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To W.W.

My Star, My Perfect Silence.



Abstract

This thesis aims to describe the ADM formalism of General Relativity and to use

the latter to describe a spherical compact source consisting of a perfect fluid. With

two different choices for three-dimensional metric on hypersurfaces, we analyze the con-

straints of the system in the non-static case and the resulting equations of motion, both

for canonical gravitational variables and those of matter. After examining some special

cases, we also show that it is possible, in the case of static nature, to obtain the value

of the Misner-Sharp mass from the Hamiltonian constraint, while near the trapping sur-

faces we obtain a relationship between the density of matter and the dynamic variables

of the metric. Finally we propose a possible method for quantizing the constraints using

the procedure that in the vacuum leads to the Wheeler-DeWitt equations.
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Introduction

The ADM formalism is an approach to General Relativity and to Einstein equations

that relies on the slicing of the four-dimensional spacetime by three-dimensional hyper-

surfaces. These latters have to be spacelike, so that the metric induced on them by the

Lorentzian spacetime metric is Riemannian.

From the mathematical point of view, the ADM formalism allows to formulate the prob-

lem of resolution of Einstein equations as a Cauchy problem with constraints, while from

the physical point of view it amounts to a decomposition of spacetime into “space” +

“time”, so it is also known as “3+1 formalism”. As a matter of fact, one manipulates

only time-varying tensor fields in the three-dimensional space, where the standard scalar

product is Riemannian.

The ADM formalism originates from works by Georges Darmois in the 1920’s, Andrè

Lichnerowicz in the 1930-40’s and Yvonne Choquet-Bruhat in the 1950’s. Notably, in

1952, Yvonne Choquet-Bruhat was able to show that the Cauchy problem arising from

this decomposition has locally a unique solution. In the late 1950’s and early 1960’s, the

formalism received a considerable impulse, serving as foundation of Hamiltonian formu-

lations of general relativity by Paul A.M. Dirac, Richard Arnowitt, Stanley Deser and

Charles W. Misner (ADM). In the 1970’s, the ADM formalism became the basic tool

for the nascent numerical relativity. Today, most numerical codes for solving Einstein

equations are based on the 3+1 formalism.

More recently, in order to describe the gravitational radius of spherically symmetric

compact sources and determining the existence of a horizon in a quantum mechani-

cal fashion, the Horizon Quantum Mechanics [32] has been introduced. The reason we

are interested in compact spherical sources is that in a classical spherically symmet-
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ric system, the gravitational radius defined in terms of the (quasi-)local Misner-Sharp

mass, uniquely determines the location of the trapping surfaces [30,31], where the null

geodesic expansion vanishes. In a non-spherical space-time, such as the one generated by

an axially-symmetric rotating source, although there are candidates for the quasi-local

mass function that should replace the Misner-Sharp mass, the locations of trapping sur-

faces, and horizons, remain to be determined separately.

The first two Chapters of this thesis are devoted to the description of the essential ele-

ments of the General Relativity theory and the concept of gravitational collapse in the

latter. Chapter 3 is devoted to the description of constrained systems, while Chapter 4

illustrates the initial value formulation in Einstein’s theory. Chapter 5 is dedicated to

the description of the ADM formalism and in Chapter 6 this formalism is used in order to

describe a compact spherical source of perfect fluid, also introducing a local mass in the

diagonal radial component of the metric. Finally, in Chapter 7 we briefly mention the

problem of quantization of the General Relativity and we apply the ”Wheeler-DeWitt

quantization” to the constraints thus obtained.



Chapter 1

Einstein’s field equations and

Schwarzschild solution

The purpose of this Chapter, in which we use conventions of [1], is to briefly illustrate

the field equations of General Relativity and assumptions that Einstein made in the

early twentieth century in order to develop the latter, to make gravity consistent with

Special Relativity. Then, we describe the Schwarzschild solution, which according to

Birkhoff’s theorem [5] is the most general spherically symmetric vacuum solution of the

Einstein field equations: it describes the gravitational field outside a spherical mass,

on the assumption that the electric charge and the angular momentum of the latter

(toghether with universal cosmological constant) are all zero.

1.1 Einstein’s equations

The gravitational field equations were obtained by Einstein in 1915, after about ten

years of research, and they can be written as:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (1.1)

Where Rµν is the Ricci tensor, defined as the only possible non trivial contraction of the

Riemann tensor :

Rµν = gλρRλµρν = Rρ
µρν (1.2)

3



4 1. Einstein’s field equations and Schwarzschild solution

Rλ
µρν =

∂Γλµν
∂xρ

−
∂Γλµρ
∂xν

+ ΓλσρΓ
σ
µν − ΓλσνΓ

σ
µρ (1.3)

In which Γσλµ is the affine connection. It turns out that this latter can be related to the

partial derivatives of the metric tensor as:

Γνλµ =
1

2
gνσ
{
∂gσλ
∂xµ

+
∂gσµ
∂xλ

− ∂gµλ
∂xσ

}
(1.4)

R is the curvature scalar, defined as the contraction of the Ricci tensor:

R = gµνRµν = Rµ
µ (1.5)

Finally, G is the gravitational constant and Tµν the energy-momentum tensor of the

system, which is the source of gravitational field. We have also written the term Λgµν ,

that corresponds to the cosmological constant, on the left side of the equation as Einstein

did in the beginning of the 20th century (1917). In modern cosmology it is convenction

to write it on the right side (interpreting it as “dark energy” due to the matter). On

the four coordinates xµ, it is possible to operate an arbitrary transformation, which

allows to choose four between the ten components of gµν , leaving six of the latter to be

determined from the field equations. Furthermore, the four components of four-vector

velocity Uµ ≡ dxµ/ds which enter in the definition of Tµν , are subject to the relation

UµUµ = 1, thus only three of them are independent.

So, as expected, there are ten partial differential equations (1.1) for ten functions to

be determined: six components of gµν , three components of Uµ and the density of the

matter ω/c2 (or its pressure p). These equations were originally derived by assuming the

following requirements:

• Since the choice of the reference system is arbitrary, laws of nature must be formally

the same for any coordinate system (x0, x1, x2, x3), thus field equations should be

tensor equations in order to exhibit this covariance property.

• They must be (like all the other field equations of physics) partial differential

equations of, at most, second order in time for the components of the metric tensor

gµν , which are the functions to be determined in the present context.

• We assume that spatial derivatives are of, at most, second order and the equations

must be also linear in the highest derivatives.
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• In the appropriate limit, they should go over to the Poisson equation of the New-

tonian theory:

∇2φ = 4πGρ (1.6)

In which φ is the potential of the gravitational field and ρ is the mass density of the

source. The so called “Newtonian limit” is obtained by assuming a weak and static

field and that the velocities of the sources of the latter are very small compared to

the velocity of light c

• The energy-momentum tensor Tµν should be the source of the gravitational field

(Einstein was guided by the analogy with special relativity, in which Tµν is the

analogue of the mass density)

It is important to emphasize that, since the geometric properties of the space-time (i.e.

its metric) are determined from physics phenomena in General Relativity and they are

not invariable properties of space and time, the exact definition of “reference system”

in General Relativity turns out to be an infinite continue system of bodies to which, in

every point, a clock is bound that marks an arbitrary time. In Special Relativity the

same notion consists simply in a set of bodies at rest with respect to each other and

rigidly bound. We also note that the formal invariance of the laws of nature does not

mean that all the reference systems are physically equivalent (as for the equivalence of

the latters in Special Relativity).

1.2 Schwarzschild external solution

We are, at first, intersted in the solution of the Einstein’s field equation for a system

composed by a statical spherical source in the vacuum, which means with no other

sources of gravitational field, characterized by an energy-momentum tensor Tµν .

In simple terms, a solution is said stationary if it is time-independent [3]. This doesn’t

mean that the solution is in no way evolutionary but simply that time does not enter

into it explicitly. On the other hand, the stronger requirement that a solution is static

means that it can’t be evolutionary: in such a case, nothing would change if at any time

we ran time backward, thus “static” means time-symmetric about any origin of time.
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The field equations in the vacuum become:

Rµν = 0 (1.7)

and they must be solved in order to find the metric components gµν , “deformed” by the

field, outside the spherical source that generates the gravitational field itself. The field

equations (1.7) are subject to the four geometrical relations:

Rl
m; l ≡

∂Rl
m

∂xl
+ ΓllσR

σ
m − ΓσmlR

l
σ =

1

2

∂R

∂xm
(1.8)

that are obtained from the contraction of the Bianchi identities, thus as was anticipated

there are six independent field equations for six corresponding unknown functions gµν .

The gravitational field must exhibit central simmetry as the source that produces it, so

it is convenient to use a coordinate system which is adapted to the sperichal simmetry

of the latter. The central simmetry of the field means that the space-time metric gµν or,

equivalently, the interval

ds2 = gµνdx
µdxν (1.9)

which is the analogue of the interval ds2 = c2dt2 − dx2 − dy2 − dz2 in a non-inertial

reference system, must have the same value in all the points with the same distance from

the center of the coordinate system, that is where the source of the field is supposed to be

located. In doing so, we can write the most general line element in cartesian coordinates

which turns out to be invariant for rotations as:

ds2 = I(r, t)dt2 +B(r, t)(~x · d~x)dt+D(r, t)(~x · d~x)2 + C(r, t)(d~x)2 (1.10)

In fact, the line element must be quadratic in the differentials, and (~x·~x), (~x·d~x), (d~x·d~x)

are the only possible non trivial terms that turns out to be invariant for rotations, while

their coefficients in (1.10) are arbitrary functions of r and t. It turns out that in General

Relativity the choice of the reference system is not subject to any kind of limitations: the

role of the three spatial coordinates (x1, x2, x3) can be assigned to whichever quantities

which define the position of the objects in the space. Similarly, the temporal coordinate

x0 can be determined by a clock that signs the “time” t in an arbitrary way.

By writing the line element (1.10), i.e. only supposing central simmetry, we have reduced
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the number of functions from 6 to 4 to solve the problem. Writing the same line element

in spatial “spherical” (x1, x2, x3) = (r, θ, φ) coordinates we have

ds2 = I(r, t)dt2 +B(r, t)rdrdt+D(r, t)r2dr2 +C(r, t)(dr2 + r2dθ2 + r2 sin2 θdϕ2) (1.11)

and, for convenience, we re-write the the last expression by introducing other arbirary

functions, which are defined in terms of the previous ones, as:

ds2 = I(r, t)dt2 + A(r, t)drdt+H(r, t)dr2 +K(r, t)(sin2 θdϕ2 + dθ2) (1.12)

in which

B(r, t)r = A(r, t), D(r, t)r2 + C(r, t) = H(r, t), C(r, t)r2 = K(r, t) (1.13)

The field equations must be invariant with respect to general coordinate transformations,

thus we can now transform the coordinates r and t in order to preserve the central

simmetry of ds2 as: r = f(r′, t′)

t = g(r′, t′)
(1.14)

where f(r′, t′) , g(r′, t′) are arbitrary functions of the new coordinates (r′, t′) . We choose

r and t in order to have A(r, t) = 0

K(r, t) = −r2
(1.15)

By making this assumption, it turns out that r is determined in order to have the lenght

of the circonference with center in the origin of the coordinate system equal to 2πr (in

analogy with an euclidean space), while it is still possible to transform the temporal

coordinate t as t → f(t′). This feature will be soon used in order to simplify the

expression of ds2. We now set: H(r, t) = −eλ(r,t)

I(r, t) = c2eν(r,t)
(1.16)

In order to write the line element as:

ds2 = c2eνdt2 − eλdr2 − r2(dθ2 + sin2 θdϕ2) (1.17)
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If we suppose that (x0, x1, x2, x3) ≡ (ct, r, θ, ϕ), we have the following form for the metric

tensor:

gµν = diag(eν ,−eλ,−r2,−r2 sin2 θ) (1.18)

Its inverse can be found from gµνg
νρ = δρµ and it simply results as:

gµν = diag(e−ν ,−e−λ,−r−2,−r−2 sin−2 θ) (1.19)

Now we are able to determine the affine connection by using (1.18) and (1.4), the calcu-

lation is straightforward:

Γ0
µν =


ν̇
2

ν′

2
0 0

ν′

2
λ̇
2
eλ−ν 0 0

0 0 0 0

0 0 0 0

 Γ1
µν =


ν′

2
eν−λ λ

2
0 0

λ
2

λ′

2
0 0

0 0 −re−λ 0

0 0 0 −re−λ sin2 θ



Γ2
µν =


0 0 0 0

0 0 1
r

0

0 1
r

0 0

0 0 0 − sin θ cos θ

 Γ3
µν =


0 0 0 0

0 0 0 1
r

0 0 0 1
tan θ

0 1
r

1
tan θ

0


(1.20)

where a′ ≡ da/dr, ȧ ≡ da/d(ct).

We can express the Ricci tensor, according to (1.2) and (1.3), as:

Rµν =
∂Γσµν
∂xσ

−
∂Γσµσ
∂xν

+ ΓσµνΓ
ρ
σρ − ΓρµσΓσνρ (1.21)

Now, calculating the Ricci’s tensor components with (1.21) and after replacing the results

in the field equations (1.1), we obtain the following system:

8πG
c4
T 1

1 = −e−λ(ν′
r

+ 1
r2

) + 1
r2

8πG
c4
T 2

2 = −1
2
e−λ(ν ′′ + ν

′2

2
+ ν′−λ′

r
− ν′λ′

2
) + 1

2
e−ν(λ̈+ λ̇2

2
− λ̇ν̇

2
)

8πG
c4
T 3

3 = 8πG
c4
T 2

2

8πG
c4
T 0

0 = −e−λ( 1
r2
− λ′

r
) + 1

r2

8πG
c4
T 1

0 = −e−λ λ̇
r

(1.22)
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This equations are integrable in the configuration that we have considered, namely a

gravitational field with central simmetry in the vacumm and out of the source that

produces it. As a matter of fact setting Tµν = 0 in (1.22) we obtatin the following

equations: 
e−λ(ν

′

r
+ 1

r2
)− 1

r2
= 0

e−λ(λ
′

r
− 1

r2
) + 1

r2
= 0

λ̇ = 0

(1.23)

From the third equation we see that λ does not depend on t, while from the first and

the second ones we see that λ′ + ν ′ = 0, which implies that:

λ+ ν = f(t) (1.24)

So we use the possibility to operate a transformation on the variable t of the form

t = f ′(t′) in order to set f(t) = 0 in the last expression. We note that a gravitational

field with central simmetry in the vacuum automatically becomes static. The second

equation in (1.23) gives:

e−λ = eν = 1 +
constant

r
(1.25)

As we espected, for r → ∞ we recover the galileian metric, that is g00 = 1. To fix the

constant we impose that, at large distancies (where the gravitationl field is weak), we

must find the Newtonian law:

g00 = 1 +
2ϕ

c2
(1.26)

where

ϕ = −GM/r (1.27)

is the Newtonian classical potential and M is the mass of the spherical source of the

field, so we conclude that:

−costant ≡ rg =
2GM

c2
(1.28)

This quantity is usually called gravitational radius, Schwarzschild radius or gravitational

radius of the source. For normal stars or planets rg is very small in relation to the

geometrical radius: the Schwarzschild radius of the Sun, for example, has the value
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rg = 2.96 km, while for the Earth one finds rg = 8.8 mm.

Therefore, it is possible to derive the following form of the space-time metric:

ds2 =
(

1− rg
r

)
c2dt2 − dr2(

1− rg
r

) − r2(dθ2 + sin2 θdϕ2) (1.29)

This solution of the Einstein’s equation, which completely determines the gravitational

field in the vacuum produced by any distribution of the masses with central simmetry,

was found in 1916 from K. Schwarzschild and it depends only on the total mass M

of the gravitational source of the field (as for the Newtonian theory). This solution

is valid not only for masses at rest but also for masses with central simmetry motion.

Since the Schwarzschild metric describes only the gravitational field outside the matter

distribution, whilst the Schwarzschild radius mostly lies far in the interior, we shall

suppose that r � rg.

It is possible to show [1] that, for a spherical source with radius a that generates a

gravitational field in the vacuum, the total mass M of the latter is given by:

M =
4π

c2

∫ a

0

T 0
0 r

2dr (1.30)

In particular, for the static distribution of the matter one has T 0
0 = ω, thus

M =
4π

c2

∫ a

0

ωr2dr (1.31)

where the integration is done in 4πr2dr, while the spatial volume element in the metric

(1.17) is dV = 4πeλ/2/dr. Since one can show that eλ/2 > 1 we see that this difference

expresses the “gravitational mass defect” of the body.

1.2.1 The interior Schwarzschild solution

We are now intersted in determine the spherically simmetric gravitational field inside

the matter and using a comoving coordinate system. A model for the matter is required,

thus is necessary to say something about its energy-momentum tensor. Ignoring ther-

modynamic effects, such as heat conduction and viscosity, a useful approximation is the
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ideal fluid medium, which in comoving coordinates has the following form:

T µν =


ω 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p

 (1.32)

Applications in Riemannian spaces often deal with a velocity field Uµ = dxµ/dσ (a flux of

bodies, or of observers). Since σ is a coordinate-independent parameter, the components

of this velocity transform like the coordinate differential

Uµ =
∂xµ

∂xµ′
Uµ′ (1.33)

By means of a coordinate transformation it is always possible to make the three spatial

components ui of the velocity zero, since the differential equations

U1 =
∂x1

∂x0′
U0′ +

∂x1

∂x1′
U1′ +

∂x1

∂x2′
U2′ +

∂x1

∂x3′
U3′ = 0

U2 =
∂x2

∂x0′
U0′ +

∂x2

∂x1′
U1′ +

∂x2

∂x2′
U2′ +

∂x2

∂x3′
U3′ = 0 (1.34)

U3 =
∂x3

∂x0′
U0′ +

∂x3

∂x1′
U1′ +

∂x3

∂x2′
U2′ +

∂x3

∂x3′
U3′ = 0

always have a solution xi(xµ
′
). In the resulting coordinate system, the particles do not

change their position and the coordinates move with the particles (one can visualize the

coordinate values attached to the particles as names). Although the coordinate difference

of two particles never alters, their separation can vary because of the time-dependence

of the metric.

We seek a spherically symmetric gravitational field and thus, in the line element (1.12),

we use the two possible transformations of the coordinates r and t in order to set A(r, t)

and, according to the discussion above, the radial component of the velocity equal to

zero in every point of the space-time.

Defining the following coordinates for the comoving system:

(x0, x1, x2, x3) ≡ (cτ, ρ, θ, ϕ) (1.35)

and setting:

I(r, t) ≡ eν(τ,ρ) H(r, t) ≡ −eλ(τ,ρ) K(r, t) ≡ −eµ(τ,ρ) (1.36)
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we are driven to the following expression for the line element:

ds2 = c2eνdτ 2 − eµ(sin2 θdϕ2 + dθ2)− eλdρ2 (1.37)

The field equations turn out to be (setting ′ ≡ ∂
∂ρ

and · ≡ ∂
∂(cτ)

):

−8πG
c4
T 1

1 = 8πG
c4
p = 1

2
e−λ(µ

′2

2
+ µ′ν ′)− e−ν( ˙̇µ− 1

2
µ̇ν̇ + 3

4
µ̇2)− e−µ

−8πG
c4
T 2

2 = 8πG
c4
p = 1

4
e−λ(2ν ′′ + ν

′2 + 2µ′′ + µ′2 − µ′λ′ − ν ′λ′ + µ′ν ′)

+1
4
e−ν(λ̇ν̇ + µ̇ν̇ − λ̇µ̇− 2λ̈− λ̇2 − ˙̇µ− µ̇2)

8πG
c4
T 0

0 = 8πG
c4
ω = −e−λ(µ′′ + 3

4
µ
′2 − µ′λ′

2
) + 1

2
e−ν(λ̇µ̇+ µ̇2

2
) + e−µ

8πG
c4
T 1

0 = 0 = 1
2
e−λ(2µ̇′ + µ̇µ′ − λ̇µ′ − ν ′µ̇)

(1.38)

These are only integrable if the balance equations of energy and momentum (implicitly

contained in the field equations):

T µν ;ν = 0 (1.39)

are satisfied. These conservation laws often give an important indication of how to solve

the field equations, in fact using them one can obtain some general equations for λ, µ,

ν:

λ̇+ 2µ̇ = − 2ω̇

p+ ω
ν ′ = − 2p′

p+ ω
(1.40)

If an equation of state p = p(ω) is kown, it is possible to integrate them in order to

obtain:

λ+ 2µ = −2

∫
dω

p+ ω
+ f1(ρ) ν = −

∫
dp

p+ ω
+ f2(τ) (1.41)

where f1(ρ) and f2(τ) can be chosen arbitrarily since one still has the possibility to

perform transformations of the type ρ = ρ(ρ′) and τ = τ(τ ′).



Chapter 2

Gravitational Collapse of a

Spherically Symmetric Source

In this Chapter, in which again we use conventions of [1], we will briefly describe

the phenomenon of gravitational collapse in General Relativity, analyzing the latter in

a reference system solidary with matter. In particular, the exact solution of the field

equations for gravitational collapse for a source with spherical symmetry and consisting

of dust (originally found by Tolman in 1934) is described.

2.1 Collapse in a comoving reference system

If, during its evolution, a massive, spherically symmetric star does not succeed in

ejecting or radiating away suffcient mass to become a neutron star, then there is no stable,

final state available to it. At some time or other it will reach a state in which the pressure

gradient can no longer balance the gravitational attraction and, as a consequence, it will

continue to contract further and its radius will pass the Schwarzschild radius (1.29) and

tend to r = 0: in such a case, the star suffers a gravitational collapse.

A quick glance at the Schwarzschild metric (1.29) shows that g00 goes to zero and a

singularity of the metric tensor’s component g11 is present at r = rg. In our earlier

discussion of the Schwarzschild metric we had set this problem aside with the remark

that the radius rg lies far inside a celestial body, where the vacuum solution is of course

13
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no longer appropriate. Now, however, we shall turn to the question of whether and in

what sense there is a singularity of the metric at r = rg and what the physical aspects

of this are.

A singular coordinate system can give a false indication of a singularity of the space. If

the metric is singular at a point, one investigates whether this singularity can be removed

by introducing a new coordinate system. Or, appealing more to physical intuition, one

asks whether a freely falling observer can reach this point and can use a local Minkowski

system there. If both are possible, then the observer notices no peculiarities of the

physical laws and phenomena locally, and hence there is no singularity present.

Soon after the Schwarzschild metric had been obtained as a solution of the field equations,

it was recognized that both the determinant of the metric −detgµν = r4 sin2 θ and also

the Kretschmann scalar K = RµνρσRµνρσ = 48m2

r6
associated with the curvature tensor

are regular on the “singular” surface r = rg. This suggests that no genuine singularity

is present there, but rather that only the coordinate system becomes singular.

In order to clarify the real meaning of the metric in this region of the space-time, it is

possible to make the following coordinate transformation (in this Chapter for simplicity

we set c = 1):

τ = ± t±
∫
f(r)dr

1− rg
g

, R = t±
∫

dr(
1− rg

g

)
f(r)

(2.1)

Choosing f(r) =
√
rg/r and the upper sign in (2.1) one obtains:

r =

[
3

2
(R− τ)

]2/3

r1/3
g (2.2)

and inserting this result in the Schwarszchild metric (1.29) we find the non-stationary

Lemaitre metric:

ds2 = dτ 2 − dR2[
3

2rg
(R− τ)

]2/3
−
[

3

2
(R− τ)

]4/3

r2/3
g (dθ2 + sin2 θdϕ2) (2.3)

The singularity on the Schwarzschild sphere (rg = 3
2

(R− τ)) in these coordinates is

absent. R and τ are everywhere spatial and temporal coordinates, respectively. The

time lines in this metric are geodetics, so the test particles in a state of rest relative

to this system are in free motion in the given gravitational field. The lines of Universe
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Figure 2.1: Lines of Universe R− τ = const. for the Lemaitre metric.

R− τ = const. correspond to certain values of r represented by the inclined lines in the

diagram of figure (2.1). The particles at rest are clearly represented by vertical lines,

which moving along these vertical lines fall (in a finite interval of their proper time) in

the center of the field r = 0, that represents a true singular point of the metric.

The equation ds2 = 0, which corresponds to the propagation of radial light signals (for

constant angular coordinates), gives the variation of τ with respect to R along the radius:

dτ

dR
= ±

√
rg
r

(2.4)

in which the two signs correspond at the two frontiers of the vertex light cone at the

given universe point. For r > rg, which corresponds to the point a in the diagram of

figure (2.1), the inclination of these frontiers is less than one, so that the line r = const.

(along which the inclination is equal to one) ends up inside the cone. For r < rg (the

point a′ in the very same diagram) we have the opposite situation.

Therefore, in the region r < rg, all interactions and signals can’t be at rest and they

must fall toward the center in a finite proper time τ .
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2.2 Tolman solution

One would like to confirm these plausible intuitive ideas by making exact calculations

on a stellar model with an equation of state (with a physically reasonable relation between

pressure and mass density). The only model for which this is possible without great

mathematical complexity is that of dust or incoherent matter, defined by the condition

p = 0 (R. Tolman, 1934). Since the pressure vanishes, it is to be expected here that

once a star started to contract it would “fall in” to a point. Although it is unrealistic

to neglect the pressure, this is example is not trivial since it yields an exact solution of

the Einstein equations which is valid inside and outside the collapsing star, and which

in a certain sense can serve as a model for all collapsing stars. In Chapter 6 we will also

examine the case of non-zero pressure, within the ADM formalism for General Relativity

which has been briefly described in the introduction.

As the starting point for treating this collapsing stellar dust we do not take the canonical

form (1.17) of the line element used in the Schwarzchild solution, but a system which is

both synchronous (which means g00 = 1, goi = 0) and comoving with the dust. It can

be shown that in incoherent matter and supposing a radial motion for the latter one can

always choose such a system. We obtain it by considering again (1.35) and defining:

A(ρ, τ) ≡ 0 I(ρ, τ) ≡ 1 H(ρ, τ) ≡ −eλ(τ,ρ) K(ρ, τ) ≡ −r2(τ, ρ) (2.5)

in (1.12), hence bringing the metric into the form:

ds2 = dτ 2 − eλ(τ,ρ)dρ2 − r2(τ, ρ)(dθ2 + sin2 θdϕ2) (2.6)

The coordinate τ , which is univocally fixed by (2.6), is the proper time of a particle

at rest in the comoving coordinate system, while the curves ρ = const., θ = const.,

ϕ = const. are geodesics. The function r(τ, ρ) represents a “radius” detemined in order

to have the lenght of the circonference (whose center in the coordinate’s origin) equal to

2πr. It is still possible to transform the radial coordinate as ρ = ρ(ρ′). We note that

because of

Uµ
;iU

i = 0

(ωUµ);µ = 0
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where ω is the rest mass of the dust, the latter always moves along geodesics.

The field equations can be obtained from (1.38) setting ν = 0, eµ = r2, p = 0:

0 = −e−λr′2 + 2rr̈ + ṙ2 + 1 = 0

0 = − e−λ

r
(2r′′ − r′λ′) + ṙλ̇

r
+ λ̈+ λ̇2

2
+ 2r̈

r

8πGω = − e−λ

r2
(2rr′′ + r′2 − rr′λ′) + 1

r2
(rṙλ̇+ ṙ2 + 1)

0 = 2ṙ′ − λ̇r′

(2.7)

First integrals of these equations can be obtained very easily. The first step is to integrate

the last equation of (2.7) to give

eλ =
r′2

1 + f(ρ)
(2.8)

with f(ρ) as an arbitrary function which satisfy 1 + f(ρ) > 0. Substitution into the first

equation of (2.7) leads to

2r̈r + ṙ2 − f(ρ) = 0 (2.9)

If one now chooses r as the independent variable, then one obtains the first integral of

the previous equation as

ṙ2 = f(ρ) +
F (ρ)

r
(2.10)

where F (ρ) is another arbitrary function which satisfy F > 0.

