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Abstract 

 The work contained in this thesis focuses on two main objectives. The first 

objective is to evaluate the Interactive Multiple Model (IMM) filter method for robotic 

applications including inertial navigation systems (INS) and computer vision tracking. The 

second objective is to design an experimental testbed for multi-model mobile robot state 

estimation research in the Intelligent Systems Laboratory (ISLAB) at Memorial University. 

 An IMM estimator uses multiple filters that run simultaneously to produce a 

combined weighted estimation of an observed system’s states. The weights are functions 

of the likelihood of how well each individual filter matches the current behaviour exhibited 

by the system. The performance of IMM filtering is evaluated using two different strategies 

for augmenting the system’s filter banks. The first method uses multiple kinematic models 

(constant velocity and constant acceleration models) in a mean-shift-based computer vision 

tracking application. The results of this experiment indicate that the IMM improves 

tracking performance due to its ability to adapt to the continuously changing motion 

characteristics of 2D blobs in videos. The second approach uses the same kinematics for 

each filter; however, the process and sensor noise parameters are tuned differently for each 

model. This method is tested in INS applications for both an automobile and a skid-steer 

mobile robot (Seekur Jr). Results show that the method improves INS tracking over single 

model Extended Kalman Filter (EKF) designs. Furthermore, an augmented state-space 

model containing skid-steer instantaneous center of rotation (ICR) kinematics is presented 

for future testing on the Seekur Jr INS. 
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 The experimental testbed designed in this thesis work is an operational data 

acquisition system developed for use with the Seekur Jr robot. The Seekur Jr platform has 

been Robot Operating System (ROS) enabled with access to data streams from 2D Lidar, 

3D nodding Lidar, inertial measurement unit, digital compass, wheel encoder, onboard 

Global Positioning System (GPS), real-time kinematic (RTK) differential global 

positioning system (DGPS) ground truth, and vision sensors. The physical setup and data 

networking aspects of the testbed have been used for validation of an IMM filter presented 

in this thesis and is fully configured for future multi-model localization experiments of the 

ISLAB.  
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Chapter 1 

Introduction 

About this chapter: This chapter discusses autonomous system technologies and 

introduces typical methods used for state estimation. The Kalman filter and nonlinear 

variations are introduced, as well as the interactive multiple model filter, which is the main 

filtering technique investigated in this thesis. The chapter introduces the thesis problem 

statement and the main objectives of this Master of Engineering research project. 

1.1. Introduction 

 Improvements in computing technology and the rapid development of intelligent 

control systems has led to the integration of autonomous technologies in most industries 

worldwide. Examples of these technologies include robotic manufacturing equipment [1], 

self-piloting unmanned-aerial vehicles (UAVs) [2] and planetary rovers for space 

exploration [3]. Incorporating autonomous systems in engineering or commercial settings 

can improve task efficiency, ensure repeatable work precision and eliminate the risk of 

human injury in dangerous environments.  

 The growth of autonomous technologies has been facilitated by advancements in 

integrated circuit design for sensors, computing devices, and intelligent control algorithms 

[4]. Improved central-processing unit (CPU) architectures provides the required power to 

implement sophisticated software packages for autonomous systems. The increased CPU 
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computing speed allows large datasets to be quickly processed for real-time use in software 

applications. This has been a driving force for the development of vision-based systems 

that rely on high-resolution cameras for control-loop feedback [5]. The development of 

advanced sensing devices has ensured that autonomous systems are provided with 

consistently precise measurement information and minimizes the influence of noise 

corruption on sensor signals [4]. 

 Most autonomous systems have two main processes that must be completed 

simultaneously during typical operations. The first process is state estimation; the system 

must use the available sensor information and control system inputs to determine the 

current state of the system (i.e.: robotic end-effector position, velocity and orientation) [6]. 

The second process is control; given the current state of the system, the next control inputs 

required to reach the goal state (i.e.: move robotic end-effector from the current position to 

the workpiece) must be determined [7].  

 The research work contained in this thesis studies the state estimation problem for 

autonomous systems. One of the most globally popular state estimation techniques used in 

many engineering applications is known as the Kalman filter [6]. This algorithm is best 

suited for linear time-invariant systems [8]. The algorithm assumes a stochastic system 

model with noise-corrupted measurements [6]. It optimizes estimation performance by 

adaptively adjusting the estimator gain in response to the changing mean-squared error of 

the state covariance [6]. The Kalman filter is an effective estimation method when the 

system is linear, and the dynamic model is well-defined [7]. 
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 The Extended Kalman Filter (EKF) addresses the problem of nonlinearity in the 

system model [7]. The algorithm linearizes the system dynamic equations about an 

operating point that is defined by the most recent state estimate [6]. The EKF is then 

implemented in the same way as the Kalman filter using the nonlinear system equations to 

predict the next set of system states [7]. For highly nonlinear systems, the EKF can show 

unstable behaviour and produce high errors due to abrupt changes in system states near the 

linearized operating point [9]. When this occurs, the estimator can quickly diverge from 

the true state of the system. This issue is handled by another version of the Kalman filter 

known as the unscented Kalman filter (UKF). The UKF method uses the unscented 

transform to propagate sample points through the nonlinear function to produce a Gaussian 

approximation of the function [10]. This method, however, can be slower than the EKF in 

practical applications [11]. 

 One of the common disadvantages of the Kalman filter, EKF and UKF is their 

limitation of having a single dynamic model for state estimate propagation. In many cases, 

the behaviour of a system varies depending on several possible factors including abrupt 

changes in the control inputs or arbitrary system interactions with external surroundings. 

Examples of these include aggressive turning manoeuvres made by an aircraft [12] or an 

autonomous ground vehicle skidding/slipping laterally across a surface [13]. Using a single 

system model may not account for these dynamic changes, therefore, including multiple 

models may improve an estimator’s ability to maintain accurate state tracking [14].  

 There are several different strategies for incorporating multiple system models in 

an estimator. Among which, the interactive multiple model (IMM) algorithm is a preferred 
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and established method used in many aircraft target tracking applications [15] [16] [17] 

[18]. Recent work in [19] [20] [21], investigates its application for vehicle navigation 

systems. The IMM filter addresses the multiple model estimation problem by running a 

bank of filters simultaneously in parallel and combining the estimates of each filter using 

weighted probabilities [14]. The probabilities are recursively calculated by the filter and 

represent the likelihood of how well the models each capture the current dynamic 

behaviour that the system is exhibiting [19]. The main disadvantage of this filtering 

technique is its suboptimality due to the estimates being a mixed result from multiple 

possible models. However, if the models included in the IMM design are limited to realistic 

candidates that capture the expected system dynamics and their uncertainties, then these 

errors can be minimized and the benefits of using multiple models can improve tracking 

results [14]. The Intelligent Systems Laboratory (ISLAB) of Memorial University of 

Newfoundland is currently developing multiple model navigation techniques for its robotic 

fleet comprised of a Seekur Jr, Pioneer robots and micro aerial platforms. The long-term 

objective of this research group is developing reliable fleet operations for missions that 

have changing operating conditions. This thesis evaluates the IMM filter for this purpose 

by designing filtering banks to effectively capture the operating modes and uncertainties 

of robotic tracking and localization applications. The thesis first evaluates the IMM 

strategy for a computer vision tracking problem to validate algorithm performance. The 

IMM method is then implemented and validated for vehicle localization using the KITTI 

Vision Benchmark dataset [22]. The IMM filter design is then modified for localization of 

the Seekur Jr mobile robot [23]. 
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1.2. Problem Statement 

 The objective of this research work is to evaluate the effectiveness of IMM filter 

integration in robotic navigation and tracking applications. The main experiments 

contained herein are: 

• Computer Vision Tracking – Tracking the motion of arbitrary blob targets in video 

sequences using a colour-based mean shift tracker paired with an IMM filter to 

improve accuracy. Tests include tracking a constant velocity target, a constant 

acceleration target, circular motion tracking and general object tracking. 

• Automobile Inertial Navigation System (INS) – Designing an INS with an IMM 

framework using the KITTI Vision Benchmark dataset. The IMM uses differently 

tuned sets of sensor noise parameters to shift the filter’s reliance on each sensor for 

different driving scenarios (i.e.: driving in a straight line or performing an abrupt 

turn). The dataset provides inertial measurement unit (IMU), differential global 

positioning system (DGPS) and orientation measurements. The INS estimates the 

physical states of the vehicle system such as position, velocity, orientation and 

sensor biases. 

