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Abstract

We consider the dynamics of fixed size subsystems of an open quantum system, in

which N particles interact via a common quantum noise (reservoir). We show that

correlations among the particles and between the particles and the reservoir, which

are brought about through the interaction for finite N , vanish completely in the high

complexity limit N → ∞. We investigate the effect of the particle system on the

reservoir, which itself is a large quantum system. For each fixed time, we find the

explicit construction of a Hilbert space representation of the asymptotic (N → ∞)

reservoir state and analyze the relation between those representations at different

times.
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Chapter 1

Introduction

The theory of open quantum system, which we consider in this thesis, is an important

topic in physics and mathematics [19]. It contains in particular the study of ‘generic

dynamical effects’ imposed on a system in contact with a ‘noise’. A prime example

of an open quantum system is the so-called spin-Boson model, where a single spin

(the simplest quantum mechanical object possible) is coupled to a ‘noise’ modeled

by a large collection of oscillating degrees of freedom (a quantum field of oscillators).

Generic properties the noise imposes on the spin are thermalization (if the oscillators

are in thermal equilibrium initially, then the spin will inherit that temperature as time

goes on) and decoherence (loss of quantum coherences in the spin state) [20, 17, 19].

In this thesis, we focus on complex open systems, where not one single particle (or

spin, or ‘qubit’) is coupled to a noisy environment, but many of them are. Namely, we

analyze the dynamics of N quantum particles (idealized ‘atoms’), all interacting with

a common quantum field (the reservoir, for example the quantized electromagnetic

field). The particles do not experience direct coupling with each other, but interact

indirectly via the reservoir. Our main question is: what is the dynamics of the particles

and the reservoir in the limit N →∞ ? In a sense, the particle system itself becomes

a large quantum system (N → ∞) and so its interaction with the reservoir, another

large system, may actually change the latter. This reaction of a ‘large’ system on

a ‘reservoir’ is not traditionally studied as much as that of the open system itself.

However, it is of interest from a mathematical as well as physical point of view. For

instance, one might be interested in analyzing if photons are emitted into the field,

starting with some energetically excited atoms. [14, 21].
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Describing the time evolution of the coupled system-reservoir complex is a hard

problem, and generally only heuristic methods are available (like the famous Marko-

vian Master Equation approximation). To be able to arrive at mathematically rigorous

results, we will make two simplifications in our models:

S1 We consider energy conserving models. They are characterized by the fact that

the energy of the system is conserved during the evolution. So there is no energy

exchange between the system and the reservoir. Nevertheless, it is well known

that information between the system and reservoir can be still exchanged even

in energy conserving systems, which still typically show irreversible effects in

the system dynamics [18, 19, 15].

S2 Each one of the N particles is of the same kind, and each one is coupled to

the common reservoir in the same, mean field way. This symmetry helps the

mathematical analysis and ultimately produces an effective independence of the

particle dynamics, in which each particle evolves according to its own evolution

equation.

To be a bit more specific (but leaving the mathematical details for the following

sections), we present here the structure of the Hamiltonian of our model,

H =
N∑
j=1

Aj +HR +
λ√
N

N∑
j=1

Vj.

The Aj is the Hamiltonian of particle j, it is really a fixed operator A, but acting

on particle j (symmetry, assumption S2). HR is the Hamiltonian of the reservoir.

The interaction of particle j with the reservoir is given by an operator Vj. Again, Vj

is really a fixed operator V , describing the interaction between one particle and the

field, but the index j means the interaction acts on the jth particle and the reservoir.

The assumption S1 of energy conservation is expressed by the fact that the operators

Aj and Vj commute. Above, λ ∈ R is a coupling constant and the interaction part

(the second sum) is scaled in the mean field way, with 1/
√
N . The reason for this

scaling is this: The uncoupled particle energy is of the order O(N) (N large), simply

because it is the sum of N terms Aj. The effective interaction between two particles,

since mediated only via the reservoir, is given by the square of interaction term in the

expression of H, so the square of a term of the order O(
√
N). It is thus comparable
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to the size of the non-interacting energy. In this mean field scaling, and as N → ∞,

the dynamics will contain competing contributions from both the non-interacting

evolution and the interaction, since they are both of the same order.

We now describe the main results of the thesis without going into any technical

details. The mathematical statements follow in the chapters below. We have two

types of results,

• Results on the dynamics of the system and the reservoir,

• Results on the Hilbert space representation of the limiting state as N →∞.

Results on the dynamics. We take initial states of N particles and the field

in which all subsystems are not entangled, that is, they are of the form

ρinitial = ρS ⊗ · · · ⊗ ρS ⊗ ρR,

where ρS is a single particle state and ρR is that of the reservoir. (Think of equilibrium

states, for example.) We then consider observables On of n particles and the reservoir.

Here, n is an arbitrary but fixed number. Think of such an observable as, for example,

the energy of the first n particles plus that of the field. Or the ‘position’ of particle

number three. Since there are a total of N particles, the time evolution of On,

〈On〉N(t) = Tr
(
e−itHρinitiale

itHOn
)

is a function of N . We are asking what the limit is, as N → ∞, for n and t fixed.

In other words, we consider a fixed part (given by n) of the whole system, but this

part interacts with an increasing number of other particles and a reservoir, and we

consider the limit when the complexity N →∞.

Our main results are Theorems 1 and 3 below. They show that, for fixed t and n,

but in the limit N → ∞, the state of n particles and the reservoir is a disentangled

state, namely, a product of n independent single-particle states and a reservoir state.

Of course, we have started off with a disentangled initial state, but as soon as the

coupled dynamics is at work, all components (all particles and the reservoir) become

immediately correlated (entangled). The point is that in the limit of large complexity,

N → ∞, these correlations disappear, and this for all times t! Each independent
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factor in the asymptotic (N → ∞) state undergoes an independent evolution. This

evolution, for a single particle, contains the effects of all other particles plus the reser-

voir. For the reservoir, the asymptotic evolution contains the effects of the particle

system. We point out that we can calculate the asymptotic state and its dynamics

(as it varies as a function of t) explicitly.

Results on the Hilbert space representation. As happens often when taking

‘thermodynamic’ limits, which is here the limit N →∞, the notion of Hilbert space in

quantum theory is lost, and a suitable Hilbert space has to be recreated. To illustrate

this, we can consider an observable O which pertains purely to the reservoir. (This is

a special case of the above On.) Then our theorems on the dynamics provide us with

a limit

〈O〉∞(t) = lim
N→∞

〈O〉N(t).

The question is now: how can we represent the asymptotic state, which is defined by

all the values 〈O〉∞(t) (as O runs through all possible reservoir observables (making

up a C∗-algebra))? Let t be fixed. We want to find a new Hilbert space Ht, a

representation πt and a vector Ωt satisfying (for all O)

〈O〉∞(t) = 〈Ωt, πt(O)Ωt〉.

The triple (Ht, πt,Ωt) is called the GNS (Gelfand–Naimark–Segal) representation of

the state 〈 · 〉∞(t). Our main theorem in this regard is Theorem 3, in which we

construct the GNS representation explicitly. The next question then is how two

representations at different times t and t′, are related to each other. In Theorem 4 we

show that πt and πt′ are unitarily equivalent, up to multiplicity, for any t and t′.

Organization of the thesis. In Chapter 1 we review some basic concepts

of quantum physics and functional analysis, useful to understand the mathematical

phrasing of our main theorems. In Chapter 2, all our results and their proofs are

discussed in detail. Finally, in Chapter 3, we end with our conclusion.



Chapter 2

Some quantum theory

2.1 The basic postulates of quantum mechanics

Quantum mechanics is a mathematical framework for the development of physical

theories. In this chapter we give a brief description of the basic postulates of quantum

mechanics. These postulates provide a connection between the physical world and the

mathematical formalism of quantum mechanics [6].

2.1.1 Postulate 1: Space of pure states

Any isolated physical system is described by a complex Hilbert space H, known as

the (pure) state space of the system. The system is completely described by its state

vector, which is a unit vector in the system state space,

|ϕ〉 ∈ H, ‖ϕ‖= 1.

Such a state (vector) is also called a “ket” (or a wave function).

To any ket |ϕ〉 is associated the “bra”, denoted by 〈ϕ|, defined to be the element

in the dual space H∗ of H acting as

〈ϕ|
(
|ψ〉
)

= 〈ϕ, ψ〉, (2.1)

where the r.h.s. is the inner product of ϕ and ψ in H.
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Examples. (1) A single spin has a Hilbert space H = C
2 of dimension 2, it has

basis B = {|↑〉, |↓〉}, where

|↑〉 =

[
1

0

]
, |↓〉 =

[
0

1

]
.

Any state can be written as a linear combination of the basis elements,

|ψ〉 ∈ C2 |ψ〉 = α|↑〉+ β|↓〉, α, β ∈ C. (2.2)

The interpretation of the complex numbers α, β is that |α|2, |β|2 are probabilities

of finding the spin in the state up or down, respectively (upon measurement, see

Postulate 4 below). The normalization ‖ψ‖2= 1 is consistent with this probability

interpretation of the coordinates.

(2) A single particle in three dimensional space is described by the Hilbert space

H = L2(R3, d3x). A (pure) state is given by a square integrable, normalized function

ψ. The physical interpretation of the ‘component’ ψ(x) is this: |ψ(x)|2d3x is the

probability density of finding the particle at location x ∈ R3.

2.1.2 Postulate 2: Dynamics (Schrödinger equation)

The state of a quantum system evolves in time according to an evolution equation,

the Schrödinger equation. Namely, the orbit t 7→ |ϕ(t)〉 satisfies the first-order linear

differential equation

ih̄
d|ϕ(t)〉
dt

= H|ϕ(t)〉. (2.3)

Here h̄ is the Planck constant and H is a self-adjoint operator acting on the pure state

Hilbert space H, called the Hamiltonian. Equation (2.3) can be written as

|ϕ(t)〉 = e−itH |ϕ(0)〉, (2.4)

where we have “set” h̄ = 1 (this is customary in the mathematical literature and

amounts to a rescaling of physical scales). The unitary group

t 7→ U(t) = e−itH (2.5)
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is often called the propagator, as it pushes the initial condition to the state at time t.

