable computational time is needed:
in our case, we choose to sample one configuration every 150L2. This choice is maintained through-
out this work, independently from temperature and from lattice size. Another possible solution to
the problem would be implementing a different Monte Carlo algorithm known as Wolff algorithm.
It basically consists in changing the way we propose the new configuration, in particular flipping a
randomly chosen set of neighbouring spins sharing the same value of the spin. The implementation of
this algorithm is beyond the scope of this work. The interested reader is invited to Ref. [9].

Potts model

In this case the basic conclusions are the same as for the Ising model. The only difference is the trial
move that now consists in randomly changing the state of a given site. The new state is uniformly
and randomly chosen amongst the other q − 1 states.

XY model

Equilibrium configurations of the XY model can be sampled using the Metropolis-Hastings algorithm,
with a random change of the spin angle of a randomly selected site as a trial move (in place of the spin
flip). Despite its simple implementation, the algorithm suffers of a high autocorrelation time for the
relevant observables, expecially at low temperatures and this makes it computationally inefficient. As a
good compromise between reasonable computational time and statistical independence of the dataset,
we choose a relatively small lattice size L = 20 and a sampling time t = 400L2 in the Monte-Carlo
dynamics.

For the purposes of this work it is interesting to generate different configurations with local vorticities
as features. The idea is to consider a new square lattice made by the centers of all the squares
with unitary size (plaquettes). The local vorticity qij associated to site i, j in the new lattice can be
computed with the discretized vertion of the integral in Eq. 1.27 using the four angles at the vertices
of the plaquette:

qij =
1

2π
[f(θi+1,j − θij) + f(θi+1,j+1 − θi+1,j) + f(θi,j+1 − θi+1,j+1) + f(θij − θi,j+1)] , (1.35)

where f(x) is a sawtooth function that returns the value of the difference between angles x ∈ [−2π, 2π]
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rescaled in the interval [−π, π]:

f(x) =


x− 2π if x > π
x if −π ≤ x ≤ π

x+ 2π if x < −π
. (1.36)

Starting from a L× L lattice, the new lattice has (L− 1)× (L− 1) sites. In order to obtain a L× L
lattice, we can start from a (L + 1) × (L + 1) lattice, where θL+1,j and θi,L+1 are chosen depending
on the choice of boundary conditions. Since we have sampled the XY model with periodic boundary
conditions, we made the following identifications θL+1,j = θ1,j and θi,L+1 = θi,1. The set of values
{qij} obtained with this procedure is called vorticity dataset in the following.
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Chapter 2

Design of spin models

In this chapter we discuss the problem of model reconstruction from data using some basic tools of
machine learning. Given a set of configurations of a system, with their relative energies, we try to
design the simplest Hamiltonian compatible with the data. To this scope, the starting point is making
an educated guess on the symmetry properties of the system, so that the general analytic structure
of the Hamiltonian is known a priori. Another important result we want to achieve is predicting the
energy of unobserved configurations after a training procedure, without overfitting, which is the central
problem of supervised machine learning. In the first part of the chapter we discuss the penalized linear
regression in supervised learning, which is the basic tool to address our physical problem, and we apply
it to the Ising model. The last part is dedicated to some examples of model reconstruction.

2.1 Linear regression

Let’s consider a physical system characterized by some features represented by a row vector xT and
a relative scalar observable y. The components of xT are labeled by an index j that runs from 1 to
p, where p is the number of measurable features. Let’s suppose we have the prior knowledge that xT

and y are linearly related via a set of coupling constants w, namely

y = xT ·w (2.1)

If we have n observations {xTi , yi}i=1,...,n, we can define a configuration matrix X whose rows are xTi
and a vector y whose elements are yi. Then the linear relation generalizes to

y = Xw (2.2)

The task of linear regression in machine learning is to train an algorithm using a training dataset
{Xtrain,ytrain} to optimize the parameters w in such a way that we can correctly predict the values
of ytest of a new unseen test dataset Xtest.

There is a subtle difference between fitting and learning which is worth remarking. Fitting means
finding the best parameters that explain the observed behaviour of the training samples. Learning
means using the training dataset to find the best parameters that allow good predictions on new,
unseen data. Since the number of parameters we have to determine (p) is in practice very large,
sometimes even greater than the number of samples p > n, there is a risk of overfitting the given data,
with loss of predicting power. Overfitting means finding parameters that perfectly match the training
data, making wrong predictions on unseen data.

The optimal parameters are obtained by minimizing a properly chosen cost function C(w), that
describes the difference from observed and predicted results. The simplest cost function we can think
of is the square norm of the difference between prdicted and measured data

C(w) =
1

2
‖Xw − y‖2 . (2.3)
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In this context ‖v‖k =
(∑

i v
k
i

)1/k
is the k-norm of a vector, and when k is not specified it is tacitly

k = 2. Minimizing this function consists in performing the usual linear fit, with a correlated risk of
overfitting. The risk of overfitting is reduced adding suitable terms (penalization terms) to the cost
function.

2.1.1 L2 penalized regression

The L2 penalized regression (or Ridge regression) consists in choosing the coupling constants that
minimize the L2-penalized cost function

Cλ(w) =
1

2
‖Xw − y‖2 + λ ‖w‖2 . (2.4)

The minimum of this function is found by solving ∇C(w) = 0 for w, that after straightforward
calculations is given by

wRidge(λ) =
(
XTX + λ1

)−1
XTy, (2.5)

where 1 is the p× p identity matrix.

The cost function in Eq. 2.4 comes from Bayes’ theorem. Let P (X,y|w) be the probability den-
sity function of observing the configuration {X,y} given the parameters w; let P (w) be the prior
probability density function of the parameters and finally let P (w|{X,y}) be the likelihood (i.e. the
probability that the coupling constants are w, once we know the data are {X,y}). If observations are
statistically independent, then P (X,y|w) =

∏
i P (xTi , yi|w); moreover we can assume that they are

gaussian distributed with variance σ2

P (xTi , yi|w) =
1√

2πσ2
exp

[
− 1

2σ2

(
yi − xTi ·w

)2]
. (2.6)

If we can reasonably expect most of our parameters to be zero and all statistically independent, then
we can assume as a prior knowledge that P (w) =

∏
i P (wi) and that they are normally distributed

with mean 0 and variance τ2

P (wi) =
1√

2πτ2
exp

[
− 1

2τ2
w2
i

]
(2.7)

Bayes’ theorem states that

P (w|X,y) =
P (X,y|w)P (w)

P (X,y)
(2.8)

and it can be used to estimate the log-likelihood L(w) = logP (w|X,y), which after some manipula-
tions is

L(w) = − 1

σ2
Cλ(w) + const. (2.9)

where λ = σ2/τ2 is the variances ratio, Cλ(w) is the cost function introduced in Eq. 2.4, and the
constant does not depend on w. We notice that λ > 0 and that in the case λ � 1 the prior on
parameters is strongly peaked at w = 0. In conclusion, minimizing the cost function (Eq. 2.4) is the
same problem than maximizing the log-likelihood (Eq. 2.9).

Once we find the Ridge estimate for the parameters we need an estimator for the performance of our
algorithm. The performance of course depends on λ, which is an hyperparameter (a parameter to be
found a posteriori checking the most performing value). The process of choosing the best value for λ
is called validation, and is the following. The available data are divided into two classes: n̄ training
data for estimating wRidge and n − n̄ testing data, for evaluating the out of sample performance of
the algorithm. Using the training outcome for parameters and either Xtrain or Xtest, one can give
a prediction ypred = XwRidge and compare it to the known ytrue. The coefficient of performance is
given by (Ref. [7])

R2(λ) = 1−

∑
i

∣∣∣ypredi − ytruei

∣∣∣2∑
i

∣∣∣ypredi − 1
n̄

∑
k y

true
k

∣∣∣2 . (2.10)
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Figure 2.1: Representation of the interaction matrix Jij learnt by Ridge regression with n̄ = 5000 and λ = 0.01. It turns
out that Ji,i+1 ≈ Ji,i−1 ≈ 0.5, and also J1,L ≈ JL,1 ≈ 0.5 because of periodic boundary conditions, while all the other
coefficients are much smaller.

Despite the square, this quantity is not guaranteed to be positive, and in the following we will discuss
an example where it is not. When ypred is predicted using the training set, R2 is an index of fitting
performance; when it is predicted using the test set, R2 estimates predicting performance on new
data. The best estimate for the hyperparameter λ is the one that maximizes R2(λ) of the test set.

For a one dimensional Ising model with no external fields, Ridge regression can be applied. Supposing
we don’t know that data were generated by nearest neighbors coupling, we could in principle guess a
two body Hamiltonian of the form H = −

∑
µν JµνSµSν (a priori excluding three body interactions,

external fields etc.). The available data are n spin configurations (a set of L spins) and the corre-
sponding energies E; the configurations are randomly extracted from the phase space (we haven’t
performed a Metropolis-Hastings sampling). In order to obtain a linear relation as Eq. 2.2, we have
to introduce an index j = (µ− 1)L+ ν running from 1 to p = L2 and call xj = −SµSν , wj = Jµν and
y = E.

With these prescriptions we performed a Ridge regression on the one dimensional Ising model, using
5000 training samples and 1000 test samples with L = 40 and J = 1. The tuneable parameter λ was
set to 0.01 after the validation process shown in Fig. 2.2. In Fig. 2.1 we present the learnt weights
w representing the coupling constants, organized in a L × L matrix with a suitable color scheme.
What emerges from the figure is that a large number of parameters that should vanish in principle
is instead not zero, even if it’s small. Anyway the most relevant parameters are clearly Ji,i+1 and
Ji−1,i, both being approximately 0.5 for every i. From this example, two features of Ridge regression
emerge: firstly it learns symmetric weights, equally dividing the interaction energy between Jij and
Jji; secondly it tries to keep as much parameters as possible and it assigns small values rather than
zero. In Fig. 2.2 we show the coefficient of performance R2(λ) as a function of λ, ranging from 10−4

to 105, in each step increasing λ of a factor 10. We checked the performance both with the training
and test sets and compare the results to another regression with n̄ = 500. As expected, for large λ
the performance decreases, since the parameters are more likely to vanish. Indeed, when λ� 1, then
τ � σ, meaning that we have a strong prior that all the parameters should approximately vanish. At
small λ the performance of the training set is ≈ 100% even with a small training sample, meaning
that the model fits the data. The performance of the test set is ≈ 100% with a large training set,
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Figure 2.2: R2(λ) performance coefficient as a function of the hyperparameter λ when performing Ridge or LASSO
regression with guessed two body Hamiltonian and one dimensional Ising dataset with L = 40. In the left panel we have
used n̄ = 500 training samples; in the right panel we have used n̄ = 5000 training samples. For small enough λ the
performance is good both when computed to the train and test sets, meaning that the model is not overfitting and is
likely to be the right underlying model.

but even with a small training set it is ≈ 70%. So we can conclude that not only the model fits the
training, but it predicts correctly the test, so there is no overfitting.