Thus, one obtains:

τ = ±
∫

dr√
f + F

r

(2.11)

The function r(τ, ρ), which can be obtained by integration, can be written in a parametric

form: 
r = F

2f
(cosh η − 1), τ0(ρ)− τ = F

2f3/2
(sinh η − η) if f > 0

r =
(

9F
4

)1/3
[τ0(ρ)− τ ]2/3 if f = 0

r = − F
2f

(1− cos η), τ0(ρ)− τ = F
2(−f)3/2

(η − sin η) if f < 0

(2.12)

where τ0(ρ) is another arbitrary function.

If one next eliminates f in (2.8) with the aid of (2.10), then one finds that the second
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equation of (2.7) is satisfied identically and that the fourth equation of (2.7) leads to the

following expression for the matter density:

8πGω =
F ′

r′r2
(2.13)

Of the three free functions F (ρ), f(ρ) and τ0(ρ) (whose must satisfy only the conditions

that ensure the positivity of eλ, r, and ω), at most two have a physical significance, since

the coordinate ρ is defined only up to scale transformations ρ = ρ(ρ′).

Unfortunately one cannot simply specify the matter distribution ω(τ, ρ) and then de-

termine the metric, but rather through a suitable specification of f , F and τ0 one can

produce meaningful matter distributions. Since layers of matter which move radially

with different velocities can overtake and cross one another, one must expect the occur-

rence of coordinate singularities in the comoving coordinates used here. To each particle

of the matter corresponds a determined value of ρ, the function r determines the law of

motion of the particle for this value of ρ, while the derivative ṙ is its radial velocity.

We now want to apply the Tolman solution to the problem of a star of finite dimensions.

An important property of the solution is that arbitrary functions, given in the range from

0 to ρ0, completely determine the behavior of the sphere of this radius, which therefore

does not depend on the properties of these functions for ρ > ρ0. As a result, the internal

problem is automatically solved for any finite sphere.

The total mass of this sphere is given, in accordance with (1.30), by:

m(τ, ρ0) = 4π

∫ r(τ,ρ0)

0

ωr2dr = 4π

∫ ρ0

0

ωr2r′dρ (2.14)

which is usually called Misner-Sharp mass. Taking into account the spherically simmetry

of the system, we suppose it depends on the “temporal” coordinate x0 = τ and the

“radial” coordinate x1 = ρ. The original definition introduced by Misner and Sharp for

the mass m(τ, ρ), assumed to be contained inside a spherically symmetric shell of radius

r(τ, ρ), is:
∂m

∂ρ
= 4πr2ω

∂r

∂ρ
(2.15)

This definition follows actually from the very intuitive requirement that within a spher-

ical layer of infinitesimal thickness dr, one finds the element of mass dm = 4πr2ωdr.
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Therefore, the total mass would simply be given by (2.14). Another (geometric) defini-

tion of the Misner-Sharp mass m(τ, ρ) mostly used in the literature is the following:

m(τ, ρ) =
R

2G
(1− gµν∂µR∂νR) (2.16)

where R is the areal radius of the spherical region of space-time under study.

Inserting (2.13) in (2.14) (noting that ρ = 0 implies r = 0 and F (0) = 0), we find:

m =
F (ρ0)

2G
, rg = F (ρ0) (2.17)

We obtain the simplest interior solution [2] when ω does not depend upon position (upon

ρ) and r has (for a suitable scale) the form r = K(τ)ρ. These restrictions lead to an

interior ρ ≤ ρ0 of the star which is a three-dimensional space of constant curvature,

whose radius K depends on time (in the language of cosmological models, it is a section

of a Friedmann universe). A great circle on the surface of the star has the radius ρ0K(cτ)

and, because of the time-dependence of K, the star either expands or contracts. It can

be shown that, depending of the value of η, one can have models which correspond to

stars whose radius decreases continuously from arbitrarily large values until at the time

τ = 0 (in which a collapse occurs), and models which represent stars which first expand

to a maximum radius and then contract.

The solution in the exterior space to the star is clearly a spherically symmetric vacuum

solution, and because of the Birkhoff theorem it can only be the Schwarzschild solution.

Since the Tolman solution holds for arbitrary mass density ω, it must contain the exterior

Figure 2.2: Snapshot of a collapsing star. From [2]
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Schwarzschild solution as a special case (F = const., while F = 0 corresponds to have no

gravitational field). For example, setting F = rg, f = 0, τ0 = ρ we recover the Lemaitre

metric (2.3).

In the Tolman solution the coordinates in the exterior space are chosen so that the surface

of the star is at rest. In the usual Schwarzschild metric, on the other hand, the stellar

surface is in motion, but in both cases the motion of a particle of the surface takes place

on a geodesic. Since scale transformations ρ = ρ(ρ′) are still possible, f(ρ) cannot be

uniquely determined here and, the following, we shall not need f(ρ).

The solutions are written so as to have the compression (which corresponds to the real

physical problem of the collaapse of an unstable body) when τ tends to τ0. At the time

τ = τ0(ρ) corresponds the fact that matter with radial coordinate ρ reaches the center

(one must have also τ ′0 > 0). The limit behaviour of the metric in the interior of the

sphere is the same in the three cases of (2.12) for τ → τ0(ρ):

r ∼
(

9F

4

)1/3

(τ0 − τ)2/3, eλ/2 ∼
(

2F

3

)1/3
τ ′0√

1 + f
(τ0 − τ)−1/3 (2.18)

This means that all the radial distances (in the comoving system, in motion with the

dust) tend to infinity, while the transversal ones tend to zero, all volumes equally tend

to zero as (τ − τ0)2. For this reason the density matter increases indefinitely for every

value of the mass (this is because we have neglected the pressure):

8πGω ∼ 2F ′

3Fτ ′0(τ0 − τ)
(2.19)

So, one has the collapse of all the distribution the matter to the center.

We conclude this section by saying that in all cases, the instant of the passage of a

collapsing sphere inside the Schwarzchild sphere (r(τ, ρ) = rg) is not significant for the

purposes of internal dynamics in the comoving coordinate system.



Chapter 3

Constraints and Reparametrization

Invariance

A brief recapitulation of some of the basic properties of constrained systems is neces-

sary beacuse of their importance in the canonical formalism and quantization of General

Relativity, as it has been briefly explained in the introduction.

In this Chapter, in which we use conventions of [7], we describe (in addition to the

general formalism for dealing with first class constrained systems and references to the

methods used up to now for the quantization of the latters) three application examples:

the classical point particle, the relativistic particle and the parametrized field theories.

The most important aspect for our purpose is the concept of reparametrization invariance

and the ensuing existence of constraints. Such invariance properties are often named as

“general covariance” of the system, because they refer to an invariance with respect to

a relabelling of the underlying space–time manifold.

In General Relativity, the full metric is dynamical and the invariance group coincides

with the covariance group, which is the group of all diffeomorphisms. Absolute elements

can also appear in “disguised form” if a theory has been reparametrized artificially: this

is the case in the model of parametrized field theories and the non-relativistic particle

to be discussed here, but not in General Relativity.

21
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3.1 Constrained systems

Constrained Hamiltonian systems tipically emerge when one tries to set up an Hamil-

tonian formulation of singular Lagrangians. With the term “singular” one refers to

Lagrangians L(qi, q̇i) for which is verified the following relation:

det
∂2L

∂q̇i∂q̇j
= 0 (3.1)

In such a case, when one tries to pass to the Hamiltonian formalism by introducing the

momenta pi as independent variables, it turns out that the relations between momenta

and velocities are not invertible. As a matter of fact, the momenta are related to the

velocities q̇i by the equations

pi =
∂L(q, q̇)

∂q̇i
(3.2)

These equations are not invertible in terms of the velocities precisely when eq. (3.1) holds.

This condition gives rise to “constraints” between the canonical coordinates (qi, pi) of

phase space. The latter define a hypersurface (embedded in the phase space) on which

the dynamics of the physical system takes place. Additional constraints may also arise by

requiring that the time evolution of the constraints themselves vanishes. Having found

all constraints for a physical system, it is possible to show that they can be classified in

two main classes: first-class constraints and second-class constraints.

• FIRST CLASS CONSTRAINTS

Assume that φa(q, p), where a = 1, 2...n, is a set of first-class constraints. Then

the latters satisfie, by definition:

φa(q, p) ≈ 0 (3.3)

where q and p represent positions and momenta for N particles, while the symbol ≈
(originally introduced by Dirac) means that the constraints φa(q, p), as functions

on the whole phase space, do not vanish identically and thus should not be set

to zero before computing the Poisson brackets, which are defined for functions of

the whole phase space. This kind of constraints is related to gauge symmetries,

defining a constraint hypersurface in phase space as in figure (3.1), on which the
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Figure 3.1: Constraint surface identified by φa ≈ 0 in phase space. From [8]

dynamics must take place (when the constraints are set to vanish as in (3.3)). In

addition, they are the generators of gauge transformations which relate different

points of the surface describing the same physics configurations: all points related

this way make up a “gauge orbit” and different gauge orbits correspond to different

physical configurations. First class constraints obey, by definition, the Poisson-

bracket relations:

{φa, φb} = f c
ab φc (3.4)

where f c
ab are called “structure functions”, as they may depend on the phase space

coordinates, thus we should properly write f c
ab (p, q). It turns out that these con-

straints are compatible with the following time evolution:

{φa, H} = d b
a φb (3.5)

for suitable functions d b
a , while H is a gauge invariant Hamiltonian that generates

time evolution via previous equation.

• SECOND CLASS CONSTRAINTS

We consider a set of constraints ψa(z) ≈ 0, with a = 1, ..., n (where we identify

with z the canonical coordinates of the phase space) that identify an hypersurface

in phase space on which the dynamics takes place. These constraints are called
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second-class if they satisfy:

det{ψa, ψb} 6≈ 0 (3.6)

In such a case, the above condition is sufficient to guarantee that the restriction of

the the symplectic structure of the original phase space to the constraint surface

is still symplectic, which is used to identify the Poisson brackets on the constraint

surface, the latter is then called reduced phase space. At this stage, one can simply

work on the reduced phase space, defined by the constraints ψa = 0, using the

reduced symplectic structure. The formula defining this structure in terms of the

variables of the original phase space is given by the so-called Dirac brackets, given

for any two functions f , g of phase space by:

{f, g}D = {f, g} − {f, ψa}(M−1)ab{ψb, g} (3.7)

where Mab = {ψa, ψb}.
Canonical quantization may then proceed as usual, setting up commutation rela-

tions defined by the Dirac brackets. This kind of constraints is not related to gauge

symmetries and they arise, essentially, because one tries to set up an Hamiltonian

formulation of a system that is already in an Hamiltonian form. Dirac brackets

play the role of the Poisson brackets on the constraint surface, the latter make it

consistent to solve the second class constraints for a set of independent coordinates

of the constraint surface. Thus, the constraint surface must be considered as the

appropriate phase space on which the Hamiltonian dynamics takes place.

The methods developed nowadays in order to treat first class constraints and construct

canonical quantization of gauge systems can be grouped into three main classes:

1) Reduced phase space method

2) Dirac method

3) BRST method

In the following, we assume the first class constraints to be independent of each other,

otherwise certain reducibility relations must be taken into account.
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• REDUCED PHASE SPACE METHOD

Since the constraint surface is made up by gauge orbits generated by the first

class constraints φa, the idea is to pick a representative from each gauge orbit by

using suitable gauge fixing functions F a = 0. In order to verify that the gauge is

properly chosen, one has to check if the set of constraints (φa, F
a) form a system

of second class constraints, which identify a “reduced phase space” embedded in

original phase space, as in figure (3.2). Then, one can use the corresponding

Figure 3.2: The reduced phase space is the intersection of the two sufaces. From [8]

Dirac brackets and solve the constraints explicitly to find a set of independent

coordinates of the reduced phase space. Canonical quantization now normally

proceeds by finding linear operators with commutation relations specified by the

Dirac brackets. This last step may be not so obvious because Dirac brackets in

the chosen coordinates of the reduced phase space might be complicated, anyway

Darboux’s theorem guarantees that canonical coordinates always exist locally.

• BRST METHOD

This is the most general method that allows for much flexibility in selecting gauge

fixing conditions. It encodes the use of Faddeev-Popov ghosts and the ensuing

BRST symmetry, originally found in the path integral quantization of Lagrangian

gauge theories: this method consists essentially in enlarging even further the phase

space by introducing ghosts degrees of freedom. In the full phase space one finds
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a symmetry, which is called “BRST symmetry”, that encodes the complete infor-

mation about the first class gauge algebra. The key property of this construction

is the nilpotency of a “BRST charge”, which generates the BRST symmetry, and

the associated concept of cohomology, used to select physical states and physical

operators.

• DIRAC METHOD

In this method, the space in which one works is the full phase space, thus it

is possible to take advantage of the canonical sympletic structure. Nevertheless,

physical configurations must lie on the constraints surface φa = 0. As Poisson

brackets are well-defined on the full phase space, it is possible to proceed with

canonical quantization, so one constructs operators acting on a Hilbert space for

all of the phase space variables. However, not all states of the Hilbert space are

going to be physical, for this reason the Hilbert space of all the states has no,

generally, positive norm. Classical first-class constraints φa turn into operators φ̂a,

which generate gauge transformations at the quantum level and are used to select

the vectors |ψph〉 of the Hilbert space that describe physical (i.e. gauge invariant)

configurations by requiring that a physical state |ψph〉 satisfies

φ̂a|ψph〉 = 0 ∀a = 1, 2...n (3.8)

It may happen that this requirement is too strong for certain theories, so that it

might be necessary to step back and require the weaker condition

〈ψ′ph|φ̂a|ψph〉 = 0 ∀a = 1, 2...n (3.9)

for arbitrary physical states belonging to the Hilbert space. These subsidiary con-

ditions has been used by Gupta and Bleuler in describing quantum electrody-

namics in the Lorenz gauge, for this reason this method is sometimes called the

“Dirac-Gupta-Bleuler” method. Having found the subspace of physical states in

the Hilbert space, one should be careful to define a proper scalar product between

them (this usually requires the use of some gauge fixing functions), so that the

subspace of physical states forms a “true” Hilbert space, ie with positive norm.
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3.2 Classical point particle

In this section, it will be analyzed a model that exhibits some features of General

Relativity’s canonical approach and quantization, but which is much easier to discuss,

which is the classical point particle.

The action for a point particle in classical mechanics can be written as:

S[q(t)] =

∫ t2

t1

dtL

(
q,
dq

dt

)
(3.10)

Where q(t) is the position function parametrized by the Newton’s “absolute time” t,

for simplicity it will be considered one single particle described by a time-independent

Lagrangian. We now formally elevate t to the rank of a dynamical variable by introducing

a time parameter τ that will be named “label time”: this is an example for an absolute

structure in disguise, as mentioned in the description of this Chapter.

The action (3.10) can then be rewritten in terms of q(τ) and t(τ) as:

S[q(τ), t(τ)] =

∫ τ2

τ1

dτ ṫL

(
q,
q̇

ṫ

)
≡
∫ τ2

τ1

dτL̃
(
q, q̇, ṫ

)
(3.11)

where derivatives with respect to τ are denoted by ˙ , and restriction to ṫ > 0 is made.

The Lagrangian L̃ possesses the important property that is homogeneous of degree one

in the velocities:

L̃
(
q, λq̇, λṫ

)
= λL̃

(
q, q̇, ṫ

)
(3.12)

where λ 6= 0 can be an arbitrary function of τ , thus it is more appropriate to write

λ(τ). For this reason, homogeneous Lagrangians lead to actions that are invariant under

time reparametrizations τ → τ̃ ≡ f(τ), which means that they can be written as a

τ̃ -integral over the same Lagrangian depending, now, on dq/dτ . Thus, it turns out that

homogeneity is equivalent to reparametrization invariance, assuming ḟ > 0, we express

the action in the following way:

S =

∫ τ2

τ1

dτL(q, q̇) =

∫ τ̃2

τ̃1

dτ̃

ḟ
L

(
q,
dq

dτ̃
ḟ

)
=

∫ τ̃2

τ̃1

dτ̃L

(
q,
dq

dτ̃

)
(3.13)

where the property (3.12) has been used. The canonical momentum for q is found from

(3.11), which coincides with the momentum corresponding to (3.10), to read:

p̃q =
∂L̃

∂q̇
= ṫ

∂L

∂
(
q̇
ṫ

) 1

ṫ
=

∂L

∂( q̇
ṫ
)

= pq (3.14)
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The main difference between (3.10) and (3.11) lies in the fact that associated to the

latter there’s also a momentum canonically conjugated to t, which has been elevated to

the rank of dynamical variable:

pt =
∂L̃

∂ṫ
= L

(
q,
q̇

ṫ

)
+ ṫ

∂L
(
q, q̇

ṫ

)
∂ṫ

= L

(
q,
dq

dt

)
− dq

dt

∂L(q, dq/dt)

∂(dq/dt)
= −H (3.15)

where H is the Hamiltonian corresponding to the action (3.10) that can be obtainend, as

usually, with a Legendre transformation and it is assumed that the latter has the usual

form H = p2
q/2m+ V (q).

The Hamiltonian belonging to L̃ is found again by a Legendre transformation as:

H̃ = pq q̇ + ptṫ− L̃ = ṫ(H + pt) (3.16)

This Hamiltonian is constrained to vanish because of (3.15), which establishes that that

t and −H are canonically conjugate pairs.

We now introduce a new quantity called Super-Hamiltonian, defined as:

HS ≡ H + pt (3.17)

for which we find the following constraint, whose existence is a consequence of the

reparametrization invariance (i.e. homogeneity in the velocities) with respect to τ :

HS ≈ 0 (3.18)

As in the previous section of this Chapter, the symbol ≈ defines a subspace in phase

space and can be set to zero only after all Poisson brackets have been evaluated. As

will be examinated in Chapter 5, there’s an analogue to (3.17) and (3.18) in General

Relativity, but in contrast to here all momenta will occur quadratically. One can now

use, instead of (3.10), the new action principle:

S =

∫ τ2

τ1

dτ(pq q̇ + ptṫ−NHS) (3.19)

where all quantities have to be varied, and N has been formally introduced as Lagrange

multiplier, for which the variation of S with respect to the latter just yelds the constraint

(3.18). From Hamilton’s equations and (3.17), one finds

ṫ =
∂(NHS)

∂pt
= N (3.20)
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N is called lapse function because it gives the rate of change of Newton’s time t

with respect to label time τ . The concept of lapse function will be very useful for

the parametrized field theories, which will be analyzed later.

Given an homogeneous Lagrangian in the velocities L(q, q̇) for which one has L(q, λq̇) =

λL(q, q̇), it turns out that the canonical Hamiltonian reads:

Hc =
∂L(q, q̇)

∂q̇
q̇ − L = λ−1

(
∂L(q, λq̇)

∂(λq̇)
λq̇ − L(q, λq̇)

)
= λ−1Hc (3.21)

and Hc vanishes (as we have seen for (3.16)), since λ is an arbitrary function of τ .

It is very important to discuss the concept of deparametrization, that is, the identifica-

tion of a distinguished time-like variable when it is possible. In this example, although

Newton’s time has been mixed amongst the other dynamical variables, it can easily be

recovered, for its momentum pt enters linearly into the super Hamiltonian definition

(3.17). Therefore, one can trivially solve (3.18) to find pt = −H, choose (“fixing the

gauge”) the label τ = t and find from (3.19):

S =

∫
dt

(
pq
dq

dt
−H

)
(3.22)

which is the Hamiltonian form of the standard action (3.10). As previously mentioned, in

General Relativity all momenta occur quadratically, this leads to the interesting question

whether a deparametrization for General Relativity is possible.

We now add first-class constraints φa to the action (3.22) with Lagrange multipliers λa:

S =

∫
dt

(
pq
dq

dt
−H − λaφa

)
(3.23)

Therefore, the time evolution of an arbitrary function of the position and momentum

A(q, p) reads

Ȧ(q, p) = {A,H}+ λa{A, φa} (3.24)

As first-class constraints generate gauge transformations, it turns out that the latter

introduce an arbitrariness into the time evolution. It is possible to obtain the infinitesimal

“gauge transformation”:

δA = ∆τ(λ(1)
a (0)− λ(2)

a (0)){A, φa} ≡ ωa{A, φa} (3.25)
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and so we can definitely write:

δA = ωa{A, φa} (3.26)

The previous equation represents the gauge transformations on the “constraint hyper-

surface” Γc in phase space, generated by the constraints, discussed in the last section.

Functions A(q, p) for which {A, φa} ≈ 0 holds are sometimes called “observables”, in fact

they they do not change under a gauge transformation, but it is important to emphasize

that there is no a priori relation between these observables and observables in an oper-

ational sense. This “observables” notion was historically introduced by Bergmann, in

the hope that these quantities might play the role of the standard observables in quan-

tum theory. 0n order to select one physical representative amongst all equivalent gauge

configurations, one frequently employs “gauge conditions”, which should be generally

chosen in such a way that there is no further gauge freedom left and that any system’s

configuration can be transformed in one satisfying the gauge.

QUANTIZATION

In order to quantize a system given by a constraint such as (3.18), we can use the Dirac

method (1964) previously described, which essentially consists in implementing a classical

constraint in the quantum theory as a restriction on physically allowed wave functions.

Using the coordinate representation, obtained by considering the eigenstates |x〉 of the

position operator x̂, that satisfy x̂|x〉 = |x〉x with x a real number, and projecting the

various states of the Hilbert space onto them to identify the wave functions, one finds

the familiar way of realizing quantum mechanics as wave mechanics. Thus, using the

wave functions in the position representation (instead of the Dirac notation, which was

used to discuss the Dirac method), (3.18) is translated into

ĤSψ = 0 (3.27)

The q̂ are represented by multiplication with q and the momenta p̂ by derivatives

−i~∂/∂q, for the parametrized particle, this includes also p̂t = −i~∂/∂t since we treated

t as dynamical variable. Therefore the quantum version of the constraint (3.18) is, re-

membering (3.17), (
Ĥ − i~ ∂

∂t

)
ψ(q, t) = 0 (3.28)
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which is the Schroedinger equation.

It is important to emphasize that t is not a dynamical variable in quantum mechanics:

time cannot be represented by an operator because it would be in contradiction with

the boundedness of energy. This is the consequence of having an absolute structure in

disguise: in quantum theory framework, in spite of its formal appearance as a quantum

variable, it remains an absolute structure.

3.3 Relativistic particle

Let us now study the action for a free relativistic particle, in natural units, with mass

m 6= 0. By definition it must be consistent with Lorentz invariance and, more generally,

with transformations of the Poincarè group, thus its action can be write as proportional

to the total proper time (which is a relativistic invariant, as it measures the invarianth

lenght of the wordline) along its wordline:

S = −m
∫ s2

s1

ds (3.29)

In order the express this action in a different way, one could use different approaches

according to which one is more convenient for the actual purpose. We will use the

four dynamical variables xµ, which form a four-vector. Of course one of latters (or more

generally one combination of them) will have to be redundant, so to guarantee equivalence

with the same action [7] expressed in the inertial frame with coordinates xµ = (x0, xi) ≡
(t, xi), in which the position xi(t) and time t are considered as “distincted” variables and

only the first are dynamical:

S[xi(t)] = −m
∫
dT0 = −m

∫ √
1− ẋi(t)ẋi(t) (3.30)

This is possible, but according with the previous example local symmetries (gauge sym-

metries) occur. It is achieved in the following way: we indicate by xµ(τ) the dynamical

variables which describe the worldline traveled by the particle in terms of an arbitrary

parameter τ , thus the action is geometrically the same as before (proportional to the

proper time), but now it takes the form of a functional of four variables

S = −m
∫ τ2

τ1

dτ
√
−ẋ2 ≡

∫ τ2

τ1

dτL (3.31)
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where ẋµ ≡ dxµ/dτ and tangent vector to the wordline is time-like, so ηµν ẋ
µẋν < 0. The

action is clearly homogeneous in the velocities and therefore (as it has been established in

the discussion of the classical point particle) there’s invariance under the reparametriza-

tion τ → f(τ).

The canonical momenta can be obtained as

pµ =
∂L

∂ẋµ
=

mẋµ√
−ẋ2

(3.32)

From the previous equation it turns out that the momenta satisfie the “mass-shell con-

dition”:

p2 +m2 = 0 (3.33)

This is a constraint in the phase space and thus should be more properly written, ac-

cording to the notation introduced by Dirac and previously discussed, as

p2 +m2 ≈ 0 (3.34)

Because of reparametrization invariance, the canonical Hamiltonian vanishes

Hc = pµẋ
µ − L =

mẋµ√
−ẋ2

ẋµ +m
√
−ẋ2 = 0 (3.35)

Because of the relation (3.33), it is possible to show that:

Hc(x, p) = ẋ0(−p0 +
√
~p2 +m2) ≈ 0 (3.36)

where the positive square root p0 =
√
~p2 +m2 must be chosen in order to render the

energy positive. We thus find again the the canonical Hamiltonian vanishes because of

the reparametrization invariance of the action, which arises having elevated t to the rank

of dynamical variable by the introduction of τ .

In this example we can define the Super-Hamiltonian to be:

HS ≡ ηµνpµpν +m2 ≈ 0 (3.37)

which is constrained to vanish. One can now transform the action into Hamiltonian

form:

S =

∫ τ2

τ1

dτ(pµẋ
µ −NHS) (3.38)
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To interpret the Lagrange multipler N one can use the Hamilton’s equations

ẋ0 =
∂(NHS)

∂p0

= −2Np0 (3.39)

to give

N =
ẋ0

2
√
~p2 +m2

=
ẋ0

2mγ
=

1

2m

ds

dτ
(3.40)

where γ is the relativistic factor.

So for the relativistic particle, in contrast to the classical case (3.20), the lapse function

N is proportional to the rate of change of proper time s, instead of x0, with respect to

parameter time τ (this ultimately depends on the choice of the super Hamiltonian we

have made). With regard to the Hamilton action (3.38), how x, p, and N must transform

under time reparametrizations in order to leave the action invariant?

Since the first class constraint HS generates gauge transformations in the sense of (3.26),

if we neglet the space-time indices and shall keep the formalism general, we find:

δx(τ) = ε(τ){x,HS} = ε
∂HS

∂p
(3.41)

δp(τ) = ε(τ){p,HS} = −ε∂HS

∂x
(3.42)

To show how does N transform, we calculate

δS =

∫ τ2

τ1

dτ(ẋδp+ pδẋ−HSδN −NδHS)

The last term is zero, and partial integration of the second term leads to

δS =

∫ τ2

τ1

dτ

(
−ε∂HS

∂x
ẋ− ε∂HS

∂p
ṗ−HSδN

)
+

[
pε
∂HS

∂p

]τ2
τ1

In order that only a surface term remains, one has to choose

δN(τ) = ε̇(τ) (3.43)

Because of the Hamilton equations this leads to

δS =

[
ε(τ)

(
p
∂HS

∂p
−HS

)]τ2
τ1
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Since the term in brackets is p2 −m2 6= 0, one must demand

ε(τ1) = 0 = ε(τ2) (3.44)

thus, boundaries must not be transformed in order to have δS = 0. It is important to

underline that the restriction (3.44) only holds if the action is an integral over the La-

grangian without additional boundary terms (if appropriate boundary terms are present

in the action principle, one can relax the condition on ε). Also for the relativistic particle

is possible to fix the gauge, if the latter is independent of the lapse function N , it is called

canonical gauge, otherwise it is called non-canonical.

• CANONICAL GAUGE

We first consider a canonical gauge. It can be written as:

χ(x, p, τ) ≈ 0 (3.45)

An example of this kind of gauge is the same used in the deparametrization of the

non-relativistic particle, which was x0 − τ ≈ 0. A potential problem is that (3.45)

holds at all times, including the endpoints, and may be in conflict with (3.44).