• Skid-Steer Robot INS Design – Designing an INS for a skid-steer mobile robot 

(Seekur Jr Robot) using an IMM filter. The INS used in the automobile experiment 

has been redesigned for the Seekur Jr. The varied noise parameter approach is tested 

experimentally with the robot. The framework for incorporating a skid-steer 

instantaneous center of rotation (ICR) tracking model in the IMM framework has 
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been presented and is discussed for future work. The Seekur Jr is equipped with an 

Emlid Reach module [24] to provide IMU and DGPS measurements for IMM 

experiments. 

1.3. Objectives and Expected Contributions 

 The focus of this thesis is to evaluate the effectiveness of IMM filtering for robotic 

navigation and tracking applications. This is achieved by designing and evaluating IMM 

filters for robotic tracking and navigation problems and developing an experimental testbed 

for multi-model estimator performance evaluation. The objectives of the thesis are as 

follows: 

Objective 1 – Design an effective computer vision tracking system that implements 

mean shift and IMM filtering techniques. 

Objective 2 – Demonstrate the effectiveness of IMM filtering for automobile INS 

applications. 

Objective 3 – Design an IMM-INS for skid-steer mobile robots using ICR tracking for 

outdoor navigation applications. 

Objective 4 – Develop an experimental testbed for the Seekur Jr robot for multi-model 

localization research work. 

 

 



7 

 

The contributions of this thesis are as follows: 

Contribution 1 – IMM design and validation for computer vision target tracking and 

robotic inertial navigation applications. This evaluates two different 

strategies for augmenting the model bank of IMM filters (i.e.: 

models with different process and sensor noise characteristics and 

models with different system dynamics). 

Contribution 2 – Development of an experimental testbed for multiple model 

estimation based on the Seekur Jr platform. As part of the thesis 

work the Seekur Jr platform is Robot Operating System (ROS) 

enabled with access to data streams from 2D Lidar, 3D nodding 

Lidar, IMU, digital compass, wheel encoder, onboard Global 

Positioning System (GPS), real-time kinematic (RTK) DGPS 

ground truth, and vision sensors. 

Contribution 3 – Design and experimental validation of an IMM filter for the Seekur 

Jr mobile robot. The experimental testbed developed in this thesis 

is used for this purpose. 
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1.4. Organization of Thesis 

 The following briefly discusses the contents found in each chapter of this thesis: 

Chapter 1 – This chapter introduces the research topics and outlines the objectives of 

the research work. 

Chapter 2 – This chapter discusses related works to this research and provides the 

necessary theoretical background information regarding existing Kalman 

filter state estimation techniques including the linear Kalman filter, EKF 

and IMM. The advantages and disadvantages of these techniques are also 

discussed. 

Chapter 3 – This chapter introduces mean shift theory and its usage in computer vision 

tracker design. The design process for a two model IMM filter is 

presented. The vision system is tested on several target tracking scenarios 

with quantitative analysis and comparisons. 

Chapter 4 – This chapter presents the vehicle state space model and measurement 

model used to design the INS for an automobile. Nonlinear observability 

analysis for the system is included. The experimental validation of the 

INS using a two-mode IMM filter is discussed. 

Chapter 5 – This chapter introduces skid-steer kinematic models for tracking mobile 

robot ICRs during operations. The developed experimental platform 

using the Seekur Jr robot is discussed in detail, including platform design, 
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sensors used and data processing techniques. The INS is tested using a 

dataset collected by the Seekur Jr and the results of this experiment are 

discussed. 

Chapter 6 – This chapter presents the conclusions that were drawn from the 

experiments conducted during this research project. The overall 

advantages and disadvantages of IMM filtering are discussed with regards 

to the applications that have been presented. Additional research topics 

and required work to advance this project further are discussed. 
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Chapter 2 

Background 

About this chapter: This chapter reviews existing state estimation techniques that are 

commonly used in robotic tracking, navigation, and control applications. Kalman filter, 

EKF and IMM filter theory is discussed in detail to provide the necessary background for 

understanding the estimators designed in the experiments of chapters 3-5.  

2.1. Related Works 

2.1.1. State Estimation Techniques and IMM Applications 

 The area of state estimation for autonomous systems is a rapidly advancing field 

driven by the work of researchers worldwide. Many methods have been developed over 

the years for addressing the state estimation problem for various systems. Some standard 

methods typically employed for tracking and localization tasks include the Kalman filter 

[8], EKF [6], UKF [9], Monte Carlo localization (MCL) [25], grid-based localization [26], 

and simultaneous localization and mapping (SLAM) [27].  

 The Kalman filter provides the optimal solution for stochastic linear time-invariant 

systems [8]. The algorithm has been modified over the years to solve numerous problems, 

including systems governed by nonlinear functions. The EKF method uses a first order 

Taylor series expansion to linearize the nonlinear system equations [6]. The UKF employs 
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the unscented transform to propagate sample points through the nonlinear function to 

estimate the mean and covariance of the system states [9].  Although the UKF can perform 

better than the EKF for highly nonlinear systems, the EKF still remains one of the most 

widely used Kalman filter formulations for nonlinear state estimation [9].  

 MCL is a non-parametric localization approach that uses a distribution of weighted 

samples (particles) to estimate the current and future states of the tracked system given the 

system inputs and current sensor observations [25]. The samples are recursively propagated 

forward using the system process model and the sensor information provides corrections 

to these sample estimates [25]. Successful convergence of this filter occurs when the mean 

of the particle distribution approaches the true state of the system [7]. MCL can maintain 

multiple hypotheses for the states of the system and is effective for nonlinear applications 

[7]. However, if too many samples are used, the algorithm can become computationally 

expensive, and if too few samples are used, particle deprivation can occur and the filter 

may not find the solution [7]. Grid-based localization is another effective tracking 

technique, especially for indoor, structured environment applications. For mobile robot 

localization, grid-based methods typically require a map that is subdivided into discrete 

points (grains) [26]. The grains can be assigned an occupancy status to indicate obstacles 

in the environment [26]. Localization is performed by first propagating the robot states 

forward using the system motion model [7]. Next, sensor data (i.e.: laser scans) are 

observed and the algorithm updates its belief states for the robot pose [26]. Like MCL, this 

algorithm can also maintain multiple hypotheses for the robot pose. Grain coarseness can 

dictate the effectiveness of this localization method [7]. Fine grains produce accurate 
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tracking results but cause the process to become computationally expensive while coarse 

grains improve computation time but reduce accuracy [26]. 

 SLAM is a highly explored area of state estimation due to its applications for robot 

operations in unstructured environments. The process involves continuously generating 

and updating a navigation map using landmarks and features detected by onboard sensors 

while simultaneously using the map to perform localization [27]. Many types of sensors 

can be used for the SLAM mapping process including cameras [28], radar [29], sonar [30] 

and laser [31]. One of the main issues with SLAM is the computational cost of processing 

the large amounts of sensor data [27]. Fortunately, the improvements to computing 

technologies and to SLAM algorithms in recent years have made implementing these 

systems progressively more feasible for real-time applications [27]. 

 The IMM filtering method for tracking and localization can be implemented in 

combination with many of the previously discussed estimation techniques using its model 

probability mixing framework. For example, the work in [32] implements a three-mode 

IMM paired with particle filtering for manoeuvring target tracking using only bearing 

measurements. The modes of the filter include different possible kinematic models that 

reflect the expected target behaviour [32]. The results of this work demonstrate the high 

accuracy tracking potential of the IMM approach, however, the high computational load of 

the particle filter in this experiment was an issue [32]. Another example is the work in [33] 

which implements an IMM using UKFs with different kinematic models in the filter bank. 

The results of this implementation show reasonable tracking results with improvements 

over the single Kalman filter that was compared [33].  
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 The adaptability of the IMM filter makes it a popular choice for manoeuvring target 

tracking since their motion is generally unpredictable [14]. For this reason, it is a favoured 

option for tracking and state estimation in the aerospace industry as shown in [15] [16] [17] 

[18]. Generally, ground vehicles like automobiles or mobile robots have predictable motion 

trajectories while operating in controlled environments. However, changes in operation 

terrain or weather conditions can cause unpredictable vehicle movement to occur. 