As a final remark we underline that not only Ridge regression avoids overfitting in machine learning
problems, but also provides a good alternative to simple linear regression when XTX has no inverse.
Minimizing the ordinary least squares cost function of Eq. 2.3 we get

wOLS = (XTX)−1XTy = wRidge(0), (2.11)

that indeed requires inverting XTX. It is easy to prove that the regularized matrix XTX + λI can
always be inverted for suitable λ, so that Ridge regression can be performed in any case.

2.1.2 L1 penalized regression

Let’s consider the same linear problem of Eq. 2.2. L1 penalized regression (or LASSO, acronym of
Least Absolute Shrinkage and Selection Operator) consists in minimizing the cost function

Cλ(w) =
1

2
‖Xw − y‖22 + λ ‖w‖1 , (2.12)

where ‖·‖1 is the standard L1 norm, in particular ‖w‖1 =
∑p

j=1 |wj |. We point out that this function
is convex but non differentiable when one of the parameters is zero.

This choice of the cost function in Eq. 2.12 consists in chosing a different, non gaussian, prior
probability density function for the weights

P (wi) =
1

2k
e−k|wi|, (2.13)

where k > 0, while keeping a gaussian function P (X,y|w) as in Eq. 2.6. With this choice one
assumes that wi = 0 is more likely than in the case of Ridge penalization and this is the reason why
LASSO is more used for sparse regression (i.e. in systems where we know that only few parameters
are significant). Following the same steps as in the Ridge regression, we can find the log-likelihood for
LASSO:

L(w) = − 1

σ2
Cλ(w) + const. (2.14)

where now Cλ is the cost function of Eq. 2.12 and λ = kσ2. Thus, again, minimizing the cost function
is the same problem as maximizing the log-likelihood.
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2.1.3 Proximal algorithm for LASSO

In this section we show that the LASSO problem can be mapped into a fixed-point problem, which
can be solved iteratively, thus providing an algorithm to minimize the cost function. Since Cλ(w) is a
convex function, it has a global minimum, but since the cost function is not differentiable, the global
minimum doesn’t necessarily make the gradient ∇Cλ(w) vanish. In practice, the gradient is not even
defined at all points, so we should generalize it to the so called subgradient.

Let’s begin extending the concept of gradient to non differentiable convex functions. The subgradient
of a convex function f(w) at a given point w0 is any vector v such that

f(w)− f(w0) ≥ v · (w −w0) ∀w (2.15)

The subgradient is not unique in general, unless the function is differentiable at w0, and in that case
the only subgradient is the gradient itself: v = ∇f(w0). The set of all subgradients at a given point
is called subdifferential and denoted with ∂f(w0). It is possible to prove that w0 is a global minimum
for the function f if and only if 0 ∈ ∂f(w0). An interesting example is the subderivative of f(w) = |w|
at w0 = 0, which is ∂f(0) = [−1, 1].

Let’s now define the proximal operator of a convex function f :

proxf (u) = arg min
w

f(w) +
1

2
‖w − u‖22 (2.16)

As a useful example, let’s consider a function φ(w) = λ|w|. The proximal operator for this function is

proxφ(u) ≡ Sλ(u) =


u− λ if u > λ

0 if − λ ≤ u ≤ λ
u+ λ if u < −λ

, (2.17)

which is called soft thresholding operator. The most relevant property of this operator is that w0 is a
global minimum for the function f if and only if it is a fixed point of proxf , namely w0 = proxf (w0).
This property is quite simple to prove and puts the problem under another perspective: we now have
to find the fixed point of the proximal operator.

It is possible to prove that the following iterative procedure converges to the searched fixed point, and
hence to the minimum of f :

w(k+1) = proxtf (w(k)) (2.18)

where t > 0 has to be choosen properly. If the target function f is sum of a differentiable convex
function g and a non differentiable convex one h, one can start with an arbitrary chosen value w(0)

and then iteratively apply

w(k+1) = proxth(w(k) − t∇g(w(k))) (2.19)

where t > 0. This method is called proximal gradient method and it is possible to prove that it does
converge to the fixed point, namely

∥∥w(k) −w0

∥∥
2
→ 0 when k →∞. The proof is the following:

wk+1 = proxth(w(k) − t∇g(w(k)))

= arg minw

[
th(w) + 1

2

∥∥w −w(k) + t∇g(w(k))
∥∥2

2

]
= arg minw

[
th(w) + tg(w(k)) + t∇g(w(k)) · (w −w(k)) + 1

2

∥∥w −w(k)
∥∥2

2

]
≈ arg minw

[
tf(w) + 1

2

∥∥w −w(k)
∥∥2

2

]
= proxtf (w(k))

(2.20)

where in the third row we have subtracted and added proper constants (terms that don’t depend on
w).
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Figure 2.3: Jij for a one dimensional Ising model of size L = 40. The LASSO algorithm learns asymmetric parameters:
Ji,i+1 ≈ 1 and J1,L ≈ 1, while the others are approximately zero. In the simulation we used n̄ = 5000, λ = 0.01.

We now have to compute the proximal operator for the LASSO cost function (2.12). Taking as g
the ordinary least square function and as h the L1 penalization term, we get the following simple
algorithm, which is called iterative soft thresholding algorithm (ISTA)

w(k+1) = Stλ

(
w(k) + tXT (y −Xw(k))

)
(2.21)

The interested reader can find more details on this topic, as well as the omitted proofs in Refs. [22,23].

Setting up the Ising learning as a linear problem, as shown in the previous section, we can now find
the parameters with LASSO. The training set is made by 5000 samples, while the test set has 1000
samples, each with lattice size L = 40 and coupling constant J = 1. After studying the pefrormance
as a function of λ (Fig. 2.2), we chose λ = 0.01. The learnt parameters are shown in Fig. 2.3, that
should be compared to the results of Ridge regression of Fig. 2.1. First we observe that in this case
the weights are learnt asymmetrically, since Ji,i+1 ≈ 1 and Ji,i−1 ≈ 0 for every i. Secondly, as expected
from the theoretical discussion, many learnt weights are exactly zero, so LASSO pefrorms a feature
selection and tries to keep the smallest possible subset of parameters.

In conclusion, looking at Fig. 2.2 we can conclude that, as in the case of Ridge regression, LASSO
does not overfit, even if the training set is small. It is interesting to notice that when n̄ is small, the
performance of the test set decreases at very small λ, since features are unlikely to vanish (even if
their theoretical value is zero).

2.2 Accepting or rejecting models

A key question we have posed in this chapter is whether or not one can use penalized linear regression
to find the underlying physical model of given data. We have pointed out that the first step is to
guess the basic structure of the model, and in particular the Hamiltonian as a function of the model’s
features. Of course when absolutely no prior knowledge on the system is available, one is induced to
make the simplest guesses for the Hamiltonian.

In this spirit, when spin configurations and their energies are given, the two body interaction Hamil-
tonian H = −

∑
ij JijSiSj is not the simplest possibility. In principle one could assume that all spins
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Figure 2.4: R2(λ) performance coefficient as a function of the hyperparameter λ when performing Ridge or LASSO
regression with guessed Hamiltonian 2.22 and one dimensional Ising dataset with L = 200. In the left panel we have
used n̄ = 200 training samples; in the right panel we have used n̄ = 5000 training samples. In the former case there is a
clear overfitting that would not be clear without performing a validation process; in the latter the guessed model doesn’t
even fit the training.

are not interacting, and that they are coupled to an external field, with the one body Hamiltonian

H =
∑
i

hiSi. (2.22)

In this section we apply both Ridge and LASSO regressions to the Ising model dataset, sampled by
the Hamiltonian 1.1, assuming that the underlying model is given by Eq. 2.22. In this case energy is
linearly related to the spins, so the design matrix X is a n× L matrix with spin configurations in its
rows, while the weights vector has the L external fields hi as components wi = hi.

In this case the validation process is crucial for deciding whether the proposed model is suitable or not.
In Fig. 2.4 we present the performance coefficient R2(λ) in two cases: when the number of training
samples is much bigger than the number of parameters n̄� L (right panel) and when they have the
same value n̄ = L (left panel) using both the training and test set to compute the predicted energy
ypred.. When n̄ � L the failure of the proposed model is clear, since the performance vanishes for
every chosen λ even when calculated with the training set, meaning that the model doesn’t even fit
the observed data. When n̄ ≈ L, the performance computed with the training set is good for small λ,
even if the model is not correct. Looking at the performance computed with the test set though, it is
clear that this is a case of overfitting, since R2(λ) is small (or negative) for every λ. In this case the
validation process has proved to be crucial for rejecting the proposed model, that without validation
would have been accepted.

2.3 Learning non standard Ising models

In the previous sections we have tested the supervised learning on the standard Ising model, namely
taking Jij = J for nearest neighbors sites i and j and zero otherwise; but we have remarked the
generality of the methods, suggesting that it could be used for a general Jij . In order to check this out
we applied Ridge regression to data generated from eight different non standard Ising Hamiltonians
and we tried to rebuild this Hamiltonians a posteriori. In other words we tried to guess an unknown
Hamiltonian starting from some configurations and their energy.