Since there is no gauge freedom at the endpoints, χ ≈ 0 could restrict physically

relevant degrees of freedom. For reparametrization-invariant systems, a canonical

gauge must depend explicitly on τ . From the condition that (3.45) be invariant

under time evolution:

0 ≈ dχ

dτ
=
∂χ

∂τ
+N{χ,HS}

we see from the last equation that a τ -independent gauge χ would lead to the

unacceptable value N = 0, freezing the motion, while for the gauge to break the

reparametrization invariance generated by HS, {χ,HS} must be non vanishing. In

the case of relativistic particle, this yelds

0 ≈ ∂χ

∂τ
+N

∂χ

∂xµ
∂HS

∂pµ
=
∂χ

∂τ
+ 2Npµ

∂χ

∂xµ

for the example x0 − τ ≈ 0, one has N = 1
2p0

in accordance with (3.40). One can

look for an equation of second order in ε (since there are two conditions (3.44))

in order to avoid potential problems with the boundary. Since x and p transform

proportional to ε, it would be necessary to involve ẍ or p̈, which would render the

action functional unnecessarily complicated.
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• NON-CANONICAL GAUGE

Since (3.43) is valid and, as seen for the canonical gauge, looking for equation of

second order in ε would complicate the expression of S, it is possible to choose the

“non-canonical gauge”:

Ṅ = χ(p, x,N) (3.46)

In Electrodynamics, for example, A0 plays the role of N and thus the Lorentz

gauge ∂µA
µ = 0 is a non-canonical gauge, whereas the Coulomb gauge ∂kA

k = 0

would be an example of a canonical gauge.

As final remark, we emphasize that if boundary terms (which can be determine once

the equation of motion are solved) are present in the action, one can even choose τ -

independent caonical gauges (an extreme choice would be x0(τ) = 0 for all τ).

QUANTIZATION

If we apply Dirac’s quantization rule on the classical constraint (3.37) we get

ĤSψ(xµ) ≡ (−~2∂µ∂µ +m2)ψ(xµ) = 0 (3.47)

This is the Klein-Gordon equation for one relativistic spinless particle in quantum me-

chanics, therefore we conclude that the Klein-Gordon equation is obtained by quantizing

canonically the relativistic partice (this is known as the “first quantization” of the rela-

tivistic particle). It is important to emphasize that the classical parameter τ has totally

disappeared since particle trajectories, because of the Heisenberg uncertainty principle,

do not exist in quantum theory.

3.4 Parametrized field theories

Parametrized field theories can be considered as a possible generalization of the

parametrized non-relativistic particle previously discussed. We introduce this class of

theories by defining standard inertial coordinates Xµ ≡ (T,Xa) and a real scalar field

in Minkowski space φ(Xµ). Now it is convenient to introduce arbitrary coordinates

xµ ≡ (t, xa) and let the Xµ depend parametrically on xµ, the latter are in general curved
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coordinates. The relation between Xµ and xµ is analogue, rispectively, to the relation

between t and τ discussed in the example of the classical point particle. The functions

Xµ(xν) describe a family of hypersurfaces in Minkowski space parametrized by x0 ≡ t

(we shall restrict ourselves to the space-like case).

The standard action for a scalar field can be rewritten in terms of the arbitrary coordi-

nates xµ as:

S =

∫
d4XL

(
φ,

∂φ

∂Xµ

)
≡
∫
d4xL̃ (3.48)

where

L̃(φ, φ,aφ̇;Xµ
,a, Ẋ

µ) = JL
(
φ, φ,ν

∂xν

∂Xµ

)
(3.49)

and J denotes the Jacobi determinant of the X with respect to the x:

J = ερνλσ
∂Xρ

∂x0

∂Xν

∂x1

∂Xλ

∂x2

∂Xσ

∂x3
(3.50)

The notation used in (3.49) is φ̇ ≡ dφ/dt, φ,a ≡ dφ/dxa. Before calculating directly

the momentum canonically conjugate to Xµ, it is more convenient to consider first the

Hamiltonian density H̃ corresponding to L̃ with respect to φ, which is:

H̃ = p̃φφ̇− L̃ = J
∂L
∂φ̇

φ̇− JL = J
∂x0

∂Xµ

(
∂L

∂(∂φ/∂Xµ)

∂φ

∂Xν
− δµνL

)
Ẋν

≡ J
∂x0

∂Xµ
T µνẊ

ν

(3.51)

Where the notation is again: Ẋν = dXν/dt = ∂Xν/∂t = ∂Xν/∂x0.

To show that both J and T µν do not depend on the “kinematical velocities” Ẋµ, one can

obtain from (3.50) the following relation

J
∂x0

∂Xµ
= εµνλσ

∂Xν

∂x1

∂Xλ

∂x2

∂Xσ

∂x3

which is just the vectorial surface element on t = constant, that does not depend on

the Ẋµ and, for the same reason, the energy-momentum tensor does not depend on

these velocities. As a generalization of (3.16) and (3.18), it is possible to introduce the

kinematical momenta Πν via the constraint

Hν ≡ Πν + J
∂x0

∂Xµ
T µν ≈ 0 (3.52)
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Taking the action

S =

∫
d4x(p̃φφ̇− H̃) (3.53)

Inserting the expression (3.51) and adding the constraints (3.52) with Lagrange multi-

pliers N ν , one gets the action principle

S =

∫
d4x(p̃φφ̇+ ΠνẊ

ν −N νHν) (3.54)

This result, which is the analogue of (3.19), can be also obtained by defining the kine-

matical momenta directly from (3.49)

We can decompose (3.52) into components orthogonal and parallel to the hypersurfaces

x0 = constant, for this purpose we introduce the normal vector nµ and the tangential

vectors Xν
,a to the latters. We have the following relations

ηµνn
µnν = −1 (3.55)

nνX
ν
,a = 0 (3.56)

Furthermore, with the previous decomposition, we now see that (3.52) is turned into the

constraints:

H⊥ ≡ Hνn
ν ≈ 0 (3.57)

Ha ≡ HνX
ν
,a ≈ 0 (3.58)

Which are called, respectively, Hamiltonian constraint and momentum constraint (of

diffeomorphism constraint). Decomposing in this way (3.52), we insert the constraints

(3.57) and (3.58) in the action (3.54), therefore we get

S =

∫
d4x(p̃φφ̇+ ΠνẊ

ν −NH⊥ −NaHa) (3.59)

To interpret the Lagrange multipliers N and Na one can vary this action with respect

to Πµ and from the relations (remembering (3.52)):

δH⊥
δΠµ

=
δ (Hνn

ν)

δΠµ

= nµ

δHa

δΠµ

=
δ
(
HνX

ν
,a

)
δΠµ

= Xµ
,a
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it is easy to obtain the following condition:

Ẋµ ≡ tµ = Nnµ +NaXµ
,a (3.60)

The relation between neighboured hypersurfaces identified by x0 ≡ t = constant is

the same as shown in figure (3.3), in which (3.60) is a vector that points from a point

with spatial coordinates xa on t = constant to a point with the same coordinates on a

neighbouring hypersurface t + dt = constant. N represents the pure temporal distance

between the hypersurfaces and it is called lapse function: this the same terminology used

for the classical point particle (because of the analogy between the physical meaning,

remembering the analogy between Xµ and xµ with t and τ). Similarly, Na is called shift

vector, it points from the point with coordinates xa on t = constant to the point on the

same hypersurface from which the normal is erected to reach the point with the same

coordinates xa on t + dt = constant. One can choose an arbitrary curved back-ground

Figure 3.3: The geometric interpretation of the lapse function and the shift vector for

the parametrized field theories. From [4]

for the embedding instead of Minkowski space (and this will be the General Relativity

case), denoting by hab the spatial metric obtained according to

hab = gµν
∂Xµ

∂xa
∂Xν

∂xb
(3.61)
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it is possible to decompose the 4-dimensional line element as follows

ds2 = gµνdx
µdxν = −N2dt2 + hab(dx

a +Nadt)(dxb +N bdt)

= (habN
aN b −N2)dt2 + 2habN

adxbdt+ habdx
adxb

(3.62)

As one can verify by direct inspection, the action (3.59) is invariant under the following

reparametrizations

x0 → x0′ = x0 + f(xa) (3.63)

xa → xa
′
= g(xb) (3.64)

with arbitrary functions f and g which obey standard differentiability conditions. This

is not equivalent to the full set of space-time diffeomorphisms.



Chapter 4

Causal Structure and Initial Value

Formulation

In General Relativity, the causal structure of space-time is locally of the same quali-

tative nature as in the flat Minkowski space-time, which is the framework of the Special

Relativity theory. Otherwise, significant differences can occur globally because of non-

trivial topology, space-time singularities or “twisting of the directions” of the light cones.

The purpose of the first part of this Chapter is to give an account of the definitions and

basic results concerning the causal structure of space-times in General Relativity.

The second part aims to establish the precise criteria and mathematical meaning of well

posed initial value formulation. This concept depends, generally, on the type of theory

considered, thus this discussion only aims to establish the conceptual bases that will

allow us to show that General Relativity admits a well posed inital value formulation

(the latter will be briefly analyzed in the next Chapter).

The discussion throughout this Chapter, in which the conventions of [6] are used, will

concern arbitrary space-times (M, gµν) and only in the next one (after the discussion of

the 3+1 decomposition) we will impose Einstein’s equations on gµν .

40
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4.1 Futures, Pasts and Causality Conditions

Let (M, gµν) be a space-time. At each event p ∈ M, we define the light cone of

p as the light cone passing through the origin of the tangent space Vp of p, which is

isomorphic to Minkowski space-time. In a non-simply connected manifold it may be not

possible to make a continuous designation of “future” and “past” as p varies overM. If

such a continuous choice can be made then (M, gµν) is said to be time orientable. Thus,

in a time orientable space-time one has the physical essential property to consistently

distinguish between the notions of going “forward in time” as opposed to “backward in

time”, in the following we will consider only time orientable space-times and will assume

that a continuous designation has made of the “future” and “past” halves of the light

cones at each point.

It is possible to show that for time orientable space-times always exists a smooth non

vanishing timelike vector field tµ on M, which is not unique in general and, conversely,

if a continuous time-like vector field can be chosen, then (M, gµν) is time orientable.

A differentiable curve λ(t) in a time orientable space-time is said to be a future directed

timelike curve if, at each p ∈ λ, the tangent tµ is a future directed (which means lying

in the “future half” of the cone) time-like vector.

The chronological future of p ∈M, denoted by I+(p), is defined as the set of events that

can be reached by a future directed timelike curve starting from p, I+(p) is always an

open subset of M. We now define, for any subset S ⊂M, I+(S) as

I+(S) =
⋃
p∈S

I+(p) (4.1)

and, since an arbitrary union of open sets is open, it follows I+(S) always is an open set.

Totally analogous definitions and properties apply to the chronological pasts I−(p) and

I−(S). In Minkowski space-time I+(p) consists precisely of the points that can be reached

by future directed time-like geodesics starting from p.

A differential curve λ(t) is said to be a future directed causal curve if, at each p ∈ λ,

tµ is either a future directed time-like or null vector. The causal future of p, denoted

by J+(p), is defined in the same way as I+(p) except that “causal curve” replace future

“directed time-like curve” in its definition.

Thus, we always have p ∈ J+(p). In flat space-times J+(p) is a closed set but in general
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space-times this may not be the case. It is possible to show that J+(p) must be closed

in any globally hyperbolic space-time. Again we define

J+(S) =
⋃
p∈S

J+(p) (4.2)

and define the causal pasts J−(p) and J−(S) analogously.

In order to discuss the global hyperbolicity of the space-time (that will be a fundamen-

tal request in order to discuss the 3+1 decomposition of Geeneral Relativity), we now

introduce the definition of achronal set : a subset S ⊂M is said to be achronal if there

do not exist p, q ∈ S such that q ∈ I+(p).

The following theorem, whose first half proof can be found in Hicks (1965) and the sec-

ond part in [29], establishes that locally in arbitrary space-times I+(p) consists of the

points that can be reached by future directed time-like geodesics starting from p, while

the boundary İ+(p) is generated by the future directed null geodesics starting from p.

Theorem 4.1.1. Let (M, gµν) be an arbitrary space-time and let p ∈ M. Then there

exists an open set U with p ∈ U such that for all q, p ∈ U there exists a unique geodesic

γ connecting q and r that stays entirely within U .

Furthermore, for any such U , the chronological future I+(p)|U of p in the space-time

(U, gµν) consists of all points reached by future directed time-like geodesics starting from

p and contained within U , in addition İ+(p)|U is generated by the future directed null

geodesics in U emanating from p.

According to theorem (4.1.1), all space-times in General Relativity have locally the

same qualitative causal structure as in Special Relativity, but globally very significant

differences can occur, but this discussion is beyond our purposes.

The characterization that allows to formulate precise conditions on these space-times is

the strong causality condition: a space-time (M, gµν) is said to be strongly causal if for

all p ∈M and every neighborhood O of p, there exists a neighborhood V of p contained

in O such that no causal curve intersects V more than one. It is possible to construct

more sophisticated examples where strong causality is satisfied but a modification of

gµν in an arbitrarily small neighborhood of, at least, two points produces closed causal

curves.
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Thus, strong causality does not fully express the condition that one is not on the verge

of producing causality violation, this latter is expressed by the stronger notion of stable

causality, defined as follows.

Let tµ be a time-like vector at point p ∈M and define g̃µν at p by

g̃µν = gµν − tµtν (4.3)

where gµν is the space-time metric.

We define a space-time (M, gµν) to be stable causal if there exists a continuous nonva-

nishing time-like vector field tµ such that the space-time (M, g̃µν) possesses no closed

time-like curves. The light cone of g̃µν is strictly larger than that of gµν or, in other terms,

every time-like and null vector of gµν is a time-like vector g̃µν . The following theorem

shows that stable causality is equivalent to the existence of a global time function on the

space-time:

Theorem 4.1.2. A space-time (M, gµν) is stably causal if and only if there exists a

differentiable function f on M such that ∇µf is a past directed time-like vector field.

This greatly strenghtens the above suggestion that the requirement of stable causality

should suffice to rule out any causal pathologies, in addition we mention that a corollary

of the previous theorem establishes that stable causality implies strong causality.

In conclusion, stable causality appears to be the appropriate notion which expresses the

idea that a space-time is not “on the verge” of displaying bad causal behaviour.

4.2 Global Hyperbolicity

In this section, instead of focusing the attention on the collection of events I+(S)

or J+(S) that could be influenced by a set S of events, we shall be concerned with

the collection of events which are “entirely determined” by a closed and achronal set of

events S. There will be also explored some properties of space-times in which all events

are “determined” by an appropriate S.

Let S be a closed and achronal set, then we define the future domain of dependence of S,

denoted by D+(S), as the set of every p ∈ M for which every past inextendible causal
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curve through p intersects S. An example illustrating the nature of this set is given in

figure (4.1), in which the future Cauchy horizon of the achronal set S is defined as:

H+(S) = D+(S)− I−[D+(S)] (4.4)

Since from a physical point of view nothing can travel faster than light, if we are given

Figure 4.1: Space-time diagram showing the future domain of dependence D+(S) and

Cauchy horizon H+(S) of a particular closed achronal set S in Minkowski space-time

with a point removed. From [6]

appropriate information about “initial conditions” on S, we should be able to predict

what happens at p ∈ D+(S), thus the latter is of interest because any signal sent to

p ∈ D+(S) must have “registered” on S.

The domain of dependence of S, which represents the complete set of events for which

all conditions should be determined by a knowledge of conditions on S, is denoted by

D(S) and turns out to be defined as:

D(S) = D+(S)
⋃

D−(S) (4.5)

where D−(S) is the past domain of dependence of S and is defined analogously to D+(S)

(simply replacing “future” with “past”).

A closed achronal set Σ for which D(Σ) = M is called a Cauchy surface. We use the

term “surface” because it can be shown that every Cauchy surface is an embedded C0

submanifold of M and, since Σ is achronal, we may think of Σ as representing an “in-

stant of time” throughout the universe (this analogy it is useful in order to discuss the
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Hamiltonian formulation of General Relativity).

A space-time (M, gµν) which possesses a Cauchy surface Σ is said to be globally hyper-

bolic. In such a space-time, the entire future and past history of the universe can be

predicted or retrodicted from conditions at the instant of time represented by Σ. Con-

versely, in a non-globally hyperbolic space-time there’s a breakdown of predictability:

a complete knowledge of conditions at a single “instant of time” can never suffice to

determine the entire history of the universe. There are good reasons (see Penrose 1979)

for believing that all physically realistic space-times must be globally hyperbolic.

It is possible to show that if Σ is a Cauchy surface, then every inextendible causal curve

intersects Σ, furthermore, in a global hyperbolic space-time (M, gµν) with a Cauchy sur-

face Σ, no closed time-like curves can exist. In fact, it turns out that such a space-time is

always stable causal (of course, as a consequence, strong causality holds), as established

by the following theorem, which summarize the main results that will be essentially in

order to discuss the Hamiltonian formulation of General Relativity.

Theorem 4.2.1. Let (M, gµν) be a globally hyperbolic space-time. Then, (M, gµν) is

stably causal. Furthermore, a global time function f can be chosen such that each surface

of constant f is a Cauchy surface, therefore M can be foliated by Cauchy surfaces and

the topology of M is R× Σ, where Σ denotes any Cauchy surface

4.3 Initial Value Formulation

General Relativity asserts that space-time structure and gravitation are described by

a space-time (M, gµν), whereM is a four-dimensional manifold and gµν is a metric with

Lorentzian signature satisfying Einstein’s equations.

In classical physics, one has quite generally a great deal of physical control over initial

conditions of the system and, if the latter is allowed to evolve freely, then its behaviour

is completely determined by initial conditions. Although our pratical ability to con-

trol initial conditions in gravitational problems is far more limited, it seems natural

to believe that we should, in principle, be able to control the initial conditions of the

gravitational field and matter distribution (at least over regions much smaller than cos-

mological scales), perhaps subject to some constraints as in EM.
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Thus, unless General Relativity differs drastically from other theories of classical physics,

it should permit a physically reasonable specification of initial data, through which

the Einstein’s equations should determine the subsequent evolution (eventuallly sup-

plemented by additional equations for the matter).

A theory is said to possess an “Initial value formulation” if it can be formulated in or-

der to specify “appropriate initial data”, possibly subject to constraints, such that the

subsequent dynamical evolution of the system is uniquely determined. Anyway, even if

such a formulation exists, there remain further properties that a physically viable theory

should satisfy in order to exhibit a well posed initial value formulation. First, in order to

preserve the predictive power, “small changes” in initial data of the theory should pro-

duce only corresponding “small changes” in the solution over any fixed compact region

of space-time. Second, to preserve the framework of the theory and do not propagate

signals faster than light, changes in the initial data region S of the initial data surface

should not produce any changes in the solution outside the causal future J+(S) of this

region.

4.3.1 Initial value formulation of Particles and Fields

The Newton’s second law of motion in ordinary and non-relativistic particle mechan-

ics possesses the fondamental feature to relate the second time derivatives of spatial

position of particles to the force, which is usually a known function of the position and

velocity of the particles in the physical system.

Therefore, for a system of particles interacting with themselves and/or external poten-

tials with forces dependent on positions and velocities (but no on higher time derivatives

of the particle positions), the laws of mechanics take the form:

d2qi
dt2

= Fi

(
q1, ...qn;

dq1

dt
, ...

dqn
dt

)
(4.6)

where i = 1, ...n and n is the number of degrees of freedom of the system. From the

theory of differential equations (see Coddington and Levinson 1955), given arbitrary

initial values for the particle positions q10...qn0 and velocities (dq1/dt)0...(dqn/dt)0 at

t = t0, the system of n ordinary second order differential equations (4.6) for the n

quantities q1(t), ...qn(t) always possesses a unique solution, over a finite time interval
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about t0, with these initial values. Therefore, ordinary particle mechanics possess an

initial value formulation and it turns out that the latter is also well posed, since at fixed

time t the positions q1(t)...qn(t) are continuous functions of initial positions and velocities

of the particles and, in non-relativistic mechanics, the causal propagation of changes in

the initial data is not an issue.

If we consider the massive Klein-Gordon field φ, propagating in a flat Minkowski space-

time, which obeys the standard Klein-Gordon equation:

(�−m2)φ = 0 (4.7)

and we choose global intertial coordinates (x0, x1, x2, x3) ≡ (t, x, y, z), it is possible to

write this equation in the form

∂2φ

∂t2
=
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
−m2φ (4.8)

The mathematical structure of equation (4.8) is markedly different from that of (4.6):

the first one is a single partial derivatives differential equation, while the second one

turns out to be a system of ordinary differential equation. Nevertheless, the essential

content of (4.6) and (4.8) is quite similar. In fact, they both tell us how to compute

the second time derivative of the unknown quantity (or quantities) at an istant of time,

given the value and first time derivative of the quantity (or quantities) at that time.

Indeed one can heuristically view equation (4.8) as arising from the limit as N →∞ of

a system of N particles coupled by nearest neighbor harmonic oscillator interactions: in

this limit the index i goes over to the continuous label ~x and the finite set of variables

qi(t) satisfying equation (4.6) goes over to the field variable φ(~x, t) which satisfy (4.8).

From the previous mathematical and physical analogy between (4.8) and (4.6), we may

conclude that Klein-Gordon theory should have the initial value formulation which con-

sists in specifying the values of φ and ∂φ/∂t on a spatial hypersurface Σ0 of constant

(inertial) time t = t0, then there should exist a unique solution of (4.8) having this

initial data. Actually, if one considers only analytic initial data (i.e. when φ and ∂φ/∂t

are analytic functions on Σ0), by making use of the Cauchy-Kowaleski theorem [6] it is

possible to show that such a formulation exists for the Klein-Gordon theory.

In analogy to particle mechanics, the initial value of φ and its time derivative may be
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specified arbitrarily and these initial values determine the subsequent evolution of φ.

It is even possible to show, by using the linearity and other properties of the Klein-

Gordon equation, that the theory of the massive scalar Klein-Gordon field exhibits an

initial value formulation which is also well posed. The demonstration is quite sophisti-

cated and it requires to deeply analyze the structure of the Klein-Gordon equation, in

addition to using the flatness of the Minkowski space-time on which the theory is defined

[6].

In order to generalyze the above discussion for the Klein-Gordon field to our purpose,

we replace the Klein-Gordon equation in R4 by any equation on a generic manifold M
of the form:

gµν∇µ∇νφ+ Aµ∇µφ+Bφ+ C = 0 (4.9)

where Aµ is an arbirary smooth vector field, B and C are arbitrary smooth functions, ∇µ

is any derivative operator and gµν is an arbitrary smooth metric with Lorentz signature

such that the space-time (M, gµν) is globally hyperbolic, that is, it possesses a Cauchy

surface Σ on which initial data can be described to determine uniquely the whole space-

time.

A second order linear partial differential equation is said to by “hyperbolic” if and only

if it can be expressed in the form (4.9), such an equation will have a well posed initial

vale formulation for initial data (φ, nµ∇µφ) on any smooth, space-like Cauchy surface Σ,

where nµ is the unit normal to Σ. We will not give a proof of this result which, however,

it is not difficult to demonstrate after one has given a well posed initial value formulation

of the Klein-Gordon theory.

These results can be further generalized to system of equations, resulting in the following

theorem:

Theorem 4.3.1. Let (M, gµν) be a globally hyperbolic space-time, ∇µ be any derivative

operator and Σ be a smooth and space-like Cauchy surface. Consider the linear, diagonal

and second order hyperbolic system of n equations for n unknown functions φ1...φn of

the form:

gµν∇µ∇νφi +
∑
j

(Aij)
µ∇µφj +

∑
j

Bijφj + Ci = 0 (4.10)

Then, given arbitrary smooth initial data (φi, n
µ∇µφi) for i = 1...n on Σ, there exists a
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unique solution of the above system through M.

Furthermore, the solutions depend continuously on the initial data and a variation of the

latters outside of a closed substet S of Σ does not affect the solution in D(S).

A complete proof of this theorem, which tells us that the system of equations (4.10)

has a well posed initial value formulation, can be found in [29].

The last step that it is important to discuss, at this level and for our purpose, is the

generalization of (4.10) to some general and nonlinear systems of equations, for which

very few results about the initial value formulation has been successfully developed.

For a diagonal and hyperbolic system of n second order partial differential and quasilinear

(i.e. linear in the highest derivative term) equations

gµν(x;φj;∇ρφj)∇µ∇νφi = Fi(x;φj;∇ρφj) (4.11)

where each Fi is a smooth function of its variables, there’s an important theorem due

to Leray (1952), which we enounce (note that in (4.11) gµν is now permitted to depend

on the unknown variables and their first derivatives nd Fi now may have nonlinear

dependence on these variables).

Theorem 4.3.2. Let (φ0)1...(φ0)n be any solution of the quasilinear hyperbolic system

(4.11) on a manifold M and let (g0)µν = gµν(x; (φ0)j;∇ρ(φ0)j). Suppose (M, (g0)µν) is

globally hyperbolic and let Σ be a smooth space-like Cauchy surface for (M, (g0)µν). Then

for initial data on Σ sufficiently close to the initial data for (φ0)1...(φ0)n there exists an

open neighborhood O of Σ such that equation (4.10) has a solution φ1...φn in O and

(O, gµν(x;φj;∇ρφj)) is globally hyperbolic. The solution is unique in O, it propagates

causally and depends continuously on the initial data.

Thus the initial value formulation of (4.11) exists and it is also well posed on Σ, the

complete proof of this theorem can be found in Leray (1952) and [29].

After illustrating the 3+1 decomposition process of the space-time in the next Chapter,

starting from these results we will show that even General Relativity exhibits a well-posed

initial value formulation by casting the Einstein’s equations in the form (4.11).



Chapter 5

ADM Formalism

The purpose of this Chapter is to illustrate the ADM formalism, which essentially

is a Hamiltonian formulation of General Relativity (as it has been explained in the

introduction). While a Lagrangian formulation of a field theory is “space-time covariant”

and it consists in specifing an action functional of the field on the space-time manifold

(whose extremization yields the field equations), a Hamiltonian formulation of a field

theory requires a breakup of space-time into space and time.

The Hamiltonian formalism starts from the definition of a momentum variabile related

to a choice of a configuration variable:

p =
∂L

∂q̇
(5.1)

Since the latter requires a time coordinate, it is necessary to cast General Relativity

in a form where it exhibits a “distinguished” time. This step is achieved in the ADM

formalism by foliating the space-time, described by (M, g), into a set of three-dimensional

space-like hypersurfaces Σt, with t denoting the global time function and with coordinates

on each slice given by xi.

The dynamic variables of this formalism are taken to be the metric tensor of three

dimensional spatial slices hab and their conjugate momenta pab. Using these variables

it is possible to define a Hamiltonian, and thereby write the equations of motion for

General Relativity in the form of Hamilton’s equations. This approach is usually called

3+1 decomposition, while the covariance of the theory is preserved by allowing for the

possibility to consider all possible foliations of this type. We want to demand, as a

50
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necessary condition, that (M, g) be globally hyperbolic, in such a way it possesses a

Cauchy surface Σ on which initial data can be described to determine uniquely the whole

space-time (see Chapter 5). In this case, we’ll show (by setting the Einstein equations in

the form (4.11)) that classical initial value formulation make sense and the Hamiltonian

form of General Relativity can be constructed.

In this Chapter we will also analyze the Hamiltonian constraints that emerge in the ADM

formulation of General Relativity, with particular regard to the choice of configuration

space and the problem of determining the physical degrees of freedom of this theory. We

use conventions of [19].