Furthermore, aggressive turning manoeuvres made by these systems, especially at high 

speeds, can lead to sliding/slipping. For these reasons, the IMM method can be a beneficial 

algorithm to incorporate in typical ground vehicle and mobile robot INS applications. In 

both [19] and [20], IMMs are designed to address these issues in road vehicle localization. 

Both papers implement two mode IMMs using EKFs for varying driving conditions. In 

[19], the first mode models the vehicle kinematic states with no-slip assumptions, while 

the second mode considers the vehicle dynamics such as lateral forces. The results of this 

work show that estimates of the kinematic model are more accurate for low-speed 

operations with low tire slippage, while the dynamic model is more accurate when large 

tire slippage occurred. When both models are included in the IMM estimator, the vehicle 

localization becomes more robust and adaptable for the driving conditions [19]. Similarly, 

in [20] the two modes of the IMM consider different kinematic behaviours of the vehicle. 

One model is a first-order function for straight driving motion while the other is a second-

order equation designed for turning manoeuvres [20]. The findings in [20] reported similar 

results to [19] indicating that the IMM algorithm is indeed a good candidate for 

manoeuvring ground vehicle and mobile robot localization tasks. The robotic fleet of the 



14 

 

ISLAB is being developed for missions involving changing operating conditions including 

indoor-outdoor transitions, kinodynamic model changes of the robots, environmental 

disturbance level changes, etc. Therefore, the IMM algorithm is deemed a leading 

candidate to address this long-term objective. 

2.1.2. Localization Experimental Testbeds 

 Many research groups have developed experimental testbeds for autonomous 

system algorithm development. Several of these testbeds have produced datasets that are 

available online including [34] [22] and [35]. Each of the available datasets contains 

various combinations of sensing devices for different applications. In many cases, it is 

difficult to obtain an online dataset that contains all the specific sensor data required for a 

given localization filter application. This can limit the choices of potential models that can 

be incorporated into an IMM filter design. Furthermore, the online datasets are for filter 

design purposes only; control algorithms cannot be evaluated using the available data that 

these testbeds provide. 

 The ISLAB at Memorial University has developed several experimental testbed 

setups for robotic localization and control algorithm testing. Two examples of these 

testbeds are illustrated in [36] and [37]. In [36] a 3D sensor node for multi-robot 

localization was designed using an ultrasonic-based range measurement apparatus and 

infrared camera. The sensor apparatus was evaluated using two Pioneer robots and an aerial 

robot in the ISLAB. In [37], a multi-robot cooperative localization strategy was tested using 
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the same two Pioneer robots and the Seekur Jr in the ISLAB. For this experiment, the robots 

relied on odometry and laser scan measurements for localization.  

 The experimental testbed designed for this thesis has been developed with the 

intention of providing a robust platform for future multi-model localization research at the 

ISLAB. The testbed builds upon the work in [36] and [37] by integrating ROS with the 

Seekur Jr onboard computer to facilitate sensor configuration and control implementation. 

The system has been updated to enable outdoor experiments using DGPS and has access 

to additional sensors including magnetometer, wheel encoders, 2D Lidar, 3D nodding 

Lidar, IMU and vision sensors. The abundance of sensing devices and the expandability of 

the system make it a powerful platform for exploring many different IMM model 

configurations. 

2.2. State Estimation Theory 

2.2.1. The Linear Kalman Filter 

The Kalman filter is an optimal algorithm for estimating the states of a stochastic 

linear Gaussian time-invariant system, given the system dynamic model, system inputs and 

measurement feedback [7]. The algorithm assumes that system processes contain 

uncertainties and that sensor measurements are corrupted by noise. These uncertainties are 

modelled as zero-mean Gaussian distributions [6]. The filter operates by first predicting 

the future states of the system using the process model and inputs. A state covariance matrix 

is then updated to reflect the variance of the estimated states based on process uncertainties 
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[6]. The algorithm then uses the current system measurement, measurement estimate and 

measurement noise to determine the innovation covariance [7]. The innovation covariance 

is used to determine the correction required to generate an optimal estimate for the system 

states given the available sensor information [6]. The correction is represented by the 

Kalman gain matrix, which is determined from the covariance and innovation covariance 

matrices [7]. This gain matrix is multiplied by the current measurement residual and added 

to the current uncorrected state estimate vector. The Kalman gain is then used to correct 

the covariance matrix of the system. 

Consider a linear time-invariant system defined by: 

 𝐱̇ = 𝐹𝐱 + 𝐵𝐮 + 𝐺𝐰  (1) 

where 𝐱 is the system state vector, 𝐹 is the system matrix, 𝐵 is the input matrix, 𝐮 is the 

input vector, 𝐺 is the process noise matrix and 𝐰 is the process noise vector [38]. The 

measurement model for this system is: 

 𝐲 = 𝐻𝐱 + 𝛎  (2) 

where 𝐲 is the measurement vector, 𝐻 is the output matrix and 𝛎 is the measurement noise 

vector [38]. The noise vectors are defined such that 𝐸〈𝐰𝐰T〉 = 𝑄𝑤 and 𝐸〈𝛎𝛎T〉 = 𝑅ν 

where 𝐸〈∙〉 denotes the expected value [6]. The linear observer for this system is: 

 𝐱̇̂ = 𝐹𝐱̂ + 𝐵𝐮 + 𝐿(𝐲 − 𝐲̂)  (3) 
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where 𝐱̂ is the estimated state vector, 𝐿 is the observer gain and 𝐲̂ is the measurement 

estimate such that 𝐲̂ = 𝐻𝐱̂ [38]. The linear error state for this system is [38]: 

 δ𝐱 = 𝐱 − 𝐱̂  (4) 

Differentiation of the error state and substitution gives: 

 δ𝐱̇ = (𝐹 − 𝐿𝐻)δ𝐱 + 𝐺𝐰 − 𝐿𝛎  (5) 

The Kalman filter automatically determines the optimal observer gain using the noise 

parameters for the system. The observer gain 𝐿 in the observer equations is replaced by the 

Kalman gain 𝐾, given by: 

 𝐾 = 𝑃𝐻T𝑅𝜈
−1 (6) 

where 𝑃 is the state covariance matrix defined by 𝐸〈(𝐱 − 𝐸〈𝐱〉)(𝐱 − 𝐸〈𝐱〉)T〉 [6].  

 For computer implementations, the Kalman filter is typically used in its discrete 

form. The system equation for the filter becomes: 

 𝐱̂𝑘
− = 𝛷𝐱̂𝑘−1

+ + 𝛤𝐮𝑘 (7) 

where 𝛷 is the state transition matrix, 𝛤 is the discrete time input matrix and 𝑘 is the 

discrete time increment [6]. Here, the + and − superscripts denote corrected and 

uncorrected quantities respectively. The state transition matrix is [6]: 

 𝛷 = 𝑒𝐹𝑇 ≈ 𝐼 + 𝐹𝑇 (8) 
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In this equation, 𝑇 is the sampling time and 𝐼 is the identity matrix. The discrete time input 

matrix is [6]: 

 

𝛤 = ∫𝑒𝐹(𝑇−𝜆)𝐵𝑑𝜆

𝑇

0

≈ 𝐵𝑇 (9) 

The discrete time process noise matrix is [6]: 

 𝑄𝑑 = 𝐺𝑑𝑄𝑤𝐺𝑑
T (10) 

Where 𝐺𝑑 is defined by [6]:  

 

𝐺𝑑 = ∫𝑒𝐹(𝑇−𝜆)𝐺𝑑𝜆

𝑇

0

≈ 𝐺𝑇 (11) 

The uncorrected state covariance matrix estimate is [6]: 

 𝑃̂𝑘
− = 𝛷𝑃̂𝑘−1

+ 𝛷T + 𝑄𝑑 (12) 

and the innovation covariance matrix is given by: 

 𝑆𝑘 = 𝐻𝑃̂𝑘
−𝐻T + 𝑅𝑑 (13) 

where 𝑅𝑑 is the discrete time measurement noise matrix which is equivalent to 𝑅𝜈 [6]. The 

Kalman gain for the discrete time system is [6]:  

 𝐾𝑘 = 𝐻𝑃̂𝑘
−𝑆𝑘

−1 (14) 
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This gain represents the level of trust that the estimator has in the measurement update [7]. 