We generated every spin model in a one dimensional lattice of size L = 100, randomly extracting
configurations from the phase space and then we applied Ridge regression with Ntrain = 7000 training
data and Ntest = 1000 test data; we then plotted the optimized parameters as in Fig. 2.5. In order
to provide a better picture of the model we then plotted J(|i− j|), which gives the interaction energy
at every distance between site i and site j. It is important to remark that J(|i− j|) is not a function
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(it can assume different values at the same distance |i− j|), since in principle there is no translational
symmetry in the system. The hyperparameter λ has been chosen through a validation process, in
order to maximize the performance on the test set.

In Figs. 2.5, 2.6 we present the results of the procedure described above. From these figures we can
provide a good ansatz on the learned models:

� a), c), f) and h) are spin models with long range interactions. In f) the coupling constants are
constant with distance; in the other cases they decay as power laws J(r) = Ar−α (when plotted
in a logarithmic scale in both axes J(r) is clearly linear). After fitting one gets A = 0.5 in all
cases, while the exponent is α = 0.5, 2.0, 1.5 in a), c), h) respectively.

� b), e) and g) are spin models with randomly selected interactions. In particular, in c) the inter-
actions are long range, while in the other cases they are only amongst nearest neighbours (only
ferromagnetic in g); both ferromagnetic and antiferromagnetic in e)). Plotting the probability
distribution of the coupling constants on a histogram shows that the most likely probability
density functions from which these constants have been extracted are uniform functions.

� d) is the usual antiferromagnetic Ising model with a negative coupling constant between nearest
neighbours and no interaction between further sites.

In conclusion we observe that a penalized linear regression can be used to deduce the coupling con-
stants of any model, once one can find a suitable input that is linearly related to the output energy.
In particular not only we have distinguished long range from short range, ferromagnetic from anti-
ferromagnetic interacting systems, but we have also provided a good estimate for the parameters of
J(r).
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 2.5: Picture of the coupling coefficients Jij of the guessed two body Hamiltonian as a function of the lattice sites
i and j. Each figure represents the results of Ridge regression on different datasets sampled with unknown models.

(a) (b)

(c) (d)



2.3. LEARNING NON STANDARD ISING MODELS 29

(e) (f)

(g) (h)

Figure 2.6: Dependence of the coupling constant J on the distance r between site i and j in the lattice. The eight panels
a), b), ..., g) are referred to the respective models of Fig. 2.5.
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Chapter 3

Phase classification with supervised
learning

In this chapter we discuss algorithms of supervised machine learning for phase classification of spin
models. In particular we start discussing the basic idea of softmax regression for classification of
data into a defined number of classes and then we generalize it to the more sophisticated structure
of neural networks. We apply these tools to classify the different phases of spin models, discussing
how a neural network learns their differences. The interest of this study relies on the capability of
machine learning to generalize beyond the observed training dataset. As shown in Ref. [34], a neural
network trained with a standard Ising model can correctly predict features of phase transitions in
more complex systems sharing the same basic structure.

3.1 Softmax regression

The softmax regression is a supervised machine learning tecnique which is used to classify data into
defined classes. Let’s suppose we want to classify the data into M different classes, each of them
labeled by a vector y of the standard basis of RM , whose only non zero component is the m-th (where
m is the class index), namely y = (1, 0, 0...) for class 1; y = (0, 1, 0, ...) for class 2, etc. A softmax
regression with M = 2 classes is often called logistic regression.

Let’s now define a prior probability that a data vector xTi belongs to the m′-th class as:

P (yi,m′ = 1|xTi ,w) =
e−x̃

T
i ·wm′∑M

m=1 e
−x̃Ti ·wm

≡ Pi,m′(w) (3.1)

where x̃Ti = (1,xTi ) and wm are parameters to be found with an optimization algorithm. This is the
so called softmax function and the first components of every wm are called biases.

Assuming statistical independence of the data, the posterior conditional probability of finding the
observed data given the parameters {wm}Mm=1 (likelihood) is

P (X| {wm}Mm=1) =
N∏
i=1

M∏
m=1

Pi,m(w)yi,m (1− Pi,m(w))1−yi,m (3.2)

Hence the cost function that we should minimize to find the optimal parameters is the cross entropy

C(w) = − logP (X| {wm}Mm=1) (3.3)

which is the log-likelihood with opposite sign, more explicitly

C(w) = −
N∑
i=1

M∑
m=1

[yi,m logPi,m(w) + (1− yi,m) log (1− Pi,m(w))] (3.4)
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It is important to stress that penalization terms can be added in softmax regression as well as in linear
regression, and that the hyperparameter can be estimated through a validation process, as shown in
the previous chapter.

3.1.1 Softmax regression for the Ising model

As an example, we performed a softmax regression on the two dimensional Ising model. In this
case the task is to perform a binary classification of the phase (paramagnetic or ferromagnetic) of
unknown samples; this means that the vector y can be either (1, 0) or (0, 1). In this case the second
component of y is redundant, since the first component already identifies the classes uniquely. The
classifier is then just a number 0 or 1 corresponding to the first component of the vector y. First we
generated a training dataset at eight different temperatures (half below and half above the critical
value), with 1000 samples per temperature and we labeled each sample with 1 or 0 if the corresponding
temperature was below or above Tc respectively. All ordered states are magnetized upwards. After
that we generated a test dataset at the same temperatures with 500 samples per temperature and
stored the corresponding classifier ytruei . Using the previously trained classifier function, we computed

the probability P (yi = 1|xT
i,w), and assigned the predicted value ypred.i = 1 whenever it was higher

than 50% and ypred.i = 0 otherwise.

In order to study the performance of the logistic regression, we computed the classification error at
every temperature (i.e. the fraction of uncorrectly assigned samples)

ε =
1

N

N∑
i=1

|ypred.i − ytruei | (3.5)

with N = 1000 in our example. In Tab. 3.1 we show the results of this study.

T/J 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3

ε 0% 0% 0% 0% 19.6% 6.2% 6.8% 7.6%

Table 3.1: Performance of a 2-classes softmax regression in classifying unknown samples of the two dimensional Ising
model (L = 40). Training and test datasets have been sampled at the same temperatures, but in principle one can use
different temperatures. The ordered states of the training set are all magnetized upwards.

Looking at the learned parameters and biases we don’t notice any relevant pattern; the only remarkable
property is that the weights and biases of the two channels are opposite w1 ≈ −w2 and b1 ≈ −b2.
This is a consequence of the fact that outputs of softmax function have to sum up to 1 since they are
probabilities.

The softmax regression however has some limits that are worth mentioning. Tab. 3.1 has been
obtained training the softmax classifier with only upwards magnetized ordered states. When training
the classifier with a different dataset with ordered states of both magnetizations, the performance is
much worse, as reported in Tab. 3.2. In this case we have sampled 1000 configurations per temperature,
with 500 magnetized upwards and 500 magnetized downwards ordered states at every T < Tc.

T/J 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3

ε 0% 0.2% 3.8% 4.6% 55.8% 53% 25.2% 28.2%

Table 3.2: Performance of a 2-classes softmax regression in classifying unknown samples of the two dimensional Ising
model (L = 40). Here the training set is composed by ordered states of both magnetization.

This problem could be overcome by performing a classification into three classes instead of two (ordered
spin-up, ordered spin-down and disordered), but in this work we keep two classes and develop more
sophisticated tools to improve the classification.
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3.2 Feed-forward neural networks

The techniques that we have discussed so far are basic examples of more general constructs called
feed-forward neural networks. The basic element of a network is called neuron for analogy to human
brain (or unit), and neurons are organized in layers. Each neuron in a layer is connected to all neurons
in the previous and following layers (in this case the layer is said to be fully connected, but in principle
a single unit could be linked to few other units). Each neuron stores a number according to some rules
which will be clear later.

Layers are divided in three cathegories: input, hidden and output layers. An input layer is an array
of neurons filled with an input dataset; output layers are neurons carrying the numeric result of the
procedure encoded in the network; hidden layers are made by internal neurons used to perform partial
operations. The array stored in a the i-th layer with ni neurons (xi) depends on the numbers in the
previous layer

xi = f (wixi−1 + bi) (3.6)

where wi is a ni×ni−1 matrix of parameters called weights and bi is a vector of ni parameters called
biases. The activation function f is suitably choosen when building the network’s architecture, while
the parameters are determined after a training process minimizing a cost function C(w1,b1, ...,wk,bk),
where k is the number of non-input layers. In this language x0 is the input n0-dimensional vector of
data, while xk is the output nk-dimensional vector of data. A schematic picture of a simple neural
network with three layers is represented in Fig. 3.1.

It is worth remarking that here we have described feed-forward networks, where an input is passed
to the network, which performs consecutive evalutaions and in the end returns an output. In other
words, each layer determines the outcome of the following one. For some purposes though, more
sophisticated network structures are used, a famous example being Restricted Boltzmann Machines
(Ref. [7]).

Linear and softmax regressions are the simplest examples of neural networks. Their simple structure
is due to the lack of hidden layers, indeed they only have an input layer followed by the output layer,
and k = 1. In the case of linear regression the output layer is made by one neuron, the activation
function f is the identity, the bias vector is set to 0 and the cost function is given by Eq. 2.4 or Eq.
2.12 depending on the form of the regularization term. Such a simple network is known in literature
as Perceptron. In the softmax regression for data classification into M classes the output layer is
made by M neurons, the matrix of weights has M rows, the bias vector has M components and the
activation function is the so called softmax function introduced in Eq. 3.1 and repeated here with
suitable notation

x1,m′ =
e−w1,m′ ·x0−bm′∑M
m=1 e

−w1,m·x0−bm
(3.7)

The cost function in this case is the cross entropy defined in Eq. 3.4, sometimes slightly modified with
regularizers.

Figure 3.1: Architecture of a fully connected neural network with an input layer of 6 neurons (green), a hidden layer of 4
neurons (red) and an output layer of 2 neurons (blue). Each arrow represents a weight value (biases are not represented).
Weights are organized in two matrices w1 (size 4× 6) and w2 (size 2× 4).
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Figure 3.2: Values stored in the hidden layer before activation as a function of magnetization of the input sample.
Different colors are referred to different neurons

3.2.1 Deep neural network for the Ising model

Whenever a neural network has hidden layers it is called deep (DNN). The purpose of this section
is to illustrate how a deep network learns features of a system, with the explicit example of the two
dimensional Ising model. In particular, we repeat the analysis and summarise the ideas of Ref. [34].