5.1 The 3+1 Decomposition of General Relativity

As we have shown, for such a globally hyperbolic space-time (M, g) there exists a

global time function f such that each surface f = constant is a Cauchy surface, therefore

(M, g) can be foliated into Cauchy hypersurfaces and its topology (which is fixed) results

as a direct product:

M∼= R× Σ (5.2)

It is worthwhile to emphasize that if the manifold Σ is supposed to be compact, the

previous topology is the same of a closed universe. In quantum theory, topology change

may be a viable option, thus its absence in the formalism could be a possible weakness

of the canonical approach, nevertheless the resulting quantum theory is general enough

to cope with many of the intersting situations. A more general formulation allowing

topology change to occur, in principle, is the path integral approach [4].

The vector field “flow of time” corresponding to the global time function t is denoted by

tµ and it is chosen in order to satisfie tµt,µ = 1, this vector field can be interpreted as

describing the “gloabl” flow of time and can be used to identify each Σt with the initial

surface Σ. In order to view dynamical evolution as the change of fields on the fixed

manifold Σ it is convenient to choose a time-independent volume element on Σt [6].

So, we have introduced a time function t and a vector field tµ on a space-time such that

the surfaces Σt of constant t are space-like Cauchy surfaces. It is important to underline

that one cannot interpret t and tµ in terms of physical measurements using clocks until
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one knows the space-time metric, which turns out to be the unknown field variable in

Einstein’s equations.

Introducing nµ and Xν
,a as, rispectively, the normal vector and tangential vectors to the

space-like hypersurfaces Σt characterized by x0 ≡ t = constant, the relation between

neighboured Cauchy hypersurfaces Σt into which space-time is foliated is the same as

shown in figure (3.3) seen in the description of the parametrized field theories, were tµ

was written as Ẋµ. The space-time metric gµν induces a three-dimensional Riemannian

spatial metric on each Σt according to:

hµν = gµν + nµnν (5.3)

where the unit normal nµ satisfies:

nµnµ = −1 (5.4)

Xµ
,anµ = 0 (5.5)

Multipliyng (5.3) with Xµ
,aX

ν
,b and application of Xµ

,anµ = 0 leads to:

hab = gµν
∂Xµ

∂xa
∂Xν

∂xb

which is nothing but (3.61).

In fact, hµν is a three-dimensional object only, since it acts as a projector on Σt and we

shall write for it hab, since there is an isomorphism between tensor fields onM that are

orthogonal to nµ in each index and tensor fields on Σt. The three-dimensional metric

satisfies:

hµνn
ν = 0 (5.6)

hµνh
νρ = hρµ (5.7)

The last equation can be also expressed as habhbc = δac .

As in (3.60), it is convenient to decompose the vector field tµ into its normal and tan-

gential components with respect to the surfaces Σt:

tµ = Nnµ +Nµ (5.8)

where N is the lapse function and Nµ is the shift vector, the latter was previously written

as NaXµ
,a, as for the metric induced on each Σt, N

µ is a three dimensional object and it
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can be identified with Na. The lapse function can be written as N = −tµnµ, from which

one can infer:

N = −tµnµ =
1

nµt,µ
(5.9)

As for the relativistic particle example, one can interpret the previous equation as the

ratio between proper time, given by tµt,µ = 1 and coordinate time nµt,µ. Thus, N

measures the rate of flow of proper time with respect to coordinate time as one moves

normally to Σt, whereas Nµ measures the amount of tangential “shift” to Σt contained

in the time flow vector field (5.8):

Nµ = hµνt
ν (5.10)

The four-metric gµν can be decomposed, from (5.3) and (3.62), into spatial and temporal

components as:

gµν =

(
NaN

a −N2 Nb

Nc hab

)
(5.11)

Its inverse can be found as:

gµν =

(
− 1
N2

Nb

N2

Nc

N2 hab − NaNb

N2

)
(5.12)

Here, hab is the inverse of the three-dimensional metric, and one recognizes that the

spatial part of gµν is not identical with hab but contains an additional term that involves

the shift vector Na. The components of the normal vector can be also expressed, by

using (5.12) and the one-from nµdx
µ = −Ndt, as:

nµ =

(
1

N
,−

~N

N

)
(5.13)

nµ = (−N, 0, 0, 0) (5.14)

The various hypersurfaces Σt can be identified by a diffeomorphism that is generated

by the integral curves of tµ, which can be interpreted as the “flow of time” throughout

space-time. If we identify the hypersurfaces Σ, Σt by the diffeomorphism resulting from

following integral curves of tµ, we may view the effect of moving forward in time as that

of changing the spatial metric on an abstract three-dimensional manifold Σ from hab(0)
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to hab(t), therefore we may view a globally hyperbolic space-time (M, g) as representing

the time development of a Riemannian metric on a fixed three-dimensional manifold.

This suggests the use of the spatial three-dimensional metric hab on a three-dimensional

hypersurface as the appropriate dynamical variables for the canonical formalism in

General Relativity (the lapse function N and the covariant form of the shift vector

Na = habN
b are not dynamical, since they only prescribe how to “move forward in time”

and strictly speaking they are Lagrange multipliers, as we shall see, thus they are arbi-

trary). One can otherwise consider, as we shall do in order to discuss the Lagrangian

formulation of General Relativity, the inverse metric gµν as field variable.

From (5.12) one can see that information contained in (hab, N,Na) is equivalent to that

one contained in gµν (further motivation for viewing the spatial metric as the dynamical

variable in General Relativity will arise in the Hamiltonian formulation): space–time

then becomes nothing but a “trajectory of spaces”.

There is even no need to assume from the beginning that Σ is embedded in some

space–time, only after solving the equations of motion we can interpret hab(t) as be-

ing brought about by “wafting” through M via a one-parameter family of embeddings.

Thus, we would expect appropriate initial data to consist of the Riemannian metric hab

and it is “time derivative” or “velocity” on the three-dimensional manifold Σ. In order to

Figure 5.1: A space-time diagram illustrating the notion of the extrinsic curvature of a

hypersurface Σ. From [4]

introduce the corresponding “velocity” for hab, we first consider the Extrinsic curvature

or Second fundamental form tensor field:

Kµν ≡ h ρ
µ ∇ρnν (5.15)
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where ∇µ = gµν∇ν is the covariant derivative, that acts on a generic tensor T µσλ defined

in every point of (M, g) as:

∇ρT
µσ
λ =

∂T µσλ
∂xρ

+ ΓµρνT
νσ
λ + ΓσρνT

µν
λ − ΓkλρT

µσ
k (5.16)

Since Kµνn
µ = 0 = Kµνn

ν , the tensor field Kµν is a purely spatial quantity and can be

mapped to its spatial version Kab (with indices being moved by the three-metric hab).

The extrinsic curvature Kµν of the C2 space-like hypersurface Σ represents a well-defined

notion of the “time derivative” of the spatial metric on a hypersurface Σ embedded in

space-time. One can prove, using Frobenius’ theorem for the hypersurface orthogonal

vector field nµ, that this tensor field is symmetric, Kµν = Kνµ. Its geometric interpre-

tation in terms of the “bending” of Σ in space-time can be inferred from figure (5.1).

Consider the normal vectors at two different points P and Q of a hypersurface Σ. Be

ñµ the vector at P resulting from parallel transporting nµ along a geodesic from Q to P.

The difference between nµ and ñµ is a measure for the embedding curvature of Σ intoM
at P. One therefore recognizes that the tensor field Kµν can be used in order to describe

this embedding curvature, since it vanishes for ñµ = nµ. Kµν or, equivalently, Kab can be

interpreted as the “velocity” associated with hab while its trace K ≡ K a
a = habKab ≡ θ

can be interpreted as the “expansion” of a geodesic congruence orthogonal to Σ (in cos-

mology, for a Friedmann universe K is three times the Hubble parameter).

These considerations suggest that in General Relativity, appropriate initial data should

consist of a triple (Σ, hab, Kab), where Σ is a three-dimensional manifold, hab is the Rie-

mannian metric on Σ and Kab is a symmetric tensor field on the same hypersurface.

In the hyperbolic space-time (M, gµν) in which is defined a smooth space-like hyper-

surface Σ on which the induced metric is hab, let Da denote the derivative operator

associated whith hab (as ∇a is the derivative operator associated with gab), an important

theorem [6] states that hab uniquely determines this “natural” derivative operator on

the hypersurfaces which foliate the space-time. Furthermore, the derivative operator Da

on Σ gives rise to a curvature three-dimensional tensor (3)R d
abc on Σ, which is defined

analogously to R σ
µνρ in (M, gµν), with ∇µ replaced by Da and gµν replaced by hab.

Now we will establish some useful relations between the space-time metric, derivative

operator, curvature and the corresponding quantities they induce on a space-like hyper-

surface Σ embedded in (M, gµν): we obtain now formulas relating Da and (3)R d
abc to
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four-dimensional quantities. This step will be fundamental in order to show that General

Relativity exhibits a well-posed initial value formulation, because it will make possible to

use as dynamical variables the quantities (Σ, hab, Kab) on the hypersurfaces parametrized

by t.

Let vµ be a (space-time) vector at a point p ∈ Σ. We may uniquely decompose vµ into

components tangent to and perpendicular to Σ via

vµ = v⊥n
µ + vµ‖ (5.17)

where nµ is the unit normal to Σ, so it turns out that vµ‖nµ = 0.

If v⊥ = 0 so that vµ = vµ‖ , we may view vµ as a vector lying in the tangent space to Σ at

p. The condition that v⊥ = 0 is equivalent to

vµ = hµνv
ν (5.18)

where hµν is given by (5.3) and the first index of hab is raised by gab.

More generally, we may view a space-time tensor T a1...akb1...bl at p ∈ Σ as a tensor over

the tangent space to Σ at p if

T a1...akb1...bl = ha1c1 ...h
ak
ck
h d1
b1
...h dl

bl
T c1...ck d1...dl (5.19)

Conversely, any tensor defined at point p on the manifold Σ uniquely gives rise to a

space-time tensor at p (i.e. a tensor over the tangent space to M at p) which satisfies

previous equation. Thus, as it has been already emphsized, hab plays the role of a pro-

jection operator from the tangent space to M at p to the tangent space to Σ at p.

Let T a1...akb1...bl be a tensor field on the manifold Σ: if we view T a1...akb1...bl as a space-time

tensor satisfying (5.19), we still cannot define ∇cT
a1...ak

b1...bl
since, in order to calculate

this quantity, we would need to know how T a1...akb1...bl varies as we move off of Σ. How-

ever, h c
d ∇cT

a1...ak
b1...bl

is well defined since, for this quantity, no derivatives in directions

pointing out of Σ are taken. This latter tensor doesn’t need to satisfy equation (5.19),

but we can project its indices using hab to obtain a tensor field on Σ.

It can be shown [6] that Da acts on T a1...akb1...bl as:

DcT
a1...ak

b1...bl
= ha1d1 ...h

el
bl
h f
c ∇fT

d1...dk
e1...el

(5.20)
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where ∇a is the derivative operator associated with gab. Furthermore, since ∇dgef = 0

and habn
b = 0, we have

Dahbc = h d
a h

e
b h

f
c ∇d(gef + nenf ) = 0 (5.21)

From (5.20) one can derive that the Gauss equation generalized to higher dimensions is:

(3)R ρ
µνλ = h µ′

µ h ν′

ν h λ′

λ hρ ρ′R
ρ′

µ′ν′λ′ −KµλK
ρ

ν +KνλK
ρ

µ (5.22)

and a similar calculation leads to the so called generalized Codazzi equation:

DµKνλ −DνKµλ = h µ′

µ h ν′

ν h λ′

λ Rµ′ν′λ′ρn
ρ (5.23)

In the much simpler case of a two-dimensional hypersurface embedded in three dimen-

sional flat euclidean space, (5.22) is the famous “theorema egregium” of Gauss.

In 3+1 dimensions, however, the situation is more complicated. Now we calculate:

Kab =
1

2
(nc∇chab + hac∇bn

c + hcb∇an
c)

=
1

2N
(Nnc∇chab + hac∇b(Nn

c) + hcb∇a(Nn
c))

(5.24)

So, in terms of lapse and shift, the extrinsic curvature can be written as:

Kab =
1

2N

(
ḣab −DaNb −DbNa

)
(5.25)

We shall see that the components of the canonical momenta are obtained by a linear

combination of the Kab: this is reason why we specified in the introduction to this

Chapter that the dynamic variables of this formalism are tipically taken to be the metric

tensor of three dimensional spatial slices and their conjugate momenta.

5.2 Lagrangian formulation of General Relativity

We have introduced the mathematical structures that allow us to illustrate the La-

grangian formulation of the General Relativity in order to derive the field equations

(1.1), whose can be determined by an action principle. The action for a gravitational

field must be expressed by a scalar integral extended to all the space with respect to the
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spatial coordinate (x1, x2, x3) and collocated between two given values with respect to

the time coordinate x0, furthermore the integrand of the action must not contain second

or higher order derivatives of gµν in order to satisfie the general requirements, that we

have mentioned in the first Chapter, for the field equations.

The formalism of General Relativity can thus be defined by the Einstein - Hilbert

action:

SE−H =
c4

16πG

∫
M

d4x
√
−g(R− 2Λ)− c4

8πG

∫
∂M

d3x
√
hK (5.26)

The integration in the first integral of (5.26) covers a regionM of the space-time manifold,

while the second integral is defined on its space-like boundary ∂M , in both the integrals

the invariant measure is understood as d4x
√
−g = d4x

√
−det(gµν)

As we have seen, the space-like nature of the boundary ∂M implies that what happens

on a point on this surface is determined by the initial conditions on the surface itself

in the past and in the future. We have also specified that a curved space which is not

globally hyperbolic does not admit space-like (i.e. Cauchy) surfaces. The second term

in (5.26), in which h is the determinant of the three dimensional metric on the boundary

and K is the trace of the second fundamental form, is necessary in order to obtain a

consistent variational principle as noticed by Einstein in 1916.

To show how the Einstein equations in the vacuum are recovered from the Einstein -

Hilbert action, we can calculate the variation of the terms that appear in (5.26):

δ
(√
−g
)

= − 1

2
√
−g

δg = −1

2

√
−g gµνδgµν (5.27)

where we used the fact that the differential dg of the metric tensor’s determinant can

be written as dg = ggµνdgµν = −ggµνdgµν (the last equality is due to the fact that

gµνg
µν = δµµ = 4). Also, it can be shown that:

gµνδRµν = ∇µvµ = ∇µ (∇ν(δgµν)− gρσ∇µ(δgρσ)) (5.28)

Moreover we can write: ∫
M

∇µv
µ
√
−g d4x =

∫
∂M

vµn
µ
√
h d3x (5.29)
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where
√
h d3x is the natural volume element on ∂M and nµ is the unit normal to the

very same boundary surface. Using (5.28) we have on ∂M :

vµn
µ = nµgρσ [∇σ(δgµρ)−∇µ(δgρσ)]

= nµhρσ [∇σ(δgµρ)−∇µ(δgρσ)]

= −nµhρσ∇µ(δgρσ)

(5.30)

where hµν = gµν + nµnν is the metric induced on ∂M and we have δgµσ = 0 on ∂M .

Now we can relate the very last expression to the variation of the trace of the extrinsic

curvature of the boundary. Remembering (5.15) we define:

K ≡ Kµ
µ = hµν∇µn

ν (5.31)

it can be shown that:

δK =
1

2
nµhσρ∇µ(δgσρ) (5.32)

So we can write, using (5.29), (5.30) and (5.32) :∫
M

∇µv
µ
√
−g d4x = −2

∫
∂M

δK
√
h d3x (5.33)

where the variation of gµν for which δgµν = 0 on ∂M requires to satisfy δhµν = 0.

So, using (5.33), (5.28), (5.27) we can definitely write:

δSE−H
δgµν

= 0 ⇒ Rµν −
1

2
Rgµν + Λgµν = 0 (5.34)

We have chosen for convenience gµν instead of gµν as field variable.

It is important to underline that, by Stokes theorem, (5.29) does not vanish for general

variations where gµν is held fixed on the boundary but not the first derivatives of the

latter, and this is the reason why the boundary term in (5.26) does appear. It is also

important to emphasize that, since not all variations of gµν correspond to a variation of

the space-time metric (that is the real variation of the gravitational field), one cannot

deduce that in a real gravitational field the action has a minimun (instead of a more

general extreme) with respect to all possible variations of gµν .

Every transformation of the coordinates between two reference system to another one in

the same space-time represents, in general, a set of four (because the latter is the number
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of the xµ) independent transformations.

Thus, in General Relativity, it turns out that the minimum principle action only estab-

lishes that the gµν can be vincolated to restrictive conditions in order for the action to

have a minimum when gµν are varied. However the field equations can be obtained only

requiring that the action exhibits an extreme (not necessarily a minimum), then in order

to determine them one can vary all the gµν independently.

To recover the Einstein equations in presence of a gravitational source characterized by

an energy-momentum tensor Tµν , we can add a “matter action” Sm to (5.26) in order to

have:

Tµν =
2√
−g

δSm
δgµν

(5.35)

In this way we recover the most general form of the Einstein equations (1.1) by requiring

that the variation of SE−H + Sm does vanish.

5.3 Initial Value Formulation for General Relativity

In order to show that General Relativity has a well posed initial value formulation, we

will cast the Einstein’s equation into the form (4.11). The analysis of Einstein’s equation

differs from that of the Klein-Gordon field in that there are initial value constraints and

in that it is necessary to make a “gauge choice”, i.e., a choice of coordinates, so that

Einstein’s equation takes the desired form.

The first issue to consider is the nature of the initial value formulation in the theory of

General Relativity, because in such a theory we are solving for the space-time metric

itself, while in other theories of classical physics we are given the space-time background

and the task is to determine the time evolution of the quantities (in the background) from

their initial values and time derivatives. In order to choose the quantity or quantities to

prescribe initially in General Relativity in order to determine the space-time structure,

it is necessary to view this theory as describing the time evolution of some quantity.

The initial value formulation should be relevant only in the case of an hyperbolic space-

time, thus, let (M, gµν) be a globally hyperbolic space-time. As we have proven, we can

foliate (M, gµν) by Cauchy surfaces, Σt, parametrized by a global time function t.

We have also shown that appropriate initial data should consist in the triple (Σ, hab, Kab).
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Once we have chosen the time function t and the vector field tµ previously introduced, the

next step is to reformulate the Einstein–Hilbert action in terms of the three dimensional

variables hab and Kab. For this purpose one needs the relationship between the four-

dimensional and the three-dimensional curvatures: this is given by the Gauss equation

(5.22) and the generalized Codazzi equation (5.23). Contraction of (5.23) with gµλ gives,

using (1.2) and the simmetry of Kµν and hµν :

DµK
µ
ν −DνK = Rρλn

λhρ ν (5.36)

We turn, now, to the analysis of the vacuum Einstein’s equations.

We give initial data (hab, Kab) on a three-dimensional manifold Σ and write down Ein-

stein’s equations for the metric components gµν in a local coordinate system {yµ} with

the time coordinate t chosen in order to have the t = 0 surface which corresponds to Σ.

By casting the equations in the form (4.11) we will prove local existence of a solution

with the desired properties. Finally, we shall mention how to “globalize” our global

results in order to obtain the final conclusion.

Einstein’s equations in vacuum yield a system of 10 second-order partial differential

equations for the ten unknown metric components. Furthermore these equations are

linear in the second derivatives of the metric, thus they exhibit what we have defind as

a “quasilinear” form.

Addressing the vacuum Einstein equations without the cosmological constant:

Rµν −
1

2
Rgµν ≡ Gµν = 0 (5.37)

Ir’s possible to show that the equations

Gµνn
ν = 0 (5.38)

Where nµ is the unit normal to the t = constant surfaces, contain no second time

derivatives of any of the metric components, this means that these components of Gab = 0

at t = 0 depend only on the initial data.

Thus, these equations provide initial value constraints, we can express them in coordinate

invariant form by using the Gauss and Codazzi equations (5.22), (5.23). Referring to

the equations (5.37), one finds for the “space–time component”, which turns out to be
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the initial value constraint (obtained by multipliyng (5.37) for hµρn
ν), remembering that

(5.6) holds:

0 = hµρGµνn
ν = hµρRµνn

ν (5.39)

which can be rewritten by using (5.36) as

DbK
b
a −DaK = 0 (5.40)

For the “time–time component”, that is an additional constraint, by multipliyng (5.37)

for nµnν one has:

0 = Rµνn
µnν +

R

2
(5.41)

in which the condition (5.4) has been used.

From (5.22) one easily finds upon contraction of indices and remembering the definition

(1.5):

R +K µ
µ K ν

ν −KµνK
µν = hµµ

′
h ν′

ν h λ′

µ hν ρ′R
ρ′

µ′ν′λ′ (5.42)

Using (5.3), is possible to express the right-hand side as

(3)R + 2Rµνn
µnν = 2Gµνn

µnν (5.43)

and so, with (5.42) and (5.43), we come to the “time–time component” of Einstein’s

equations (5.41) written as:

K2 −KabK
ab +(3) R = 0 (5.44)

This is the (3+1)-dimensional version of the theorema egregium.

Both (5.40) and (5.44) are the initial value constraint equations of General Relativity, in

fact they only contain first-order time derivatives, these constraints play a crucial role

in the initial value formulation of classical General Relativity, see for example Choquet-

Bruhat and York (1980) for details. If the constraints (5.40) and (5.44) are satisfied

initially and the spatial components of Einstein’s equation are satisfied everywhere, then

the constraints also are satisfied (this can be easily demonstrated by using the Bianchi

identity ∇µGµν = 0). We will return on this point at the end of this section.

Thus (5.37) is an undetermined system of equations for the metric components gµν :

we have only six evolution equations (the pure spatial components of Gµν = 0) for 10
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unknown metric components. However this undetermination is not physical and it results

from the redundancy in the description of space-time geometry by metric components

gµν . As will be later discussed, if φ : M→M is a diffeomorphism, then (M, gµν) and

(M, φ∗gµν) represent the same physical space-time. Since the coordinate basis metric

components of gµν and φ∗gµν are related by the coordinate transformation associated with

φ, any two solutions of Einstein’s equation (whose coordinate basis metric components

are related by the tensor transformation law) represent the same physical solution. Since

four arbitrary functions appear in the transformation law, roughly speaking there should

be only six “nongauge functions” in the 10 metric components gµν .

Therefore, it is plausible that Einstein’s equation contains the correct number of evolution

equations and that a well posed initial value formulation exists. It is possible to show

that this precisely is the case: there exists one globally hyperbolic space–time obeying

Einstein’s equations (i.e. a unique solution for the four-metric up to diffeomorphisms),

which has a Cauchy surface on which the induced metric and the extrinsic curvature

are just hab and Kcd, respectively. The demonstration is quite sophisticated [6], the

main idea is to introduce a convenient choice of “gauge” (i.e., coordinates), for which

Einstein’s equation has the form (4.11), which are the harmonic coordinates xµ that

satisfie by definition:

Hµ ≡ ∇ν∇νxµ = 0 (5.45)

The vacuum Einstein equations (5.37) become, by using harmonic coordinates, the so-

called reduced Einstein equation:

0 = −1

2

∑
α,β

gαβ∂α∂βgµν + F̂µν(g, ∂g) (5.46)

where F̂µν(g, ∂g) is a nonlinear function of the metric components gαβ and their first

derivatives.

The fundamental point of the latter is that it has the same form of (4.11), for which we

have seen the theorem (4.3.2) that establishes that the initial value formulation is well

posed in a particular sense (see last section of the previous Chapter). In order not to

make long and sophisticated digressions, we only report final conclusions of the discussion

about the initial value formulation of the General Relativity, which are summarized in

the following theorem, whose proof can be found in [6]:
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Theorem 5.3.1. Let Σ be a three-dimensional C∞ manifold, let hab be a smooth Rie-

mannian metric on Σ and let Kab be a smooth symmetric tensor field on Σ. Suppose hab

and Kab satisfy the constraint equations (5.40) and (5.44). Then there exists a unique

C∞ space-time (M, gµν), called the “maximal Cauchy development” of (Σ, hab, Kab), sat-

isfying the following four properties:

(i) (M, gµν) is a solution of Einstein’s equation

(ii) (M, gµν) is a globally hyperbolic with Cauchy surface Σ

(iii) The induced metric and extrinsic curvature of Σ are, respectively, hab and Kab

(iv) Every other space-time satisfying (i)-(iii) can be mapped isometrically into a subset

of (M, gµν)

Furthermore, (M, gµν) satisfies the desired domain of dependence property in the fol-

lowing sense. Suppose (Σ, hab, Kab) amd (Σ′, h′ab, K
′
ab) are initial data sets with maximal

developments (M, gµν) and (M′, g′µν). Suppose there is a diffeomorphism between S ⊂ Σ

and S ′ ⊂ Σ′ which carries (hab, Kab) on S into (h′ab, K
′
ab) on S ′. Then D(S) in the

space-time (M, gµν) is isometric to D(S ′) in the space-time (M′, g′µν) and the solution

gµν on M depends continuously on the initial data (hab, Kab) on Σ.

Aside from showing that General Relativity has the physically desirable property of

possessing a well-posed initial value formulation, this theorem puts globally hyperbolic

space-time (M, gµν) satisfying the constraint equation into correspondence with initial

data sets (Σ, hab, Kab) satisfying the constraint equations (5.40) and (5.44) (this associa-

tion is, however, not 1-1 because of the freedom of choosing a space-like Cauchy surface

in M). It usually is far easier to solve the constraint equations on Σ than to solve Ein-

stein’s equation on M. In electrodynamics, for comparison, one has to specify ~A and

~E on Σ satisfying the constraint ∇ ~E = 0, which is the Gauss law. One then gets in

space–time a solution of Maxwell’s equations that is unique up to gauge transformation.

The important point is that the space–time is fixed in Maxwell’s theory, whereas in the

gravitational case it is part of the solution.

That the dynamical laws follow from the laws of the instant can be inferred from the

validity of the following “interconnection theorems”, to which we have already referred

[15]:

1) If the constraints are valid on an initial hypersurface and if Gab = 0 (pure spatial
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components of the vacuum Einstein equations) on space–time, the constraints hold on

every hypersurface.

2) If the constraints hold on every hypersurface, the equationsGab = 0 hold on space–time.

Similar properties hold in Maxwell’s theory, in the presence of non-gravitational fields,

∇µT
µν = 0 is needed as an integrability condition (analogously to ∂µj

µ = 0 for Maxwell’s

equations).

5.4 ADM Action

In order to reformulate the Einstein–Hilbert action, it is necessary to express the

volume element and the Ricci scalar in terms of the new dynamical variables (on the

3-dimensional hypersurfaces) hab and Kcd. For the volume element one finds

√
−g = N

√
h (5.47)

Equation (5.47) can be easily found calculating the determinant of gµν from (5.11).

Nevertheless, it also can be seen by defining the three-dimensional volume element [6]:

(3)eµνλ = eρµνλt
ρ (5.48)

with tρ decomposed as in (5.8) and eρµνλ denoting the time-independent four-dimensional

volume element, one has by using ερµνλ =
√
−g eρµνλ:

ερµνλt
ρ =
√
−g eµνλ =

√
−g
h
εµνλ

from which (5.47) follows after using (5.8) and taking purely spatial components.

We shall now assume in the following that Σ is compact without boundary (the boundary

terms for the non-compact case will be discussed separately). In order to rewrite the

curvature scalar, we use first (5.41) written as follows:

R =(3) R +K2 −KabK
ab − 2Rµνn

µnν (5.49)

where (3)R is the three-dimensional Ricci scalar, obtained as

(3)R =(3) Ri
i (5.50)
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Using the definition of the Riemann tensor in terms of second covariant derivatives,

Rρ
µρνn

µ = Rµνn
µ = ∇ρ∇νn

ρ −∇ν∇ρn
ρ (5.51)

The second term on the right-hand side becomes:

−2Rµνn
µnν = 2(∇ρn

ν)(∇νn
ρ)− 2(∇νn

ν)(∇ρn
ρ)

+ 2∇ν(n
ν∇ρn

ρ)− 2∇ρ(n
ν∇νn

ρ)
(5.52)

The third and fourth term are total divergences, as consequence they can be cast into

surface terms at the temporal boundaries. The last surface term yields −2(nν∇νn
ρ)nρ =

0, while the first one gives, recalling the definition of Kµν , 2∇µn
µ = −2K. The two

remaining terms in the last expression can be written as 2KabK
ab and−2K2, respectively.