The Kalman gain determines how much correction will be applied to the state estimate 𝐱̂𝑘
− 

using the measurement residual [7]. The corrected state estimate is given by: 

 𝐱̂𝑘
+ = 𝐱̂𝑘

− + 𝐾𝑘(𝐲𝑘 − 𝐻𝐱̂𝑘
−) (15) 

The term (𝐲𝑘 − 𝐻𝐱̂𝑘
−) is referred to as innovation [6]. Finally, the state covariance estimate 

is corrected using [6]: 

 𝑃̂𝑘
+ = 𝑃̂𝑘

− − 𝐾𝑘𝐻𝑃̂𝑘
− (16) 

 This process is recursively applied to predict the states of the system for all future 

time. Generally, accurate initialization of the system states in the prediction model is 

required for the Kalman filter estimates to converge to the true system states. 

 The Kalman filter algorithm does have some limitations that need to be considered 

before implementation. First, the Kalman filter is only optimal if the system dynamics are 

linear and the system uncertainties are additive Gaussian distributions [7]. For non-linear 

systems, the Kalman filter may still be applied using modified versions like the EKF, but 

the solution is no longer optimal [6]. Another limitation of the Kalman filter is that it may 

require tuning of the noise parameters to effectively track system states [6]. This limitation 

is further complicated by the selection of the dynamic model which needs to match the true 

dynamics of the system under study.  
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2.2.2. Extended Kalman Filter 

 The EKF is a suboptimal version of the Kalman filter that is used for state 

estimation of nonlinear systems. The algorithm applies the same prediction process as the 

Kalman Filter but first requires the set of nonlinear dynamic equations to be linearized 

about a nominal trajectory defined by the most recent state estimate [39].  

 Considering a nonlinear system model given by: 

 
𝐱̇ = 𝑓(𝐱, 𝐮, 𝐰) (17) 

 
𝐲 = ℎ(𝐱, 𝛎) (18) 

The state observer for this nonlinear system is defined by [6]: 

 
𝐱̇̂ = 𝑓(𝐱̂, 𝐮) + 𝐾(ℎ(𝐱, 𝛎) − ℎ(𝐱̂)) (19) 

The error state equation, δ𝐱 = 𝐱 − 𝐱̂, becomes [6]: 

 
δ𝐱̇ = 𝑓(𝐱, 𝐮,𝐰) − 𝑓(𝐱̂, 𝐮) − 𝐾(ℎ(𝐱, 𝛎) − ℎ(𝐱̂)) (20) 

The linearization of the error state equation is obtained from a first order Taylor series 

expansion about the current nominal estimate such that [6]: 

 

𝛿𝐱̇ = 𝑓(𝐱̂, 𝐮) +
𝜕𝑓(𝐱, 𝐮,𝐰)

𝜕𝐱
|
𝐱=𝐱̂
𝐰=0

𝛿𝐱 +
𝜕𝑓(𝐱, 𝐮,𝐰)

𝜕𝐰
|
𝐱=𝐱̂
𝐰=0

𝐰 − 𝑓(𝐱̂, 𝐮)

− 𝐾 (ℎ(𝐱̂) +
𝜕ℎ(𝐱, 𝛎)

𝜕𝐱
|
𝐱=𝐱̂
𝛎=0

𝛿𝐱 +
𝜕ℎ(𝐱, 𝛎)

𝜕𝛎
|
𝐱=𝐱̂
𝛎=0

𝛎 − ℎ(𝐱̂))  

(21) 
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In this case, the nominal estimate is (𝐱 = 𝐱̂, 𝐰 = 0, 𝛎 = 0). Simplification of this 

linearization yields: 

 
𝛿𝐱̇ = (𝐹 − 𝐾𝐻)𝛿𝐱 + 𝐺𝑤𝐰 − 𝐾𝐺𝜈𝛎  (22) 

where 𝐹 is the linearized system matrix, 𝐾 is the Kalman Gain, 𝐻 is the linearized output 

matrix, 𝐺𝑤 is the linearized process noise matrix and 𝐺ν is the linearized measurement 

noise matrix [6]. The filter matrices are summarized below: 

 

𝐹 =
𝜕𝑓(𝐱, 𝐮, 𝐰)

𝜕𝐱
|
𝐱=𝐱̂
𝐰=0

, 𝐺𝑤 =
𝜕𝑓(𝐱, 𝐮,𝐰)

𝜕𝐰
|
𝐱=𝐱̂
𝐰=0

 

𝐻 =
𝜕ℎ(𝐱, 𝛎)

𝜕𝐱
|
𝐱=𝐱̂
𝛎=0

, 𝐺ν = 
𝜕ℎ(𝐱, 𝛎)

𝜕𝛎
|
𝐱=𝐱̂
𝛎=0

 

(23) 

 Using this linearized error state model, the Kalman filter algorithm as described in section 

2.2.1 can be implemented. The nonlinear system equations are used for the uncorrected 

state estimate step of the Kalman filter, while the linearized filter matrices are used for 

determining the covariance matrix and Kalman gain. 

 The EKF has several limitations that can hinder its performance for nonlinear state 

estimation applications. The filter uses a first order Taylor series expansion to linearize the 

error dynamics and determine the state covariance. This approximation may not be accurate 

enough for highly linear systems [9]. If the sampling time is not small enough, the filter 

can quickly diverge if the states vary significantly between time steps. The linearization 

process is also computationally expensive, making the filter generally slower than the 

linear Kalman filter during implementation [6]. This may not be adequate for systems that 



22 

 

are highly nonlinear [10]. Another formulation, the Unscented Kalman filter uses the 

unscented transform of sample points through a nonlinear function to produce a Gaussian 

approximation of the function [10]. This can yield more accurate results than the Extended 

Kalman Filter, however, it can still be computationally expensive [9]. Similarly, 

optimization techniques for nonlinear systems like Moving-Horizon Estimation (MHE) 

can outperform an EKF for highly nonlinear systems, however, optimizing the numerical 

solution for these equations is computationally demanding [40]. 

2.2.3. Interactive Multiple Model Filter 

 The IMM algorithm is a state prediction method that adaptively predicts the states 

of systems that have varying dynamics [14]. In general, designing a filter for state 

estimation requires an accurately defined system model that effectively represents all 

system dynamics, parameters and inputs. If this information is unavailable, then a filter 

model must be selected based on the expected behaviour of the system. This can often lead 

to incorrect assumptions that produce inaccurate predictions, especially if the system 

dynamics change for different scenarios [14]. For example, an application that can benefit 

from multiple dynamic models is a mobile robot with caster wheels. The motion 

characteristics of caster-wheeled robots change frequently when these robots alternate 

between lateral and longitudinal movements. 

 The IMM algorithm facilitates the model selection process by running multiple 

Kalman filters in parallel [19]. Instead of switching between filters for the best state 

estimate, the IMM estimates are the result of mixing estimates from each filter to yield a 



23 

 

cumulative prediction that is weighted based on the measurement residuals of each model 

prediction and the measured state  [14]. After each measurement, the likelihoods of each 

model are calculated to determine the contributions of each filter to the mixed state 

estimate. 

 The IMM algorithm recursively calculates filter performance and uses conditional 

probabilities to determine when mode transition is required to maintain an accurate 

estimation [14]. The formulation here assumes a two-mode filter but can be extended to 

include any number of modes. The state switching matrix is given by: 

𝑝𝑖𝑗 = [ 
p𝑖𝑖 p𝑖𝑗  
p𝑗𝑖 p𝑗𝑗

 ] (24) 

where p𝑖𝑗 represents the probability of switching from mode 𝑖 to 𝑗. The elements in the 

state switching matrix are selected parameters that govern the likelihood of switching 

modes or remaining in the current mode [14]. The probability of each model is defined by: 

𝛍 = [ μ𝑖 μ𝑗 ] (25) 

 The normalization vector for maintaining a total model probability of 1 given 𝑁 

filter modes is calculated as [14]: 

𝛙̅𝑗 = ∑𝑝𝑖𝑗𝛍𝑖

𝑁

𝑖=1

 (26) 

 The conditional model probabilities are used to mix the state estimates and 

covariance matrices. The conditional probability matrix is given by: 
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𝜇𝑖|𝑗 =
𝑝𝑖𝑗𝛍̂𝑖

𝛙̅𝑗
 (27) 

where 𝛍̂𝑖 is the estimate of the probabilities for each model from the previous time 

increment [14]. The IMM uses the conditional probabilities and the current state estimate 

from each individual model to produce a set of mixed state estimates and covariance 

matrices. The mixed state estimates are calculated by: 

𝐗̂0𝑗 = ∑𝐗̂𝑖𝜇𝑖|𝑗

𝑁

𝑖=1

 (28) 

where 𝐗̂0𝑗 is the mixed state estimate for model 𝑗 and 𝐗̂𝑖 is the current state estimate for 

model 𝑖 [14]. For a two-mode system, this equation will yield two mixed states, 𝐗̂01 and 

𝐗̂02, that are a mixture of the state predictions 𝐗̂1 and 𝐗̂2 given by the individual Kalman 

filters and their conditional probabilities. 