The toy model DNN architecture is the following. An input layer with 1600 neurons is used to store
Ising spin configurations on a 40 × 40 square lattice; then a fully connected hidden layer with three
neurons activated by the function f(x) = (1− e−x)−1 is connected to a softmax output layer with two
units that classify ordered from disordered phases. A training set composed by 1000 disordered and
ordered configurations (with both positive and negative magnetization) per temperature is sampled
with the Metropolis Hastings algorithm and the network is trained. After checking the performance
of the network on a test set (Tab. 3.3), we study the values stored in the three hidden neurons (Fig.
3.2).

T/J 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3

ε 0% 0% 0% 0% 0% 0% 0.4% 0.2%

Table 3.3: Performance of a simple DNN with one hidden layer with three units in classifying unknown samples of the
two dimensional Ising model (L = 40). Training and test datasets have been sampled at the same temperatures, but in
principle one can use different temperatures.

Looking at Tab. 3.3 we see a surprisingly good capability of the network of classifying phases, which
is much better than a simple sofmtax classifier (Tab. 3.2). The good results achieved with the deep
network and shown in Tab. 3.3 must be considered carefully. Since we have sampled the test set at
the same temperatures as the training set, it is possible that training and test samples have many
similarities. To investigate the performance of the deep network we used the same training set and
considered a different test set, with data sampled at different temperatures, covering a wider range
of values (Tab. 3.4). The table shows that the deep network succeeds in classifying configurations
that are completely different from the training ones. The only exception is at T/J = 2.3, which is the
critical temperature, where the wrongly classified samples are 69% (here we assumed that samples at
this temperature are disordered, but due to finite size of the system they could in principle be ordered,
in this case ε = 31%).

T/J 0.5 0.8 1.1 1.4 1.7 2.0 2.3 2.6 2.9 3.2 3.5 3.8

ε 0% 0% 0% 0% 0% 0% 69% 4.6% 2.6% 3.2% 3.4% 4.8%

Table 3.4: Performance of a simple DNN with one hidden layer with three units in classifying unknown samples of the
two dimensional Ising model (L = 40).
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We can have a good insight on how the DNN works by looking at Fig. 3.2, where we present the
values stored in the hidden neurons before activation, namely w1x0 + b1 ≡ y1. Let’s first recall
that the chosen activation function is basically a smoothened step function, since f(x) → 0 when
x → −∞ and f(x) → 1 when x → +∞, and that a neuron is said to be activated (unactivated)
when after applying f it is ≈ 1 (≈ 0). So when a point is in the upper half plane of the figure,
the neuron will be activated, while it will be unactivated when it is in the lower half plane. As we
can see from the figure, whenever the absolute value of the input sample’s magnetization exceeds a
quantity |m(x0)| > m0 ≈ 0.7, the three hidden neurons are all activated (negative magnetization) or
unactivated (positive magnetization). In the opposite case, when |m(x0)| < m0, only two of the three
neurons are activated and the other one is unactivated.

The possible outcomes of the first hidden layer are then x1 ≈ (1, 1, 1) or x1 ≈ (0, 0, 0) (ordered phases),
or x1 ≈ (0, 1, 1) (disordered phase) according to the number of activated neurons. The output layer
performs a 2-classes softmax classification of the hidden layer, namely an application of the logistic
function f(x) to the linear combination w2x1 + b2 ≡ y2. The learned weights and biases are

w2 =

(
−15.1 6.8 7.3
13.3 −7.4 −6.9

)
b2 =

(
−7.0
7.0

)
.

Using these parameters, the hidden neurons are mapped in the output ones as follows: (1, 1, 1)→ (0, 1);
(0, 0, 0) → (0, 1) and (0, 1, 1) → (1, 0), hence the ordered states are classified by (0, 1) independently
from the sign of magnetization, while the disordered states are classified by (1, 0). In conclusion, the
deep network learns the optimal threshold for the absolute magnetization: samples with magnetization
above and below the threshold are distinguished.

The great research advantage provided by DNNs is the capability of generalizing beyond the training
dataset, not only predicting features from other samples of the same physical system, but also of new
physical systems. In Ref. [34] a generalization of the network presented here is built up and trained
with standard Ising states on square lattices. The DNN is then applied to study new systems, such
as Ising model with antiferromagnetic couplings and in different geometries.

3.3 Convolutional neural networks

A successful network architecture which has provided good results in image recognition is the convolu-
tional neural network (CNN). In this case the input X is an image, or more generally a rank 3 tensor
having width, heigth and depth with w × h× d components. In the case of an image w = h = L and
L2 is the number of pixels used to describe the picture, while d = 3 is the number of RGB channels
associated to every pixel.

The first step of the process is a convolution between the input tensor and a set of K tensors called
filters or kernels Fα, α = 1, ...,K (each of them having f × g × d components) with parameters to be
determined during the training process. The convolution at a given channel labeled by i, j consists in
the following operation

Y α
ij =

w−1∑
p=0

h−1∑
q=0

d−1∑
r=0

Xi+p,j+q,rF
α
p,q,r (3.8)

Since this operation is clearly not possible for edge sites, it is of common use to pad the input layer
with a suitable number of zeroes, so that the next layer (convolutional layer) is a tensor with w×h×K
components. Here we have described a process with stride equal to 1, but it’s also possible to perform
the convolution skipping some sites, for example choosing a stride of 2 means that we don’t perform a
convolution of the nearest neighbors of a previously convoluted site. In this case the output layer has
lower dimensionality depending on the selected stride. It is also possible to choose different strides for
different directions. The activation function of neurons in the convolutional layer is often the ramp
function R(x) = max(0, x): Y α

ij → R(Y α
ij ). In this case the convolutional layer is said to be a ReLU

activated layer (where ReLU is an acronym for rectified linear unit).
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Figure 3.3: Scheme of a convolutional neural network. The input layer is organized in a 7 × 7 × 1 tensor. The ReLU
activated convolution with 15 filters produces a layer of depth 15 (the other dimensions depend on the choice of padding,
stride and filters). A pooling procedure preserves the depth but coarse grains the previous layer. The pooling layer is
flattened and used as an input for a fully connected deep neural network with 2 hidden layers, which performs a binary
softmax classification.

The second step of a CNN is pooling, which is a coarse graining procedure that takes a convolutional
layer as an input and reduces the ”spatial” dimensions w and h, while preserving depth according to
some criterion. The most widespread method is called max-pooling of size M and consists in mapping
a M ×M × 1 subtensor in its maximum value. For example, a max-pooling of size 2 is

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

→ (
6 8
14 16

)

This coarse graining procedure is reminiscent of the renormalization group theory used in statistical
physics, and this observation has motivated many interesting studies that investigated a connection
between human cognition and statistical physics; for example we mention Refs [40,41].

Convolution and pooling can be repeated many times and eventually the resulting layer is flattened
and used as an input layer for a softmax classifier (or for a deep network). After a training process,
the softmax parameters and filters are optimized and the network can be used to classify unseen input
data. A visual scheme of a convolutional network architecture is provided in Fig. 3.3.

3.3.1 Convolutional network for the Ising model

The architecture of a CNN is perfectly suited for image classification, but it can be extended to other
contexts of physical interest. For example, here we show how to build a CNN for identifying different
phases of the two-dimensional Ising model. In this case, an input data is organized in a L × L × 1
tensor, where L is the lattice size, and depth is 1 since only one feature is associated to a lattice site
(−1 or +1). For the convolutional layer we used K = 10 squared filters with f = g = 2 and 3 and
depth 1 to correctly match the input. We then performed a max-pool of size M = 2, flattening the
output layer and applying a softmax classifier. The network has been trained using the same samples
we used for the deep network of the previous section and it has been applied to the same test set. In
Tabs. 3.5, 3.6 we report the percentage of wrongly classified test samples ε (Eq. 3.5) as a function of
temperature. In the former we used a test set sampled at the same temperatures as the training set;
in the latter we used different temperatures within a wider range for testing. The use of convolution
and pooling steps remarkably improves the results obtained by simply applying the softmax classifier
The convolutional network is successful as the DNN in classifying new data, even if quite different
from the training.
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T/J 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3

f = 2 ε 0% 0% 0% 0% 0% 0% 0% 0%

f = 3 ε 0% 0% 0% 0% 0% 0% 0% 0.2%

Table 3.5: Performance of the CNN in classifying unknown samples of the two dimensional Ising model (L = 40). The
two rows correspond to different dimensions of the chosen filters. Training and test datasets have been sampled at the
same temperatures.

T/J 0.5 0.8 1.1 1.4 1.7 2.0 2.3 2.6 2.9 3.2 3.5 3.8

f = 2 ε 0% 0% 0% 0% 0% 0% 14.8% 0% 0% 0% 0% 0%

f = 3 ε 0% 0% 0% 0% 0% 0% 18.2% 0% 0% 0% 0% 0%

Table 3.6: Performance of the same trained CNN in classifying unknown samples of the two dimensional Ising model
(L = 40). The test set is sampled at different temperatures than the training set.

Unfortunately the working mechanism of the CNN is not as transparent as in the DNN, for which
we built a simple toy model. However, an attempt of explaination is provided in Ref. [39] where the
authors suggest using an ascent gradient method to find which input configuration triggers the highest
value of a given neuron in the convolutional layer.

3.3.2 Convolutional network for the XY model

In the previous sections we have discussed how neural networks are able to learn different phases
of a simple model such as the Ising model, where a simple order parameter obtained by a linear
combination of input features describes the phases. As we have shown for the DNN (and guessed
for the CNN), the basic idea is that the network sets an optimal threshold magnetization during the
training process, and then classifies test samples checking whether or not their magnetization exceeds
the threshold.