We now introduce the DeWitt’s metric [20]:

Gabcd =

√
h

2
(hachbd + hadhbc − 2habhcd) (5.53)

which plays [4] the role of a metric in the space of all metrics.

Inspecting the Einstein–Hilbert action (5.26), one recognizes that the temporal surface

term is cancelled, and that the action now reads, using (5.47), (5.49), (5.51), (5.52):

16πGSE−H =

∫
M
dtd3xN

√
h(KabK

ab −K2 +(3) R− 2Λ)

≡
∫
M
dtd3xN(GabcdKabKcd +

√
h((3)R− 2Λ))

(5.54)

where, in the second line, DeWitt’s metric was used.

The gravitational action (5.54) has the classic form of kinetic energy minus potential

energy, since the extrinsic curvature (as one can see from (5.25)) contains the “velocities”

ḣab. It is also called the ADM action in recognition of the work by Arnowitt, Deser, and

Misner.

5.5 Hamiltonian formulation of General Relativity

Before describing the Hamiltonian formulation for General Relativity, one should

properly define a configuration space for the field by specifying what tensor fields q
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on Σt physically describs the instantaneous configuration of the field, but this subject

will be deeply analized in the last section of this Chapter. Since the set of possible

configurations of the field is infinite-dimensional, we shall not attemp here to give a

precise definition of the cotangent space, which is the space of possible momenta of

the field at a given configuration q. The final and most non trivial step required for a

Hamiltonian formulation of a field theory is the specification of a functional H[q, p] on

Σt, called the Hamiltonian, which is of the form [9,10]:

H =

∫
Σt

H (5.55)

where the Hamiltonian density H is the local function of q and p (and of their spatial

derivatives up to a finite order) such that the pair of equations:

q̇ =
δH

δp
(5.56)

ṗ = −δH
δq

(5.57)

is equivalent to the field equation satisfied by the field.

Introducing now the ADM Lagrangian by writing:

SE−H ≡
∫
M
dtd3xLg (5.58)

since Lg does not contain any time derivatives of N or Na, one gets for the momenta

canonically coniugated to the latters the following expressions

pN ≡
∂Lg

∂Ṅ
= 0 pga ≡

∂Lg

∂Ṅa
= 0 (5.59)

Because lapse function and shift vector are only Lagrange multipliers, as for A0 in elec-

trodynamics, thus they should not be viewed as dynamical variables, in fact these are

primary constraints since they do not involve the dynamical equations. Second, from

(5.25) and (5.53) it turns out that the momentum canonically conjugate to hab is

pab ≡ ∂Lg

∂ḣab
=

1

16πG
GabcdKcd =

√
h

16πG
(Kab −Khab) (5.60)

It is important to underline that, according to our conventions, the gravitational constant

G appears here explicitly, although no coupling to matter is involved (this is the reason
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why it appears also in vacuum quantum gravity, this topic will be briefly treated in the

last Chapter). Since pab is canonically conjugated to hab, one therefore has the following

Poisson-bracket relation (in which we don’t take into account that
√
h > 0, so this is

formal at this stage):

{hab(x), pcd(y)} = δc(aδ
d
b)δ(x, y) (5.61)

Recalling the expression of the extrinsic curvature (5.25) and taking the trace of (5.60),

one can express the velocities in terms of the momenta:

ḣab =
32πGN√

h
(pab −

1

2
phab) +DaNb +DbNa (5.62)

where p ≡ paa = pabhab.

The canonical Hamiltonian density reads:

Hg = pabḣab − Lg (5.63)

for which, using the inverse of DeWitt metric:

Gabcd =
1

2
√
h

(hachbd + hadhbc + habhcd) (5.64)

one gets the following expression, which holds modulo a total divergence which does not

contribute in the integral of Hamiltonian (because we are supposing Σ is compact):

Hg = 16πGNGabcdp
abpcd −N

√
h((3)R− 2Λ)

16πG
− 2Nb(Dap

ab) (5.65)

The full Hamiltonian is found, as usual, by integration over the space coordinates:

Hg ≡
∫
d3xHg ≡

∫
d3x(NHg

⊥ +NaHg
a) (5.66)

which has been decomposed as previously discussed.

The ADM Action (5.54) can be written in the form

16πGSE−H =

∫
M
dtd3x(pabḣab −NHg

⊥ −N
aHg

a) (5.67)

Variation with respect to the Lagrange multipliers N and Na yields the same constraints

that can be found from the preservation of the primary constraints:

{pN , Hg} = 0 (5.68)
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{pga, Hg} = 0 (5.69)

which are:

Hg
⊥ = 16πGGabcdp

abpcd −
√
h

16πG
((3)R− 2Λ) ≈ 0 (5.70)

Hg
a = −2Dbp

b
a ≈ 0 (5.71)

In fact, the constraint (5.70) is equivalent to the time-time component of Einstein’s equa-

tions, and (5.71) is equivalent to their space-time component, they are called Hamiltonian

constraint and diffeomorphism (or momentum) constraint, respectively. From its struc-

ture, (5.70) has some similarity to the “mass-shell constraint” for the relativistic particle

(3.33), while (5.71) is similar to the Gauss law of electrodynamics. The total Hamiltonian

is thus constrained to vanish, a result that is in accordance with our general discussion

of reparametrization invariance (see second Chapter). In the case of non-compact space,

boundary terms are present in the Hamiltonian, as will be later discussed.

Of course we have, in addition to the constraints, the six dynamical equations which

are the Hamiltonian equations of motion. The first half, ḣab = {hab, Hg}, just gives the

“velocities” (5.62), the second half ṗab = {pab, Hg}, yields a cumbersome expression [6]

that is not needed for canonical quantization (it is needed for applications of the classical

canonical formalism such as gravitational-wave emission from compact binary objects).

If non-gravitational fields are coupled, as will be the case in the next Chapter, the con-

straints acquire extra terms. In the time-time component of Einstein’s equations one has

to use that:

2Gµνn
µnν = 16πGTµνn

µnν ≡ 16πGρ (5.72)

Instead of (5.70) one now has the following expression for the Hamiltonian constraint:

H⊥ = 16πGGabcdp
abpcd −

√
h

16πG
((3)R− 2Λ) +

√
hρ ≈ 0 (5.73)

Similarly, one has instead of (5.71) for the diffeomorphism constraints:

Ha = −2Dbp
b

a +
√
hJa ≈ 0 (5.74)

where Ja ≡ h µ
a Tµνn

ν is the “Poynting vector”.

The classical canonical formalism for the gravitational field as discussed up to now was
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pioneered by Bergmann, Dirac, “ADM” and other in 1950s. The canonical quantization

of higher-derivative theories such as R2− gravity can also be performed: the formalism is

then more complicated since one has to introduce additional configuration-space variables

and momenta.

5.5.1 Open spaces

Up to now we have neglected the presence of possible spatial boundary terms in the

Hamiltonian. In this subsection, we shall briefly discuss the necessary modifications for

the case of open spaces, where “open” means asymptotically flat (the necessary details

can be found, for example, in [18]).

• CLOSED UNIVERSE

Consider, first, the case of a closed universe, i.e. M = R×Σ, where Σ is compact.

If one considers a region U of M bounded by two constant time hypersurfaces Σ1

and Σ2, it is possible to show [6] that the modification of the gravitational action

due to the boundary contributions from Σ1 and Σ2 are such to leave Hg unchanged

in a closed universe. Furthermore, the numerical value of the latter vanishes for

every solution. This suggests that we should define the total energy of a closed

universe to be zero, i.e. there does not exist a nontrivial notion of total energy

in a closed universe. However, this argument is not conclusive since it is always

possible to “deparametrize” a theory in the manner mentioned above so as to make

its Hamiltonian vanish: if General Relativity could be “deparametrized”, a notion

of total energy in a closed universe could well emerge.

• FLAT SPACE-TIME

Consider, now, the case of asymptotically flat space-times. If we take a region of

M bounded by two hypersurfaces Σ1 and Σ2 and we wish to consider variations of

the metric for which hab is held fixed on Σ1 and Σ2, it results that the most natural

spatial boundary condition is that the variations preserve asymptotic flatness rather

than that the induced metric be held fixed on a distant spatial boundary. This

new boundary condition requires the addition of further boundary terms into the

gravitational action and Hg is modified. Instead of keeping careful account of all
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these terms, we first shall proceed by calculating the boundary terms arising from

variations of Hg and then modifying the latter to get rid off these terms.

Firstly, we consider the case where tµ asymptotically becomes a time translation at

spatial infinity, which corresponds to take N → 1 ad Na → 0 as r →∞. In order

to get a Hamiltonian whose variation produces no boundary terms from spatial

infinity we definire a new gravitational Hamiltonian H
′g by:

H
′g = Hg + α (5.75)

where α is given, in cartesian coordinates, by [28]:

α = lim
r→∞

3∑
ν=1

∫
S

(
∂hµν
∂xν

− ∂hνν
∂xµ

)
(5.76)

in which S denotes a coordinate sphere of radius r.

The numerical value of H
′g for a solution of Einstein’s equation is just α: this

suggests that α should be interpreted as proportional to the total energy of an

asymptotically flat space-time. The constant of proportionality between α and en-

ergy can be determined, for example, by evaluating α for the Schwarzchild solution.

Secondary, the definition of a total momentum can be motivated by examining the

boundary terms in Hg which occur when we take N → 0 and require Na to go a

translation as r →∞. Indeed, a notion of angular momentum arises from consid-

eration of more general asymptotic behaviour of the lapse and shift [18].

In order to see the same things in more detail, we write the variation of the full

Hamiltonian Hg with respect to the canonical variables hab and pcd yields:

δHg =

∫
d3x(Aabδhab +Babδp

ab)− δC

where δC denotes surface terms.

Because Hg must be a differentiable function with respect to hab and pcd (otherwise

Hamilton’s equations of motion would not make sense), δC must be cancelled by

introducing explicit surface terms to Hg. For the derivation of such surface terms,

one must impose fall-off conditions for the canonical variables. For the three-metric

they read

hab ∼ δab +O
(

1

r

)
, hab,c ∼ δab +O

(
1

r2

)
(5.77)
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and analogously for the momenta, where the asymptothical behaviour is understood

for r → ∞. The lapse and shift, if again combined to the four-vector Nµ, are

supposed to obey

Nµ ∼ αµ + βµax
a (5.78)

again for r → ∞, where αµ describe space–time translations, βab = −βba spatial

rotations, and β⊥a a boosts. Together, they form the Poincare group of Minkowski

space–time, which is a symmetry in the asymptotic sense.

The procedure mentioned above then leads to the following expression for the total

Hamiltonian:

Hg =

∫
d3x(NHg

⊥ +NaHg
a) + αEADM − αaPa +

1

2
βµνJ

µν (5.79)

where EADM (also called “ADM energy”, see Arnowitt et al. 1962), Pa, and Jµν

are the total energy, the total momentum, and the total angular momentum plus

the generators of boosts, respectively. Together they form the generators of the

Poincare group at infinity. For the ADM energy, in particular, one finds the ex-

pression

EADM =
1

16πG

∮
r→∞

d2σa(hab,b − hbb,a) (5.80)

Note that the total energy is defined by a surface integral over a sphere for r →∞
not by a volume integral. One can prove that EADM ≥ 0.

Because of the Hamiltonian and diffeomorphism constraints, Hg is numerically

equal to the surface terms. For vanishing asymptotic shift and lapse equal to

one, it is just given by the ADM energy. We emphasize that the asymptotic

Poincare transformations must not be interpreted as gauge transformations (oth-

erwise EADM , P a, and Jµν would be constrained to vanish).

Making a brief summary, we have seen that ADM energy is a peculiar way to define the

energy in General Relativity, it is only applicable to some special geometries of space-

time that asymptotically approach a well-defined metric tensor at infinitye. The ADM

energy in these cases is defined as a function of the “deviation” of the metric tensor from

its prescribed asymptotic form: the ADM energy is computed as the strength of the

gravitational field at infinity. If the required asymptotic form is time-independent (such
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as the Minkowski space), then it respects the time-translational symmetry and Noether’s

theorem applies, which implies that the ADM energy is conserved.

5.6 Discussion of the constraints

We have given a constrained Hamiltonian formulation of Einstein’s equation, but we

have not isolated the “true dynamical degrees of freedom” in our choice of configuration

space, because we see the presence of constraints in the Hamiltonian formulations of

Einstein’s equations. Even though we already have eliminated N and Na as dynamical

variables, the constraints tell us that our phase space is still “too large”, this is directly

related to the gauge freedom present in our configuration variables hab.

Therefore, the presence of the constraints derived in the last subsection means that only

part of the variables constitute “physical degrees of freedom” (i.e. how many distinct

solutions of the equations exist). In order to count the physical degrees of freedom of the

gravitational field in General Relativity, we can use the two fully equivalent following

arguments.

• The three-metric hab(x), which expression is given by (5.3) is characterized by six

numbers per space point, which can be symbolically denoted as 6×∞3. The diffeo-

morphism constraints (5.71) generate coordinate transformations on three-space,

which are characterized by three numbers, thus 6− 3 = 3 numbers per space point

remain. The constraint (5.70) corresponds, in a sense, to “time” because it corre-

sponds to one variable per space point describing the location of Σ in space–time,

since the latter changes under normal deformations. Therefore 2 ×∞3 degrees of

freedom remain.

• One can alternatively perform the following counting in phase space: the canonical

variables (hab(x), pcd(y)) are 12×∞3 variables because they correspond to twelve

numbers per space point. Due to the presence of the four constraints in phase

space, 4 × ∞3 variables have to be subtracted, and remaining 8 × ∞3 variables

define the constraint hypersurface Γc on which the dynamic takes place. Since the

constraints generate a four-parameter set of gauge transformations on Γc according
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to the discussion of the third Chapter, 4×∞3 degrees of freedom must be subtracted

in order to “fix the gauge”. The remaining 4 × ∞3 variables define the reduced

phase space Γr and correspond to 2×∞3 degrees of freedom in configuration space,

in accordance with the counting above.

The gravitational field thus seems to be characterized by 2 × ∞3 intrinsic degrees of

freedom, i.e. two degrees of freedom per point of space. It is important to emphasized

that this counting always holds modulo a finite number of degrees of freedom.

Does a three-dimensional geometry indeed contain information about time? As ca be

shown, two configurations (e.g. of a clock) in classical mechanics do not suffice to deter-

mine the motion, in fact one needs in addition the two times of the clock configurations

or its speed.

The situation in the gravitational case is related to the so called “sandwich conjecture”

[19], which states that two three-geometries do (in the generic case) determine the tem-

poral separation (the proper times) along each time-like worldline connecting them in

the resulting space-time. Whereas still not much is known about the finite version of

this conjecture, results are available for the infinitesimal case, but we will not dwell on

this argument here as this is beyond our purpose.

The somewhat ambiguous nature of the Hamiltonian constraint (5.73) leads to the ques-

tion whether it really generates gauge transformations. The answer should be ‘yes’ in

view of the general fact that first-class constraints have this property. On the other hand,

Hg
⊥ is also responsible for the time evolution, mediating between different hypersurfaces.

Can this time evolution be interpreted as the “unfolding” of a gauge transformation?

This is indeed possible because the presence of the constraint Hg
⊥ ≈ 0 expresses the fact

that evolutions along different foliations are equivalent.

A related issue concerns the notion of an “observable”: this can be defined as a variable

that weakly commutes with the constraints. In the present situation, an observable O
should therefore satisfy

{O,Hg
a} ≈ 0 (5.81)

{O,Hg
⊥} ≈ 0 (5.82)

While the first condition is certainly reasonable (observables should not depend on the

chosen coordinates of Σ), the situation is not so clear for the second condition: Kuchar
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[21] refers (in order to emphasize the difference between both equations) to quantities

obeying (5.81) already as observables, while to variables that obey in addition (5.82) as

“perennials”, which are constants of motion, since they weakly commute with the full

Hamiltonian. It is possible to say more about these interpretational issues in the context

of the quantum theory, but this is beyond our purpose.

We have already seen that the transformations generated by the constraints (5.70) and

(5.71) are different from the original space–time diffeomorphisms of General Relativity:

the formal reason is that Hg
⊥ is non-linear in the momenta, so the transformations in the

phase space Γ spanned by (hab, p
cd) cannot be reduced to space-time transformations.

In order to understand the relation between both types of transformations, we can reason

as follows.

Let (M, g) be a globally hyperbolic space–time, we shall denote by RiemM the space of

all (pseudo-) Riemannian metrics onM. Since the group of space-time diffeomorphisms,

Diff M, does not act transitively, there exist non-trivial orbits in Riem M. One can

make a projection down to the space of all four-geometries, which we formally denote

as Riem M/ Diff M. By considering a particular section σ : Riem M/ Diff M→M,

one can choose a particular representative metric on M for each geometry. In this way

one can define formal points of the “background manifold” M, which a priori have no

meaning (in General Relativity, points cannot be disentangled from the metric fields).

5.6.1 Superspace

An important issue, both for the quantum theory and the Hamiltonian formulation,

is an investigation into the structure of the configuration space, because this turns out

to be the space on which the wave functional is defined. The gauge arbitrariness in the

configuration field hab lies in the fact that if ϕ is any diffeomorphism of Σt, then hab and

ϕ∗hab represent the same physical configuration. This suggests that we should take the

configuration space of General Relativity to be the set equivalence classes of Riemannian

metrics on Σt where two metrics are considered equivalent if they can be carried into

each other by a diffeomorphism. This configuration space is known as Superspace.

We have seen that the canonical formalism deals with the set of all three metrics on

a given manifold Σ. We call this space Riem Σ (not to be confused with Riem M
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considered above). As configuration space of the theory we want to address the quotient

space in which all metrics corresponding to the same three geometry are identified, which

is precisely the superspace cited above and originally introduced by Wheeler.

The latter is defined by:

S ≡ Riem Σ/Diff Σ (5.83)

Choosing superspace as configuration space, the momentum constraints (5.71) are au-

tomatically fulfilled (thus they turns out to be eliminated by the choice of superspace),

but the constraint (5.70) remains. The latter can be viewed as resulting from the gauge

arbitrariness involved in the choice of how to “slice” space-time into space and time.

It is very closely analogous to the constraint which arises when one “parametrizes” an

originally unconstrained theory in a fixed, background space-time, that is when one in-

troduces into the Lagrangian a time function (which defines the choice of hypersurfaces

Σt with respect to a reference surface Σ) and treats this time function as a dynamical

variable. In the case of such parametrized theories, as we have seen in the corrispective

section, the constraint analogous to (5.70) is linear in the momentum conjugate to the

time function and one can “deparametrize” the theory by solving the constraint for this

momentum.

In the case of Einstein’s equation, the constraint is quadratic in the momentum, so a

similar deparametrization does not appear to be possible and, as a consequence, it does

not appear to be possible to find a choice of configuration space for General Relativity

such that only the “true dyamical degrees of freedom” are present in its phase space.

The presence of constraint (5.70) appears to be unavoidable feature of the Hamiltonian

formulation of General Relativity, this provides a serious obstacle to the formulation of

a quantum theory of gravitation by the canonical quantization approach.

Whereas Riem Σ has a simple topological structure (it is a cone in the vector space of all

symmetric second-rank tensor fields), the topological structure of S(Σ) is very compli-

cated because it inherits (through Diff Σ) some of the topological information contained

in Σ. In general, Diff Σ can be divided into a “symmetry part” and a “redundancy part”

[17]. Symmetries arise typically in the case of asymptotically flat spaces and describe,

for example, rotations with respect to the remaining part of the universe (“fixed stars”).

Since they have physical significance, they should not be factored out, and Diff Σ is then
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understood to contain only the “true” diffeomorphisms (redundancies). In the closed

case (relevant in particular for cosmology) only the redundancy part is present. For

closed Σ, S(Σ) has a non-trivial singularity structure due to the occurrence of metrics

with isometries (Fischer 1970), at such singular points, superspace is not a manifold (a

situation like e.g. at the tip of a cone).

In the open case is possible to perform a so called “one-point compactification”, which

will be denoted as Σ̄ ≡ Σ ∪ {∞}, then the corresponding superspace is defined as

S(Σ) ≡ Riem Σ̄/DF (Σ̄) (5.84)

where DF (Σ̄) represents all diffeomorphisms that fix the frames at infinity.

The DeWitt metric Gabcd plays the role of metric on Riem Σ in the following sense:

G(l, k) ≡
∫

Σ

d3xGabcdlabkcd (5.85)

where l ad k denote tangent vectors at h ∈ Riem Σ. Due to its symmetry properties,

it can formally be considered as a symmetric 6× 6-matrix at each space point [20] and,

thanks to the spectral theorem, at each point this matrix can therefore be diagonalized,

and the signature turns out to read

diag(−,+,+,+,+,+)

It must be emphasized that the negative sign in DeWitt’s metric has nothing to do with

the Lorentzian signature of space–time. In the Euclidean case, the minus sign stays and

only the relative sign between potential and kinetic term will change and due to the

presence of this minus sign, the kinetic term for the gravitational field is indefinite.

In Riem Σ, one can distinguish between “vertical” and “horizontal” directions. The

vertical directions are the directions along the orbits generated by the three-dimensional

diffeomorphisms. Metrics along a given orbit describe the same geometry, while orizontal

directions are defined as being orthogonal to the orbits, where orthogonality holds with

respect to the DeWitt metric. Since the latter is indefinite, the horizontal directions

may also contain vertical directions (this happens in the “light-like” case for zero norm).

Calling Vh(Hh) the vertical (horizontal) subspace with respect to a given metric hab, one

can show that:
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• if Vh ∩Hh = {0}, then Gabcd can be projected to the horizontal subspace where it

defines a metric.

• if Vh∩Hh 6= {0} then there exist critical points in S(Σ) where the projected metric

changes signature.

The situation is illustrated in figure (5.2). The task is then to classify the regions in

Figure 5.2: The space Riem Σ, fibred by the orbits of Diff Σ (curved vertical lines). Tan-

gent directions to these orbits are called “vertical”, the G-orthogonal directions “horizon-

tal”. Horizontal and vertical directions intersect whenever the “hyper-lightcone” touches

the vertical directions, as in point h′. At h, h′, and h′′ the vertical direction is depicted

as time-, light-, and space-like respectively. Hence [h′] corresponds to a transition point

where the signature of the metric in superspace changes. From [4]

Riem Σ according to these two cases. There exist some partial results [17], on which we

will not dwell here as they are beyond our purposes.



Chapter 6

ADM Formalism for a Spherical

Source

In this Chapter we use the ADM formalism, introduced and analyzed in the previ-

ous Chapter, in order to describe a matter’s source (consisting of a perfect fluid) with

spherical symmetry and analyze the equations for the Hamiltonian and diffeomorphism

constraints.

Besides using the metric form already employed for the Lagrangian formalism in Tol-

man’s solution, we also perform a change of variable by introducing a local mass function

as dynamic variable and analyze the resulting equations for the constraints, also show-

ing how the value of the Misner-Sharp mass can be recovered by requiring that the

Hamiltonian costraint weakly vanishes.

6.1 Coordinates

Suppose we have a mass source with spherical symmetry, consisting of a perfect

fluid, which generates a gravitational field. We use the previously introduced coordi-

nates (1.35), which are (x0, x1, x2, x3) ≡ (τ, ρ, θ, ϕ), while in this Chapter we use the

convenctions of tables (6.1)-(6.3). We again emphasize that this coordinate system is

in motion with the matter which constitutes the spherically symmetric source, so the

particles do not change their position in this system and the metric is time-dependent.

79
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6.2 Metric tensor and Units of measure

We choose N(τ, ρ) and N1(τ, ρ) ≡ Nρ(τ, ρ) as lapse function and shift vector, assum-

ing that these last quantities depend on τ and ρ. Because of the spherically simmetry,

we set N θ = Nϕ = 0. The lapse function N encodes the possibility to perform arbitrary

reparametrizations of the time parameter, while the shift function Nρ is responsible for

reparametrizations of the radial coordinate (this is the only freedom in performing spa-

tial coordinate transformations that is left after spherical symmetry is imposed).

According to (5.11), we write the metric tensor as:

gµν =


NρN

ρ −N2 Nρ 0 0

Nρ eλ(τ,ρ) 0 0

0 0 r2(ρ, τ) 0

0 0 0 r2(τ, ρ) sin2 θ

 (6.1)

where λ(τ, ρ) and r(τ, ρ) are functions that we use as dynamical variables, while the

three-dimensional metric on the hypersurfaces hab is given by:

hab =


eλ(τ,ρ) 0 0

0 r2(ρ, τ) 0

0 0 r2(τ, ρ) sin2 θ

 (6.2)

The inverse of the metric tensor is given by (5.12):

gµν =


− 1
N2

Nρ

N2 0 0
Nρ

N2 hρρ − NρNρ

N2 0 0

0 0 hθθ 0

0 0 0 hϕϕ

 (6.3)

where the three-dimensional inverse metric is:

hab =


e−λ(ρ,τ) 0 0

0 1
r2

0

0 0 1
r2 sin2 θ

 (6.4)

We clearly use the indexes with the following correspondence: τ = 0, ρ = 1, θ = 2, ϕ = 3.

In this way, according to (3.62), we write the metric as:

ds2 = gµνdx
µdxν = (NρN

ρ −N2)dτ 2 + 2dτdρNρ + eλ(τ,ρ)dρ2 + r2(ρ, τ)dΩ2 (6.5)
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Table 6.1: Units of measure of constants

Physical constant Dimensions

c 1

G [Lenght]/[Mass]

} [Lenght] · [Mass]

Table 6.2: Units of measure of coordinates

Physical coordinates Dimensions

τ [Lenght]

ρ [Lenght]

θ 1

ϕ 1

where dΩ2 ≡ dθ2 + sin2 θdϕ2.

In order to treat gravitational and quantum systems, the conventions for the units of

measure of table (6.1) is usually adopted, while for the coordinates we choose conventions

of table (6.2) and dimensions of other quantities involved can be read in table (6.3).

We conclude this section by saying that the field equations for the metric tensor (6.1)

are calculated in the appendix.

6.3 ADM Action and Canonical Momenta

For a metric tensor with form (6.1), in which we suppose that r and λ are real

functions of the coordinates τ and ρ, one has:

√
h =

√
det(hab) = r2 sin θ eλ/2 (6.6)
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Table 6.3: Units of measure of quantities

Physical quantities Dimensions

Energy [Mass]

ADM Action [Lenght] · [Mass]

ADM Lagrangian [Mass]/[Lenght]

λ(ρ, τ) 1

r(τ, ρ) [Lenght]

m(τ, ρ) [Mass]

N 1

N1 1

Regarding the expression of the second fundamental form, we can use (5.25):

K11 ≡ Kρρ =
1

2N

(
d

dτ

(
eλ
)
− 2DρNρ

)
(6.7)

K22 ≡ Kθθ =
1

2N

(
d(r2)

dτ
− 2DθNθ

)
(6.8)

K33 ≡ Kϕϕ = sin2 θK22 (6.9)

We want to express the term DaNb in a more explicit way, remembering that we have

only one radial non vanishing component of the shift vector, which is N1 ≡ Nρ.