Examples. If a spin is initially in the state |ψ(0)〉 = α0|↑〉+ β0|↓〉, then according

to the Schrödinger equation (2.4), with Hamiltonian

H = 1
2

[
1 0

0 −1

]
, (2.6)

the state at time t is

|ψ(t)〉 = α0e
−it/2|↑〉+ β0e

it/2|↓〉. (2.7)

2.1.3 Postulate 3: Composition of systems

If two systems have Hilbert spaces H1 and H2 then the joint, composite system is

described by the tensor product,

H = H1 ⊗H2. (2.8)

Examples. (1) The Hilbert space describing N particles is given by

N⊗
i=1

Hi = H1 ⊗ . . .⊗HN ,

where for each 1 ≤ i ≤ N , Hi = L2(R3, d3x).

(2) The composite space H of a spin and a single particle is

H = C
2 ⊗ L2(R3, d3x).

2.1.4 Postulate 4: Measurements

To every physical observable (energy, position, momentum,....) is associated a self-

adjoint operator A = A∗. The Hamiltonian H (see Postulate 2) is the observable of

energy. Suppose the spectral decomposition of A is given by

A =
∑
j

λjPj, (2.9)
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where the Pj are the spectral projections and λj the eigenvalues. When measuring the

observable A in any state, the possible measurement outcomes are one of {λ1, λ2, . . . }.
When the measurement is performed on the state |ψ〉, the outcome λi will occur with

probability

pi = ‖Pj|ψ〉‖2= 〈ψ, Pjψ〉. (2.10)

If the measurement reveals the outcome λj, then the state of the system immediately

after measurement is

ψpost =
Pj|ψ〉
‖Pjψ‖

. (2.11)

This part of the postulate is called the “wave function collapse” and (2.11) is called

the post measurement state.

Examples. (1) Consider the spin with Hamiltonian (2.6),

H = 1
2

[
1 0

0 −1

]
= 1

2
P+ − 1

2
P− (2.12)

(with obvious notation for the spectral projections). The measurement outcomes for

the energy are ±1/2 in any state. Upon measurement of the energy in the state |ψ〉,
(2.2), the measurement value +1/2 occurs with probability

p+ = ‖P+ψ‖2= |α|2.

(2) Let A be an observable and |ψ〉 a state. The expectation value (statistical

average) of A with respect to state |ψ〉 is denoted by 〈A〉. From Postulate 4 we

know that the possible measurement outcomes of A are its eigenvalues, where each

eigenvalue λj will occur with probability pj. Thus the average of A is

〈A〉 =
∑
j

λjpj. (2.13)

Using the probability formula in equation (2.10) and the spectral decomposition of A
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in (2.9) we have

〈A〉 =
∑
j

λj〈ψ, Pjψ〉

= 〈ψ,
∑
j

λjPjψ〉

= 〈ψ,Aψ〉

= Tr(|ψ〉〈ψ|A). (2.14)

The trace of an operator X (if it exists) is given by

Tr(X) =
∑
n∈N

〈en, Xen〉, (2.15)

for any orthonormal basis {en}n∈N of H. The definition of trace is independent of the

choice of the orthonormal basis.

2.2 Mixed states

2.2.1 Density matrix

The average of an observable O in the pure state |ϕ〉 is 〈ϕ,Oϕ〉, see (2.14). Suppose

now that our knowledge on the state is not perfect, namely, that we only know that

with probabilities pj our state is |ϕj〉. The collection {|ϕj〉, pj} is called an ensemble of

pure states. The average of the observable O associated to that ensemble is naturally

defined to be

〈O〉 =
∑
j

pj〈ϕj,Oϕj〉. (2.16)

By defining the density matrix

ρ :=
∑
j

pj|ϕj〉〈ϕj|, (2.17)

we see that

〈O〉 = Tr(ρO). (2.18)
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The density matrix ρ, (2.17), is called a mixed state [1]. If ρ has rank one, then it

is just equivalent to a pure state, ρ = |ϕ〉〈ϕ| (see (2.14)). Pure states are defined as

the states whose density matrices have rank one (projections). More generally, any

operator ρ acting on H satisfying the following properties is a density matrix:

• ρ ≥ 0 (positivity, in particular self-adjoint),

• Trρ = 1 (normalized).

Examples. (1) For any 0 ≤ p ≤ 1, the following is a family of density matrices of a

spin,

ρ = p|↑〉〈↑ |+(1− p)|↓〉〈↓ | =

[
p 0

0 1− p

]
.

Here, ρ is pure if and only if p ∈ {0, 1}.

(2) Let ψ be a general pure state of a spin, (2.2). The associated density matrix

(written in the basis |↑〉, |↓〉) reads

ρ = |ψ〉〈ψ|=

[
|α|2 ᾱβ

αβ̄ |β|2

]
. (2.19)

2.2.2 Reduced density matrix and partial trace

Let X⊗Y be an operator on the composite system H1⊗H2, formed by two separable

Hilbert spaces H1 and H2. We define the partial trace over H2 by

Tr2(X ⊗ Y ) = XTr(Y ). (2.20)

Tr2 extends by linearity and countinuity to a linear map from B(H1 ⊗H2) to B(H1)

[10]. The partial trace is important when we study the physical state for a subsystem

of the composite system. In other words, if ρ12 is a density matrix of the composite

system H1 ⊗H2, then the reduced states are

ρ1 = Tr2(ρ12), ρ2 = Tr1(ρ12). (2.21)

ρ1 and ρ2 are called the reduced density operators for the system 1 and 2, respec-

tively. The point of this construction is the following.
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Suppose ρ12 is as above, and we want to find the average of an observable O1 of

system 1 only. This average is

TrH1⊗H2

(
ρ12 (O1 ⊗ 12)

)
= TrH1(ρ1O1). (2.22)

This means we can use the reduced density matrix of a composite system if we are

interested in properties of a subsystem only.

Example. The Hilbert space H = C
2 ⊗ C2 describes the pure states of two spins.

Consider the pure state (Bell state)

|ψ〉 =
|↑↑〉+ |↓↓〉√

2
, (2.23)

where |↑↑〉 = |↑〉 ⊗ |↑〉 , |↓↓〉 = |↓〉 ⊗ |↓〉 and call its density matrix ρ12 = |ψ〉〈ψ|. The

reduction to the first spin is

ρ1 = Tr2ρ12 = 1
2
(|↑〉〈↑ |+|↓〉〈↓ |). (2.24)

This example shows that the reduced state of a pure state can actually be a mixed

state. (Note, the rank of ρ1 is two.)

2.3 Evolution of closed and open system

2.3.1 Postulate 2, again

According to Postulate 2, the dynamics of the pure initial state |ψ(0)〉 is given by

|ψ(t)〉 = e−itH |ψ(0)〉. Equivalently, the propagator

U(t) = e−itH , (2.25)

satisfies the evolution equation

i
dU(t)

dt
= HU(t). (2.26)

This is the setup of Postulate 2, which implicitly assumes that the system considered

is closed, meaning that it is not in contact with ‘external agents’. (Strictly speaking,
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thus, the only closed system is the whole universe, since in reality, any system is in

contact with its surroundings.)

How does the dynamics look for a closed system in a mixed state? Suppose the

system is described by the density matrix ρ(0) at time zero. To get the equation of

motion for this state, we use the definition of the density matrix in (2.17),

ρ(0) =
∑
j

pj|ϕj(0)〉〈ϕj(0)|. (2.27)

Now the evolution of |ϕj〉 is given by |ϕj(t)〉 = U(t)|ϕj(0)〉 and so the density matrix

at time t is

ρ(t) =
∑
j

pjU(t)|ϕj(0)〉〈ϕj(0)|U∗(t)

= U(t)ρ(0)U∗(t), (2.28)

where U∗(t) is the adjoint of U(t). With (2.25) this becomes

ρ(t) = e−itHρ(0)eitH . (2.29)

Equation (2.29) is called the Liouville-von Neumann equation [2]. In differential

form, it takes the shape
d

dt
ρ(t) = −i[H, ρ(t)]. (2.30)

Let O be an observable. Its average in the state ρ(t) is

Tr
(
ρ(t)O

)
= Tr(e−itHρ(0)eitHO)

= Tr(ρ(0)O(t)), (2.31)

where

O(t) = eitHOe−itH . (2.32)

The map t 7→ O(t) called the Heisenberg evolution of observable O [4].
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2.3.2 Open systems

An open system is a system in contact with an ‘environment’, with which the system

can exchange energy, matter, information... The following diagram illustrates what

we mean by an open quantum system.

(S +R,H, ρ)

(S,HS, ρS)

System

Environment

(R,HR, ρR)

Figure 2.1: Open Quantum system

In the above figure the system S is described by a Hilbert space HS and a state

ρS. It is coupled with the environment R (“reservoir”) which is described by a Hilbert

space HR and a state ρR.

Postulate 3 tells us that the total system S + R is given by the tensor product

H = HS ⊗HR. A state of the joint system, in which the system and reservoir parts

are not correlated (no entanglement) is given by ρ = ρS ⊗ ρR. The total Hamiltonian

H for the composite system has the form

H = HS ⊗ 1R + 1S ⊗HR +HC, (2.33)

where HS and HR are the Hamiltonians of the system and environment. HC is the

Hamiltonian of the interaction between the system and environment, which acts on the

total system H. Even though the evolution of the total complex S+R is given by the

Schrödinger equation (unitary propagator), the time evolution of the open subsystem

S is not, in general, unitary. The non unitary dynamics of the open system comes
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from the interaction between the system and the environment. It reflects that the

system can lose energy, matter,....