The long term perspective of research is to apply neural networks to more complicated systems, where
a simple order parameter is not known, or it is given by a non linear function of the input features. A
good starting point is the XY model, since the phase transition is driven by unbinding of topological
defects above a critical temperature, while the magnetization vanishes in the thermodynamic limit
for every temperature. In particular, we begin discussing how to build an exact CNN for classifying
topological phases from configurations of angles {θij}. Secondly, we keep the same network structure
but we let the parameters relax to a minimum of the cost function with a training process and compare
the optimized network with the previous one.

The proposed network transforms the raw spin configurations into vorticity configurations {θij} →
{qij}, and then it classifies the transformed samples. The local vorticities are computed after a
convolution of the input with four 2× 2 kernels

F 1 =

(
−1 1
0 0

)
, F 2 =

(
0 −1
0 1

)
, F 3 =

(
0 0
1 −1

)
, F 4 =

(
1 0
−1 0

)
. (3.9)

The convolution layer is then activated by the sawtooth function f(x) defined in Eq. 1.36. With
suitable padding and stride 1 this layer has L×L× 4 units Y α

ij each one carrying the angle difference
between neighbor spins rescaled in the interval [−π,+π]. Summing up the four units (i.e. performing
another convolution with a kernel K = (1, 1, 1, 1)) at fixed i, j, one gets the vorticity

∑4
α=1 Y

α
ij = qij .

The following step is to build a classifier for the vorticity dataset. An efficient CNN architecture
for this purpose has been proposed in Ref. [32]. The architecture is made by two ReLU activated
convolution layers, the first one obtained with eight 3×3 filters, and the second one with sixteen 3×3
filters. These layers are then followed by a max-pool layer of size 2; the output is flattened and passed
to a ReLU activated linear layer with 32 units before being classified in two classes with a softmax
layer. The Wolfram code for the network architecture is reported in Fig. 18 of the Appendix.

The training process is performed in two different ways. In the first one we keep the filters of the first
layer fixed (Eq. 3.9) and optimize the other parameters; in the second one we fully train the network.
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T/J 0.3 0.5 0.7 0.9 1.1 1.3 1.5

Partially trained ε 0.5% 0% 0.1% 39.4% 0% 0% 0%

Fully trained ε 8.7% 5.7% 10.9% 28.1% 11.1% 0.6% 0%

Table 3.7: Performance of the CNN in classifying unknown samples of the two dimensional XY model (L = 32). The
first row shows the pefrormance of the network with fixed weights in the first convolution layer (Eq. 3.9). The second
row shows the performance of the fully trained network. The training dataset is made by 1000 samples per temperature
at T/J = 0.4, 0.6, 0.8, 1.0, 1.2, 1.4.

The performance of the two networks is reported in Tab. 3.7, where we show the percentage of wrongly
classified test samples. Not surprisingly we see an increasing error in classifying test samples at the
critical point TKT /J ≈ 0.9, while at the other temperatures the accuracy increases. What is actually
surprising is that the two networks behave differently at every temperature, due to the fact that the
fully trained network learns different weights for the first two convolutional layers than the partially
trained one. The learnt filters after a full training process are:(

0.86 0.40
−0.34 0.43

)
,

(
0.88 0.85
0.58 −0.71

)
,

(
0.09 0.37
0.59 −0.90

)
,

(
0.72 0.14
−0.04 0.57

)
, (3.10)

(
0.21 0.76 −0.92 0.34

)
. (3.11)

The conclusion of this analysis is that a freely trained convolutional network with the above structure
does not convert spin configurations to vorticity configurations to classify phases of XY model. More-
over, even if forced to use vorticity configurations, it is not clear what features the CNN tries to extract
from the input (density of topological defects, distance between vortices, etc.). A detailed study on
this topic is provided in Ref. [32], where the authors performed the same analysis for different lattice
sizes. Even if they could not conclude what the network was learning exactly, they proved that the
freely trained network outperforms the engineered network for L � 32, while the opposite happens
for L � 32. They also concluded that the parameters of the engineered network are a stable local
minimum for the cost function, since a network initialized at those parameters and then freely trained
does not change those parameters.
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Chapter 4

Detecting phase transitions with
unsupervised learning

In this chapter we discuss the physical problem of detecting phase transitions with machine learning.
The long term perspective of this work is to detect phase transitions in complex systems where the
order parameter and the critical properties are unknown, so we use the tools of unsupervised machine
learning. Unsupervised learning consists in extracting information from the dataset without previous
training of the algorithm. The basic concepts behind unsupervised learning are dimensional reduction
and clustering. The former means projecting data into a space with a dimension lower than the one
of the input data, trying to keep track of the most relevant patterns. The latter means dividing data
into clusters according to some criterion of similarity, in order to understand properties of the input.
Since unsupervised learning does not require any prior knowledge of the system from which data are
extracted, these are the most interesting techniques to implement for our purpose. As a first step,
we apply these techniques to simple spin models (Ising, Potts and XY), whose critical properties are
well-known from Statistical Mechanics, so that we can compare our results to exact solutions.

4.1 Principal Component Analysis

So far we have seen the main methods of supervised learning: a training data set with known properties
is used to optimize some parameters, which are then used to predict properties of unknown data (test).
To apply these methods we need some prior knowledge about the data, but this is not always possible.
In some cases we don’t know anything about our data and need to extract some information from
them. For this purpose we have to implement unsupervised learning algorithms.

One of the simplest and most used methods is the Principal Component Analysis (PCA), which we
present in this section. This method is based on the diagonalization of the correlation matrix of the
input data

Σ =
1

N − 1
XTX, (4.1)

where X is the design matrix, which is a rectangular matrix with N rows (number of samples) and
p columns (number of features) containing the dataset. A full exact diagonalization of Σ can be
computationally tough, especially when p is great; and when also N is large it is even challenging to
compute the matrix product. Since in practice one does not need a full diagonalization, but just the
highest p̄ eigenvalues, one can use a technique of linear algebra called Singular Value Decomposition
(SVD) to reduce the computational cost.

Performing a SVD of the design matrix means finding three matrices U, S and V such that

X = USVT , (4.2)

where U and V are N × N and p × p unitary square matrices respectively (UUT = 1, VVT = 1)
and S is a N × p rectangular matrix with the only non zero terms, called singular values, being on
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the main diagonal (Sij = 0 ∀i, j with i 6= j). The SVD of any rectangular matrix with real entries is
guaranteed to exist, and its singular values are unique. For demonstrations, algebraic and geometrical
background and applications we reccomend Refs. [24, 25].

Using the new matrices it is possible to diagonalize the covariance matrix

Σ =
1

N − 1
XTX = V

(
STS

N − 1

)
VT ≡ VΛVT , (4.3)

where each row of X is supposed to have zero mean, without loss of generality. Λ is a p× p diagonal
matrix and its elements Λii ≡ λi are the eigenvalues of the covariance matrix. Multiplying both sides
of Eq. 4.3 by V to the right, we get ΣV = VΛ, which means that the column vectors of V are the
eigenvectors of Σ.

An interesting parameter to compute once we have performed the SVD is the ratio λi/
∑p

j=1 λj , which
is called explained variance of the i-th feature and is an index of data variation along the direction of
the i-th eigenvector (i-th column of V). In many contexts it happens that the main variability of the
data is explained by the first p̄ features, with p̄� p, thus suggesting that the intrinsic dimensionality
of the data is much smaller than p. We can thus project our dataset in the subspace of dimension p̄
defined by the first p̄ principal vectors building a p× p̄ matrix Ṽ made by the first p̄ columns of V and
then computing Y = XṼ. Y is now a N × p̄ matrix which represents N samples of our data in a p̄
dimensional space; the total explained variance with this approximation is simply

∑p̄
i=1 λi/

∑p
j=1 λj .

Every row of Y represents a point in Rp̄, which is the space of the principal components, so that at
the end of this procedure we get a set of N points in Rp̄. Plotting these points we can get some insight
into the physical problem.

4.1.1 PCA for the Ising model

In the case of an Ising model in a two dimensional square lattice of size L = 40, we can see that
the first two principal components explain the 99.9924% of the total variance, as shown in Fig. 4.2,
where we show the explained variance of the first 8 principal components. In Fig. 4.3 we present
the projection of the data in the subspace of the first two principal directions (the dataset Y). It is
clear from this figure that data taken from different phases of the Ising model are grouped in well
defined clusters: samples in the paramagnetic phase (i.e. extracted at T > Tc) are in the center of this
graphic (red), while samples in the ferromagnetic phase (extracted at T < Tc) are in the two extrema
(magenta), each one corresponding to a phase with different magnetization (in the graphic we have
plotted only samples with positive magnetization, which are grouped to the left, in order to remark
the spontaneous symmetry breaking).

The PCA also provides a more quantitative result for phase recognition because we can use it to build
an order parameter without any prior knowledge on the system. Looking at Fig. 4.2 and 4.3, we can
convince ourselves that the first principal component is the most relevant for phase recognition, so we
can plot the first column of the matrix Ṽ as a function of two indices i, j labeling the lattice sites.
The result is shown in the upper left panel of Fig. 20 (Appendix), from which we see that all the sites
are combined with the same weight v. A good order parameter is then

y1 = xT · v1 ≈ v
L∑
i=1

L∑
j=1

Sij , (4.4)

which can be mapped into the standard magnetization m = 1
L2

∑
ij Sij simply by rescaling y1 →

y1/(vL
2) = m. Since v ≈ −1/L (this result is true for all the sizes we have used in the following,

i.e. L = 20, 30, 40, 60), the mapping is actually y1 → −y1/L. In Fig. 4.1 we present the average of
the modulus of |y1|/L at each temperature compared to the average modulus of the magnetization
per site obtained by the Monte Carlo sampling and we show the deep connection between these two
quantities.
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Figure 4.1: The left panel shows the average value of |y1|/L at every temperature as a function of the temperature itself
for different lattice sizes (joined solid lines are used instead of points for graphical reasons). Dots are referred to the
expectation value of the modulus of the magnetization per site obtained via the Monte Carlo sampling of the dataset.
The right panel shows the expectation value of the modulus of the second principal component at every temperature for
various lattice sizes. The color scheme is the same as in the upper panel. The peaks of this figure are more pronounced
for larger systems and can be used to identify the critical temperature.