In this case we have that D1 is acting on N1, so we write:

DaNb = Nb,a − ΓdbaNd (6.10)

in such a way that we have:

DρNρ ≡ D1N1 = N1,1 − Γ1
11N1 (6.11)

DθNθ ≡ D2N2 = −Γ1
22N1 (6.12)

DϕNϕ ≡ D3N3 = −Γ1
33N1 (6.13)
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The metric on the hypersurfaces is hab, so (in the calculation of the three-dimensional

covariant derivative) we have:

Γ1
11 =

1

2

dλ

dρ
D1N1 =

d(N1)

dρ
− N1

2

dλ

dρ
(6.14)

Γ1
22 = −e−λr dr

dρ
D2N2 = N1e

−λr
dr

dρ
(6.15)

Γ1
33 = sin2 θ Γ1

22 D3N3 = sin2 θ D2N2 (6.16)

We choose to work with the contravariant radial component of the shift vector N1, so

we have:

N1 = eλN1 (6.17)

from which:

D1N1 =
eλN1

2

dλ

dρ
+ eλ

d(N1)

dρ
etc. (6.18)

Finally, in order to avoid confusion between indices, derivatives and powers, setting

N1 ≡ β and N ≡ α we can finally write the expressions for the diagonal elements of the

second fundamental form:

K11 ≡ Kρρ =
eλ

α

(
1

2

dλ

dτ
− β

2

dλ

dρ
− dβ

dρ

)
(6.19)

K22 ≡ Kθθ =
r

α

(
dr

dτ
− β dr

dρ

)
(6.20)

K33 ≡ Kϕϕ = sin2 θK22 (6.21)

The ADM Lagrangian Lg, as can be seen from (5.54) and (5.58), is given by (we neglet

the cosmological constant Λ):

Lg =
α
√
h

16πG
((3)R−K2 +KabK

ab) (6.22)

The AMD Action is written, according to the previous description of the 3+1 decompo-

sition of General Relativity, as:

SE−H =

∫
dτ

∫
dρ

∫
dθ

∫
dϕ Lg (6.23)

One can thus calculate from the metric (6.2) the following curvature scalar:

(3)R =
2e−λ

r

(
−2r′′ + λ′r′ − r′2

r

)
+

2

r2
(6.24)
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The canonical momenta coniugated to the three-dimensional metric elements hab can be

written, according to (5.60), as:

pab =

√
h

16πG
(Kab −Khab) (6.25)

where the trace of Kab is given by:

K ≡ habKab = hρρKρρ + hθθKθθ + hϕϕKϕϕ (6.26)

The last expression can be calculated as:

K =
1

2α

(
dλ

dτ
− βdλ

dρ
− 2

dβ

dρ
+

4

r

dr

dτ
− 4β

r

dr

dρ

)
(6.27)

Using the three-dimensional metric in order to raise the indicies, settings ˙ ≡ ∂
∂τ

and
′ ≡ ∂

∂ρ
, we can calculate the following expressions for the momenta:

p11 ≡ pρρ =
sin θ e−λ/2

16πGα
(−2rṙ) (6.28)

p22 ≡ pθθ =
sin θ eλ/2

16πGα

(
− ṙ
r
− λ̇

2
+
βλ′

2
+ β′ +

βr′

r

)
(6.29)

p33 ≡ pϕϕ =
p22

sin2 θ
(6.30)

Now we write the full expression of the ADM Action integrated over the angular coor-

dinates according to (6.23) and (6.22), which turns out to be:

SE−H =

∫
dτ

∫
dρ

[(
eλ/2

2Gα

)(
−rṙλ̇+ ṙβrλ′ + 2ṙβ′r − ṙ2 + λ̇βrr′ − β2λ′rr′ − 2ββ′rr′

+ 2βṙr′ − β2r′2
)

+
( α

2G

) (
−2r′′re−λ/2 + λ′r′re−λ/2 − r′2e−λ/2 + eλ/2

)]
≡
∫
dτ

∫
dρ L̃g

(6.31)

We used the tilde notation in order to emphasize that integration over the angular

coordinates has been used in (6.31). The 4π factor doesn’t appear explicitly beacuse we

have divided the definition of Lg for 16πG (as one can see from (6.22)), so only the term
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2G remains in the denominator of (6.31) and the ADM Lagrangian has the dimensions

of a mass divided by a lenght, according to our conventions.

One can derive, from the ADM Lagrangian, all the momenta coniugated to quantities

that appear in the latter: for example, the momenta coniugated to λ and to r, can be

obtained from (6.31) as:

pλ =
eλ/2r

2Gα
(βr′ − ṙ) (6.32)

pr =
eλ/2

2Gα

(
2βr′ − 2ṙ + 2β′r + βλ′r − λ̇r

)
(6.33)

It is important to underline that pλ and pr are calculated by an ADM Lagrangian that

was integrated over the angular coordinates. We note that the momenta coniugated to

λ and r are regular fields of the variables τ and ρ for every choice of the lapse function

α(τ, ρ) different from zero and every “sufficiently regular” shift vector β(τ, ρ).

Now we want to invert the relations (6.32) and (6.33) in order to have the velocities ṙ

and λ̇ written in terms of the momenta coniugated to the latters:

λ̇ = 2β′ + βλ′ +
2Gαe−

λ
2

(
2pλ
r
− pr

)
r

(6.34)

ṙ =
2Gαe−

λ
2 pλ

r
+ βr′ (6.35)

then we replace the results in (6.31) in order to introduce the Hamiltonian density and

the constraints, according with the previous discussion of the 3+1 decomposition of

General Relativity. In doing so, we are driven to the following expression for the ADM

Lagrangian:

L̃g =
2Ge−λ/2

r
pλ

(pλ
r
− pr

)
+ potential terms

(6.36)

6.3.1 ADM Hamiltonian and Constraints

We introduce the ADM Hamiltonian density according to (5.63), using λ and r as

dynamical variables:

H̃g = pλλ̇+ prṙ − L̃g

≡ αH̃g
⊥ + βχ̃g

(6.37)
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where in the second passage the Hamiltonian and the diffeomorphism constraints have

been introduced, according to (5.66).

The full Hamiltonian is found by integration:

H̃g =

∫
dρ
(
αH̃g

⊥ + βχ̃g
)

(6.38)

where the only integration left is on the radial coordinate, because of the spherical

simmetry.

The full expression of the ADM Hamiltonian density turns out to be:

H̃g =− αe
λ
2

2G
− 2Gαe−

λ
2 pλpr
r

+
2Gαe−

λ
2 p2

λ

r2
− αe−

λ
2 λ′rr′

2G
+
αe−

λ
2 r′2

2G

+
αe−

λ
2 rr′′

G
+ 2β′pλ + βλ′pλ + βprr

′

(6.39)

The expressions for the Hamiltonian and the diffeomorphism constraints are:

H̃g
⊥ =

2Ge−λ/2

r
pλ

(pλ
r
− pr

)
+
e−λ/2

2G

(
2r′′r − r′λ′r + r′2

)
− eλ/2

2G
(6.40)

χ̃g = −2p′λ + λ′pλ + prr
′ (6.41)

where an integration by part has been performed in order to obtain (6.41).

6.4 Matter distribution

We assume that the distribution of matter with spherical symmetry that generates

the gravitational field consists of a perfect fluid. By definition, the latter has the following

expression for the energy-stress tensor:

T µν = ωUµUν + p (gµν + UµUν) (6.42)

It must be emphasized that we are using in this Chapter a space-time metric of signature

(−1, 1, 1, 1), opposite to the one used for the very same perfect fluid in (1.32). We first

deal with the fundamental equations in the general case, without initially adapting the

formalism to a spherical source.

Let us consider a fluid element at point p ∈ Στ as in figure (6.1). Let τe be the Eulerian



6.4 Matter distribution 87

Figure 6.1: Worldline L of a fluid element crossing the spacetime foliation. Uµ is the fluid

4-velocity and ~Ue = d~l/dτe the relative velocity of the fluid with respect to the Eulerian

observer, whose 4-velocity is nµ. Uµ
e is tangent to Στ and enters in the orthogonal

decomposition of Uµ with respect to Στ , via Uµ = Γ(nµ + Uµ
e ). Contrary to what

the figure might suggest, dτe > dτ0 (conflict between the figure’s underlying Euclidean

geometry and the actual Lorentzian geometry of spacetime).

observer’s proper time at p. At the coordinate time τ+dτ , the fluid element has moved to

the point q ∈ Στ+dτ . The date τe+dτe attributed to the event q by the Eulerian observer

moving through p is given by the orthogonal projection q′ of q onto the wordline of that

observer. Indeed, let us recall that the space of simultaneous events (local rest frame)

for the Eulerian observer is the space orthogonal to his 4-velocity Uµ, i.e. locally Στ . Let

d~l be the infinitesimal vector connecting q′ to q. Let dτ0 be the increment of the fluid

proper time between the events p and q. The Lorentz factor of the fluid with respect to

the Eulerian observer is defined as being the proportionality factor Γ between the proper

times dτ0 and dτe:

dτe ≡ Γdτ0 (6.43)

It is very easy to show that:

Γ = − Uµnµ (6.44)
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Table 6.4: Units of measure for the fluid’s variables

Physical quantities Dimensions

U 1

ω [Mass]/[Lenght]3

p [Mass]/[Lenght]3

From a pure geometrical point of view, the Lorentz factor is thus nothing but minus the

scalar product of the two 4-velocities, the fluid’s one and the Eulerian observer’s one.

By using (5.14) it is immediate to show that Γ = αU0. The fluid velocity relative to the

Eulerian observer is defined as the quotient of the displacement d~l by the proper time

dτe, both quantities being relative to the Eulerian observer:

U i
e =

dli

dτe
(6.45)

It is also very easy to show that

Uµ = Γ (nµ + Uµ
e ) (6.46)

Since Uµ
e is by construction tangent to Στ , one has Uµ

e nµ = 0 and therefore (6.23) con-

stitutes the orthogonal ADM decomposition of the fluid 4-velocity Uµ.

The physical dimensions of the perfect fluid energy stress tensor’s components are sum-

marized in table (6.4). We note that already at this point, without having introduced any

relativistic action for the fluid, we can already write, by considering (5.73) and (5.74),

the constraints that the latter adds to the system we are describing. In fact, by using

(6.44) and inserting (5.12) in the relation UµUµ = −1, one has:

Γ = −nµUµ =
(
1 + Uih

ijUj
)1/2

(6.47)

Using the previous equation together with (5.3), it is immediate to show that:

Hfluid ≡
√
hT µνnµnν =

√
h
[
ω
(
1 + Uih

ijUj
)

+ pUih
ijUj

]
(6.48)

χfluidi ≡
√
hT µinµ =

√
h (ω + p)

(
1 + Uih

ijUj
)1/2

Ui (6.49)

We can also write the constraints in terms of the velocity Uµ
e by using (6.46):

Hfluid =
√
h
[
(ω + p) Γ2 − p

]
(6.50)
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χfluidi =
√
h (ω + p) Γ2Ue i (6.51)

We note that Hfluid/
√
h and χfluidi /

√
h are just the fluid energy density and fluid mo-

mentum density as measured by the Eulerian observer, as figure (6.1) suggests.

However, we want to construct an action that describes the fluid, from which the relative

constraints derive from the application ADM formalism, as seen in the previous Chap-

ter. In this regard, it is necessary to introduce canonical variables that describe the fluid

and whose equations of motion are somehow coupled with the gravitational canonical

variables.

6.4.1 Action for a perfect fluid

Perfect fluids are described locally by various thermodynamical variables, the latter

are space-time scalar fields whose values represent measurements made in the rest frame

of the fluid, that is, along the fluid worldline of figure (6.1): the particle number density

n, the energy density ω, the pressure p, the temperature T and the entropy per particle

s. We note that the energy density in the fluid reference system ω enters its energy-

momentum tensor (6.42) together with the velocity field Uµ, which is the velocity in the

fluid’s reference system.

As summarized by J. David Brown [14], the action functionals describing relativistic

perfect fluids and the 3+1 decomposition for the latters can be formulated, but no

perfect fluid action can be constructed solely from the variables (n, ω, p, T, s) and Uµ

unless the variations among those variables are constrained [25]. Two of the required

constraints are particle number conservation ∇µ(nUµ) = 0 and the absence of entropy

exchange between neighboring flow lines ∇µ(nsUµ) = 0, while the remaining one is that

the fluid flow lines should be fixed on the boundaries of space-time.

A method for handling the constraint that the flow lines should be fixed on the space-

time boundaries consists in characterize the history of fluid by a set of space-time scalar

fields V i, i = 1, 2, 3 (instead of the four–velocity Uµ), that are interpreted as Lagrangian

coordinates for the fluid. That is, V i(x) serve as labels for the fluid, specifying which

flow line passes through a given space-time point x. A set of Lagrangian coordinates can

be generated by choosing an arbitrary spacelike hypersurface and a coordinate system V i

on that surface, then each flow line is labeled by the coordinate value of the point where
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it intersects the hypersurface. By building an action functional using the Lagrangian

coordinates V i, the fluid flow lines are held fixed on the space-time boundaries by simply

fixing V i on the boundaries. In spherical case we only need one non-vanishing component

of the Lagrangian coordinates to describe the fluid, thus we will use only V 1 ≡ V . The

particle number and entropy exchange constraints can be incorporated directly into the

action via Lagrange multipliers which we indicate as φ and ϑ: they encode the particle

number conservation constraint and the entropy exchange constraint, respectively [14].

We write the action for the perfect fluid as:

Sfluid =

∫
d4x
√
−g [nUµ (φ,µ + sϑ,µ + δV,µ)− ω(n, s)] (6.52)

where δ is a Lagrange multiplier for the constraints that restricts the fluid four-velocity

vector to be directed along the flow lines V = constant. Defining the pressure as

p = n∂ω
∂n
− ω, the stress-energy tensor (6.42) is obtained by the perfect fluid action

through (5.35).

The fields φ and ϑ can be brought to zero on any spacelike hypersurface by a symmetry

transformation. Thus, there is no loss of generality in choosing φ and ϑ to be zero on

the initial hypersurface. Moreover, we can choose Lagrangian coordinates V i to coincide

with the coordinates xi on the initial surface, so that V j
,i = δji and V̇ i = 0. Nevertheless,

we will write explicitly V ′ and V̇ in order not to lose generality in the formalism. Con-

sidering this aspect, we note that the constraint represented by the Lagrange multiplier

δ forces the four-velocity of the fluid to move along the lines ρ = constant, according to

the physical interpretation of the spherical symmetry of the system.

The Eulerian densities are related to the Lagrangian (or comoving) densities n and ns

by a kinematical or boost factor Γ that in turn is determined by the local spatial velocity

of the fluid, as (6.47) establishes.

We have seen that the fluid contributions to the Hamiltonian and momentum constraints

are just the appropriate projections of the perfect fluid stress–energy–momentum tensor

(6.42), and involve the spatial components Ui of the fluid four–velocity. These compo-

nents Ui can be explicitly expressed in terms of the canonical fluid variables and the

Lagrangian particle number density n through the equations of motion that are derived

from the relativistic action for the perfect fluid [19]. The Lagrangian number density n

is itself a function of the canonical variables, as implicitly determined by the equation
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that relates the Eulerian number density Π/
√
h of the fluid and n:

Π =
√
hn(1 + Uih

ijUj)
1/2 (6.53)

That is, n is the density of the number of particles measured by an observer in motion

with the fluid, while Π/
√
h is the density measured by an observer at rest on the hy-

persurfaces τ = const, whose 4-velocity is nµ. It is not difficult to prove, by performing

the canonical analysis of the relativistic action for the fluid [19] and remembering (6.47),

that:

Γ =
Π√
hn

= (1 + Uih
ijUj)

1/2 (6.54)

Furthermore, it is possible to show that Π ≡ Πφ coincides with the momentum canon-

ically conjugated to ϕ (this justifies the notation just employed), while Πs ≡ Πϑ (the

product between Π and the entropy per particle s) is conjugated to ϑ and Πδ ≡ ΠV is

the momentum conjugated to V .

Taking into account the spherical simmetry of the system, the final resulting expression

for the Hamiltonian form of the action can be written (as for the theory without matter,

we set N ≡ α and N1 ≡ β) as:

Sfluid =

∫
dτ

∫
dρ

∫
dθ

∫
dϕ
[
Πφφ̇+ Πϑϑ̇+ ΠV V̇ − αHfluid

⊥ − βχfluid
]

(6.55)

Where the expressions for the Hamiltonian and the diffeomorphism constraints, as ex-

pected of a matter action with nonderivative coupling to gravity, are (we have only one

non-vanishing component of the velocity, thus we set χ̃fluid ≡ χ̃fluid1 ):

Hfluid
⊥ =

√
h
[
ω(1 + h11U

2) + ph11U
2
]

(6.56)

χfluid = −
√
h (ω + p)

(
1 + h11U

2
)1/2

h11U (6.57)

that coincide with our previous expressions (with only U1 ≡ U different from zero) and

in terms of which it is possible to write the full Hamiltonian of the fluid:

Hfluid ≡
∫
dρ

∫
dθ

∫
dϕ
(
αHfluid

⊥ + βχfluid
)

≡
∫
dρ
(
αH̃fluid

⊥ + βχ̃fluid
) (6.58)
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In order to obtain (6.56) and (6.57), we have implicitly written the space-time metric in

the ADM form:

ds2 = gµνdx
µdxν = −N2dτ 2 + hij(dx

i +N idτ)(dxj +N jdτ) (6.59)

where xi are the spatial coordinates on the τ = constant hypersurfaces, which agrees

with our previous definition (3.62) and (5.11).

If we describe the system in the comoving reference of the fluid, the contributions of the

perfect fluid to the constraints, after an integration over the angular coordinates and

using (6.2), can be written as:

H̃fluid
⊥ = 4πr2eλ/2

[
ω + (ω + p) eλU2

]
(6.60)

χ̃fluid = −4πr2e3λ/2 (ω + p)
(
1 + eλU2

)1/2
U (6.61)

The fluid contribution to the Hamiltonian constraint (6.56) can be rewritten in various

useful forms by using (6.53). Also the momentum constraint (6.57) can be written the

form dictated by the role of χ̃fluid as the generator of spatial diffeomorphisms for the

scalar fields φ, ϑ, V and their conjugates:

χfluid = Πφφ
′ + Πϑϑ

′ + ΠV V
′ (6.62)

6.4.2 Initial and boundary value problems

A perfect fluid coupled to the gravitational field is described by his canonical action

plus the canonical action for gravity. The Cauchy data for this system consist of the

fluid variables φ, Πφ, ϑ, Πϑ, V , ΠV , and the canonical gravitational variables. These

initial data cannot be specified independently, but must satisfy the Hamiltonian and

momentum constraints. Any set of initial data that does satisfy these constraints can be

transformed into an equivalent set by the symmetries of the perfect fluid action.

If we choose V i = xi on the initial surface and we set φ and ϑ equal to zero, then a

complete set of initial data for a perfect fluid consists of the (Eulerian) particle number

density, the (Eulerian) entropy density, ω and p along with φ = ϑ = 0 and V i = xi.

These initial data are then evolved according to the Hamiltonian differential equations

of motion, which we will examine in the next section.
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Now consider the boundary value problem. Assume the space-time manifold admits

closed spacelike hypersurfaces so the boundary data is specified only on initial and final

hypersurfaces. In the most general case in which the system has no spherical symmetry,

one possible set of boundary data consists in specifying the canonical coordinates φ, ϑ,

and V i on the initial and final hypersurfaces. These boundary data include 10 × ∞3

boundary values, 5 ×∞3 on the initial surface and 5 ×∞3 on the final surface, where

∞3 is the number of space points. With these boundary data, the 10×∞3 Hamiltonian

first order differential equations of motion generically determine a solution for the ten

canonical field variables.

Another possible set of boundary data consists in specifying the canonical momentum

Πφ along with the coordinates ϑ and V i on the initial and final hypersurfaces. This

means that the independent boundary data consist of only 9 × ∞3 boundary values.

With these boundary data, the 10×∞3 Hamiltonian first order differential equations of

motion generically determine the ten canonical field variables to within one symmetry

transformation.

The distinctions among the various types of boundary data can be clarified by a simple

example that we have discussed in Chapter 3, namely, the free nonrelativistic particle.

If the initial and final positions of the particle are given as boundary data, the equations

of motion can be solved uniquely for the particle position as a function of time. But the

initial and final momenta cannot be specified independently, because space translation

invariance implies that the momentum is conserved. By specifying equal values for the

intial and final momenta, the equations of motion can be solved to within a constant

spatial translation of the particle.

6.5 Time evolution

As we have specified in Chapter 5, in addition to the constraints one has the dynamical

equations, which are the Hamiltonian equations of motion.

By postponing the analysis for the evolution of the fluid variables, the first half are

λ̇ = {λ,Hg +Hfluid} ṙ = {r,Hg +Hfluid} (6.63)



94 6. ADM Formalism for a Spherical Source

while the second half are:

ṗλ = {pλ, Hg +Hfluid} ṗr = {pr, Hg +Hfluid} (6.64)

We impose, according to (5.61):

{λ(τ, x), pλ(τ, y)} = δ(x, y) (6.65)

{r(τ, x), pr(τ, y)} = δ(x.y) (6.66)

where x and y are radial coordinates. By using (6.38) and (6.58) with above equations,

it is easy to see that (as must be expcted from the ADM formalism described in Chapter

5) (6.63) just gives the relations (6.34) and (6.35), while the equations of motion (6.64)

give the following expressions:

ṗλ =− Gpλprαe
−λ

2

r
+
Gp2

λαe
−λ

2

r2
− re−

λ
2 r′α′

2G
− αe−

λ
2 r′2

4G
+
αe

λ
2

4G
+ βp′λ + pλβ

′

− 6απr2eλ/2
(
U2peλ + U2ωeλ +

ω

3

)
+
βπr2e

3λ
2 U(p+ ω)

(
7U2e

λ
2 + 6

)
√
U2e

λ
2 + 1

(6.67)

ṗr =− 2Gpλprαe
−λ

2

r2
+

4Gp2
λαe

−λ
2

r3
− αe−

λ
2 r′′

G
− e−

λ
2 r′α′

G
+
αe−

λ
2 r′λ′

2G
− re−

λ
2α′′

G

+
re−

λ
2α′λ′

2G
+ βp′r + prβ

′ − 8απeλ/2r
(
U2peλ + U2ωeλ + ω

)
+ 8βπUre

3λ
2 (p+ ω)

√
U2e

λ
2 + 1

(6.68)

We note that the Poisson brackets between the constraints is not equal to zero, thus the

quantum version of the latter does not commute (in a weak sense):

{H̃g
⊥(τ, x) + H̃fluid

⊥ (τ, x), χ̃g(τ, y) + χ̃fluid(τ, y)} 6= 0 (6.69)

Defining H̃g
⊥(τ) ≡

∫
dxH̃g

⊥(τ, x) and Ξ̃g(τ) ≡
∫
dyχ̃g(τ, y) one finds after some calcu-

lations (which include, as the previous expressions, integrations by parts in order to

eliminate the derivatives of the Dirac’s delta distributions) that the following Poisson

bracket between the constraints holds at equal times:

{H̃g
⊥, Ξ̃

g} =

∫
dρ

(
−2Gpλe

−λ
2 p′r

r
+

4Gpλpre
−λ

2 r′

r2
+
Gpλpre

−λ
2 λ′

r
− 4Gp2

λe
−λ

2 r′

r3

− Gp2
re
−λ

2 r′

r
− re−

λ
2 r′′λ′

2G
+
re−

λ
2 r′λ′2

4G
− e−

λ
2 r′2λ′

2G
+
e−

λ
2 r′r′′

G

) (6.70)
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in which we used the fact that H̃g
⊥ ≈ 0, χ̃g ≈ 0, therefore this set of constraints turns

out to be of second class since satisfies (3.6). For simplicity we have not considered

the contributions of the fluid in the previous explicit calculation of the Poisson bracket

between the constraints, but this is enough to see that the latter belong to the second

class ones, which we have briefly discussed in Chapter 3, and for which the canonical

quantization can take place after the Poisson brackets have been replaced with Dirac

brackets.

Turning our attention now to the canonical fluid variables, the fundamental Poisson

brackets among the latters are:

{φ(τ, x),Πφ(τ, y)} = δ(x, y) (6.71)

{ϑ(τ, x),Πϑ(τ, y)} = δ(x, y) (6.72)

{V (τ, x),ΠV (τ, y)} = δ(x, y) (6.73)

We compute the canonical fluid equations of motion for the canonical fluid variables φ,

ϑ, V by using the Hamilton equations with the generator (6.58):

φ̇ = {φ,Hfluid} = α

(
ω + p

n
− Ts− Uφ′

)(
1 + eλU2

)−1/2
+ βφ′ (6.74)

ϑ̇ = {ϑ,Hfluid} = α (T − Uϑ′)
(
1 + eλU2

)−1/2
+ βϑ′ (6.75)

V̇ = {V,Hfluid} = α (−UV ′)
(
1 + eλU2

)−1/2
+ βV ′ (6.76)

While the relative momenta evolves according to:

Π̇φ = {Πφ, H
fluid} = −

(
4παr2eλ/2U

)′
+ (βΠφ)′ (6.77)

Π̇ϑ = {Πϑ, H
fluid} = −

(
4παr2eλ/2nsU

)′
+ (βΠϑ)′ (6.78)

Π̇V = {ΠV , H
fluid} = −

(
4παr2eλ/2nV U

)′
+ (βΠV )′ (6.79)

It turns out that evolution of the canonical fluid variables (and the relative momenta)

is not affected by the constraints (6.40) and (6.41): this justifies the fact that we have

used only the fluid generator to compute the equations of motion for the fluid variables.

Conversely, the constraints (6.105) and (6.106) actually involve a change in the evolution

of the dynamical variables and corresponding canonical momenta. In particular, λ̇ and

ṙ are not directly modified since constraints which encode the fluid contribution only
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contain functions of λ and r, but actually ṗλ and ṗr explicitly change.

It must be emphasized that, nevertheless, the volution of λ and r is implicitly modified

by the fluid because, as one can see from (6.34) and (6.35), the evolution of the latters

depend on pλ and pr.

6.6 Constraints coupled with the matter

The equations for the constraints, including the contribution of the perfect fluid, can

be written as:

H̃g
⊥ + H̃fluid

⊥ ≈ 0 (6.80)

χ̃g + χ̃fluid ≈ 0 (6.81)

Replacing previous expressions, the constraints turn out to be:

H̃g
⊥ + H̃fluid

⊥ =
2Ge−λ/2

r
pλ

(pλ
r
− pr

)
+
e−λ/2

2G

(
2r′′r − r′λ′r + r′2

)
− eλ/2

2G

+ 4πr2eλ/2
[
ω + (ω + p) eλU2

] (6.82)

χ̃g + χ̃fluid =− 2p′λ + λ′pλ + prr
′ − 4πr2e3λ/2 (ω + p)

(
1 + eλU2

)1/2
U (6.83)

In addition to the constraints, it is also necessary to take into account the ADM decom-

position for the continuity equation satisfied by (6.42). This decomposition is slightly

laborious [28], so we report only the final results, where the projection along the normal

vector to the hypersurfaces is called ”energy conservation equation”, while the orthogonal

one is the ”relativistic Euler equation”:

nν∇µT
µ
ν =

2Ge3λ/2pλ
r2

(
β2eλp

α
− αp− U2αeλp+ 3Uαe−λp+ αe−2λω − U2αeλω

+ 3Uαe−λω

)
− Ge3λ/2pr

r

(
β2eλp

α
− αp− U2αeλp+ Uαe−λp− αe−2λω

− U2αeλω + Uαe−λω

)
+ Uαeλ

√
Ueλ + 1

(
p′ + 2α′p+

3

2
λ′p+ 2α′ω

+
3

2
λ′ω + ω′

)
+
U2αe2λλ′(ω + p)

2
√
Ueλ + 1

− Uβeλ(p′ + ω′) + Ueλ(ṗ+ ω̇)

+ 2Uβ′eλ(p+ ω) + ω̇ − βω′

(6.84)
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hν 1∇µT
µ
ν =α′ +

4GU3αeλ/2pλ − 2GU3rαeλ/2pr − 2U2r2α′ − 2Ur2β′ − Ur2βλ′

2r2
√
Ueλ + 1

+
−4GU2αeλ/2pλ + 2GU2rαeλ/2pr − 2U2r2β′eλ + U2r2βeλλ′ + Ur2βλ′

2r2(Ueλ + 1)3/2

+
αp′

(p+ ω) (Ueλ + 1)
+

−Uβp′ + Uṗ

(p+ ω) (Ueλ + 1)3/2
+
−2U3αeλλ′ − U2αλ′

2 (Ueλ + 1)2

(6.85)

So far in this Chapter we have applied the ADM formalism to a compact spherical source

consisting of a perfect fluid using the metric (6.2).