Let ρ(0) be the initial state of the complex S +R. The reduced density matrix of

S at time t is given by

ρS(t) = TrR{U(t)ρ(0)U∗(t)}, (2.34)

where we take the partial trace over the reservoir degrees of freedom. In equation

(2.34), U(t)ρ(0)U∗(t) is the (closed, unitary) evolution of the total complex S +R.

The differential form of (2.34) is

d

dt
TrRρ(t) =

d

dt
ρS(t) = −iTrR[H, ρ(t)], (2.35)

where H is as in (2.33).

An observable OS of the open system S has the form

OS = OS ⊗ 1R, (2.36)

where operator OS acting on HS and 1R stands for the identity operator of HR. The

average value of OS is given by

〈OS(t)〉 = TrS(ρS(t)OS), (2.37)

where ρS(t) as is in (2.34).

2.4 Quantum field

In this section we will define Fock space, creation and annihilation opertors and Weyl

operators [7].

2.4.1 Fock space

Given a Hilbert space H, its n-fold tensor product is

H⊗n = H⊗ . . .⊗H. (2.38)
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For example, if H = L2(R3, d3k), then according to the third postulate the above

expression (2.38) describes a system of n particles.

Definition 1. Fock space over Hilbert space H is the direct sum Hilbert space

F̃(H) =
⊕
n≥0

H⊗n, (2.39)

where H0 = C is called the zero sector or vacuum sector. An element ψ ∈ F̃(H)

is a sequence ψ = {ψn}n≥0 where ψn ∈ H⊗n. The scalar product of two elements

ψ, ϕ ∈ F̃(H) is given by

〈ψ, ϕ〉 =
∑
n≥0

〈ψn, ϕn〉H⊗n , (2.40)

where 〈. , .〉H⊗n is the scalar product of H⊗n which is defined by

〈ψ1 ⊗ . . .⊗ ψn, φ1 ⊗ . . .⊗ φn〉 = 〈ψ1, φ1〉 . . . 〈ψn, φn〉 (2.41)

for ψ1, . . . , ψn, φ1, . . . , φn ∈ H.

The vector f1⊗ . . .⊗ fn ∈ H⊗n is the state of n ‘particles’ (subsystems) where the

particle labelled by j is in the state fj. If the n particles are indistinguishable then

the state describing the system is given by the symmetric state vector

1

n!

∑
σ∈∆n

fσ(1) ⊗ . . .⊗ fσ(n), (2.42)

where ∆n is the group of all permutations σ of n objects.

Definition 2. Let {fj}nj=1 ⊂ H, n ≥ 1. Define the symmetrization operator P

on F(H) by linear extension and sector wise action of

Pf1 ⊗ . . .⊗ fn =
1

n!

∑
σ∈∆n

fσ(1) ⊗ . . .⊗ fσ(n), (2.43)

P is a self-adjoint projection operator satisfying ||P ||= 1.

The symmetrization operator provides a powerful structure for dealing with the

symmetries of states and operators for systems with many identical, indistinguishable

particles.

Applying the symmetrization operator to Fock space PF(H) we obtain bosonic
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Fock space,

F(H) ≡ P F̃(H) ≡
⊕
n≥0

PH⊗n. (2.44)

In this thesis we keep the notation F(H) to present the bosonic Fock space, for

simplicity of notation.

2.4.2 Creation and annihilation operators

Let H be a Hilbert space and consider the Fock space F(H). We define the vacuum

vector to be the vector Ω = (1, 0, 0, . . .) ∈ F(H).

Definition 3. Let {fj}nj=1 ⊂ H, n ≥ 1.

• The annihilation operator a(f) is a linear map H⊗n 7→ H⊗(n−1), defined by

a(f)f1 ⊗ · · · ⊗ fn =
√
n 〈f, f1〉f2 ⊗ . . .⊗ fn (2.45)

for n ≥ 1 and a(f)Ω = 0.

• The creation operator a∗(f) is the linear map H⊗n 7→ H⊗(n+1) defined by

a∗(f)f1 ⊗ · · · ⊗ fn =
√
n+ 1 f ⊗ f1 ⊗ . . .⊗ fn, (2.46)

The map f 7→ a(f) is antilinear, while f 7→ a∗(f) is linear. We extend the

action of a and a∗ by linearity to Dn for all n, where

Dn =
{ K∑
k=1

f
(k)
1 ⊗ · · · ⊗ f (k)

n |K ∈ N, f
(k)
l ∈ H

}
⊂ H⊗n. (2.47)

The operators a(f) and a∗(f) thus defined are closable and we denote their

closure again by the same symbol.

In (2.45), (2.46) we have defined a∗(f) and a(f) on the non-symmetrized Fock

space F(H). The creation and annihilation operators on PF(H) are defined simply

by Pa∗(f)P and Pa(f)P .

Note that the span of {a∗(f1) . . . a∗(fn)Ω : fi ∈ H, n ∈ N} is dense in F(H).
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The canonical commutation relations (CCR) are given by

[a(g), a∗(f)] = 〈g, f〉1F(H), (2.48)

[a(f), a(g)] = [a∗(f), a∗(g)] = 0, ∀f, g ∈ H,

where the 1F(H) is the identity operator acting on bosonic Fock space and

[x, y] = xy − yx

is the commutator.

2.4.3 Weyl operators

The bosonic creation and annihilation are unbounded operators and the field operator

ϕ(f) =
a(f) + a∗(f)√

2
(2.49)

is a self-adjoint, unbounded operator. The mathematicians prefer to replace them by

bounded operators, called Weyl operators.

Definition 4. For f ∈ H, we define

W (f) = eiϕ(f). (2.50)

This is a unitary operator on bosonic Fock space F(H). Using the Taylor expansion

of the exponential in (2.50),

W (f) =
∑
n≥0

in

n!
ϕ(f)n,

together with the canonical commutation relations (2.48) one can easily deduce the

formula

〈Ω,W (f)Ω〉 = e−‖f‖
2/4. (2.51)

The set of all Weyl operators generates a unital C∗-algebra of operators (see the

definition in the next section), called the Weyl algebra, and denoted by W . The unit

is W (0) = 1.
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The CCR (2.48) take the form

W (f)W (g) = e−
i
2

Im〈f,g〉W (f + g). (2.52)

Theorem I. [8] Let fn → f in H, then W (fn) → W (f) in strong sense on F(H),

i.e., for any ψ ∈ F(H) we have

lim
n→∞

‖W (fn)ψ −W (f)ψ‖F(H) = 0. (2.53)

2.4.4 The Weyl algebra

Let H be a Hilbert space. Its interpretation is that normalized vectors in H are single

particle states (wave functions). Weyl operators over H form an abstract C∗-algebra.

They are denoted by W (f), f ∈ H and satisfy the properties

W (f)∗ = W (−f), ∀f ∈ H,

W (f)W (g) = e−
i
2

Im〈f,g〉W (f + g), ∀f, g ∈ H.

The second relation is called the canonical commutation relation (in Weyl form) and

the inner product 〈·, ·〉 is that of H. A typical Hilbert space representation of the

Weyl algebra is given in the previous section in (2.50), where the abstract element

W (f) of the C∗ algebra is represented as the unitary operator eiϕ(f) on Fock space

F(H) (here, H = H). Often, people take the same notation W (f) for the element in

the C∗ algebra and the represented operator. For more detail, we refer to [16, 13].

2.5 Algebraic approach

In the algebraic approach to quantum theory the Hilbert space loses its primary im-

portance. The primary object one starts with is an abstract C∗-algebra containing an

algebra of quantum observables. The Hilbert space is a secondary concept which may

be derived by constructing particular representation in the spirit of GNS construction

[3, 13]. The necessity of such an approach comes from physically natural limiting pro-

cedures. For example, one may consider a system of particles in equilibrium, within
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a confined, compact region of position space Λ ⊂ R
3. One might then want to con-

struct a ‘thermodynamic limit’, where the size of Λ becomes infinite. Now, while the

Hilbert space for the system at all finite Λ is well defined, it is not clear what the

‘right’ Hilbert space is to describe the infinitely extended particle system. Physical

quantities depending on Λ (like, local energy density or so) have a well defined limit

as |Λ|→ ∞, but the Hilbert space per se does not. Generally, observables of ‘local’

nature are well defined in the thermodynamic limit, and so it is natural to consider

the observables as the core quantities (which do not change even in such limiting

procedures).

Definition 5. An associative algebra is a complex vector space V equipped with a

multiplication V ×V → V : (u, v)→ uv satisfying the following conditions. ∀u, v, w ∈
V and scalars λ, µ ∈ C:

• (uv)w = u(vw) (associativity),

• (λu+ µv)w = λ(uw) + µ(vw) and w(λu+ µv) = λ(wu) + µ(wv) (bi-linearity).

One says that V is unital algebra if V has unit i.e, if there is a 1 ∈ V so that

ev = ve = v for all v ∈ V .

Definition 6. An involution over an algebra V is a map v → v∗ from V to itself so

that ∀u, v ∈ V and λ ∈ C we have

• u∗∗ = u,

• (u+ v)∗ = u∗ + v∗,

• (λu)∗ = λu∗,

• (uv)∗ = v∗u∗.

In view of the definitions 5 and 6 we define ∗-algebra to be an algebra equipped

with an involution.

Example. ConsiderH = C
d, then the algebra of linear operators B(H) is ∗-algebra,

with the star operation given by the adjoint of an operator i.e, for any operator a on

H, its adjoint is defined by the equation

〈a∗ψ, φ〉 = 〈ψ, aφ〉, ∀ψ, φ ∈ H.
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This is the algebra of d× d complex matrices Md.

Definition 7. A C∗-algebra is a complex Banach space A which at the same time

is a ∗-algebra, such that for all x, y ∈ A we have

• ‖xy‖ ≤ ‖x‖ ‖y‖,

• ‖x∗x‖ = ‖x‖2.