 Similarly, the mixed covariance matrix estimates are computed using the current 

covariance matrix estimate for each individual filter, the state estimates of each filter, the 

mixed state estimates and the conditional probability matrix [19]. The mixed covariance 

matrices are given by  [14]: 

𝑃̂0𝑗 = ∑𝜇𝑖|𝑗 [𝑃̂𝑖 + (𝐗̂𝑖 − 𝐗̂0𝑗)(𝐗̂𝑖 − 𝐗̂0𝑗)
T
]

𝑁

𝑖=1

 (29) 
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 The innovations and innovation covariance matrices for each model are computed 

to determine the likelihood of each model. The innovation and innovation covariance 

matrices are given by: 

𝐙𝑗 = 𝐲 − 𝐲̂𝑗  (30) 

𝑆𝑗 = 𝐻𝑗𝑃̂0𝑗(𝐻𝑗)T + 𝑅 (31) 

where 𝐙𝑗 is the innovation of model 𝑗 at the current time increment, 𝐲 and 𝐲̂𝑗 are the vectors 

containing the measurements and measurement estimates of the system states at the current 

time increment respectively, 𝐻𝑗 is the output matrix of model 𝑗, 𝑆𝑗 is the innovation 

covariance matrix of model 𝑗 and 𝑅 is the covariance matrix of the measurement noise  

[14]. The likelihoods (⋀𝑗) of each model matching the current system dynamics are 

computed by  [14]: 

⋀𝑗 =
1

√|2𝜋𝑆𝑗|
𝑒𝑥𝑝 [−

1

2
(𝐙𝑗)T(𝑆𝑗)−1(𝒁𝑗)] (32) 

 Using the likelihood of each model, the probability normalizing constant is 

calculated as [14]: 

 
c = ∑⋀𝑖𝛙̅𝑖

𝑁

𝑖=1

 (33) 

 The estimates of the probabilities for each model are updated for the next iteration 

using [14]: 
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𝛍̂𝑗 =
⋀𝑗𝛙̅𝑗

c
 (34) 

 The final steps involve combining the state estimates with the recently calculated 

model probabilities to produce an overall system state estimate and system covariance 

estimate. The combined state estimate is: 

𝐗̂ = ∑𝐗̂𝑖𝛍̂𝑖

𝑁

𝑖=1

 (35) 

and the combined covariance matrix estimate is given by [14]: 

𝑃̂ = ∑𝛍̂𝑖 [𝑃̂𝑖 + (𝐗̂𝑖 − 𝐗̂)(𝐗̂𝑖 − 𝐗̂)
T
]

𝑁

𝑖=1

 (36) 

 IMM filters can be designed for nonlinear systems using parallel EKFs. In that case, 

the linearized filter matrices are used in the IMM filter. 

 The main disadvantage of using an IMM filter is that it does not give optimal state 

estimation results [14]. If a system is strictly governed by a set of fixed linear time-invariant 

dynamic equations, then a Kalman filter derived from that set of equations will yield the 

optimal estimator solution [7]. Furthermore, it is more computationally efficient to run a 

single Kalman filter instead of an IMM with multiple modes. The increase in computational 

complexity of an IMM filter scales with the number of modes that the filter contains. The 

calculation of this complexity value is not evaluated in this thesis. This is not necessarily a 

significant issue when using an IMM for nonlinear systems since existing filters like the 
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EKF are already linearized approximations. An IMM utilizing parallel EKFs can 

outperform the single model filter if configured and tuned correctly.
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Chapter 3 

Computer Vision Tracking using the 

Interactive Multiple Model Filter 

About this chapter: This chapter1 analyses the problem of tracking a target in a video 

sequence autonomously using a combination of computer vision tracking techniques. The 

IMM filter is used for target trajectory prediction, and the mean shift algorithm is used for 

measurement updates. 

3.1. Problem Formulation 

 Computer vision object tracking is a rapidly developing technology that is 

becoming widely used in many real-world applications. Some of these applications include 

mobile robot target tracking [40], traffic monitoring [41] and automatic guidance systems 

[42]. This area of research focuses on finding an object in a video frame and sequentially 

detecting the same object in successive frames. Some common methods for object tracking 

include mean shift [43], active contours [44] and Kanade-Lucas-Tomasi (KLT) tracking 

[45].  

 

1 This chapter is based on the following publication of the author: 

P. J. Glavine, O. D. Silva, G. Mann and R. Gosine, "Color-Based Object Tracking using Mean Shift and Interactive 

Multiple Model Kalman Filtering," in Newfoundland Electrical and Computer Engineering Conference (NECEC), St. 

John's, 2017. 
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 Tracking an object in a video sequence requires the target to be defined such that it 

can be accurately detected between video frames. This process becomes difficult when the 

video contains object clutter, lighting changes, or a target that changes size, shape or colour 

for example. Furthermore, the object becomes even more difficult to track when it moves 

unpredictably in an arbitrary fashion. The object tracking method discussed in this chapter 

uses a mean shift colour-based approach paired with the IMM filter. The mean shift tracker 

is used to identify the tracked target using its colour histogram. The position of the target 

that is calculated by the mean shift tracker is used as the measurement for the IMM filter. 

The IMM filter estimates the trajectory of the target using a combination of two kinematic 

motion models, the constant velocity model and constant acceleration model. This 

implementation allows the tracker to switch between prediction models when the tracked 

target abruptly changes directions or begins accelerating unexpectedly. 

3.2. Methodology 

3.2.1. Mean Shift Algorithm 

 The mean shift algorithm is a method for finding the mode of a nonparametric 

dataset through gradient ascension [46]. This is done by iteratively calculating the mean of 

a set of sample points within a window and shifting a position estimate to the location of 

the sample data centroid [47]. This method can be applied to computer vision tracking by 

representing a target using a colour histogram which approximates its probability 

distribution function (PDF) [48]. The algorithm uses gradient ascension to move an initial 
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position estimate towards the center of a target candidate in successive images. 

Convergence occurs when the original target and candidate have matching PDFs [48].  

 Given an initial position 𝐲0, the mode of a random dataset can be found by 

iteratively travelling from 𝐲0 to a new location 𝐲1 by a vector defined as [46]: 

 𝐦ℎ(𝐲) = [
1

𝑛𝑥
∑𝐱𝑖

𝑛𝑥

𝑖=1

] − 𝐲0 (37) 

Where 𝐦ℎ is the mean shift vector, 𝑛𝑥 is the number of data points in the current window, 

and 𝐱𝑖 is the vector containing the x and y coordinates of the 𝑖𝑡ℎ data point. The position 

𝐲1  in Figure 1 defines the centroid, or mean location, of the data points in the circular 

window. 