The second column of the matrix Ṽ is plotted in Fig. 4.4a as a function of the lattice site’s position
(i, j) using a color scheme. In Ref. [27], the authors noticed a similarity with the function

ωij = v2(i+ (j − 1)L) =
1

L

[
cos

2πi

L
+ cos

2πj

L

]
(4.5)

plotted in Fig. 4.4b for comparison. The second principal component is given by

y2 = xT · v2 =
L∑
i=1

L∑
j=1

ωijSij . (4.6)

To have a deeper insight into the meaning of y2, we can imagine how its absolute value behaves for
ordered, disordered or critical samples. If the input sample is completeley ordered, say Si = +1 ∀i,
then y2 =

∑
ij ωij ≈ 0, since the weights have vanishing average. If the input is completely disordered,

then the correlation lenght is small ξ ≈ 0, and the weights are combined with opposite signs without
a precise scheme; so again we expect the result to be zero. Finally, if the input sample is critical, then
ξ ≈ L, so a configuration with all spins up in the red region and all spins down in the blue one of
Fig. 4.4 is more likely to occur. When computing y2 for such a configuration, one has to sum up all
the positive weights and then add the negative weights again with positive sign, obtaining a non zero
result. So, when studying the behaviour of the average value 〈|y2|〉, we expect to observe a peak at
T ≈ Tc, which is shown in the right panel of Fig. 4.1.

An interesting conclusion is that a spin configuration triggers a high value of a principal component
whenever spins are organized as the pattern of the corresponding weights’ signs (i.e. components of the
corresponding eigenvector of Σ). Looking at the pattern of weights it is possible to understand which
spin configurations PCA tries to identify to explain the variability of the input dataset. Motivated
by this observation, we performed a PCA up to the 16-th principal component, and we reported
the resulting weights in the Appendix (Fig. 20). The result of this investigation is that principal
components are related to the most ordered structures of the input configuration, with a progressively
increasing number of domain walls [27]. For a study of a system where many principal components are
needed to detect the phase transition (Ising model with conserved order parameter), we recommend
Ref. [26].

Once we have recognized that the system undergoes a phase transition at some temperature between
2J and 3J , we can also try to estimate the value of the critical temperature Tc. To this scope we
studied the behaviour of the principal components when varying the lattice size, in particular we
generated samples in square lattices of size L = 20, 30, 40, 60 in a range of temperature around the
estimated critical value (between 2J and 3J in this case). The behaviour of the correlation length ξ
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Figure 4.2: Explained variance of the first 8 principal components of the Ising model in a two dimensional 40×40 square
lattice. The first principal component describes most of the variability of the data.

Figure 4.3: Projection of the two dimensional Ising model in a 40 × 40 square lattice data in the subspace of the first
two principal directions. The data are generated at different temperatures, from T/J = 2.05 to T/J = 2.75, with 5000
samples for each temperature. The central red area is made of configurations in paramagnetic phase, while the magenta
area to the left (the darkest part) contains configurations in the ferromagnetic phase with positive magnetization.

when the temperature is close to the critical value is given by

ξ ∼ (T − Tc)−ν (4.7)

where the critical exponent ν should be ν = 1 according to Onsager’s theory. Let’s call T0(L) the
temperature that maximizes the magnetic susceptibility when the lattice has size L. When the finite
sized system has a temperature close to T0(L), the spin correlation take the size of the system and so
ξ ∼ L. Moreover, if the system has finite size, then we expect T0(L) to be close to the critical value Tc
and we can expect that ξ has a critical behaviour. As a consequence of all this remarks we can write

L ∼ (T0(L)− Tc)−ν → T0(L) = Tc + k
1

Lν
(4.8)

We can now treat Tc, k and ν in this equation as parameters of a fit model. The interpolation is shown
in Fig. 4.5 and Tc/J = 2.25, which is in good agreement with the theoretical value Tc/J = 2.269, with
a 0.8% of relative error. Moreover, as expected, ν = 1.0 and there is a linear relation beteween T0(L)
and 1/L.

We conclude that a studying systems of increasing sizes (finite size analysis) allows to predict critical
properties such as the critical temperature Tc and the universal exponent ν.
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Figure 4.4: Left panel: second column of the Ṽ matrix plotted in the lattice with a color scheme. A weight is assigned
to every lattice site, multiplying the local spin by this weight and taking the sum over the lattice one obtains the second
principal component. Right panel: guessed function describing the pattern of weights.

Figure 4.5: Interpolation between 1/L and T0/J : the line has parameters Tc/J = 2.25, ν = 1.00 and k/J = 6.00.

4.1.2 PCA for the Potts Model

After studying the Ising model with PCA, the natural following step is to analyze its behaviour on
a slightly more general model, such as the q state Potts model. In particular we investigate whether
(and how) PCA is able to build an order parameter for a phase transition driven by a Zq symmetry
breaking, and whether it allows to distinguish between first order and continuous phase transitions.
Moreover we try to build the function Tc(q) that gives the critical temperature as a function of the
number of states. The latter task is carried out a bit naively, in order to capture the essential concepts
without long running simulations, even though we will propose a more rigorous approach. The analysis
is carried out as in the previous section, namely deriving the explained variance of the first principal
components, then deciding a reasonable dimension for the subspace where we then project the dataset.
Then we study the temperature behaviour of the first principal components and try to deduce critical
properties.

First of all we perform a Monte Carlo simulation of the two dimensional model on a square lattice of size
L = 40, at q = 3, 9, 27, 81 and within a temperature range containing the transition temperature for all
the chosen q (0.2J < T < 1.2J). We sample 1000 equilibrium configurations at every temperature and
states number and we choose as possible states the numerical integer values in [−(q−1)/2,+(q−1)/2]
to obtain more symmetric graphics. For all the chosen q a first principal components emerges, so we
can again project data into a two dimensional linear subspace of the first two components.
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Figure 4.6: The left panel presents the expectation value of the deduced order parameter 2|y1|/L(q− 1) as a function of
temperature (solid lines) compared to the true order parameter s computed with Monte Carlo simulations (dots). The
right panel presents the expectation value of |y2| at the same temperatures.

Looking at the weight vector v1 we understand how PCA extracts the order parameter: since every
component is approximately −1/L, we get

y1 = xT · v1 = − 1

L

∑
ij

σij (4.9)

where σij is the state at site (i, j). Deep in the disordered phase, a given site has the same probability
of being in all the q states, and since we have symmetrized the states around 0, the expectation value
of y1 is 0. In the ordered phase, almost all the lattice sites share the same state σ (σ = −(q − 1)/2
in our simulations), therefore

∑
ij σij ≈ L2σ. A suitably normalized order parameter extrated from

PCA is then

s =
|y1|
L|σ|

(4.10)

In the right panel of Fig. 4.6 we show the behaviour of the extracted order parameter with temperature.
It is clear from the graphic that a phase transition occurs at some critical temperature depending on
the number of states q. It is clear as well that the order parameter is the s parameter introduced
in the mean field analysis of Potts model (Chapter 1, Eq. 1.16), which is obtained by Monte Carlo
simulations and shown in the figure.

The expectation value of the absolute value of the second principal component is zero in the ordered
phase, then it rapidly increases at the critical temperature and finally it is almost constant (or slowly
decreases) in the disordered phase. The location of the peak after the jump allow an identification
of the critical temperature, so we can check the behaviour of the critical temperature with q (Fig.
4.7). Since the temperature resolution of the input data is 0.05, we choose this quantity as the size of
the error bar. The physical meaning of the second principal component is not clear, since we haven’t
argued any similarity to other physical quantities (such as specific heat or susceptibility) and the
weights v2 do not follow a clear pattern.

One of the purposes of this study is to see whether or not PCA can give an insight in classifying the
phase transition. To this scope here we have performed PCA both for a continuous transition (q = 3)
and for first order phase transitions (q = 9, 27, 81). The choice q ≥ 9 guarantees that the correlation
length is much smaller than the lattice size ξ/L ≤ 0.37� 1, which is a necessary condition to observe
a first order transition in a finite system. The second principal component is given by

y2 = xT · v2 =
∑
ij

ωijσij , (4.11)

where the weights ωij are the L2 components of the second eigenvector of the correlation matrix
organized in a square matrix of size L, as in the case of the Ising model. Looking at the pattern of
weights, shown in Fig. 4.8, we observe that in the case of a continuous phase transition (q = 3) their
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Figure 4.7: Behaviour of the critical temperature as a function of the number of states q as predicted by PCA (dots),
compared to the exact solution Tc/J = 1/ log (1 +

√
q) (solid line).

distribution is similar to the one we observed for the Ising model in Fig. 4.4, and is likely to be a
sum of cosines. When q increases and the transition is deeply first order (with ξ � L), the pattern
becomes more chaotic and eventually it appears as a random variable with gaussian distribution for
q = 27, 81.

Even if we have found different behaviours of the weights ωij for a second and first order transition, we
believe that a clear evidence that PCA is capable of distinguishing requires further investigation. It
is remarkable that the phase space for the Potts model has dimension qL

2
, so the q = 81 model has a

phase space which is 27L
2

times larger than the q = 3 model. It is possible that the extracted samples
do not represent such a big phase space properly, so that the learnt weights are basically a random
noise. On the other hand, using small values of q requires large systems in order to have ξ � L, but
this is computationally tough.

Let’s now suggest an idea for further research on this problem. As suggested in Ref. [11], one can
distinguish first order and continuous transition on the basis of a finite size scaling of physical quantities
such as the Binder ratio and the critical probability density function of magnetization. One should
then have access to samples of systems with different sizes L, which is not always possible. For
instance, when the transition is weakly first order (still first order but with large correlation length
compared to reasonable sizes for Monte Carlo simulations Lmax ≈ 256), one should sample lattices
with really large sizes, which is computationally challenging, for example the d = 2, q = 5 Potts model
has ξ ≈ 2500, and a Monte Carlo simulation of such a big lattice is intractable. To overcome these
problems, some solutions have been proposed. Again in Ref. [11] it is suggested that, at least for the
d = 2 Potts model, signs of first order transitions can be found even using L� ξ. Another possibility
is to develop neural networks capable of extending configurations of small systems to larger lattice
sizes, for example in Ref. [38] a convolutional network is used to enlarge Ising configurations.