The structure of a C∗-algebra allows us to introduce a collection of concepts related

to operators on a Hilbert space:

Definition 8. Suppose A is a C∗-algebra and x ∈ A.

• x is normal iff xx∗ = x∗x,

• x is self adjoint (Hermitian) iff x∗ = x,

• x is unitary iff xx∗ = x∗x = 1,

• x is positive iff x = y∗y for some y ∈ A,

• x is a projection iff x∗ = x = x2.

The importance of normal operators is that the spectral theorem holds for them:

every normal operator on a finite-dimensional Hilbert space is diagonalizable by a

unitary operator.

Definition 9. Let A be a C∗-algebra and let ω be a linear functional on A. Then

• ω is Hermitian if ω(x∗) = ω(x), for all x ∈ A,

• ω is positive if ω(x) ≥ 0, whenever x is positive.

We note that ω positive implies ω Hermitian [13]. As a consequence of the above

definitions we define a quantum state to be a positive linear functional ω on a unital

∗-algebra A with ω(1) = 1. For every ∗-algebra A, we denote by S(A) the set of all

states on A.

Definition 10. [11] A representation a of C∗-algebra A on a Hilbert space H is a

complex linear map π : A → B(H) such that
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• π(xy) = π(x)π(y) for all x, y ∈ A,

• π(x∗) = π(x)∗ for all x ∈ A.

A representation π is automatically continuous satisfying the bound ||π(x)|| ≤ ||x||,
[13].

Definition 11. A representation is irreducible if there is no proper, nontrivial

subspace of H that is invariant under π.

2.5.1 GNS Construction

The GNS (Gelfand–Naimark–Segal) construction shows that every C∗-algebra is iso-

morphic to a C∗-subalgebra of bounded operators acting on some Hilbert space H
[12]. To establish the GNS construction we need the following propositions following

from [12].

Proposition 1. Suppose ω is a state on a C∗-algebra A and set

Lω = {x ∈ A : ω(x∗x) = 0}.

Then Lω is a closed left ideal in A. Moreover, ω(x∗y) = 0 whenever x or y is in Lω.

Now define the quotient space H◦ω = A/Lω where the quotient is relative to the

equivalence relation

x ∼ y ⇔ x− y ∈ Lω.

Note that H◦ω is a pre-Hilbert space with inner product

〈[x], [y]〉 = ω(x∗y), ∀x, y ∈ A (2.54)

and [x], [y] are cosets in the quotient space. Define Hω to be the completion of H◦ω
with respect to inner product. Then Hω is the GNS Hilbert space.

Proposition 2. Let ω be a state on a C∗-algebra A. For any x ∈ A define an

operator Fx : H◦ω → H◦ω by

Fx([y]) = [xy], for all y ∈ A, (2.55)
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then Fx is well-defined and extends to a bounded linear operator on Hω with ||Fx||≤
||x||.

Proposition 3. Suppose A is a C∗-algebra and ω is a state on A, then the mapping

π : A → B(Hω) defined by π(x) = Fx, ∀x ∈ A is a representation of A.

The proofs of Propositions 1 - 3 are not hard, see for instance [13] and the con-

clusion is the following. Let ω be a state on a C∗-algebra A and let x ∈ A. Then

ω(x) = 〈[1], [x1]〉 = 〈[1], Fx[1]〉 = 〈[1], π(x)[1]〉

where the first equality follows from (2.54), the second one from (2.55) and the third

one from Proposition 3. Setting u = [1] ∈ Hω we thus have ω(x) = 〈u, π(x)u〉. This

is the skeleton of a proof of the following result.

Theorem II. (GNS representation [12]) Let ω be a state of a C∗-algebra A, then

there is a representation (H, π, u) of A, where u is a unit vector in H such that

• ω(x) = 〈u, π(x)u〉 for all x ∈ A,

•
{
π(x)u | x ∈ A

}
is dense in H.

Furthermore, the representation (H, π, u) is unique up to unitary equivalence.

Note that we say (H1, π1, u1) and (H2, π2, u2) are unitarily equivalent if there is a

unitary operator U : H1 → H2 such that for all x ∈ A

Uπ1(x) = π2(x)U, (2.56)

and

Uu1 = u2.



Chapter 3

Results

3.1 Statement of the problem

We consider a quantum system of N particles interacting with a collective thermal

environment (reservoir). Each single particle is described by a complex Hilbert space

HS. We can assume that H = C
d. The Hilbert space of the reservoir is the Fock space

F =
⊕
n≥0

L2
symm(R3n, d3nk)

Here, L2
symm(R3n, d3nk) is the space of square-integrable complex-valued functions

which are symmetric in n arguments from R
3. The direct summand for n = 0 is

interpreted to be C, it is called the vacuum sector. The one for n ≥ 1 is called the

n-particle sector.

We denote the field operator as

ϕ(f) =
1√
2

[a∗(f) + a(f)] for all f ∈ L2(R3, d3k), (3.1)

where a∗(f) and a(f) are the annihilation and creation operators respectively.

The Hilbert space of the total system-reservoir complex is given by

HN = H⊗NS ⊗F . (3.2)
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According to the principles of quantum theory, (3.2) is the Hilbert space of pure states

of N particles plus the reservoir.

The dynamics is generated by a self-adjoint Hamiltonian HN , acting on HN , of

the form

HN = H0 + λI,

H0 = HS +HR. (3.3)

The Hamiltonian H0 is the sum of the individual system and reservoir Hamiltonians,

which generate the dynamics of the system alone and the reservoir alone, respectively.

The term λI in (3.3) is the interaction operator, including a coupling constant λ ∈ R.

In our model, we take

HS =
N∑
j=1

Aj, (3.4)

HR =

∫
R3

ω(k)a∗(k)a(k)d3k, (3.5)

I =
1√
N

N∑
j=1

Qj ⊗ ϕ(h). (3.6)

In (3.4), Aj is short form for the operator

Aj = 1⊗ · · · ⊗ A⊗ · · · ⊗ 1, (3.7)

where A, which is a fixed self-adjoint operator on H, stands in the jth position in the

N -fold tensor product on the right side. The operator A represents the Hamiltonian

(energy operator) of a single particle. The real valued function k 7→ ω(k) is called

the dispersion relation of the reservoir particles, it gives the energy associated to the

wave vector k ∈ R3. For instance, in the case of the quantized electromagnetic field,

one has

ω(k) = |k|.

The form (3.5) of HR is a notation (called in physics ‘second quantization’), it is
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equivalent to the following action (on field operators (3.1), for example),

eitHRϕ(f)e−itHR = ϕ(eiωtf), (3.8)

where (eiωtf)(k) = eitω(k)f(k) ∈ L2(R3, d3k). Similarly to Aj, the Qj in (3.6) is

interpreted as a fixed operator Q acting nontrivially on the jth tensor factor only.

Physically, Q⊗ϕ(h) encodes the way a single particle is coupled to the reservoir. The

function h ∈ L2(R3, d3k) in (3.6) is called the form factor. The size of h(k), for a

given k ∈ R3, determines how strongly the mode k is coupled to the particle system.

It is important to point out the scaling factor 1/
√
N in the interaction I. The

motivation for this scaling is the following. Since the particles do not interact directly,

but only via contact with the reservoir, the ‘effective particle interaction’ is of the size

of the interaction squared, I2. In terms of N , this effective interaction without the

prefactor 1/
√
N would be O(N2) (considering N →∞). However, the ‘free particle’

energy,
∑N

j=1Aj is only of O(N). To have both the free energy and the interaction

energy of the same order in N (namely, O(N)), we thus introduce the factor 1/
√
N .

In this way, interaction effects and free dynamics effects occur at the same strength.

Our crucial assumption is

(A) The operators A and Q commute, AQ = QA.

Physically, this means that the energy of each particle is conserved during the dy-

namics. There is no energy exchange between the particles and the reservoir. Such

models are called energy conserving models. The great advantage is that often, one

can ‘explicitly’ calculate the dynamics for them.

To sum it up, our interacting Hamiltonian reads

HN =
N∑
j=1

Aj +HR +
λ√
N

N∑
j=1

Qj ⊗ ϕ(h) (3.9)

and we have [A,Q] = 0 (commutator).

We consider initial states of the product (non-entangled) form

ρN(0) = ρS ⊗ · · · ⊗ ρS ⊗ ρR, (3.10)

in which each particle is in the same state ρS and the reservoir density matrix is ρR.
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According to the Schrödinger equation, the state at time t is given by

ρN(t) = e−itHNρN(0)eitHN . (3.11)

Due to the interaction term, ρN(t) will not be of product form for t 6= 0. Given any

system-reservoir observable A ∈ B(HN), its average at time t is

〈A〉N(t) ≡ Tr(ρN(t)A), (3.12)

where Tr denotes the trace and the symbol ≡ means equivalent by definition (i.e.,

〈A〉N(t) is defined to be Tr(ρN(t)A)). A general A ∈ B(HN) is a (possibly infinite)

sum of factorized operators of the form

P = O1 ⊗ · · · ⊗ ON ⊗W (f), (3.13)

where the Oj are arbitrary single particle operators and W (f) is an arbitrary Weyl

operator. When we are only interested in properties of the first n particles and the

reservoir, for a fixed number n ≥ 1, then we only need to consider operators of the

form

O = O1 ⊗ · · ·On ⊗ 1S · · · 1S ⊗W (f). (3.14)

Our goal is to describe the limit N →∞ of the dynamics

t 7→ 〈O〉N(t), (3.15)

where O is of the form (3.14) for a fixed n.