Instead of analyzing the resulting equations for the constraints (which we have obtained

in the geneal case) with this choice of dynamic variables, in the next section we will make

a change of variable and repeat the analysis performed up to now.
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6.7 Change of variable

We are now interested in making the following variable change:

e−λ(τ,ρ) = 1− 2Gm(ρ, τ)

r(ρ, τ)
(6.86)

where we assume that m(ρ, τ) is a function of temporal and radial coordinates. We are

interested in understanding if it is possible to derive the value of this “local mass function”

(in analogy with the static case of the Schwarzschild metric) from the constraints of the

theory. Therefore, we use now (m, r) as dynamical variables.

After considering the change of variable (6.86), we must follow the same procedure with

which we obtained the Lagrangian ADM density in the previous subsection, replacing λ

by using m, in order to compute the constraints.

The three-dimensional metric on the hypersurfaces therefore becomes:

hab = gab =


(

1− 2Gm(ρ,τ)
r(ρ,τ)

)−1

0 0

0 r2(ρ, τ) 0

0 0 r2(τ, ρ) sin2 θ

 (6.87)

By making this sobstitution, we can write the full expression of Lg with the variable

change (6.86) and, as in the previous section, we can integrate SE−H over θ and ϕ, so

the latter turns out to be:

SE−H =

∫
dτ

∫
dρ

∫
dθ

∫
dϕ Lg

≡
∫
dτ

∫
dρ L̃g

(6.88)

where the tilde notation L̃g has been introduced again in order to distinguish the ADM

Lagrangian from the one integrated over the angular coordinates.

The full expression of the ADM Lagrangian density with the variable change (6.86) can
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be calculated as:

L̃g =

(
2G

√
1− 2Gm

r
(r − 2Gm)α

)−1(
2β′ṙr2 − 2βr′β′r2 − β2r′2r − ṙ2r − 2Gβ2m′r′r

+ 4Gmβr′β′r + 2Gβr′ṁr + 2Gβm′ṙr + 2βr′ṙr − 4Gmβ′ṙr − 2Gṁṙr + 4Gmβ2r′2

+ 4Gmṙ2 − 8Gmβr′ṙ

)
+

(
2G

√
1− 2Gm

r

)−1(
− 2αr′′r − αr′2 + α + 2Gαm′r′

+ 4Gmαr′′
)

(6.89)

From which one can derive the momenta coniugated to r(ρ, τ) and m(ρ, τ):

pm =
1

α

(
1− 2Gm

r

)−3/2

(βr′ − ṙ) (6.90)

pr =
1

α

(
1− 2Gm

r

)−3/2(
2mṙ

r
− ṁ+ βm′ − 2βmr′

r

)
+

1

αG

(
1− 2Gm

r

)−1/2

(β′r − ṙ + r′β)

(6.91)

Again, we emphasize that these momenta are determined by a Lagrangian integrated

over the angular coordinates.

As in the previous subsection, we want to use relations (6.90) and (6.91) in order to write

the velocities ṙ and ṁ in terms of the momenta coniugated to the latter quantities.

ṁ = α

(
1− 2Gm

r

)5/2
pm
G
− α

(
1− 2Gm

r

)3/2(
2mpm
r

+ pr

)
+

(
1− 2Gm

r

)
β′r

G
+ βm′

(6.92)

ṙ = βr′ − αpm
(

1− 2Gm

r

)3/2

(6.93)

In doing so, we are driven to the following expression for the ADM Lagrangian:

L̃g =α

(
1− 2Gm

r

)5/2
p2
m

G
− α

(
1− 2Gm

r

)3/2

pm

(
pr +

pm
2G

)
+ potential terms

(6.94)
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We see that, with this choice of the metric, the trapping surfaces (which by definition

occurs where the expansion of outgoing null geodesics vanishes) correspond [30,31] to r =

rg. If we analyze the momenta coniugated to m and r for r ∼ 2Gm (which corresponds to

the gravitational radius (1.28) which has been described in the Schwarzschild solution),

we see that in order to render pm and pr reguar we can choose the following value for

the lapse function α:

α =

(
1− 2Gm

r

)−γ
γ ≥ 3/2 (6.95)

while the shif vector β can be any regular function of the dynamical variables differen-

tiable with respect to the radial coordinate. For example, if we choose γ = 3/2, we find

for r ∼ 2Gm:

pm ∼ 2G(βm′ − ṁ) (6.96)

pr ∼ −ṁ−m′β (6.97)

6.7.1 ADM Hamiltonian and Constraints

In order to introduce the ADM Hamiltonian density H̃g (we maintain the “tilde”

notation to underline that the only remaining integration is over the radial coordinate),

we write:

H̃g = pmṁ+ prṙ − L̃g

≡ αH̃g
⊥ + βχ̃g

(6.98)

where H̃g
⊥ and χ̃g are, respectively, the Hamiltonian and the momentum constraint.

The full Hamiltonian is found by integration:

H̃g =

∫
dρ
(
αH̃g

⊥ + βχ̃g
)

(6.99)

The ADM Hamiltonian density can be calculated as:

H̃g =

(
2Gr2

√
1− 2Gm

r

)−1(
− 8G3αm2rpmpr − 16G3αm3p2

m − 2Gαm′r3r′

+ 8G3αmr2pmpr − 2Gαr3pmpr + 20G2αm2rp2
m − 8Gαmr2p2

m + αr3p2
m

− 4Gαmr3r′′ + αr3r′2 + 2αr4r′′ − αr3

)
+
β′pmr

G
+ βm′pm − 2β′mpm + βprr

′

(6.100)
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As can be directly verified, the expression for the constraints turns out to be:

H̃g
⊥ =

(
1− 2Gm

r

)3/2

pm

(
pm
2G
− 2mpm

r
− pr

)
+

(
1− 2Gm

r

)−1/2(
r′2

2G
− 2mr′′ +

rr′′

G
− r′m′ − 1

2G

) (6.101)

χ̃g = pm

(
3m′ − r′

G

)
+ p′m

(
2m− r

G

)
+ prr

′ (6.102)

We see that for r ∼ 2Gm, the constraints exhibit the following behaviour (in particular,

the Hamiltonian constraint is divergent):

H̃g
⊥ ∼

(
1− 2Gm

r

)−1/2(
− 1

2G

)
(6.103)

χ̃g ∼ 2Gm′pr (6.104)

Fluid constraints can be written, according to (6.56), (6.57) and (6.58), as:

H̃fluid
⊥ = 4πr2

(
1− 2Gm

r

)−1/2
[
ω + (ω + p)

(
1− 2Gm

r

)−1

U2

]
(6.105)

χ̃fluid = −4πr2

(
1− 2Gm

r

)−3/2

(ω + p)

[
1 +

(
1− 2Gm

r

)−1

U2

]1/2

U (6.106)

where we see that for r ∼ 2Gm and U 6= 0 both the constraints diverge. Note that

the Hamiltonian constraint for the fluid diverges with the same asymptotic behavior of

(6.101).

6.8 Time evolution

The Hamiltonian equations of motion are

ṁ = {m,Hg +Hfluid} ṙ = {r,Hg +Hfluid} (6.107)

ṗm = {pm, Hg +Hfluid} ṗr = {pr, Hg +Hfluid} (6.108)

We impose as usually:

{m(τ, x), pm(τ, y)} = δ(x, y) (6.109)
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{r(τ, x), pr(τ, y)} = δ(x, y) (6.110)

where x and y are again radial coordinate.

As regards the temporal evolution for the canonical variables of the fluid, once the Poisson

brackets (6.71), (6.72) and (6.73) are imposed, the resulting equations are the following:

φ̇ = {φ,Hfluid} = α

(
ω + p

n
− Ts− Uφ′

)[
1 +

(
1− 2Gm

r

)−1

U2

]−1/2

+ βφ′

(6.111)

ϑ̇ = {ϑ,Hfluid} = α (T − Uϑ′)

[
1 +

(
1− 2Gm

r

)−1

U2

]−1/2

+ βϑ′ (6.112)

V̇ = {V,Hfluid} = α (−UV ′)

[
1 +

(
1− 2Gm

r

)−1

U2

]−1/2

+ βV ′ (6.113)

Π̇φ = {Πφ, H
fluid} = −

[
4παr2

(
1− 2Gm

r

)−1/2

U

]′
+ (βΠφ)′ (6.114)

Π̇ϑ = {Πϑ, H
fluid} = −

[
4παr2

(
1− 2Gm

r

)−1/2

nsU

]′
+ (βΠϑ)′ (6.115)

Π̇V = {ΠV , H
fluid} = −

[
4παr2

(
1− 2Gm

r

)−1/2

nV U

]′
+ (βΠV )′ (6.116)

where we used only the fluid generator Hfluid, since Hg does not contribute to the

temporal evolution of the canonical variables related to the fluid.

With the change of variable (6.86) in the metric, we see that considerations made in the

previous sections remain valid: the temporal evolution of the canonical variables m and

r is not directly influenced by the Hamiltonian relative to the perfect fluid, while the

corresponding conjugate momenta acquire terms due to the latter, which in turn modify

the time evolution of m and r through (6.93) and (6.92).

In fact, by using (6.99) and (6.58) with previous expressions, it turns again out that

(6.107) just gives the relations (6.93) and (6.92) according to the general description

of the ADM formalism, while equations (6.108) give the following expressions for the
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temporal evolution of conjugate momenta:

ṗm =

(
2r3

√
1− 2Gm

r

)−1(
12G2mrpmprα + 40G2m2p2

mα− 4G2r2α− 6Gr2pmprα

− 34Gmrp2
mα + 7r2p2

mα− 2r3r′α′ − αr2r′2
)

+ 3pmβ
′ + βp′m

+

4πGr3
√

1− 2Gm
r

(r − 2Gm)4

(6GpU2mrα− 4G2ωm2α− 6GpUmrβ + 6GU2ωmrα

− 6GUωmrβ + 4Gωmrα + 5pU3r2β − 3pU2r2α + 3pUr2β + 5U3ωr2β − 3U2ωr2α

+ 3Uωr2β − ωr2α

)
(6.117)

ṗr =

(
2Gr4

√
1− 2Gm

r

)−1(
4G3r2mα− 12G3m2rpmprα− 40G3m3p2

mα + 2Gr3m′r′α′

+ 2Gr4m′α′ + 6G2mr2pmprα + 34G2m2rp2
mα− 7Gmr2p2

mα + 4Gmr3r′′α− 2r4r′′α

+ 4Gmr3r′α′ − 2r4r′α′ −Gmr2r′2α + 4Gmr4α′′ − 2r5α′′
)
− pmβ

′

G
+ βp′r + prβ

′

+

(√
1− 2Gm

r
(r − 2Gm)3

)−1(
56G2πUωm2βr2 + 80G3πωm3αr − 8pπU2αr4

− 8πU2ωαr4 − 8πωαr4 + 8pπU3βr4 + 8pπUβr4 + 8πU3ωβr4 + 8πUωβr4

+ 44GpπU2mαr3 + 44GπU2ωmαr3 + 52Gπωmαr3 − 36GpπU3mβr3 − 44GpπUmβr3

− 36GπU3ωmβr3 − 44GπUωmβr3 − 56G2pπU2m2αr2 − 56G2πU2ωm2αr2

− 112G2πωm2αr2 + 56G2pπUm2βr2

)
(6.118)

As in the previous section, the Poisson brackets between the constraints is different from

zero:

{H̃g
⊥(τ, x) +Hfluid

⊥ (τ, x), χ̃g(τ, y) + χ̃fluid(τ, y)} 6= 0 (6.119)

Defining H̃g
⊥(τ) ≡

∫
dxH̃g

⊥(τ, x) and Ξ̃g(τ) ≡
∫
dyχ̃g(τ, y), the following Poisson bracket

between the constraints (for simplicity we again disregard the fluid contribution) holds



104 6. ADM Formalism for a Spherical Source

at equal times:

{H̃g
⊥, Ξ̃

g} =

∫
dρ

[
−512G7p4

mm
7 − 256G6p3

m(Gpr − 5pm)rm6

+ 32G5p2
mr

2
(
−39p2

m + 18Gprpm + 10r′2 − 4rr′′
)
m5

− 16G4pmr
3(−35p3

m + 30Gprp
2
m +

(
−8G2 + 43r′2 − 14rr′′

)
pm

+ 4Grp′rr
′ + 2Gpr

(
4G2 − 7r′2

)
)m4

+ 8G3r4(16G4 − 8rr′′G2 + 20p3
mprG+ 2pm

(
8rp′rr

′ + pr
(
16G2 − 25r′2

))
G

− 10p4
m + r′4 + 4r′2

(
p2
rG

2 −G2 − rr′′
)
− 2p2

m

(
16G2 − 37r′2 + 8rr′′

)
)m3

− 8G2r5(24G4 − 12rr′′G2 + 3m′r′3G+ 3pm
(
4rp′rr

′ + pr
(
8G2 − 11r′2

))
G

+ 3p4
m − r′4 + 2r′2

(
3p2

rG
2 − 3G2 + 2rm′′G− 5rr′′

)
− 2p2

m

(
12G2 − 16r′2 + rr′′

)
)m2

+ 2Gr6(48G4 − 24rr′′G2 + 12m′r′3G− 6p3
mprG+ 2pm

(
8rp′rr

′ + pr
(
16G2 − 19r′2

))
G

+ 8rm′r′r′′G+ 5p4
m − 3r′4 + 4r′2

(
3p2

rG
2 + 2m′2G2 − 3G2 + 4rm′′G− 7rr′′

)
+ 4p2

m

(
−8G2 + 7r′2 + rr′′

)
)m+ r7(−16G4 + 8rr′′G2 + 6m′r′3G+ 2p3

mprG

− 4pm
(
rp′rr

′ + 2pr
(
G2 − r′2

))
G− 8rm′r′r′′G− p4

m

− 4r′2
(
p2
rG

2 + 8m′2G2 −G2 + 2rm′′G− 3rr′′
)

+ p2
m

(
8G2 − 5r′2 − 2rr′′

)
)

](
4Gr6r′

√
1− 2Gm

r
(r − 2Gm)2

)−1

(6.120)

in which we have taken into account that H̃g
⊥ ≈ 0, χ̃g ≈ 0, thus also this set is a second

class constraints set, as how to be expected from the previous analysis for the variables

(λ, r).

6.9 Constraints coupled with the matter

The equations for the constraints, including the contribution of the perfect fluid, can

be written as:

H̃g
⊥ + H̃fluid

⊥ ≈ 0 (6.121)

χ̃g + χ̃fluid ≈ 0 (6.122)
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Replacing previous expressions, the constraints turn out to be:

H̃g
⊥ + H̃fluid

⊥ =

(
1− 2Gm

r

)3/2

pm

(
pm
2G
− 2mpm

r
− pr

)
+

(
1− 2Gm

r

)−1/2(
r′2

2G
− 2mr′′ +

rr′′

G
− r′m′ − 1

2G

)
+ 4πr2

(
1− 2Gm

r

)−1/2
[
ω + (ω + p)

(
1− 2Gm

r

)−1

U2

] (6.123)

χ̃g + χ̃fluid = pm

(
3m′ − r′

G

)
+ p′m

(
2m− r

G

)
+ prr

′

− 4πr2

(
1− 2Gm

r

)−3/2

(ω + p)

[
1 +

(
1− 2Gm

r

)−1

U2

]1/2

U

(6.124)

It is possible to eliminate the dipendence on pr from the Hamiltonian constraint, taking

advantage of the condition χ̃g + χ̃fluid ≈ 0:

H̃g
⊥ + H̃fluid

⊥ =

(
1− 2Gm

r

)3/2

pm

(
−2mpm

r
+

3pmm
′

r′
− pm

2G
+

2mp′m
r′
− rp′m
r′G

)
+

(
1− 2Gm

r

)−1/2(
r′2

2G
− 2mr′′ +

rr′′

G
− r′m′ − 1

2G
+ 4πωr2

)

− 4πpmr
2 (ω + p)

r′

[
1 +

(
1− 2Gm

r

)−1

U2

]1/2

U

(6.125)

At this point, once we have obtained the equations for the system constraints in the

general case, we want to examine some particular cases.

• U = 0

In this case, in the co-moving reference system with the fluid, the latter is at rest.

The diffeomorphism constraint relative to the fluid (as one can expect) identically

vanishes, while the Hamiltonian constraint for the fluid becomes

H̃fluid
⊥ = 4πr2

(
1− 2Gm

r

)−1/2

ω (6.126)

The equations of motion are considerably simplified, as can be seen directly by

imposing U = 0 in the latters. In particular, while the time evolution of the grav-

itational canonical variables m and r (6.93), (6.92) is not directly modified by the
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condition U = 0 for the fluid, the evolution (6.117), (6.118) of the conjugate mo-

menta is considerably simplified, however for arbitrary values of the lapse function

and of the radial component of the shift vector, the latters are still too complicated

to be explicitly solved.

For r ∼ 2Gm the sum of the diffeomorphism constraints gives:

prm
′ ≈ 0 (6.127)

while the sum of Hamiltonian constraints become:(
1− 2Gm

r

)−1/2(
16πG2m2ω − 1

2G

)
≈ 0 (6.128)

The relation that is possible to extrapolate for the mass density of the fluid (which

multiplies the divergent factor in the previous equation) is

8πGω =
1

4G2m2
(6.129)

it is clear that the previous relation, which relates the dynamic variable m to the

energy density of the fluid ω, is valid in the case in which there is a trapping surface

in the region where the fluid is present.

• U = 0, p = 0

In this case the perfect fluid becomes dust (Chapter 2). The constraints, for U = 0,

do not change depending on whether the pressure is positive or zero. However, it

is easy (although the calculations are laborious) to show that the relativistic Euler

equation (6.85) written in terms of variables (m, r) in this case is reduced to:

α′ = 0 (6.130)

that is, we recover the known result [23] according to which the lapse function for

a compact spherical source consisting of dust cannot depend on radial coordinate,

thus α = α(τ). Conversely, if we take α = 1, (6.85) is reduced to:

p′ = 0 (6.131)

A pressure independent of the radial coordinate seems not to be a plausible physical

situation unless p = 0, but on the other hand the lapse function (as we saw in the
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previous Chapter) is an arbitrary choice. The reason for this is that α = 1 implies

that the particles move along timelikes geodesics of spacetime, but this is only

possible in the absence of pressure.

• U = 0, r = ρ

This condition implies that the system becomes totally static: the radius of the

spherical source does not depend on time and therefore it can neither expand nor

contract. In this case, the constraints become:

H̃g
⊥ + H̃fluid

⊥ =

(
1− 2Gm

ρ

)3/2

pm

(
pm
2G
− 2mpm

ρ
− pr

)
+

(
1− 2Gm

ρ

)−1/2 (
−m′ + 4πωρ2

) (6.132)

χ̃g + χ̃fluid = pm

(
3m′ − 1

G

)
+ p′m

(
2m− ρ

G

)
+ pr (6.133)

where the expressions of the momenta are given by

pm =
β

α

(
1− 2Gm

ρ

)−3/2

(6.134)

pr =
1

α

(
1− 2Gm

ρ

)−1/2
[(

1− 2Gm

ρ

)−1(
βm′ − 2βm

ρ

)
+

1

G
(β′ρ+ β)

]
(6.135)

Having used this formalism to describe this source, in this condition we are in-

terested in understanding if it is possible to derive the value of the mass m from

the Hamiltonian constraint. Imposing β = 0 and keeping α arbitrary, we see from

(6.90) that pm = 0, thus from the condition H̃g
⊥ + H̃fluid

⊥ ≈ 0 we find:

m = 4π

∫ ρ0

0

ωρ2dρ (6.136)

which is the Misner-Sharp mass (2.14) for r = ρ, while also the conjugate momen-

tum to r vanishes, therefore the radial constraint undergoes the same fate. From

(6.93) we see that ṁ = 0, condition which coincides with the result obtained by

carrying out the same hypotheses in the Lagrangian formalism, as we show in the

appendix. In this formalism, however, we must be able to prove that ω does not
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depend on the temporal coordinate. It is not difficult to show that the energy

conservation equation (6.84) is reduced, under these assumptions and again using

(m, r), to the condition:

ω̇ = 0 (6.137)

So we see that the Misner-Sharp mass turns out to be a constraint in the ADM

formalism, at least in the totally static case. If these hypotheses are released on

U , r and β, the constraint equations are transformed into cumbersome partial

differential equations on m and pm.

In the appendix we also show that, with these hypotheses within the Lagrangian

formalism, the value of the Misner-Sharp mass m can be recovered from the time-

time component of the field equations, while setting also g00 = eν(ρ) we obtain the

so-called Tolman-Oppenheimer-Volkoff equation.

Finally we notice that, referring to the Tolman solution (which was obtained with

a different choice of the metric) discussed in Chapter 2 with the hypotesis r = ρ,

we would have obtained the relation (6.129) if we had imposed F = ρ in (2.13) for

ρ ∼ 2Gm.



Chapter 7

Canonical Quantization For a

Spherical Source

We have established in the previous Chapter a Hamiltonian formulation of General

Relativity following the work of Bergmann, Dirac, “ADM” and others in 1950s. This

can be considered the starting point for a canonical quantization, which requires the

definition of a configuration variable and its conjugate momentum.

The dynamics of General Relativity (as in all reparametrization-invariant systems) is

entirely generated by constraints: the total Hamiltonian either vanishes as a constraint

(for the spatially compact case) or solely consists of surfaces terms (in the asymptotically

flat case). The central difficulty is thus, both conceptually and technically, the correct

treatment of the quantum constraints: given a classical theory, it is not possible to

derive a unique quantum theory from the latter, one can only try to guess such a theory

and to test it by experiment. For this purpose, we can try to use sets of “quantization

rules” which turned out to be successful in the construction of quantum theories (such

as QED). The task turns out to be, strictly speaking, to construct a quantum theory

from its classical limit.
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7.1 Steps for Quantization

For the sake of brevity we deal in this Chapter only with the analysis for the variables

(m, r) used to describe the spherical source. Following Kuchar [15], we shall divide the

programme of canonical quantization into six steps, which will shortly be presented and

described here using again conventions of table (6.1), (6.2) and (6.3).

• CONFIGURATION VARIABLES AND MOMENTA

The first step consists in the identification of configuration variables and their mo-

menta. Together with the unit operator, these variables are called the fundamental

variables Vi. The implementation of Dirac’s procedure for the canonical quanti-

zation is, as usually, the translation of Poisson brackets into commutators for the

fundamental variables according to the well know formula:

V3 = {V1, V2} → V̂3 =
1

i~
[V1, V2] (7.1)

As we have seen in the ADM formalism section, in the formulation of General Rela-

tivity the fundamental variables are, apart from the unit operator, the three-metric

hab(x) and its momentum pcd(x) (or, in the approach of reduced quantization, a

subset of them). The Vi form a vector space that is closed under Poisson brackets

and complete (in the sense that every dynamical variable can be expressed as a

sum of products of fundamental variables).

Application of the above Dirac’s prescription to (5.61) would yield the following

relation:

[ĥab(x), p̂cd(y)] = i~δc(aδdb)δ(x, y) (7.2)

plus vanishing commutators between, respectively, the metric components and the

momentum components. Since pcd is linearly related to the extrinsic curvature (de-

scribing the embedding of the three-geometry into the fourth temporal dimension),

the presence of the commutator (7.2) and the ensuing “uncertainty relation” be-

tween intrinsic and extrinsic geometry means that the classical space–time picture

has completely dissolved in quantum gravity: this is analogous to the disappearance

of particle trajectories as fundamental concepts in quantum mechanics and consti-

tutes one of the central interpretational ingredients of quantum gravity. Equation
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(7.2) does not implement the positivity requirement deth > 0 of the classical the-

ory, but this could only be a problem if p̂ab were self-adjoint and its exponentiation

therefore a unitary operator, which could “shift” the metric to negative values. Ap-

plying the same canonical quantization procedure to the Poisson brackets (6.109),

(6.110), (6.71), (6.72) and (6.73) one obtains:

[m̂(x), p̂m(y)] = i~δ(x, y) (7.3)

[r̂(x), p̂r(y)] = i~δ(x, y) (7.4)

[φ̂(x), Π̂φ(y)] = i~δ(x, y) (7.5)

[ϑ̂(x), Π̂ϑ(y)] = i~δ(x, y) (7.6)

[V̂ (x), Π̂V (y)] = i~δ(x, y) (7.7)

Of course we must not forget that, as shown in Chapter 6, for a compact spherical

source described by a perfect fluid, the two resulting constraints are of second class

and, therefore, the Poisson brackets must be replaced, according to (3.7), by Dirac

brackets.

• QUANTIZATION OF VARIABLES

This step addresses the quantization of a general variable F (hab, p
cd), which is a

function of the fundamental variables discussed in the previous step. From general

theorems of quantum theory (Groenewald and van Hove), it turns out that that

it is impossible to respect the transformation rule (7.2) in the general case, while

assuming an irreducible representation of the commutation rules: this failure is

related to the problem of “factor ordering” on which we will not dwell here.

Therefore, additional criteria must be invoked to find the “correct” quantization.

• REPRESENTATION SPACE

The third step concerns the construction of an appropriate representation space,

F , for the dynamical variables, on which the latter should act as operators. We

shall usually employ the functional Schroedinger picture, in which the operators

act on wave functionals defined in an appropriate functional space.

The implementation of (7.2) woul be achieved, for example (following the well
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known procedure of the quantum mechanics), by

ĥab(x)Ψ[hab(x)] = hab(x)Ψ[hab(x)] (7.8)

p̂cd(x)Ψ[hab(x)] = −i~ δ

δhcd(x)
Ψ[hab(x)] (7.9)

Riem Σ would have to be invariant under translations in function space in order

to define self-adjoint operators from the previous equations, but since there is not

Lebesgue measure on Riem Σ this is not the case. Thus, one would not expect

the fundamental relations (7.2) to be necessarily in conflict with deth > 0. Before

the constraints are implemented, the representation space F does not necessarily

contain only physical states, therefore neither does it have to be a Hilbert space

nor do operators acting on F have to be self-adjoint.

It might even be inconsistent to demand that the constraints be self-adjoint oper-

ators on an auxiliary Hilbert space F , which can therefore be merely seen as an

auxiliary space.

This step applied to the example of Chapter 6 gives:

m̂Ψ = mΨ p̂mΨ = −i~ δ

δm
Ψ (7.10)

r̂Ψ = rΨ p̂rΨ = −i~ δ
δr

Ψ (7.11)

φ̂Ψ = φΨ Π̂φΨ = −i~ δ

δφ
Ψ (7.12)

ϑ̂Ψ = ϑΨ Π̂ϑΨ = −i~ δ

δϑ
Ψ (7.13)

V̂Ψ = VΨ Π̂V Ψ = −i~ δ

δV
Ψ (7.14)

• CONSTRAINTS

This step consists in the implementation of the constraints. According to the

Dirac’s quantization method of the constraints discussed in previous Chapters, one

would implement the classical constraints H⊥ ≈ 0 and Ha ≈ 0 as:

H⊥Ψ = 0 (7.15)

HaΨ = 0 (7.16)
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These are infinitely many equations, in fact we have one of them at each space

point, which is usually indicated collectively as HµΨ = 0. Only solutions to these

“quantum constraints” can be regarded as candidates for physical states, in ac-

cordance with what we saw in Chapter 3. The solution space will be indicated as

F0. How the constraints above can be written in detail depends on one’s approach

to the problem of time, which will be investigated soon. It has to be expected

that the solution space is still too large: as in quantum mechanics, one may have

to impose further conditions on the wave functions such as normalizability, whose

requirement is needed in quantum mechanics because of the probability interpre-

tation (but it is far from clear whether this interpretation can be maintained in

quantum gravity). The physical space on which wave functionals act, Fphys, should

thus form in the ideal case a genuine subspace, Fphys ⊂ F0 ⊂ F .