 

Figure 1 Mean Shift Vector 

 Weights can be assigned to the data points based on their spatial distance from 𝐲0 

by defining a kernel mask for the window [43]. The weighted mean shift vector is given 

by [46]: 
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 𝐦ℎ(𝐲) = [
∑ 𝑤𝑖(𝐲0)𝐱𝑖

𝑛𝑥
𝑖=1

∑ 𝑤𝑖(𝐲0)
𝑛𝑥

𝑖=1

] − 𝐲0 (38) 

where 𝑤𝑖 is the kernel weight of the 𝑖𝑡ℎ pixel in the window. The Gaussian kernel has been 

used in this tracking application, it is defined by [46]: 

 𝐾(𝐱) = 𝑐 ∙ 𝑒𝑥𝑝 (−
1

2
‖𝐱‖2) (39) 

where c is a constant. This kernel is radially symmetric, therefore it can be expressed as 

[48]: 

 𝐾(𝐱) = 𝑐𝑘(‖𝐱‖𝟐) (40) 

where 𝑘 is the kernel profile. Masking a window of a nonparametric data set with a kernel 

function allows the PDF of the dataset to be approximated as [47]:  

 𝑃(𝐱) =
1

𝑛
𝑐 ∑𝑘(‖𝐱 − 𝐱𝑖‖

2)

𝑛

𝑖=1

 (41) 

where ‖𝐱 − 𝐱𝑖‖
2 represents the distance from the point 𝐱 to the 𝑖𝑡ℎ data point in the kernel. 

Higher weights are assigned to points that are closer to 𝐱. Differentiating and manipulation 

of Eq. (41) gives [47]: 

 
∇𝑃(𝐱) =

1

𝑛
𝑐 [∑𝑔𝑖

𝑛

𝑖=1

] [
∑ 𝐱𝑖𝑔𝑖

𝑛
𝑖=1

∑ 𝑔𝑖
𝑛
𝑖=1

− 𝐱] (42) 
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where 𝑔𝑖 is the negative gradient of the kernel profile at the 𝑖𝑡ℎ data point defined such that 

𝑔(𝐱) = −𝑘′(𝐱) [48]. The mean shift vector from Eq. (42) is [46]: 

 𝐦ℎ(𝐱) = [
∑ 𝐱𝑖𝑔𝑖

𝑛
𝑖=1

∑ 𝑔𝑖
𝑛
𝑖=1

− 𝐱] (43) 

Therefore, the mean shift can be expressed as: 

 𝐦ℎ(𝐱) =
𝛻𝑃(𝐱)

1
𝑛 𝑐 ∑ 𝑔𝑖

𝑛
𝑖=1

 (44) 

which shows that the mean shift vector is the gradient of the estimated PDF for the 

nonparametric dataset [47]. 

 In this vision tracking experiment, the target model is represented using a weighted 

colour histogram which represents the PDF of the pixels (data points) in the target [48]. 

The target colour histogram is defined as [43]: 

 𝑞̂ = {𝑞̂𝑢}𝑢=1..𝑚     ∑ 𝑞̂𝑢
𝑚
𝑢=1 = 1 (45) 

where 𝑚 is the total number of bins in the colour histogram. The target candidate is given 

by [43]: 

 𝑝̂(𝐲) = {𝑝̂𝑢(𝐲)}𝑢=1..𝑚     ∑ 𝑝̂𝑢
𝑚
𝑢=1 = 1 (46) 

The target candidate histogram 𝑝̂(𝐲) defines a potential match for the original target 

histogram 𝑞̂ in the current image frame at location 𝐲. The colour histogram of the target 

candidate can be generated using [43]: 
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 𝑝̂𝑢(𝐲) =
1

∑ 𝑘 (‖
𝐲 − 𝐱𝑖

h
‖

2
)

𝑛ℎ

𝑖=1

∑𝑘 (‖
𝐲 − 𝐱𝑖

ℎ
‖

2

)

𝑛ℎ

𝑖=1

𝛿[𝑏(𝐱𝑖) − 𝑢] (47) 

where h is the kernel bandwidth, 𝑛ℎ is the number of pixels within the kernel, 𝑏(𝐱𝑖) is the 

colour of the 𝑖𝑡ℎ pixel in the kernel, 𝑢 is the set of colour bin values in the range 1. .𝑚 and 

𝛿 is the Kronecker delta function. The expression 𝛿[𝑏(𝐱𝑖) − 𝑢] equals one when the colour 

of pixel 𝐱𝑖 has the same value as 𝑢. When this occurs, the histogram bin 𝑢 will increase by 

a normalized value defined by the kernel weight at 𝐱𝑖. Summing this expression over all 

pixel values in the kernel generates a colour probability distribution [47]. The original 

target model 𝑞̂ is calculated using the same method. 

 The Bhattacharyya coefficient measures the similarity of two probability 

distributions [49]. It is used to determine if the target candidate matches the original target. 

The coefficient is defined by [46]: 

 ρ[𝑝̂(𝐲), 𝑞̂] = ∑ √𝑝̂𝑢(𝐲)𝑞̂𝑢

𝑚

𝑢=1

 (48) 

Two probability distributions are similar when the Bhattacharyya coefficient is maximized; 

this is equivalent to minimizing the distance given by [43]: 

 d = √1 − ρ[𝑝̂(𝐲), 𝑞̂] (49) 

Performing a Taylor series expansion of the Bhattacharyya coefficient about an operating 

point defined as 𝐲̂0 (initial target position) yields [43]: 
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 ρ[𝑝̂(𝐲), 𝑞̂] = ρ[𝑝̂(𝐲̂0), 𝑞̂] +
𝐶ℎ

2
∑[∑ 𝛿[𝑏(𝐱𝑖) − 𝑢]√

𝑞̂𝑢

𝑝̂𝑢(𝐲̂0)

𝑚

𝑢=1

]

𝑚

𝑢=

𝑘 (‖
𝐲 − 𝐱𝑖

h
‖

2

) (50) 

where 𝐶ℎ is a normalization constant. This linear approximation assumes that 𝑝̂(𝐲) does 

not change significantly from the initial estimate 𝑝̂(𝐲̂0) when the distance function d is 

minimized for the current frame [43]. This is a reasonable assumption when the target does 

not move substantial distances between frames. Maximizing the Bhattacharyya coefficient 

is dependent on the maximization of the second term in Eq. (50). This equation contains 

the weights which are given by [47]: 

 𝑤𝑖(𝐲0) = ∑ 𝛿[𝑏(𝐱𝑖) − 𝑢]√
𝑞̂𝑢

𝑝̂𝑢(𝐲̂0)

𝑚

𝑢=1

 (51) 

Combining the weights from Eq. (51) and the gradient form of the mean shift vector in Eq. 

(43) gives [43]: 

 

𝐲̂1 =
∑ 𝐱𝑖𝑤𝑖𝑔 (‖

𝐲0 − 𝐱𝑖

h
‖

2
)𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1 𝑔 (‖

𝐲0 − 𝐱𝑖

h
‖

2
)

 

(52) 

The initialized position 𝐲̂0 is iteratively updated using the new position 𝐲̂1 until the distance 

between the distributions 𝑝̂(𝐲) and 𝑞̂ is minimized below a selected threshold [43].   
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3.2.2. Interactive Multiple Model Filter Tracking Implementation  

 For this application, the IMM filter uses two linear system models to predict the 

kinematic states of a “blob” in two-dimensional space. The two kinematic models that were 

used for tracking targets in this system are the constant velocity (CV) and the constant 

acceleration (CA) models.  

 The CV model assumes that the target has a constant velocity, with acceleration 

considered to be a random walk process of zero mean Gaussian noise [14]. The system 

dynamics are given by: 

 [

𝐯x

𝐯y

𝐚x

𝐚y

] = [

0 0 1
0 0 0
0
0

0
0

0
0

    

0
1
0
0

] [

𝐱
𝐲
𝐯x

𝐯y

] + [

0 0
0 0
1 0
0 1

] [
𝛈ax

𝛈ay
] (53) 

where (𝐱, 𝐲), (𝐯x, 𝐯y) and (𝐚x, 𝐚y) are pixel coordinates, velocities and accelerations 

respectively. The noise vector [𝛈ax 𝛈ay]
T represents the random walk acceleration process 

[14].  

 The CA model assumes that the target has a constant acceleration, with variation in 

acceleration (jerk) modelled as a random walk process of zero mean Gaussian noise [14]. 