Let

A =
d∑

m=1

a(m)P (m) (3.16)

be the spectral decomposition of A, where a(m) are its eigenvalues and P (m) its (rank-

one) projections. We introduce the notation

pm = TrS(P (m)ρS). (3.17)
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The pm are probabilities, i.e.,

0 ≤ pm ≤ 1,
∑
m

pm = 1. (3.18)

We denote also

〈Q〉 = Tr(ρSQ), var(Q) = 〈Q2〉 − 〈Q〉2 (3.19)

for the expectation value and the variance of Q in the initial single particle state ρS.

We also define the (time dependent) single particle density matrix

ρ̃(t) = e2iλ2Q〈Q〉S(t)ρS e
−2iλ2Q〈Q〉S(t) (3.20)

where

S(t) =
1

2

∫
R3

|h(k)|2 ωt− sinωt

ω2
d3k. (3.21)

In (3.21) h is the form factor appearing in the interaction (3.6), and ω ≡ ω(k) is the

dispersion relation.

3.2 Results on the dynamics

3.2.1 Dynamics of observables

Our main result about the dynamics of observables is the following.

Theorem 1 (Dynamics of observables) Consider the observable

O = O1 ⊗ · · ·On ⊗ 1S · · · 1S ⊗W (f), (3.22)

where the Oj, j = 1, . . . , n and f ∈ L2(R3, d3k) are arbitrary. For each fixed t ∈ R,

we have

lim
N→∞

ei
√
Nλ〈Q〉Im〈h, e

iωt−1
iω

f〉〈O〉N(t)

= e−
1
2
λ2var(Q)(Im〈h, e

iωt−1
iω

f〉)2 TrR

(
ρRW (eiωtf)

) n∏
j=1

TrS

(
e−itAρ̃(t) eitAOj

)
. (3.23)

Recall that h is the form factor in (3.9), ω ≡ ω(k) and ρ̃(t) is given in (3.20).
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Discussion.

(1) The result holds for all dispersion relations ω(k) and coupling ‘form factors’

h ∈ L2(R3).

(2) Relation (3.23) shows that 〈O〉N(t) alone does not converge as N →∞ unless

〈Q〉 = 0. In special case f = 0, we get also convergence. In particular, when O is

an observable of the particle system alone, then we do get convergence. What is the

meaning of the fast oscillating ‘correction factor’ ei
√
Nλ〈Q〉Im〈h, e

iωt−1
iω

f〉 in (3.23)? It is

created by the action of the particle system on reservoir observables (in the sense that

if f = 0 (no reservoir observable), then the factor is not present). This means that

the particle system induces fast oscillations in the reservoir (with frequency ∝
√
N).

That these oscillations do not die off as N → ∞ may be attributed to the fact that

the system is not dispersive. This is in contrast to the effect the reservoir has on the

particle system, which is, to induce irreversible (dispersive) dynamics.

(3) In the special case when Oj = 1S for all j, we obtain the reservoir dynamics,

lim
N→∞

ei
√
Nλ〈Q〉Im〈h, e

iωt−1
iω

f〉〈W (f)〉N(t) = e−
1
2
λ2var(Q)(Im〈h, e

iωt−1
iω

f〉)2 TrR

(
ρRW (eiωtf)

)
.

Proof of Theorem 1.

According to (3.10), (3.11), (3.12) and (3.14), we have

〈O〉N(t) = Tr
(
ρN(t) O1 ⊗ · · ·On ⊗ 1S · · · 1S ⊗W (f)

)
ρN(t) = e−itHN (ρ⊗NS ⊗ ρR)eitHN . (3.24)

We write Q in its diagonal form,

Q =
d∑

m=1

q(m)P (m), (3.25)

where q(m) are the (real) eigenvalues of Q and P (m) are its rank-one spectral projec-

tions, satisfying
∑

m P
(m) = 1 and P (m)P (n) = δmnP

(m) (Kronecker). Since A and Q

commute (see the assumption (A) before (3.9)), we may assume that the projection



29

P (m) also diagonalize the operator A, namely,

A =
d∑

m=1

a(m)P (m), (3.26)

where the a(m) ∈ R form the spectrum of A. Using that∑
m1,...,mN

P (m1) ⊗ . . .⊗ P (mN ) = 1S ⊗ . . .⊗ 1S (3.27)

we get from (3.9)

HN =
∑

m1,...,mN

P (m1) ⊗ . . .⊗ P (mN )
[ N∑
j=1

Aj +HR +
λ√
N

N∑
j=1

q(mj)ϕ(h)
]
. (3.28)

Notation. In (3.28), the product of the projections is actually a short form for the

expression P (m1)⊗ . . .⊗P (mN )⊗ 1F , however, we leave out in the notation the trivial

factor ⊗1F and we hope no confusion will arise by doing so. Also, note that in (3.28),

one may replace Aj by a(mj)1S due to the presence of the projections P (mj).

It follows from (3.28) that

e−itHN (3.29)

=
∑

m1,...,mN

P (m1) ⊗ . . .⊗ P (mN ) exp−it
[ N∑
j=1

Aj +HR +
λ√
N

N∑
j=1

q(mj)ϕ(h)
]
.

Using the expansion (3.29) for the propagator in (3.24) gives

ρN(t) =
∑

m1,...,mN

P (m1) ⊗ . . .⊗ P (mN )e−it(
∑N
j=1 Aj+HR+I)(ρ⊗NS ⊗ ρR)

×
∑

m′1,...,m
′
N

P (m′1) ⊗ . . .⊗ P (m′N )eit(
∑N
j=1 Aj+HR+I′) (3.30)
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where we have defined

I =
λ√
N

N∑
j=1

q(mj)ϕ(h)

I ′ =
λ√
N

N∑
j=1

q(m′j)ϕ(h). (3.31)

In the next step, we find the reduced density matrix of the first n particles and the

reservoir,

ρn,N(t) = Tr[n+1,N ](ρN(t)), (3.32)

where Tr[n+1,N ] is the partial trace over all particles j = n+ 1, . . . , N .

We have Tr[n+1,N ](F1⊗ . . .⊗FN) = F1⊗ . . .⊗Fn ·Tr(Fn+1⊗ . . .⊗FN) (where the

Fj is any operator acting on the jth particle) and Tr(P (m)ρSP
(m′)) = δm,m′pm where

pm defined in (3.17). HR, I and I ′ are operators acting non-trivially on the space of

the reservoir only, so (3.32) becomes

ρn,N(t) = e−it(A1+···+An)[ ∑
m1,...,mN
m′1,...,m

′
n

(ΠN
j=n+1pmj)

( n⊗
j=1

P (mj)ρSP
(m′j)
)
⊗
(
e−it(HR+I)ρRe

it(HR+I′′)
)]
eit(A1+···+An)

(3.33)

(note that the An+1, . . . AN disappear due to the cyclicity of the trace) where

I ′′ =
( λ√

N

n∑
j=1

q(m′j) +
λ√
N

N∑
j=n+1

q(mj)
)
ϕ(h). (3.34)

From equation (3.33) and (3.24) and by cyclicity of trace we have

〈O〉N(t) = Tr
[
e−it(A1+···+An)

∑
m1,...,mN
m′1,...,m

′
n

(ΠN
j=n+1pmj)

n⊗
j=1

P (mj)ρSP
(m′j)eit(A1+···+An)

O1 ⊗ . . .⊗On ⊗
(
eit(HR+I′′)W (f)e−it(HR+I)ρR

)]
. (3.35)

The trace in (3.35) is over the particle spaces with indices 1, . . . , n and the reservoir.
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As the argument is a product, we first evaluate the part over the reservoir,

TrRe
it(HR+I′′)W (f)e−it(HR+I)ρR. (3.36)

To evaluate this, the following result is useful.

Lemma 1 For any α, β ∈ R and functions f, h ∈ L2(R3, d3k), we have

eit(HR+αϕ(h))W (f)e−it(HR+βϕ(h))

= e−
i
2

(α+β)Im〈h, e
itω−1
iω

f〉e−i(α+β)(α−β)S(t)W
(

(α− β)
eitω − 1

iω
h+ eitωf

)
, (3.37)

where S(t) is given in (3.21).

We give a proof of Lemma 1 below. For now, we continue the proof of Theorem 1.

To analyze (3.36) we use (3.37) with

α =
λ√
N

n∑
j=1

q(m′j) +
λ√
N

N∑
j=n+1

q(mj), β =
λ√
N

N∑
j=1

q(mj).

Letting

c = Im
〈
h,
eiωt − 1

iω
f
〉

(3.38)

we obtain

eit(HR+I′′)W (f)e−it(HR+I)

= exp
{−i

2

λc√
N

[ n∑
j=1

(q(mj) + q(m′j)) + 2
N∑

j=n+1

q(mj)
]}

× exp
{
i
λ2

N

[ n∑
j=1

(q(mj) + q(m′j)) + 2
N∑

j=n+1

q(mj)
][ n∑

j=1

(q(mj) − q(m′j))
]
S(t)

}
×W

( λ√
N

n∑
j=1

(q(mj) − q(m′j))
eitω − 1

iω
h+ eitωf

)
. (3.39)
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The equation (3.35) becomes

〈O〉N(t) = Tr
[
e−it(A1+···+An)

∑
m1,...,mn
m′1,...,m

′
n

ζ
( n⊗
j=1

P
(mj)
j ρP

(m′j)

j

)
eit(A1+···+An)

O1 ⊗ . . .⊗ On ⊗ ρRW
( λ√

N

n∑
j=1

(q(mj) − q(m′j))
eitω − 1

iω
h+ eitωf

)
× exp

{
− iλc

2
√
N

n∑
j=1

q(mj) + q(m′j)
}

× exp
{
i
λ2

N

[ n∑
j=1

q(mj) + q(m′j)
][ n∑

j=1

(q(mj) − q(m′j))
]
S(t)

}
, (3.40)

where we have defined

ζ ≡ ζ(m1, . . . ,mn,m
′
1, . . . ,m

′
n) (3.41)

=
∑

mn+1,...,mN

(ΠN
j=n+1pmj) exp

{
− i λc√

N

N∑
j=n+1

q(mj)
}

× exp
{
i
λ2

N

[ n∑
j=1

{q(mj) + q(m′j)}+ 2
N∑

j=n+1

q(mj)
][ n∑

j=1

q(mj) − q(m′j)
]
S(t)

}
.