• OBSERVABLES

The fifth step concerns the role of observables O, which are characterized by having

weakly vanishing Poisson brackets with the constraints: {O,Ga} ≈ 0. The latters

should not be confused with observables in an operationalistic sense. In quan-

tum mechanics, observables are associated with self-adjoint operators, however in

practice only few operators correspond in fact with quantities that are “measured”

in laboratory. For an operator corresponding to a classical observable satisfying

{O,Hµ} ≈ 0, one would expect that in the quantum theory the following relation

holds: [
Ô, Ĥµ

]
Ψ = 0 (7.17)

This is sometimes interpreted as meaning that the “measurement” of the quantity

being related to this operator leads to a state that is no longer annihilated by the

constraints, “throwing one out” of the solution space. This would, however, only be

a problem for a “collapse” interpretation of quantum gravity, an interpretation that

seems to be highly unlikely to hold in quantum gravity [4]. Since the interpretations

of classical Hamiltonian and diffeomorphism constraints differ from each other, the

same is exptected to happen for their quantum versions (7.15) and (7.16).
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• HILBERT SPACE

The last step concerns the role of the physical Hilbert space (cf. also step 3).

Do the observables have to be represented by operators in some Hilbert space? If

yes, which Hilbert space? It can’t be the auxiliary space F (because the latter is

“too large”), but it is unclear whether it is F0 or only Fphys (which is a subspace of

F0). A general method to deal with the construction of a physical Hilbert space,

in the quantization of constrained systems, is the “group averaging procedure”.

However, the situation for General Relativity, where the constraint algebra is not a

Lie algebra at all, remains unclear and the “problem of Hilbert space” is intimately

connected with the “problem of time” in quantum gravity, whose discussion follows.

The quantum theory and the concept of time in General Relativity differ drastically from

each other physical theory, because time in quantum theory is an external parameter (an

“absolute” element of the theory as we have defined it in the third Chapter), whereas in

General Relativity is dynamical because of the role of gµν in the latter (as seen in the

discussion of the Einstein’s equation in Chapter 3).

Therefore, a consistent theory of quantum gravity should exhibit a “novel concept” of

time: the history of physics has shown that new theories often entail a new concept of

space and time, thus the same should happen again with quantum gravity.

The absolute nature of time in quantum mechanics is crucial for its interpretation in the

General Relativity framework.

• TIME IN QUANTUM MECHANICS

Matrix elements are usually evaluated at fixed t, and the scalar product is con-

served in time (this is the unitarity requirement): this express, in quantum me-

chanics, the conservation of the total probability. “Time” is part of the classical

background which, according to the Copenhagen interpretation, is needed for the

interpretation of measurements. As we have remarked at the end of discussion of

the classical point particle, the introduction of a time operator in quantum me-

chanics is problematic. The time parameter t appears explicitly in the Schroedinger

equation (3.28), it comes together with the imaginary unit i, a fact that finds an

explanation in the semiclassical approximation to quantum geometrodynamics [4].
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• TIME IN GENERAL RELATIVITY

Space–time is dynamical and, therefore, there is no absolute time: space–time

influences material clocks in order to allow them to show proper time. The clocks

react on the metric and change the geometry, in this sense, the metric itself can be

seen as a clock. A quantization of the metric gµν can, according to this point of

view, be interpreted as a quantization of the concept of time. Since the nature of

time in quantum gravity is not yet clear (because the classical constraints do not

contain any time parameter), one speaks of the “problem of time”.

As reviewed by Isham and Kuchar [21], one can distinguish essentially three possible

solutions of this problem:

– The choice of a concept of time before quantization

– “Timeless” options

– The identification of a concept of time after quantization

In this context we intend to examine and apply only the third solution to this (still

open) problem. For further details we refer again to the monograph [4].

7.2 Time after quantization

Using directly the commutation rules (7.2) and their formal implementation (7.8) and

(7.9), it is possible to determine wave functionals Ψ[hab(~x)] defined on Riem Σ, i.e. the

space of all three-metrics which is the central kinematical quantity, while the “dynamics”

must be implemented through the quantization of the constraints (5.73) and (5.74). It

turns out that this is all that remains in the quantum theory.

One then gets the following equations for the wave functional:

Ĥg
⊥Ψ ≡

(
−16πG~2Gabcd

δ2

δhabδcd
−
√
h

16πG
((3)R− 2Λ)

)
Ψ = 0 (7.18)

Ĥg
aΨ ≡ 2i~Dbhac

δΨ

δhbc
= 0 (7.19)

The first one is called the “Wheeler–DeWitt equation” in honour of the work by DeWitt

and Wheeler [20,22]: these are again infinitely many equations. The constraints (7.19) are
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called the “quantum diffeomorphism (or momentum) constraints” but, sometimes in the

literature, both (7.18) and (7.19) are referred to as Wheeler–DeWitt equations. Applying

this quantization procedure to the example of Chapter 6, the following equations are

obtained:

( ˆ̃Hg
⊥ + ˆ̃Hfluid

⊥ )Ψ =

[(
1− 2Gm

r

)3/2(
2m~2

r

δ2

δm2
+

~2δ2

δmδr
− ~2

2G

δ2

δm2

)

+

(
1− 2Gm

r

)−1/2(
r′2

2G
− 2mr′′ +

rr′′

G
− r′m′ − 1

2G

)
−
(

1− 2Gm

r

)1/2(
ω + p

4πr2n2

~2δ2

δφ2

)
− 4πr2

(
1− 2Gm

r

)−1/2

p

]
Ψ = 0

(7.20)

( ˆ̃χg + ˆ̃χfluid)Ψ = (−i~)

(
3m′

δ

δm
− r′

G

δ

δm
+ 2m

δ

δm′
− r

G

δ

δm′
+ r′

δ

δr′
+ φ′

δ

δφ

+ ϑ′
δ

δϑ
+ V ′

δ

δV

)
Ψ

(7.21)

Nevertheless, there are many problems associated with these equations.

The first obvious problem is the “factor-ordering problem”: the precise form of the

kinetic term is open, thus there could be additional terms proportional to ~ containing,

at most first derivatives in the gµν . Since second functional derivatives at the same space

point usually lead to undefined expressions (such as δ(0)), a regularization and, perhaps,

renormalization scheme has to be employed, connected with this is the potential presence

of anomalies.

Continuing with the discussion of the “time problem” and the related Hilbert-space

problem, since (7.18) does not have the structure of a local Schroedinger equation, the

choice of Hilbert space is not clear a priori.

The first option to define an Hilbert space appropriated to the theory is related to the use

of a Schroedinger-type inner product, that is, the standard quantum-mechanical inner

product as generalized to quantum field theory:

〈Ψ1|Ψ2〉 =

∫
RiemΣ

Dµ[h] Ψ∗1[h]Ψ2[h] (7.22)
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where h is here a shorthand for hab as argument of the measure and the functionals.

It is known that such a construction is at best formal, since the measure Dµ[h] cannot

be rigorously defined, that is, there is no Lebesgue measure in the functional case as in

QFT. The elementary operators ĥab and p̂cd are (formally) self-adjoint with respect to

this inner product. Besides the lack of mathematical rigour, this inner product (7.22)

has other problems, which we do not dwell on as they are beyond our purposes [4].

Since the Wheeler–DeWitt equation is (unlike the Schroedinger equation) a real equa-

tion, one would expects that real solutions should possess some significance.

For the standard Klein–Gordon equation in Minkowski space, it is always possible to

make a separation between “positive” frequencies and “negative” frequencies. As long

as one can stay within the one-particle picture, it is consistent to make a restriction to

the positive-frequency sector and, for such solutions, the inner product is positive.

Nevertheless Kuchar showed that such a separation into positive and negative frequen-

cies cannot be made for the Wheeler-DeWitt equation [15].

As known, for the standard Klein–Gordon equation the failure of the one-particle pic-

ture leads to “second quantization” and QFT. The Wheeler– DeWitt equation, however,

corresponds already to a field-theoretic situation. Kuchar has, therefore, suggested to

proceed with a “third quantization” and to turn the wave function Ψ[h] into an operator

[15]. No final progress, however, has been achieved with such attempts nowadays.

Finally, let us make a few other specific considerations concerning the case of a compact

spherical source, which we discussed in the previous Chapter. As shown in [24], it is

possible to introduce a a global gravitational radius operator for a static and spherically

symmetric quantum mechanical matter state: this can be done by lifting the classical

Hamiltonian constraint that relates the gravitational radius to the ADM mass, thus giv-

ing rise to a “horizon wave-function” [32].

For a static and spherically symmetric self-gravitating source, the Misner-Sharp mass

(6.136) approaches the ADM mass M of the source [28] for ρ → ∞, where also the

gravitational radius becomes the Schwarzschild radius (1.28). If we want to describe the

source by quantum physics, the Misner-Sharp mass should be described by correspond-

ing quantum variables, thus one expects the gravitational radius will undergo the same

treatment. In order to describe the “fuzzy” gravitational radius of a localised (but like-
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wise fuzzy) quantum source, the Horizon Quantum Mechanics has been introduced [26].

This theory differs from most previous attempts in which the gravitational degrees of

freedom are quantised independently of the state of the source and becomes particularly

relevant for sources of the Planck size, for which quantum effects may not be neglected.

The argument that grants the Planck mass mp and Planck length lp a remarkable role

in the search for a quantum theory of gravity is the following. The Heisenberg prin-

ciple introduces an uncertainty in the particle’s spatial localisation of the order of the

Compton–de Broglie length λ:

λ ' lpmp

M
(7.23)

and the Schwarzschild radius only makes sense if the latter is greater than λ, which

means

M & mp (7.24)

As shown in [24], analyzing the quantum constraint that relates the gravitational radius

of a spherically symmetric source to its spectral decomposition, the same quantum state

can be employed in order to describe both the global radius associated with the ADM

mass and the local radius associated with the Misner–Sharp mass function.

Nevertheless, while the local gravitational radius at the quantum level requires the spec-

tral decomposition in terms of localised energy eigenmodes, global radius can be defined

in any case. The global gravitational radius should be, from a strictly physical point of

view, rather insensitive to the details of its internal structure (in fact it is an asymptotic

property of a self-gravitating system), whereas the local radius should be determined

by the precise internal structure of the source. It therefore appears consistent that the

local gravitational radius can be defined only provided the inner structure of the source

is properly characterised as well. Finally, since any realistic astrophysical sources should

have very finely-spaced energy levels, the fact the spectral decomposition must be dis-

crete does not constitute a real limitation in most practical situations.



Conclusions

We have obtained the equations of motion and constraints for a compact spherical

source of perfect fluid coupled with gravity. We first wrote the three-dimensional metric

on hypersurfaces in accordance with the “usual form” (that is, by using the same metric

which describes the Tolman’s solution), while secondly we made a change of variable by

introducing a local mass in the radial component of the latter. Repeating the analysis

with this metric we have seen that, in the case of a static system and if the shift vector’s

radial component is equal to zero, the Misner-Sharp mass is a solution of the Hamiltonian

constraint, while in the non-static case this constraint is reduced to a differential equation

to partial derivatives on the local mass and its conjugate momentum. We have also shown

how, by requiring that the particles of the fluid move along geodesics, the condition of

constant pressure is obtained. In a similar way, imposing that the pressure is zero,

the theory predicts that the lapse function cannot depend on the radial coordinate.

Regarding the analysis of trapping surfaces, from the Hamiltonian constraint we have

obtained a relationship between the local mass and the density of matter that seems to

exist near these surfaces. Finally, as regards the quantum description, by applying the

“Wheeler-DeWitt quantization procedure”, we have obtained the corresponding quantum

version of the constraints described above.

The discussion could be extended by further examining some other particular cases

and by making hypotheses on the lapse function and on the radial component of the

shift vector, trying to understand if it is possible to draw some information from the

constraints for the system in the non-static case in which gravitational collapse can

occur. We could also try to make a more specific and restrictive choice on the variables

to be quantized. All these possible extensions are left for future development.
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Einstein tensor

For a metric tensor:

gµν =


β(τ, ρ)2eλ(τ,ρ) − α(τ, ρ)2 β(τ, ρ)eλ(τ,ρ) 0 0

β(τ, ρ)eλ(τ,ρ) eλ(τ,ρ) 0 0

0 0 r(τ, ρ)2 0

0 0 0 sin2(θ)r(τ, ρ)2

 (25)

with inverse given by:

gµν =


− 1
α(τ,ρ)2

β(τ,ρ)
α(τ,ρ)2

0 0
β(τ,ρ)
α(τ,ρ)2

e−λ(τ,ρ) − β(τ,ρ)2

α(τ,ρ)2
0 0

0 0 1
r(τ,ρ)2

0

0 0 0 csc2(θ)
r(τ,ρ)2

 (26)

and coordinates (x0, x1, x2, x3) = (τ, ρ, θ, ϕ), it turns out that the only non-vanishing

components of the Einstein tensor, defined according to (5.37) (we neglet the cosmological

constant) as:

Gµν = Rµν −
1

2
Rgµν (27)

are G00, G01, G10, G11 , G22 , G22.

One can calculate the following expressions for the non-vanishing components of the
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Einstein tensor:

G00 =
2α′β4eλr′

α3r
− 2α′β3eλṙ

α3r
− 2α̇β3eλr′

α3r
+

2α̇β2eλṙ

α3r
− 2α′β2r′

αr
+

4α′βṙ

αr

− 2β′β3eλr′

α2r
+

2β̇β2eλr′

α2r
− β4eλr′2

α2r2
− 2β4eλr′′

α2r
+

2β3eλr′ṙ

α2r2
+

4β3eλṙ′

α2r

− β2eλṙ2

α2r2
− 2β2eλr̈

α2r
+
α2e−λλ′r′

r
− α2e−λr′2

r2
− 2α2e−λr′′

r
+

2β′βr′

r

− 2β′ṙ

r
− β2λ′r′

r
− βλ′ṙ

r
+
βλ̇r′

r
+

2β2r′2

r2
+

4β2r′′

r

− 2βr′ṙ

r2
− 4βṙ′

r
+
λ̇ṙ

r
+
ṙ2

r2
+
α2

r2
− β2eλ

r2

(28)

G10 =
2α′β3eλr′

α3r
− 2α′β2eλṙ

α3r
− 2α̇β2eλr′

α3r
+

2α̇βeλṙ

α3r
+

2α′ṙ

αr
− 2β′β2eλr′

α2r

+
2β̇βeλr′

α2r
− β3eλr′2

α2r2
− 2β3eλr′′

α2r
+

2β2eλr′ṙ

α2r2
+

4β2eλṙ′

α2r
− βeλṙ2

α2r2

− 2βeλr̈

α2r
− βλ′r′

r
+
βr′2

r2
+

2βr′′

r
+
λ̇r′

r
− 2ṙ′

r
− βeλ

r2

(29)

G11 =
2α′β2eλr′

α3r
− 2α′βeλṙ

α3r
− 2α̇βeλr′

α3r
+

2α̇eλṙ

α3r
+

2α′r′

αr
− 2β′βeλr′

α2r

+
2β̇eλr′

α2r
− β2eλr′2

α2r2
− 2β2eλr′′

α2r
+

2βeλr′ṙ

α2r2
+

4βeλṙ′

α2r
− eλṙ2

α2r2
− 2eλr̈

α2r

+
r′2

r2
− eλ

r2

(30)

G22 =− β′2r2

α2
− β2λ′2r2

4α2
− λ̇2r2

4α2
+
βα′β′r2

α3
+
β2α′λ′r2

2α3
− e−λα′λ′r2

2α

− 3ββ′λ′r2

2α2
+
e−λα′′r2

α
− ββ′′r2

α2
− β2λ′′r2

2α2
− β′α̇r2

α3
− βλ′α̇r2

2α3

+
λ′β̇r2

2α2
− βα′λ̇r2

2α3
+
β′λ̇r2

α2
+
βλ′λ̇r2

2α2
+
α̇λ̇r2

2α3
+
β̇′r2

α2

+
βλ̇′r2

α2
− λ̈r2

2α2
+
β2r′α′r

α3
+
e−λr′α′r

α
− 2βr′β′r

α2
− 1

2
e−λr′λ′r

− β2r′λ′r

2α2
+ e−λr′′r − β2r′′r

α2
− βα′ṙr

α3
+
β′ṙr

α2
+
βλ′ṙr

2α2

− βr′α̇r

α3
+
ṙα̇r

α3
+
r′β̇r

α2
+
βr′λ̇r

2α2
− ṙλ̇r

2α2
+

2βṙ′r

α2
− r̈r

α2

(31)

G33 = sin2 θ G22 (32)
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It is straightforward to verify that placing α = 1 and β = 0 and adding the contribution

of the incoherent matter, one ricovers (note that in Chapters 1 and 2 we used a metric

with signature (1,-1-1-1)) the field equations (2.7) and the result Tolman solution.

Change of variable and TOV equations

If we introduce the variable change (6.86), the metric tensor turns out to be:

gµν =



β(τ,ρ)2

1− 2Gm(τ,ρ)
r(τ,ρ)

− α(τ, ρ)2 β(τ,ρ)

1− 2Gm(τ,ρ)
r(τ,ρ)

0 0

β(τ,ρ)

1− 2Gm(τ,ρ)
r(τ,ρ)

1

1− 2Gm(τ,ρ)
r(τ,ρ)

0 0

0 0 r(τ, ρ)2 0

0 0 0 sin2 θ · r(τ, ρ)2

 (33)

with inverse given by:

gµν =


− 1
α(τ,ρ)2

β(τ,ρ)
α(τ,ρ)2

0 0
β(τ,ρ)
α(τ,ρ)2

−β(τ,ρ)2

α(τ,ρ)2
− 2Gm(τ,ρ)

r(τ,ρ)
+ 1 0 0

0 0 1
r(τ,ρ)2

0

0 0 0 csc2 θ
r(τ,ρ)2

 (34)
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The expressions for the non-vanishing components of the Einstein tensor become:

G00 =
r′2β4

(2Gm− r)rα2
− 2r′α′β4

(2Gm− r)α3
+

2r′′β4

(2Gm− r)α2
+

2r′β′β3

(2Gm− r)α2
− 2r′ṙβ3

(2Gm− r)rα2

+
2α′ṙβ3

(2Gm− r)α3
+

2r′α̇β3

(2Gm− r)α3
− 4ṙ′β3

(2Gm− r)α2
− 2r′2β2

(2Gm− r)r
+

2Gmr′2β2

(2Gm− r)r2

+
ṙ2β2

(2Gm− r)rα2
+

2Gm′r′β2

(2Gm− r)r
+

2r′α′β2

(2Gm− r)α
− 4Gmr′α′β2

(2Gm− r)rα
− 4r′′β2

2Gm− r

+
8Gmr′′β2

(2Gm− r)r
− 2ṙα̇β2

(2Gm− r)α3
− 2r′β̇β2

(2Gm− r)α2
+

2r̈β2

(2Gm− r)α2
+

β2

(2Gm− r)r

− 2r′β′β

2Gm− r
+

4Gmr′β′β

(2Gm− r)r
− 2Gr′ṁβ

(2Gm− r)r
+

2Gm′ṙβ

(2Gm− r)r
+

2r′ṙβ

(2Gm− r)r

− 4Gmr′ṙβ

(2Gm− r)r2
− 4α′ṙβ

(2Gm− r)α
+

8Gmα′ṙβ

(2Gm− r)rα
+

4ṙ′β

2Gm− r
− 8Gmṙ′β

(2Gm− r)r

− α2

(2Gm− r)r
+

2Gmα2

(2Gm− r)r2
+

α2r′2

(2Gm− r)r
− 2Gmα2r′2

(2Gm− r)r2
− ṙ2

(2Gm− r)r

+
4Gmṙ2

(2Gm− r)r2
− 2Gα2m′r′

(2Gm− r)r
+

4G2mα2m′r′

(2Gm− r)r2
+

2α2r′′

2Gm− r
− 8Gmα2r′′

(2Gm− r)r

+
8G2m2α2r′′

(2Gm− r)r2
+

2β′ṙ

2Gm− r
− 4Gmβ′ṙ

(2Gm− r)r
− 2Gṁṙ

(2Gm− r)r
(35)

G01 =− 2Gβm′r′

r(r − 2Gm)
+

2Gṁr′

r(r − 2Gm)
+

2α′β3r′

α3(r − 2Gm)
− 2α′β2ṙ

α3(r − 2Gm)
− 2α̇β2r′

α3(r − 2Gm)

+
2α̇βṙ

α3(r − 2Gm)
− 4Gα′mṙ

αr(r − 2Gm)
+

2α′ṙ

α(r − 2Gm)
− 2β′β2r′

α2(r − 2Gm)
+

2β̇βr′

α2(r − 2Gm)

− β3r′2

α2r(r − 2Gm)
− 2β3r′′

α2(r − 2Gm)
+

2β2r′ṙ

α2r(r − 2Gm)
+

4β2ṙ′

α2(r − 2Gm)
− βṙ2

α2r(r − 2Gm)

− 2βr̈

α2(r − 2Gm)
+

βr′2

r(r − 2Gm)
− 4Gβmr′′

r(r − 2Gm)
+

2βr′′

r − 2Gm
− 2Gmr′ṙ

r2(r − 2Gm)

+
4Gmṙ′

r(r − 2Gm)
− 2ṙ′

r − 2Gm
− β

r(r − 2Gm)

(36)

G11 =
2α′β2r′

α3(r − 2Gm)
− 2α′βṙ

α3(r − 2Gm)
− 2α̇βr′

α3(r − 2Gm)
− 4Gα′mr′

αr(r − 2Gm)
+

2α′r′

α(r − 2Gm)

+
2α̇ṙ

α3(r − 2Gm)
− 2β′βr′

α2(r − 2Gm)
+

2β̇r′

α2(r − 2Gm)
− β2r′2

α2r(r − 2Gm)
− 2β2r′′

α2(r − 2Gm)

+
2βr′ṙ

α2r(r − 2Gm)
+

4βṙ′

α2(r − 2Gm)
− ṙ2

α2r(r − 2Gm)
− 2r̈

α2(r − 2Gm)
+

r′2

r(r − 2Gm)

− 2Gmr′2

r2(r − 2Gm)
− 1

r(r − 2Gm)

(37)
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The expression of G22 turns out to be very long and it is not useful for our purpose,

so we don’t write it explicitly, while for simmetry we can easily write G33 = sin2 θ G22.

By direct inspection it turns out that, for general values of α and β, the non trivial

Einstein’s equations become too complex to be solved.

If we suppose r(τ, ρ) = ρ, g00 = eν(ρ), β(τ, ρ) = 0 and we use the energy-tensor of the

perfect fluid (6.42) for the matter diistribution (supposing that the spatial components

of the 4-velocity is equal to zero and that ω and p only depend on the radial coordinate),

we find:

8πGeν(ρ)ω(ρ) =
2Geν(ρ)m′(τ, ρ)

ρ2
(38)

0 =
2Gṁ(τ, ρ)

ρ2 − 2Gρm(τ, ρ)
(39)

8πGρp(ρ)

(1− 2Gm(τ, ρ))
=
ρ2ν ′(ρ)− 2m(τ, ρ) (Gρν ′(ρ) +G)

ρ2(ρ− 2Gm(τ, ρ))
(40)

8πGρ2p(ρ) =− 2G3ρν ′(ρ)m(τ, ρ)2m′(τ, ρ)

(ρ− 2Gm(τ, ρ))2
− 4G3m(τ, ρ)2m′(τ, ρ)

(ρ− 2Gm(τ, ρ))2

− 2G3ρν ′(ρ)2m(τ, ρ)3

(ρ− 2Gm(τ, ρ))2
− 2G3ν ′(ρ)m(τ, ρ)3

(ρ− 2Gm(τ, ρ))2
+

4G3m(τ, ρ)3

ρ(ρ− 2Gm(τ, ρ))2

+
2G2ρ2ν ′(ρ)m(τ, ρ)m′(τ, ρ)

(ρ− 2Gm(τ, ρ))2
− 3G2ρ2e−ν(ρ)ṁ(τ, ρ)2

(ρ− 2Gm(τ, ρ))2

+
4G2ρm(τ, ρ)m′(τ, ρ)

(ρ− 2Gm(τ, ρ))2
+

6G2ρ2ν ′′(ρ)m(τ, ρ)2

(ρ− 2Gm(τ, ρ))2
+

3G2ρ2ν ′(ρ)2m(τ, ρ)2

(ρ− 2Gm(τ, ρ))2

+
4G2ρν ′(ρ)m(τ, ρ)2

(ρ− 2Gm(τ, ρ))2
− 4G2m(τ, ρ)2

(ρ− 2Gm(τ, ρ))2
− Gρ3ν ′(ρ)m′(τ, ρ)

2(ρ− 2Gm(τ, ρ))2

− Gρ3e−ν(ρ)m̈(τ, ρ)

(ρ− 2Gm(τ, ρ))2
− Gρ2m′(τ, ρ)

(ρ− 2Gm(τ, ρ))2
+

ρ4ν ′′(ρ)

2(ρ− 2Gm(τ, ρ))2

− 3Gρ3ν ′′(ρ)m(τ, ρ)

(ρ− 2Gm(τ, ρ))2
+

ρ4ν ′(ρ)2

4(ρ− 2Gm(τ, ρ))2
− 3Gρ3ν ′(ρ)2m(τ, ρ)

2(ρ− 2Gm(τ, ρ))2

+
ρ3ν ′(ρ)

2(ρ− 2Gm(τ, ρ))2
− 5Gρ2ν ′(ρ)m(τ, ρ)

2(ρ− 2Gm(τ, ρ))2
+

Gρm(τ, ρ)

(ρ− 2Gm(τ, ρ))2

+
2G2ρ2e−ν(ρ)m(τ, ρ)m̈(τ, ρ)

(ρ− 2Gm(τ, ρ))2
− 4G3ρν ′′(ρ)m(τ, ρ)3

(ρ− 2Gm(τ, ρ))2

(41)
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From the first equation we again find

m = 4π

∫ ρ0

0

ω(ρ)ρ2dρ (42)

which is (2.14), while from the second equation we see that ṁ = 0. From third equation

we find:
dν(ρ)

dρ
=

(
1− 2Gm(ρ)

ρ

)−1(
8πGρp(ρ) +

2Gm(ρ)

ρ2

)
(43)

By using this result, after some calculus we find that fourth equation becomes

8πGρ2p(ρ) =
4πG2ρ3p(ρ)m′(ρ)

2Gm(ρ)− ρ
+
G2m(ρ)m′(ρ)

2Gm(ρ)− ρ
− 8πG2ρ3p′(ρ)m(ρ)

2Gm(ρ)− ρ
+

16π2G2ρ5p(ρ)2

2Gm(ρ)− ρ

− 12πG2ρ2p(ρ)m(ρ)

2Gm(ρ)− ρ
+

4πGρ4p′(ρ)

2Gm(ρ)− ρ
+

8πGρ3p(ρ)

2Gm(ρ)− ρ
(44)

We could have obtained the same result by considering the balance equation ∇µT
µν = 0.

The latter can be written as

−dp(ρ)

dρ
=
G

ρ2

(
1− 2Gm(ρ)

ρ

)−1

(ω(ρ) + p(ρ))
(
m(ρ) + 4πρ3p(ρ)

)
(45)

and it is called Tolman-Oppenheimer-Volkoff equation, which constrains the structure

of a spherically symmetric body of isotropic material which is in static gravitational

equilibrium. In fact, when supplemented with an equation of state which relates den-

sity to pressure, the Tolman–Oppenheimer–Volkoff equation completely determines the

structure of a spherically symmetric body of isotropic material in equilibrium.
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