4.1.3 PCA for the XY Model

In this section we study the behaviour of PCA in the analysis of the more subtle phase transition
of the XY model. As we have already mentioned in Chapter 1, there is no spontaneous symmetry
breaking of O(2) in this model, and hence a ferromagnetic phase with non vanishing magnetization
does not exist at any finite temperature.

As we have seen with the Ising and Potts model, when a paramagnetic-ferromagnetic phase transition
occurs, PCA identifies the magnetization as an order parameter and classifies the phases using this
parameter. Since in this case the magnetization is always zero, we test the performance of PCA and
look wether or not it can properly classify phases. In particular, the following analysis is performed
on a standar XY model in a square lattice of size L = 20. Data consist in a vector (cos θij , sin θij)
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Figure 4.8: Weights for computing the second principal component of the Potts model, presented as a color scheme on
the lattice. The q = 3 model has weights that follow a pattern similar to the one observed for the Ising model (Fig. 4.4).
The pattern becomes more chaotic when q increases.
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associated to every lattice site of labels i, j, where θij is the angle between the spin vector at that site
and the x̂ axis.

Figure 4.9: Explained variance of the first 8 principal components of the XY model. The first two components are much
more relevant than all the others, so we can project the dataset in the corresponding two-dimensional subspace. The
24% of the total variance is explained by the first two components.

In Fig. 4.9 we see that the first two principal components are both equally relevant in this study, while
all the others can be neglected at a first stage. With this choice we describe the 24% of the dataset’s
variance, but to go beyond this analysis one has to consider much more principal components, and
the consequent study is more complicated.

Figure 4.10: Projection of the XY spin dataset in the subspace of the first two principal components. Low temperature
samples (blue) are distributed in the external circle, while high temperature samples (red) are around the origin. Critical
data are distributed in the middle. A rotational symmetry clearly appears and two phases are distinguished.

In Fig. 4.10 we present the scatter plot of the XY model in the plane of the first two principal
components. There is a clear rotational symmetry about the origin in the y1-y2 plane, which is a
consequence of the O(2) symmetry of the Hamiltonian. This, together with what we have shown in



48 CHAPTER 4. DETECTING PHASE TRANSITIONS WITH UNSUPERVISED LEARNING

Figure 4.11: Plot of the r PCA classifier as a function of the temperature. The fluctuation of the magnetization per site
obtained by the Monte Carlo simulation is also plotted for comparison.

Fig. 4.9 suggests that there is no hierarchy between the first two components, and therefore plotting
separately y1(T ) and y2(T ) is not particularly illuminating in this case. We should instead look for
a combination of the two components, and the rotational symmetry immediately suggests to consider
the distance from the origin R =

√
y2

1 + y2
2.

Looking at the structure of the vectors v1 and v2 it is possible to understand the physical meaning
of the classifier R proposed by the PCA. In our case we notice that every component of v1 is approx-
imately equal to a constant v ≈ −0.035 (for L = 20), while the components of v2 are approximately
±v (the + sign is for even components, the − for the odd ones). As a consequence

y1 = xT · v1 ≈ v
∑
ij

(cos θij + sin θij) = v (Mx +My) (4.12)

y2 = xT · v2 ≈ −v
∑
ij

(cos θij − sin θij) = −v (Mx −My) (4.13)

where Mx =
∑

ij cos θij and My =
∑

ij sin θij are the components of the total magnetization vector.
The classifier then becomes

R2 = y2
1 + y2

2 ≈ 2v2
(
M2
x +M2

y

)
= 2v2L4

(
m2
x +m2

y

)
(4.14)

where we have introduced the magnetization per site ~m = ~M/L2. Averaging the square radius of all
the data points at the same temperature and normalizing by the number of sites L2 we get

r ≡
〈
R2
〉

L2
≈ 2v2L2

〈
m2
x +m2

y

〉
≈
〈
m2
〉

(4.15)

since the quantity 2v2L2 ≈ 1 not only for L = 20, but presumably for every L. Since the Mermin-
Wagner theorem ensures that no spontanous symmetry breaking of O(2) occurs in two dimensions,
then the expectation value of the magnetization vanishes at every temperature 〈~m〉 = 0 and the
fluctuation of magnetization is simply given by

〈
m2
〉
.

In conclusion, the classifier of the phase transition r that emerges from the PCA has the physical
meaning of fluctuation of the magnetization per site and is strictly connected to the magnetic suscep-
tibility. Since this quantity is strictly related to the spatial correlation function Γ(r) (χ ≈

∫
d2rΓ(r),

as shown in Ref. [6]), the PCA is suggesting to look at the spatial correlations between spins to under-
stand the phase transition. In Fig. 4.11 we plot the behaviour of r as a function of the temperature
compared to the magnetization fluctuations obtained by the Monte Carlo simulation.

The Kosterlitz-Thoules phase transition is a topological phase transition associated to the unbinding
of vortex and antivortex pairs when increasing temperature; however PCA does not explain the topo-
logical structure of the model. One attampt to solve this problem has been performed in Ref. [27]
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Figure 4.12: Expectation values of the first principal component rescaled by the lattice size 〈|y1|〉 /L as a function of
temperature when we feed PCA with the {|qij |} dataset. When T < TKT = 0.89J , less than 1% of the plaquettes contain
vortices; while when T > TKT a proliferation of vortices is observed (about 18% of the plaquettes contain vortices at the
highest sampled temperature).

by feeding PCA with a different dataset, namely dividing the square lattice in small plaquettes and
associating to every plaquette the values ±1 or 0 depending on vorticity. This attempt however has
shown the limits of PCA since all the components have about the same percentage of explained vari-
ance and it is not possible to find a subset of relevant parameters. A simple solution suggested by
the authors and implemented in this work is to feed PCA with the absolute value of vorticity. With
this dataset, the first principal component has an higher explained variance compared to the other
components (about 83% compared to less than 2% for every other component), so we can restrict to
a one dimensional subspace of data.

Feeding PCA with the set of {|qij |} and then plotting the average value of the first principal component
|y1| as a function of temperature, we can see marks of a phase transition (Fig. 4.12). Since all the
entries of the vector v1 are approximately constant and equal to v = −1/L, we get

|y1| = xT · v1 ≈
1

L

∑
ij

|qij | (4.16)

The quantity |y1|/L then physically represents the density of topological defects (both vortices and
antivortices) (1/L2)

∑
ij |qij | of a given configuration. Looking at Fig. 4.12 we see that essentialy no

vortices appear in low temperature configurations, while they become significant when the temperature
is greater than the critical theoretical value 0.89J .
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4.2 K-means clustering

Clustering is an unsupervised machine learning task that consists in grouping data into K classes
according to some rules. There are many ways to cluster a given dataset, but in this section we will
focus on the K-means clustering, which is intuitive and of relatively simple implementation.

Let X be the design matrix with n measures (rows) and p features (columns): every measure can be
interpreted as a point in the configurations space Rp. Then it is possible to introduce a notion of
distance between two points in this space, for example the standard euclidean distance ‖.‖2. Let’s
suppose we have to classify data into K different classes, where K is known a priori and it is the only
extra information required. Every cluster has a mean value µk

µk =

∑n
i=1 rikx

T
i

nk
(4.17)

where rik = 1 if the point labeled by i belongs to the k-th cluster and 0 otherwise, and nk is the
number of point in the k-th cluster. Every cluster has a moment of inertia Ik that measures how
distant the points in the cluster are from the average value

Ik =

n∑
i=1

rik
∥∥xTi − µk∥∥2

2
(4.18)

The goal of K-means clustering is to find optimal values µk and rik that minimize the total moment
of inertia I =

∑K
k=1 Ik.

In practice, one starts randomly clustering the dataset (i.e. choosing {rik} for every i, k), then com-
puting the corresponding set of means {µk}. At this point, one chooses all the points one by one and
re-assigns that point to the cluster with the closest average value: formally speaking

rik =

{
1 k = arg mink′

∥∥xTi − µk′∥∥2

0 otherwise
(4.19)

One then updates the means and repeats all the steps until a convergence rule is satisfied.

Let us briefly overview the key properties of this algorithm without giving detailed proofs. First
of all, the algorithm is guaranteed to converge, but since I is non convex, it could converge to a
local (and non global) minimum. To overcome this problem one repeats the algorithm several times
with different initialization values of {rik} and then choses among the results the one with lowest I.
Secondly, the algorithm requires relatively small computational effort (order O(Kn)), since in typical
situations K � n.

It is important to point out also the main drawbacks of this method. First of all the value of K is
required to the user and hence we have to know the number of expected classes a priori, but this is not
always possible. Moreover, in systems where only few features are relevant and all the others are noisy
variables, clustering could not work as expected and some data could be wrongly classified. In this
cases a noise reduction should be performed before clustering, for example a dimensional reduction
such as PCA.

4.2.1 K-means on the 2D Ising model

In this section we use a K-means clustering algorithm to classify spin configurations of the 2D Ising
model and to build the phase diagram of the model in the T − H plane (where H is the external
magnetic field). The standard approach would be to sample statistical independent equilibrium con-
figurations using the Metropolis-Hastings algorithm at different temperatures and fields, but this is
computationally challenging because of the large autocorrelation time, especially at T ≈ Tc. One
should try to use more efficient sampling algorithms, such as the already mentioned Wolff algorithm,
that avoids critical slowing down.
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(a) Fraction of data assigned to the first (red) and
second (blue) clusters at every temperature after per-
forming K-means on equilibrium spin configurations.

(b) Fraction of data assigned to the first (red) and
second (blue) clusters at every temperature after per-
forming K-means clustering on the absolute value of
the first two principal components.

For simplicity we use this approach only at H = 0, using the same dataset we have used for testing
PCA. The dataset is made by 75000 vectors of RL2

(5000 samples per temperature at 15 different
temperatures), L = 40 being the lattice size. We perform a K-means clustering with K = 2 and
compute the fraction of data assigned to the first and second clusters as a function of temperature.
Results of this procedure are presented in Fig. 4.13a: low temperature and high temperature samples
are correctly separated; samples at T ≈ Tc are more difficult to classify.