We set

Z =
n∑
j=1

q(mj) − q(m′j). (3.42)

Then (3.41) becomes

ζ =
∑

mn+1,...,mN

(ΠN
j=n+1pmj) exp

{
− i λ√

N
c

N∑
j=n+1

q(mj)
}

exp
{

2i
λ2

N
ZS(t)

N∑
j=n+1

q(mj)
}

=
∑

mn+1,...,mN

(ΠN
j=n+1pmj) exp

{
− i λ√

N

[
c− 2

λ√
N
ZS(t)

] N∑
j=n+1

q(mj)
}

=
(∑

m

pm exp
{
− i λ√

N

[
c− 2

λZ√
N
S(t)

]
q(m)

})N−n
=

(∑
m

pme
ixm(N)/N

)N−n
, (3.43)
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where we have introduced

xm(N) =
(
−
√
Nλc+ 2λ2ZS(t)

)
q(m). (3.44)

We write

ζ = exp
{

(N − n) ln
(∑

m

pme
ixm(N)/N

)}
= exp

{
(N − n) ln

(
1 +

∑
m

pm(eixm(N)/N − 1)
)}
, (3.45)

where we have used that
∑

m pm = 1. The sum in the logarithm of (3.45) is small for

N large, it is of the size xm(N)/N ∝ 1/
√
N . Set

ε =
∑
m

pm(eixm(N)/N − 1) = O(1/
√
N) (N →∞). (3.46)

We use the expansion

log(1 + ε) =
∞∑
k=1

(−1)k+1εk

k
(|ε|< 1)

to obtain

ζ = exp
{

(N − n)
∞∑
k=1

(−1)k+1εk

k

}
= exp

{
(N − n)

(
ε− 1

2
ε2 +O(N−3/2)

)}
. (3.47)

Now we expand

ε =
∑
m

pm

(
i
xm(N)

N
− 1

2

xm(N)2

N2

)
+O(N−3/2)

1
2
ε2 = 1

2

(∑
m

pmi
xm(N)

N

)2

+O(N−3/2). (3.48)
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Using (3.48) in (3.47) gives

ζ =

exp (N − n)
[∑

m

pm

(
i
xm(N)

N
− xm(N)2

2N2

)
+ 1

2

(∑
m

pm
xm(N)

N

)2

+O(N−3/2)
]

= exp (N − n)[
i

N
〈x(N)〉 − 1

2N2
var(x(N)) +O(N−3/2)], (3.49)

where (see (3.44) and (3.19))

〈x(N)〉 =
(
−
√
Nλc+ 2λ2ZS(t)

)
〈Q〉

var(x(N)) =
(
−
√
Nλc+ 2λ2ZS(t)

)2

var(Q). (3.50)

In view of definitions in (3.50) we write

ζ = exp
{
− i
√
Nλ〈Q〉c+ 2iλ2ZS(t)〈Q〉 − 1

2
λ2var(Q)c2

}
exp Ξ, (3.51)

where

Ξ =
1

N

(
− 2
√
Nλ3ZS(t)c+ 2λ4Z2S2(t)

)
var(Q)

−i n
N
〈x(N)〉+

n

2N2
var(x(N)) +O(N−3/2).

Substituting the value of ζ given in (3.51) into (3.40) and doing some rearrangement,

we get

〈O〉N(t) = e−i
√
Nλ〈Q〉c Tr

[
e−it(A1+···+An)

∑
m1,...,mn
m′1,...,m

′
n

exp Ξ

( n⊗
j=1

P (mj)e2iλ2ZS(t)〈Q〉ρSP
(m′j)
)
eit(A1+···+An)O1 ⊗ . . .⊗ On

⊗e−
1
2
λ2var(Q)c2ρRW

( λ√
N

n∑
j=1

(q(mj) − q(m′j))
eitω − 1

iω
h+ eitωf

)
× exp

{
− iλc

2
√
N

n∑
j=1

(q(mj) + q(m′j))
}

× exp
{
i
λ2

N

[ n∑
j=1

q(mj) + q(m′j)
][ n∑

j=1

q(mj) − q(m′j)
]
S(t)

}]
. (3.52)
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We move e−i
√
Nλ〈Q〉c to the left hand side then take the limit as N → ∞ of (3.52).

The exponents in the last two factors on the right side of (3.52) vanish in this limit,

and also, Ξ = O(N−1/2) → 0. Furthermore, by Theorem I, we have in the strong

sense

lim
N→∞

W
( λ√

N

n∑
j=1

(q(mj) − q(m′j))
eitω − 1

iω
h+ eitωf

)
= W (eitωf). (3.53)

This limit passes under the trace, as is not difficult to see.1 We conclude that

lim
N→∞

ei
√
Nλ〈Q〉c〈O〉N(t) = Tr

[
e−it(A1+···+An)

( ∑
m1,...,mn
m′1,...,m

′
n

n⊗
j=1

P (mj)e2iλ2ZS(t)〈Q〉ρSP
(m′j)
)

× eit(A1+···+An)O1 ⊗ . . .⊗On ⊗ e−
1
2
λ2var(Q)c2ρRW (eitωf)

]
. (3.54)

We use the definition of Z in (3.42) to simplify the sum

∑
m1,...,mn
m′1,...,m

′
n

n⊗
j=1

P (mj)e2iλ2ZS(t)〈Q〉ρSP
(m′j)

=
∑

m1,...,mn
m′1,...,m

′
n

n⊗
j=1

P (mj)e2iλ2S(t)〈Q〉
∑n
j=1 q

(mj)

ρSe
−2iλ2S(t)〈Q〉

∑n
j=1 q

(m′j)
P (m′j)

=
n⊗
j=1

[∑
m

P (m)e2iλ2S(t)〈Q〉q(m)
]
ρS

[∑
m′

e−2iλ2S(t)〈Q〉q(m′)P (m′j)
]

=
n⊗
j=1

ρ̃. (3.55)

The last equality holds because of the diagonal form of the operator Q in (3.25) and

definition of ρ̃ in (3.20).

Combining (3.54) and (3.55) we obtain the formula (3.23) and thus complete proof

1Suppose An is a sequence of bounded operators, such that ‖An‖≤ a and An → A strongly. Then
TrρAn → TrρA as n→∞. Indeed, let {xn} be an orthonormal basis. Then, given any ε > 0 there is
an N s.t.

∑
k>N 〈xk, ρxk〉 < ε/(2a). This follows simply from the finiteness of Trρ. Now |Tr(ρ(An −

A))|= |Tr(
√
ρ(An − A)

√
ρ)|≤

∑
1≤k≤N |〈xn,

√
ρ(An − A)

√
ρxn〉|+

∑
k>N |〈xn,

√
ρ(An − A)

√
ρxn〉|.

The summand in the second sum is bounded above by 2a‖xn
√
ρ‖2= 2a〈xn, ρxn〉 and hence the value

of this sum is bounded above by ε. Thus |Tr(ρ(An − A))|≤
∑

1≤k≤N |〈xn,
√
ρ(An − A)

√
ρxn〉|+ε.

Taking n→∞ and using the strong convergence to zero of An −A shows the result.
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of Theorem 1 modulo giving a proof of Lemma 1, which we do now.

Proof of Lemma 1. By the Trotter product formula [9],

eit(HR+αϕ(h))W (f)e−it(HR+βϕ(h)) = lim
n→∞

(Bα)nW (f)(B∗β)n (3.56)

where

Bγ = e
itγϕ(h)

n e
itHR
n , γ ∈ {α, β}. (3.57)

We have

BαW (f)B∗β = eΦ1W (f1) (3.58)

where

Φ1 = − i
2
Im
〈
αt
n
h, e

itω
n f
〉

+ i
2
Im
〈
e
itω
n f, βt

n
h
〉

f1 = (α− β) t
n
h+ e

itω
n f. (3.59)

Relations (3.58) and (3.59) follow directly from (see also (2.52) and (3.8))

eiτHRW (f)e−iτHR = W (eiτωf) and W (f)W (g) = e
−i
2

Im〈f,g〉W (f + g). (3.60)

Next we look at

B2
αW (f)(B∗β)2 = eΦ1BαW (f1)B∗β = eΦ2W (f2), (3.61)

with

Φ2 = − i
2

[
Im
〈
αt
n
h, (α− β)e

itω
n t
n
h
〉

+ Im
〈
αt
n
h, e

2itω
n f
〉]

+ i
2

[
Im
〈

(α− β)e
itω
n t
n
h,
βt

n
h
〉

+ Im
〈
e

2itω
n f, βt

n
h
〉]

+ Φ1

f2 = (α− β) t
n
h+ (α− β)e

itω
n t
n
h+ e

2itω
n f. (3.62)

Iterating this procedure n times we obtain

Bn
αW (f)(B∗β)n = eΦnW (fn), (3.63)
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where

Φn = − iα
2

[
Im
〈
t
n
h,

n∑
j=1

e
jitω
n f + (α− β)( t

n
)

n∑
j=1

(n− j)e
jitω
n h
〉]

+ iβ
2

[
Im
〈 n∑
j=1

e
jitω
n f + (α− β)( t

n
)

n∑
j=1

(n− j)e
jitω
n h〉, t

n
h
〉]

fn = (α− β) t
n

n−1∑
j=0

e
jitω
n h+ eitωf. (3.64)

Equation (3.64) can be simplified by using −iα
2

Imz + iβ
2

Imz = −i(α+β)
2

Imz, it becomes

Φn = −i(α+β)
2

Im
〈
h,
t

n

n∑
j=1

e
jitω
n f + (α− β)

( t
n

)2
n∑
j=1

(n− j)e
jitω
n h
〉
. (3.65)

In view of (3.56) we have to take n → ∞ in (3.63). Clearly, fn is a Riemann sum,

and we obtain

lim
n→∞

fn = (α− β)ht

∫ 1

0

eitxωdx+ eitωf = (α− β)h
eitω − 1

iω
+ eitωf. (3.66)

The function on the right hand side of (3.66) is indeed the argument of the Weyl

operator in (3.37).