The system dynamics are given by: 

[
 
 
 
 
 
𝐯x

𝐯y

𝐚x

𝐚y

𝐚̇x

𝐚̇y]
 
 
 
 
 

=

[
 
 
 
 
 
0    0    1    0    0    0
0    0    0    1    0    0
0    0    0    0    1    0
0    0    0    0    0    1
0    0    0    0    0    0
0    0    0    0    0    0]

 
 
 
 
 

[
 
 
 
 
 
𝐱
𝐲
𝐯x

𝐯y

𝐚x
𝐚y]

 
 
 
 
 

+

[
 
 
 
 
 
0    0
0    0
0    0
0    0
1    0
0    1]

 
 
 
 
 

[
𝛈jx

𝛈jy
] 

(54) 
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Here, (𝐚̇x, 𝐚̇y) represent the jerk that the blob undergoes defined by the random noise vector 

[𝛈jx 𝛈jx]
T
 [14]. 

 In both cases, the process and measurement noise covariance matrices are given by:  

𝑄 = [ 
𝜎𝑄𝑥

2    0 

0    𝜎𝑄𝑦
2  ]     𝑅 = [ 

𝜎𝑅𝑥
2    0 

0    𝜎𝑅𝑦
2 ] (55) 

where 𝜎𝑄
2 and 𝜎𝑅

2 are the variances of the process and measurement noises respectively 

[6]. The process and measurement noise variances are tuned to match the uncertainty in 

system motion and position measurements respectively.  

3.2.3. Vision Tracker Design 

 The tracking algorithm was implemented as shown in Figure 2 using MATLAB. 

The mean shift begins with the initialization of a target model by the user. A Gaussian filter 

is applied to generate a set of weights for the target model. An indexed colour map is 

obtained from the target model and is used to generate the colour histogram. In the next 

frame, a target candidate window is initialized from the target coordinates in the previous 

frame. The new target candidate colour histogram is generated and the weighted mean shift 

vector is computed. The target position is updated, the weights are recomputed and the 

Bhattacharyya distance is calculated using the current target candidate and the target 

model. The mean shift process repeats until the Bhattacharyya distance is below the 

convergence threshold value. 
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 The Kalman filter models use the mean shift position estimate as a measurement to 

update the system states. The estimates and covariance matrices from each Kalman filter 

are inputs for the IMM filter which computes the combined state estimate. Using the 

available measurements, the probabilities of each filter model are calculated and the 

combined weighted estimate from each filter is computed to yield the overall IMM 

estimate. 

 

Figure 2 Mean Shift IMM Tracker Algorithm 
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3.3. Computer Vision Tracker Experiments 

3.3.1. Constant Velocity Tracking 

 The first test involved tracking a red circular target moving in a horizontal straight 

line with a constant velocity. The center of the circle contains a blue pixel that was used 

for calculating position tracking error. The constant velocity test is shown in Figure 3 

below. 

 

Frame 1 

 

Frame 33 

 

Frame 66 

 

Frame 99 

 

Frame 132 

 

Frame 165 

Figure 3 Constant Velocity Test 

 The tracking results are shown in Table 1. Kalman and IMM filter results are based 

on five test trial averages since the target motion and measurements are considered 

Gaussian processes. The addition of Kalman filtering improves tracking accuracy in all 

cases. The IMM filter outperforms both single-filter models. 
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Table 1 Constant Velocity Tracking Results 

Mean Shift Tracking 

Mean Error X (Pixels) Mean Error Y (Pixels) Frames per Measurement 

4.4121 0 1 

Mean Shift with Constant Velocity Kalman Filter Model (5 Trial Average) 

Mean Error X (Pixels) Mean Error Y (Pixels) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2 
Frames per 

Measurement 

2.5054 0 0.01 0.01 40 0 1 

Mean Shift and Constant Acceleration Kalman Filter Model (5 Trial Average) 

Mean Error X (Pixels) Mean Error Y (Pixels) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2 
Frames per 

Measurement 

2.2634 0 3 3 20 0 1 

Mean Shift and IMM Kalman Filter Model (5 Trial Average) 

Mean Error 

X (Pixels) 

Mean Error 

Y (Pixels) 

𝜎𝑄𝑥
2 

(CV) 

𝜎𝑄𝑦
2 

(CV) 

 𝜎𝑄𝑥
2 

(CA) 

𝜎𝑄𝑦
2 

(CA) 

 𝜎𝑅𝑥
2 

(CV) 

𝜎𝑅𝑦
2 

(CV) 

𝜎𝑅𝑥
2 

(CA) 

𝜎𝑅𝑦
2 

(CA) 

Frames per 

Measurement 

1.3697 0 0.01 0.01 3  3   40 0 20 0 1 

 The model probabilities during the constant velocity test are shown in Figure 4. 

Initially, the constant acceleration model obtains a higher probability. This is because the 

target instantaneously transitions from a resting state to a constant velocity motion at the 

beginning of the video sequence. The IMM filter velocities and accelerations are initialized 

with values of zero, therefore, the filter initially lags behind the motion of the target.  The 

filter estimates a transient period of target acceleration before the system reaches a steady 

state. Once this occurs, the acceleration becomes a low value, and the probabilities of the 

constant velocity and acceleration models rise and lower respectively. 

  

Figure 4 Model Probabilities Constant Velocity Test 
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3.3.2. Constant Acceleration Tracking 

 The second test involved tracking a red circular target with a blue pixel center 

moving in a horizontal straight line with a constant acceleration. The actual center position 

for all frames was calculated by sampling the blue pixel location for ten frames and taking 

an average to determine the acceleration. The constant acceleration test is shown in Figure 

5.  

 

Frame 1 

 

Frame 11 

 

Frame 22 

 

Frame 33 

 

Frame 44 

 

Frame 55 

Figure 5 Constant Acceleration Test 

 As shown in Table 2, Kalman and IMM filtering improve tracking accuracy in all 

cases over using the mean shift method alone. Again, the IMM filter outperforms both 

single-filter models, however, not as substantially in this case. For this test, the single filter 

CA model also accurately tracks the target for all frames because there is no transient 

acceleration period at the beginning of the video sequence like in the CV test.  



41 

 

Table 2 Constant Acceleration Tracking Results 

Mean Shift Tracking 

Mean Error X (Pixels) Mean Error Y (Pixels) Frames per Measurement 

5.9416 0 1 

Mean Shift with Constant Velocity Kalman Filter Model (5 Trial Average) 

Mean Error X (Pixels) Mean Error Y (Pixels) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2 
Frames per 

Measurement 

3.806 0 3 3 50 0 1 

Mean Shift and Constant Acceleration Kalman Filter Model (5 Trial Average) 

Mean Error X (Pixels) Mean Error Y (Pixels) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2 
Frames per 

Measurement 

2.9628 0 0.0001 0.0001 50 0 1 

Mean Shift and IMM Kalman Filter Model (5 Trial Average) 

Mean Error 

X (Pixels) 

Mean Error 

Y (Pixels) 

𝜎𝑄𝑥
2 

(CV) 

𝜎𝑄𝑦
2 

(CV) 

 𝜎𝑄𝑥
2 

(CA) 

𝜎𝑄𝑦
2 

(CA) 

 𝜎𝑅𝑥
2 

(CV) 

 𝜎𝑅𝑦
2 

(CV) 

𝜎𝑅𝑥
2 

(CA) 

𝜎𝑅𝑦
2 

(CA) 

Frames per 

Measurement 

2.9309 0 3 3 0.001 0.001  50 0 50 0 1 

3.3.3. Elliptic Path Tracking 

 The next testing setup for the tracking systems was comprised of a red circular 

target moving in a circular path with a constant angular velocity and radius relative to the 

center point. The sequence was generated by plotting markers on a figure in MATLAB and 

using the “getframe” function to build a video. The center of the red circle contains a blue 

pixel which was used to accurately determine the target center for all frames. The aspect 

ratio of the MATLAB figure caused the circular motion to become slightly elliptic in the 

video sequence, therefore, the motion contained small tangential acceleration components 

at different points along the path. The actual center position for all frames was calculated 

by measuring the blue pixel location when the target angle with respect to the center was 

00, 900, 1800 and 2700. These pixel locations were used to calculate the major and minor 

axes of the ellipse and a set of actual target center locations was estimated using:  

𝑥 = 𝑥𝑐 + acos𝜃     𝑦 = 𝑦𝑐 + bsin𝜃      (56) 
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where 𝑥 and 𝑦 are the target coordinates, 𝑥𝑐 and 𝑦𝑐 are the ellipse center coordinates, a is 

the major axis, b is the minor axis and 𝜃 is the angle to point (𝑥, 𝑦) measured from the 

horizontal axis at the ellipse center. The elliptic path test is shown in Figure 6. 