Better results can be achieved performing K-means clustering on the set of principal components. In
this case, taking the absolute value of the first two components, we have 75000 vectors of R2. Looking
at Fig. 4.3 it is clear that a direct clustering on principal components (taken with sign) would not
provide the correct result. As a consequence, we have to use the Z2 symmetry of the Ising Hamiltonian
and take (|y1|, |y2|) for every data. The number of samples assigned to each cluster is shown in Fig.
4.13b.

Another interesting approach is suggested in [33], and it consists in clustering of the relaxation curves
of magnetization m(t). In this case we don’t have to extract an Ising sample once in an autocorrelation
time τm ≈ 150L2, but once in a Monte Carlo step, which is much smaller (L2 iterations of Metropolis-
Hastings algorithm). Moreover, relaxation curves of magnetization show different behaviour when
the system relaxes to a paramagnetic or ferromagnetic phase, thus providing a good dataset for con-
structing the phase diagram. In many physical situations one can not access equilibrium independent
states of a system, but one can measure (or at least sample) the dynamical evolution of a physical
observable, hence it could be extended to more complicated situations.

Let the time unit be a Monte Carlo step, and let tmax = 500 be the maximum sampling time;
magnetization relaxation curves can be seen as a set of tmax numbers that can be stored in a vector
of Rtmax . At every temperature and field the system is prepared in a state with all spins down and
m(0) = −1, and the Monte Carlo dynamics is performed 20 times for statistics. After performing
K-means clustering with K = 2 (there are two phases), we counted at every T,H the number of
samples assigned to the first cluster. Results of this procedure are presented in Fig. 4.14. The phase
diagram emerges from the plot. Data deep in ferromagnetic and paramagnetic regions are correctly
assigned, while the method is rough in the border between the two phases, especially at high external
fields and T > Tc.

In Fig. 4.15 we show the components of cluster centroids µ1 and µ2 labeled by Monte Carlo time (i.e.
the average relaxation curves associated to the two clusters). As expected, data in the second cluster
(paramagnetic phase) relax to lower magnetizations than the data in the first one (ferromagnetic).
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Figure 4.14: Phase diagram of the 2D Ising model (L = 40) in the T − H space predicted by K-means clustering of
magnetization curves. The color scheme represents the number of the 20 curves assigned to the first cluster at every
temperature and field.

Figure 4.15: Components of the centroids of the two clusters (mean relaxation curves of magnetization).
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Conclusions and outlook

In this work we have proposed physical questions that can be addressed with machine learning, and
we have answered these questions using suitable tools. In this section we critically analyze our work,
summarizing successes and issues, and proposing ideas for further study.

First of all, we noticed the importance of building a suitable input dataset. In particular, as we
investigated critical properties of spin models, we faced the problem of critical slowing down, with
consequent large computational effort to sample statistically independent samples. For the simple
models that we used here as a benchmark, a good compromise between reasonable sampling time and
statistical independence has been found. However, in some contexts a finite size analysis of the system
is necessary, and sampling the system in very large lattices is required. This makes it really challenging
to sample independent equilibrium configurations, and the input data set is difficult to build. For this
reason, a first improvement to this work would be implementing importance sampling Monte Carlo
algorithms that prevent critical slowing down, such as the already mentioned Wolff cluster algorithm.

Secondly, we have shown how linear penalized regression is a suitable tool to address the problem of
designing Hamiltonians of unknown models. We have analyzed the two most widespread penalizations
(L1 and L2), marking analogies and differences, observing in particular how L1 penalization performs
a feature selection. We have seen the importance of avoiding overfitting through the validation pro-
cess, and we have shown how this process can be used to reject unsuitable models. We have used
L2 penalization to investigate eight unknown models, and finally found che most suitable coupling
constants, and we were able to distinguish between ferromagnetic/antiferromagnetic interactions and
long-range/short-range interactions. An interesting step forward on this subject would be investigat-
ing non linearizeable Hamiltonians with the same tools, a good starting point being Ising like models
coupled to external fields.

After that, we addressed the problem of training classifiers to predict phases of unseen input configura-
tions. We discussed the basic tool of softmax regression, and underlined the problems of abstraction of
this approach, noticing the difficulty of recognizing upwards magnetized and downwards magnetized
samples both as ordered structures. Motivated by these issues, we developed a feed forward deep
neural network, investigating the process of abstraction and improving the classification of the Ising
states. We then introduced the more sophisticated structure of convolutional neural networks with the
purpose of recognizing topological defects in XY states. The learning process of topological structures,
although successfull, is still not clear and it still represents an open research problem that requires
further study. Moreover, we have mentioned the recently proposed connection between convolutional
networks and the renormalization group theory, a study that we recommend as a further step on this
topic.

Finally, we have faced the problem of learning features out of unlabeled data, and we introduced
PCA as the simplest tool of unsupervised learning for dimensional reduction. We have explored the
efficiency of PCA in extracting order parameters for phase transitions applying it to the Ising, Potts
and XY models. Looking at the XY model in particular, we noticed that PCA predicts that spatial
correlations between different spins are the relevant feature for the topological phase transition. We
have discussed the failure of PCA as a good technique for dimensional reduction when too many
principal components have comparable explained variances. In literature, some tools to go beyond
PCA have been developed, such as autoencoder networks, t-SNE and Random Boltzmann Machines;
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implementing these techniques would be a good starting point for further study.

Besides dimensional reduction, another important unsupervised learning method is clustering. In
particular we studied K-means clustering with euclidean distance, and applied it to the Ising model
with two approaches (clustering the equilibrium spin configurations or the magnetization relaxation
curves). We have seen that clustering the equilibrium spin configurations works in synergy with
dimensional reduction, and it is successful in detecting the critical point. Moreover we have seen that
dynamical magnetization relaxing curves can be used as a suitable dataset to cluster for obtaining
a rough phase diagram of the model when both temperature and magnetic fields are involved in the
phase transition.

In conclusion, this work is a review of the very basics of machine learning and provides a collection of
physical contexts where these techniques have been successfully applied. Being far from completeness,
this work can be regarded as a starting point to familiarize with techniques that could lead to novel
results in physics research. In particular, the long term perspective is to apply machine learning in
synergy with theoretical efforts to study complex systems of physical interest whose properties are
still not completely clear, going beyond the benchmark provided by simple spin models.
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Appendix

In this section we present further documentation about the work. In particular we attach some
graphics and codes which are hopefully useful to the interested reader who wants to reproduce our
results and eventually extend them to other contexts. For the seek of clearness and simplicity, we
do not provide the full codes including data managment, plot styles etc., but only the most relevant
routines performing the most interesting tasks. Moreover, the presented codes are explained in detail
through captions containing all the details that the user should implement himself-herself to apply the
routines.

All the attached codes are written in Wolfram Mathematica 12.0 (some functions could not be available
in previous versions), even though some minor tasks were performed with C++ and Python. All the
codes are used to perform machine learning tasks, as discussed in the text, while data sampling with
Monte Carlo algorithms are not attached. Anyway these are quite standard tasks that are exhaustively
exposed in textbooks as Refs. [4, 5].

Detailed information about network training algorithms can be obtained directly either directly run-
ning the Wolfram notebook or using the function NetInformation[]. Wolfram also provides online
resources where all algorithms are explained in detail.
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Figure 16: Wolfram code for Ridge regression on the one dimensional Ising model. A number n of onfigurations with L
features are stored in a list ”spin”, while the relative energies are stored in ”energy”. The first block divides the dataset
into training and test sets and computes the spin products SiSj , so ”xtrain” and ”xtest” are both lists with dimensions
n/2×L2. In the second block ”wRidge” is the exact solution for Ridge regression with regularizer ”lambda” (Eq. 2.5). In
the third block we interprete Ridge regression as a simple neural network optimized with ”ADAM” algorithm (Ref. [42]
for details); here ”w” contains the optimized weights. Plots of ”w” and ”wRidge” are shown as color schemes applied
on L× L matrices.

Figure 17: Wolfram code for the deep neural network built for classifying states of the Ising model. In the first block the
network architecture is built and the network is trained. The list ”data” is made by n training samples, with L2 spins
each. The n-dimensional list ”class” classifies the samples’ phases: a value in ”class” can be either 1 if the corresponding
sample is extracted at T < Tc or 0 otherwise. In the second block we extract weights and biases from the hidden layer
and plot the output of the layer.
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Figure 18: Wolfram code for the convolutional neural network built for classifying states of the XY model. The first block
rewrites the sawtooth function (Eq. 1.36) normalized by 2π in a suitable form for the function ElementwiseLayer[] and
it can be generalized to any function. The function h(x) is defined copying the output of the first block. The list ”data”
is taken from a file with n rows (number of samples) and L2 columns (number of lattice sites) containing the training
dataset. This list is suitably reshaped for compatibility with the network structure and labeled as ”trainingset1”. The
class where any sample belongs is a binary variable (1 if T < TKT and 0 if T > TKT ) and it is stored in the n-dimensional
list ”class”. The network is built up and trained in the third block, while in the last block the learnt filters are extracted
and shown in a matrix form. Training is performed with a validation set to reduce overfitting, this is stored in a n1×L2

dimensional list ”validation” that is suitably reshaped as ”validationset1”. The architecture is divided in two parts: the
first one is the theorized algorithm to transform raw spin configurations into vorticity configurations; the second part is
the convolutional structure for binary classification of vorticity dataset suggested in Ref. [32].
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Figure 19: Wolfram code for performing a principal component analysis on any dataset imported in list ”x”. After a
singular value decomposition of the input dataset we compute the principal components ”y” and plot the behaviour
of the explained variance. For large datasets the algorithm is computationally expensive, so we suggest to insert the
number of needed principal components as second argument of the function SingularValueDecomposition[].

Figure 20: Patterns of weights ω
(n)
ij used to compute the first 16 principal components yn =

∑
ij ω

(n)
ij Sij of the two

dimensional Ising model on a L = 40 square lattice. The value of n increases by one unit along the rows. The first two
plots have been discussed in Chapter 4, the others are reported here to show their ordered pattern.
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