To evaluate limn→∞Φn, see (3.65), we again use the Riemann sums,

lim
n→∞

(
t

n

) n∑
j=1

e
itωj
n =

eitω − 1

iω
,

lim
n→∞

( t
n

)2
n∑
j=1

(n− j)e
itωj
n =

eitω − itω − 1

−ω2
. (3.67)

We arrive at

lim
n→∞

Φn = − i
2
(α + β)Im

〈
h,
eitω − 1

iω
f

〉
− i

2
(α + β)(α− β)Im

〈
h,
eitω − itω − 1

−ω2
h

〉
.

(3.68)

Finally,

Im〈h, e
itω − itω − 1

−ω2
h〉 = Im

∫
R3

|h(k)|2 cos tω + i sin tω − itω − 1

−ω2
d3k = 2S(t), (3.69)
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see (3.21).

Combining (3.56), 3.63, (3.64), (3.66) and (3.21) yields formula (3.37). This com-

pletes the proof of Lemma 1 and hence that of Theorem 1. �

3.2.2 Dynamics of states

We now assume that 〈Q〉 = 0.

Example. Consider S to be a spin, with Q = tfrac12σz (Pauli matrix, see also

[15])

Q = 1
2

[
1 0

0 −1

]
, (3.70)

and let ρS = 1
2
1 be the initial particle state (this density matrix is the equilibrium

state at very high (infinite) temperature). Then one easily sees that 〈Q〉 = 0.

Then Theorem 1 says that for all observables of the form (3.22), we have

lim
N→∞

〈O〉N(t) =
(
ωS,t ⊗ · · · ⊗ ωS,t ⊗ ωR,t

)
(O), (3.71)

where the state on the right side is an n fold tensor product of the single particle state

ωS,t tensored with the field state ωR,t, given by

ωS,t(OS) = TrS(e−itAρ̃eitA OS), (3.72)

ωR,t(W (f)) = e−
1
2
λ2var(Q)(Im〈h, e

iωt−1
iω

f〉)2 TrR

(
ρRW (eiωtf)

)
(3.73)

with OS ∈ B(HS) and f ∈ L2(R3, d3k). By linearity, relation (3.71) extends to all

(finite) linear combinations of observables of the form (3.22). We now introduce the

‘local’ (n finite) C∗-algebra

An = B(HS)⊗n ⊗W , (3.74)

where W is the Weyl algebra (see section 2.4.4). By taking the partial trace of the

total state (3.11) over the particle spaces with indices n + 1, . . . , N , we obtain the

reduced density matrix of the first n particles and the reservoir,

ρn,N(t) = Tr[n+1,...,N ] ρN(t). (3.75)
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Of course, ρn,N(0) = ρS ⊗ · · · ⊗ ρS ⊗ ρR is of product form, but for t 6= 0, ρn,N(t) is

not. However in the limit N → ∞ the product structure is reinstated, albeit with a

more complicated dynamics.

Consider the state ωtn,N on An associated to ρn,N(t), i.e.,

ωtn,N(O) = Tr(ρn,N(t)O), O ∈ An. (3.76)

Theorem 2 (Dynamics of the state) We have for all t ∈ R,

lim
N→∞

ωtn,N = ω⊗nS,t ⊗ ωR,t, (3.77)

where the limit is understood in the weak ∗ topology.

Remark. Convergence in the weak ∗ topology simply means that limN→∞ ω
t
n,N(O) =

ω⊗nS,t ⊗ ωR,t(O), for all O ∈ An.

Proof Theorem 2. Define Pn to be the set of all finite linear combinations of

observables of the form O1 ⊗ . . .On ⊗W (f). The completion of Pn in the operator

norm topology is simply An. Since the linear functionals ωtn,N and ω⊗nS,t ⊗ ωR,t are

bounded and have norm one, they can be extended by continuity to An and have

norm one, for all t ∈ R and N ≥ 1.

Given any A ∈ An and any ε > 0, we can find an element Pε ∈ Pn such that

‖A− Pε‖ ≤ ε
3
. We have ∀t ∈ R and ∀A ∈ An

‖ωtn,N(A)− ω⊗nS,t ⊗ ωR,t(A)‖

≤ ‖ωtn,N(A)− ωtn,N(Pε)‖+‖ωtn,N(Pε)− ω⊗nS,t ⊗ ωR,t(Pε)‖

+‖ω⊗nS,t ⊗ ωR,t(Pε)− ω⊗nS,t ⊗ ωR,t(A)‖. (3.78)

The first and the third terms on the right side of (3.78) are bounded above each by

ε/3, due to ‖A−Pε‖≤ ε/3. Next, due to Theorem 1, there exists an Nε s.t. ∀N ≥ Nε,

we have ‖ωtn,N(Pε) − ω⊗nS,t ⊗ ωR,t(Pε)‖ ≤ ε/3. This shows (3.77) and completes the

proof of Theorem 2. �
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3.3 Hilbert space representation

Recall the definition of the reservoir state ωR,t, (3.73),

ωR,t(W (f)) = e−
1
2
λ2var(Q)(Im〈h, e

iωt−1
iω

f〉)2 Tr
(
ρRW (eiωtf)

)
, (3.79)

where f ∈ L2(R3, d3k) is arbitrary and h is the form factor in the interaction, see

(3.8).

For a fixed t ∈ R, we denote the Hilbert space (GNS) representation of ωR,t by

(Ht, πt,Ωt), meaning that

ωR,t(W (f)) = 〈Ωt, πt(W (f))Ωt〉, ∀f. (3.80)

The main result of this section is Theorem 3, in which we construct the represen-

tation explicitly.

Theorem 3 (Hilbert space representation of the reservoir state)

Denote the GNS representation of ωR,0 by (H0, π0,Ω0). For any t ∈ R, we have

the following.

(A) The GNS representation of the state ωR,t is given by

Ht ⊂ F(C)⊗H0, (3.81)

πt(W (f)) = ei
√

2var(Q)λIm〈ht,f〉ϕ ⊗ π0(W (f)), (3.82)

Ωt = ΩHO ⊗ Ω0. (3.83)

Here,

ht(k) = h(k)
1− e−iωt

iω
(ω = ω(k)) (3.84)

and ϕ = 2−1/2(a∗ + a) is the field operator of a harmonic oscillator. ΩHO is the

ground state vacuum vector in F(C).

(B) Suppose the reservoir is in the vacuum state at zero temperature, that is, let

H0 = F(L2(R3)) and let Ω0 be the vacuum vector in this Fock space, so that

ωR,0(·) = 〈Ω0, ·Ω0〉 is the (Fock) vacuum state. Then, for fixed t ∈ R, the GNS
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Hilbert space is

Ht = F(C)⊗F(L2(R3, d3k)) (3.85)

if ht is not the zero function in L2(R3, d3k). If ht ≡ 0 then Ht = F(L2(R3, d3k)).

Discussion.

(1) The GNS Hilbert space is the closure Ht = πt(W)(ΩHO ⊗ Ω0). Relation (3.81)

says that it is realized as a subspace of F(C) ⊗ H0. Part (B) of the theorem shows

that the GNS space of the reservoir, for t > 0, is the entire space F(C) ⊗ H0 if the

reservoir is initially in the vacuum state.

(2) Probably one can carry out the proof of part (B) for any regular representation

of the CCR (where the a∗ and a exist), or at least for thermal representations (Araki-

Woods).

The following result is a basic fact from quantum theory [13] and will be useful

for us to characterize the reservoir representations πt, (3.82).

Theorem III. (Stone von-Neumann uniqueness theorem) Let h be a finite dimen-

sional Hilbert space and let (H, π) be a regular representation of the Weyl CCR algebra

W(h). Then (H, π) is unitarily equivalent to the direct sum representation(
⊕j πF,⊕jF(h)

)
(finite or countably infinite) of copies of the Fock representation (F(h), πF).

Remarks. (1) (H, π) regular means that t 7→ π(W (tf)) is differentiable at t = 0,

in the strong sense on H. (This guarantees the existence of field and creation and

annihilation operators.)

(2) Two representations (H1, π1), (H2, π2) of a C∗-algebra A are called unitarily

equivalent if there is a unitary U : H1 → H2 such that π1(A) = U∗π2(A)U for all

A ∈ A. We write simply

π1 ' π2.

In particular, the conclusion of the Stone von Neumann uniqueness theorem reads

π ' ⊕jπF.

(3) If π in Theorem III is an irreducible representation (the only subspaces left

invariant by π(W(h)) are the whole Hilbert space and {0}), then the direct sum in
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Theorem 3.3 has a single copy. In other words, any irreducible representation π of

W(h) with dim h <∞ is unitarily equivalent to the Fock representation.

For the following result, denote by πHO the Fock representation of F(C) (‘the

harmonic oscillator’).

Theorem 4 Set for short L2 ≡ L2(R3, d3k) and let πF be the Fock representation of

W(L2) on the Hilbert space F(L2). For fixed g ∈ L2 define a representation of W(L2)

on the Hilbert space F(C)⊗F(L2) by

π(g)(W (f)) = ei Im〈g,f〉ϕ ⊗ πF(W (f)), f ∈ L2. (3.86)

Then

π(g) '
(
⊕j πHO

)
⊗ π⊥, (3.87)

where πHO is the Fock representation of F(C) (‘the harmonic oscillator’) and π⊥ is

the Fock representation of W((Cg)⊥), the orthogonal complement being the one in the

space L2.

The point of Theorem 4 is that in (3.87), the right side does not depend on g,

except possibly in the multiplicity of the direct sum. More precisely, we have the

following result (which is a corollary to the proof of Theorem 4)

Corollary 1 Let g and h be fixed elements of L2. Then we have

π(X) '
(
⊕nXj=1 πHO

)
⊗ π, X = g, h, (3.88)

where nX ∈ N ∪ {∞} and where π is independent of the value of X, it is the Fock

representation of W(M⊥), with M = span{g, h} ⊂ L2. This shows that given any

g, h ∈ L2, the representations π(g) and π(h) are unitarily equivalent, up to multiplicity.

Discussion. In view of Theorem 3, the result of Corollary 1 says that for any

two times t, t′ ∈ R, the reservoir representations πt and πt′ (see (3.82)) are unitarily

equivalent, up to multiplicity.

Proof Theorem 4. Let g ∈ L2(R3, d3k) be fixed. We decompose

L2(R3, d3k) ≡M ⊕M⊥, (3.89)
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where

M = Cg. (3.90)

For an element f ∈ L2(R3, d3k), we write the decomposition as

f = f|| + f⊥. (3.91)

According to the decomposition (3.89), the Fock space splits into a tensor product,

F(M ⊕M⊥) = F(M)⊗F(M⊥) (3.92)

and the representation does as well,

πF = π|| ⊗ π⊥, (3.93)

where π|| and π⊥ are the regular representations of W(M) and W(M⊥), respectively,

obtained by restriction of πF to the corresponding subalgebras. The ranges of π|| and

π⊥ are in the bounded operators acting on F(M) ' F(C) and F(M⊥), respectively.

Then

π(g)(W (f)) = eiIm〈g,f||〉ϕ ⊗ π||(W (f||))⊗ π⊥(W (f⊥)). (3.94)

The latter operator acts on the Hilbert space

F(C)⊗F(M)⊗F(M⊥). (3.95)

Now we define the representation π̃(g) of W(M) on F(C)⊗F(M) by

π̃(g)(W (f||)) = eiIm〈g,f||〉ϕ ⊗ π||(W (f||)). (3.96)

π̃(g) is a regular representation ofW(M). Since dimM <∞, the Stone-von Neumann

uniqueness theorem implies that π̃(g) is unitarily equivalent to a multiple of the Fock

representation πHO on W(M) (harmonic oscillator, since dimM = 1). �

Proof Corollary 1. By redefining the M in the proof of Theorem 4 to be M =

span{g, h} and writing f ∈ L2 as f = fM + fM⊥ , we obtain as in (3.94)

π(g)(W (f)) = eiIm〈g,fM 〉ϕ ⊗ πM(W (fM⊥))⊗ πM⊥(W (fM⊥)), (3.97)
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where πF = πM ⊗ πM⊥ is the splitting analogous to (3.93). Now again, as in (3.96),

π̃(X)(W (fM)) = eiIm〈X,fM 〉ϕ ⊗ πM(W (fM))

is a regular representation of W(M) and dimM < ∞. The relation (3.88) follows

from the Stone von Neumann uniqueness theorem. �

3.3.1 Proof of Theorem 3

(A) Let ΩHO be the ground state of a harmonic oscillator with associated Hamiltonian

HHO = a∗a. The expectation value of a Weyl operator ei(za
∗+z̄a)/

√
2 of the harmonic

oscillator, for z ∈ C, is

〈ΩHO, e
i(za∗+z̄a)/

√
2ΩHO〉 = e−

1
4
|z|2 . (3.98)

Choosing

z =
√

2var(Q)λIm〈ht, f〉 (3.99)

gives exp
[
− 1

2
λ2var(Q)[Im〈ht, f〉]2

]
. Hence (3.79) can be written as

〈Ωt, πt(W (f))Ωt〉 = 〈ΩHO, e
i
√

2var(Q)λIm〈ht,f〉ϕΩHO〉〈Ω0, π0(W (eiωtf))Ω0〉

= ωR,t(W (f)), (3.100)

where

ϕ :=
1√
2

(a∗ + a) (3.101)

is the harmonic oscillator field operator.

(B) The Fock representation is given by the Hilbert space F(L2), where L2 ≡
L2(R3, d3k). Denote by ΩF the Fock vacuum vector and let a∗F (f), aF (f), ϕF (f) =

1√
2
(a∗F (f) + aF (f)) and WF (f) = eiϕF (f) be the Fock creation, annihilation, field and

Weyl operators.

For g ∈ L2 ≡ L2(R3, d3k), g 6= 0 fixed, set

πg(W (f)) = eiIm〈g,f〉ϕ ⊗WF (f), f ∈ L2,
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which acts on F(C)⊗ F(L2). Denote by W the Weyl algebra over the single paticle

space L2. We are going to show that for all g 6= 0, the set

D ≡ πg(W)(ΩHO ⊗ ΩF ) (3.102)

is dense in F(C)⊗F(L2). For x ∈ R\{0} and f ∈ L2, set

V (x, f) =
W (xf)− 1

ix
, VF (x, f) =

WF (xf)− 1
ix

. (3.103)

We have VF (x, f) → ϕF (f) in the strong sense (on a dense domain), as x → 0. Let

x, x1, . . . , xk ∈ R and f1, . . . , fk ∈ L2 with fj ⊥ g, j = 1, . . . , k. Then

πg(V (x1, f1) · · ·V (xk, fk))(ΩHO ⊗ ΩF ) = ΩHO ⊗ VF (x1, f1) · · ·VF (xk, fk)ΩF . (3.104)

By taking in (3.104) the limits xj → 0, j = 1, . . . , k, we see that

ΩHO ⊗ ϕF (f1) · · ·ϕF (fk)ΩF ∈ D.

Using that a∗F (fj) = 1√
2
(ϕF (fj)− iϕF (ifj)) and taking linear combinations yields

ΩHO ⊗ a∗F (f1) · · · a∗F (fk)ΩF ∈ D.

We now show that ΩHO ⊗ a∗F (g)a∗F (f1) · · · a∗F (fk)ΩF ∈ D as well. As in (3.104), we

have

πg(V (x, g)V (x1, f1) · · ·V (xk, fk))(ΩHO ⊗ ΩF )

= ΩHO ⊗ VF (x, g)VF (x1, f1) · · ·VF (xk, fk)ΩF . (3.105)

And by taking the limits of all the x, xj → 0 gives

ΩHO ⊗ ϕF (g)a∗F (f1) · · · a∗F (fk)ΩF ∈ D. (3.106)

Note that we cannot directly take linear combinations to conclude, since πg(W (ig)) =

ei‖g‖
2ϕ ⊗WF (ig) has a nontrivial part on the first factor as well. However, it follows

from (3.106) and the fact that aF (g) commutes with all the a∗F (fj), and aF (g)ΩF = 0,

that

ΩHO ⊗ a∗F (g)a∗F (f1) · · · a∗F (fk)ΩF ∈ D. (3.107)
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Finally, it is clear how to use the above procedure leading to (3.106) to show that

ΩHO ⊗ (ϕF (g))Na∗F (f1) · · · a∗F (fk)ΩF ∈ D

for all integers N . By writing the field operator ϕF (g) as a sum of creators and

annihilators, and getting rid of the annihilators aF (g) by commuting them to hit the

vacuum, one sees readily by induction that

ΩHO ⊗ (a∗F (g))Na∗F (f1) · · · a∗F (fk)ΩF ∈ D (3.108)

for all integers N . Since the set

span
{
a∗(h1) · · · a∗(hk)ΩF : k ∈ N, h1, . . . , hk ∈ L2

}
is dense in F(L2), we conclude from (3.108) that

ΩHO ⊗F(L2) ∈ D. (3.109)

Next, let ψ ∈ F(L2) belong to the finite particle space

F0(L2) =
{
ψ = {ψn}n≥0 ∈ F(L2) | all but finitely many ψn are zero

}
.

By the above construction (using the V (x, f)), there is a sequence On ∈ W such

that

πg(On)ΩHO ⊗ ΩF → ΩHO ⊗ ψ. (3.110)

For y ∈ R,

πg(W (iyg)On)ΩHO ⊗ ΩF =
(
eiy||g||

2ϕ ⊗WF (iyg)
)
πg(On) ΩHO ⊗ ΩF . (3.111)

Taking the derivative w.r.t. y at y = 0 and the limit n→∞ shows that(
‖g‖2ϕ⊗ 1F + 1S ⊗ ϕ(ig)

)
ΩHO ⊗ ψ ∈ D.

But the second vector in the sum, ΩHO⊗ϕ(ig)ψ, already belongs to the closure D, as

shown above, so a∗ΩHO ⊗ ψ ∈ D. Instead of taking the first derivative, one may take
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∂2
y which easily implies that (a∗)2ΩHO ⊗ ψ ∈ D. Repeating the argument with higher

y-derivatives gives that (a∗)NΩHO ⊗ ψ ∈ D for any N . Consequently F(C) ⊗ ψ ∈ D
for all ψ in a dense subset of F(L2) and hence the closure of D is all of F(C)⊗F(L2).

�



Chapter 4

Conclusion

In this thesis, we consider an open quantum system formed by N particles interacting

with an environment, called a reservoir. In our main result we find the evolution of

any subsystem (plus the reservoir) in the limit N →∞. A main assumption we make,

to be able to carry out the mathematics, is that of an energy conserving interaction.

We show that due to high complexity N →∞, all particles and the reservoir become

uncorrelated and evolve independently. We then consider the effect the particle system

has on the reservoir and its dynamics. We find the reservoir dynamics in the limit

N → ∞ and obtain explicitly its Hilbert space (GNS) representation. By using the

Stone von Neumann uniqueness theorem we are able to prove that the representations

at any two times unitarily equivalent up to multiplicity.
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