 

Frame 1 

 

Frame 80 

 

Frame 160 

 

Frame 240 

 

Frame 320 

 

Frame 400 

Figure 6 Elliptic Path Test 

Table 3 Elliptic Path Tracking Results 

Mean Shift Tracking 

Mean Error X (Pixels) Mean Error Y (Pixels) Frames per Measurement 

5.4363 4.9410 1 

Mean Shift with Constant Velocity Kalman Filter Model (5 Trial Average) 

Mean Error X (Pixels) Mean Error Y (Pixels) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2 
Frames per 

Measurement 

5.4373 4.9313 25 5 0.2 0.3 1 

Mean Shift and Constant Acceleration Kalman Filter Model (5 Trial Average) 

Mean Error X (Pixels) Mean Error Y (Pixels) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2 
Frames per 

Measurement 

5.4538 4.9006 20 10 0.3 0.5 1 

Mean Shift and IMM Kalman Filter Model (5 Trial Average) 

Mean Error 

X (Pixels) 

Mean Error 

Y (Pixels) 

𝜎𝑄𝑥
2 

(CV) 

𝜎𝑄𝑦
2 

(CV) 

 𝜎𝑄𝑥
2 

(CA) 

𝜎𝑄𝑦
2 

(CA) 

 𝜎𝑅𝑥
2 

(CV) 

 𝜎𝑅𝑦
2 

(CV) 

𝜎𝑅𝑥
2 

(CA) 

 𝜎𝑅𝑦
2 

(CA) 

Frames per 

Measurement 

5.4330 4.9322 25 8 20 8 0.3 0.3 0.3 0.3 1 

 Elliptic path tracking results are found in Table 3. All results involving a Kalman 

or IMM filter are based on averages from five test trials. The results from this test are 
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mixed, the single Kalman filter models both improved the tracking results in the Y direction 

over using the mean shift tracker alone, however, both filters performed slightly worse than 

the standalone mean shift for X direction tracking. The IMM filter slightly improved 

tracking accuracy in both directions but failed to improve Y direction tracking as much as 

the single Kalman filter models. 

3.3.4. Constant Acceleration with Occlusion Test 

 The constant acceleration occlusion test includes an additional circular target 

travelling perpendicular to the path of the red circle. The green circle intersects the path of 

the red circle during the middle frame of the sequence, completely covering the target. The 

constant acceleration occlusion test is shown in Figure 7. 

 

Frame 1 

 

Frame 22 

 

Frame 30 

 

Frame 36 

 

Frame 40 

 

Frame 44 

Figure 7 Constant Acceleration with Occlusion Test 
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Table 4 Constant Acceleration with Occlusion Test  

Mean Shift Tracking 

Tracking Success Rate (%) Frames per Measurement Convergence Max Iterations 

0 1 20 

Mean Shift with Constant Velocity Kalman Filter Model (5 Trial Average) 

Tracking Success Rate 

(%) 
𝜎𝑄𝑥

2 𝜎𝑄𝑦
2 𝜎𝑅𝑥

2 𝜎𝑅𝑦
2 

Frames per 

Measurement 

Convergence 

Max Iterations 

100 0.001 0.001 2 2 3 10 

Mean Shift and Constant Acceleration Kalman Filter Model (5 Trial Average) 

Tracking Success Rate (%) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2 
Frames per 

Measurement 

Convergence 

Max Iterations 

100 0.001 0.001 2 2 3 10 

Mean Shift and IMM Kalman Filter Model (5 Trial Average) 

Tracking Success 
Rate (%) 

𝜎𝑄𝑥
2 

(CV) 

𝜎𝑄𝑦
2 

(CV) 

 𝜎𝑄𝑥
2 

(CA) 

𝜎𝑄𝑦
2 

(CA) 

 𝜎𝑅𝑥
2 

(CV) 

 𝜎𝑅𝑦
2 

(CV) 

𝜎𝑅𝑥
2 

(CA) 

 𝜎𝑅𝑦
2 

(CA) 

Frames per 
Measurement 

Convergence 

Max 

Iterations 

100 0.1 0.001 0.1 0.001 40 0.1 40 0.1 3 10 

 The test results are shown in Table 4. The mean shift algorithm was unable to track 

the target while it is briefly occluded by the green circle. The number of frames per 

measurement was increased for the Kalman and IMM filter tests to demonstrate their ability 

to track without mean shift measurements for short periods of time. The filters successfully 

tracked the target for all trials tested. The Kalman and IMM filters use the object kinematic 

state estimates to continue tracking the target when mean shift measurements are 

unavailable or unreliable.  

3.3.5. General Tracking Results 

 The designed vision tracker is capable of tracking objects in real-world video 

sequences as shown in Figure 8. The red ball is accurately tracked for the entire duration 

of the video including instances where the ball is partially occluded by the juggler’s hand. 

The blue box indicates the tracking window and the green dotted path is the trajectory of 

the ball. The tracking demonstration in Figure 8 is available for viewing online at 

https://www.youtube.com/watch?v=O4t1poYL6rw. 

https://www.youtube.com/watch?v=O4t1poYL6rw
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Frame 1 

 

Frame 202 

 

Frame 100 

 

Frame 253 

 

Frame 151 

 

Frame 325 

Figure 8 IMM-Mean Shift Juggling Tracking [50] 

3.4. Conclusions 

 The IMM filter improved the tracking results of the mean shift method for all cases. 

Blending the predictions of different kinodynamic models together allows the tracker to 

react quickly to abrupt changes in the motion characteristics of the blob. The results of the 

CV test indicate that the IMM filter is more reliable than a single Kalman filter model when 

instantaneous kinematic transitions occur in the behaviour of the target. Using the IMM 

filter did not yield a large difference in tracking accuracy for the synthetic videos involving 

the red circle. This is because the tested motion paths were relatively simple and stable, 
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therefore, the tracking estimation of each evaluated technique was quite accurate. It is 

expected that for target tracking in unstructured scenarios where the object motion 

characteristics are dynamic and change rapidly, the added computational cost of using an 

IMM filter may be worth the improved tracking accuracy. The IMM filter kinematic state 

estimates also allow the system to effectively follow targets that are briefly occluded by 

objects which is a frequent problem in most real-world video tracking applications. 

 Another observation that was qualitatively analyzed during the tracker testing 

concerns the computational improvements of pairing the mean shift algorithm with a 

Kalman or IMM filter. The mean shift algorithm runs multiple, intensive image processing 

operations in several loops before PDF similarity convergence occurs. The IMM filter only 

needs to perform several matrix operations to update the system states. Since the IMM 

filter can accurately track a target for multiple frames without a mean shift measurement 

update, it can reduce the frequency of mean shift computations and improve algorithm 

efficiency. The extent of this efficiency improvement is a function of mean shift 

convergence threshold, video resolution, frames per measurement and several other factors. 

The quantitative analysis of this observation is not covered in this thesis but can be 

examined in future work with the vision tracker.  
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Chapter 4 

Vehicle Inertial Navigation System using 

the Interactive Multiple Model Filter 

About this chapter: This chapter2 analyses an INS state estimation system for an 

automobile. The system uses a vehicle kinematic model to predict motion and corrects the 

estimates using GPS and heading sensor feedback. The state estimator uses an IMM filter 

that uses differently tuned noise parameters to improve estimator performance. The varied 

noise parameters allow the filter to shift its confidence between the GPS and heading 

sensors when one sensor more correctly reflects the actual trajectory of the vehicle.  

4.1. Problem Formulation 

 Localization is one of the first major tasks required for a fully autonomous system 

to function properly [7]. This is a diverse problem which is necessary for accurate tracking 

of robot or vehicle movement during operations. Without accurate localization, a system 

cannot be controlled safely or perform tasks with precision. Furthermore, if an autonomous 

 

2 This chapter is based on the following publication of the author: 

P. J. Glavine, O. D. Silva, G. Mann and R. Gosine, "GPS Integrated Inertial Navigation System Using Interactive Multiple 

Model Extended Kalman Filtering," in 2018 Moratuwa Engineering Research Conference (MERCon), Moratuwa, 2018. 
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system has rapidly changing dynamics, it can be difficult to maintain accurate localization 

estimates using a single process or measurement model [19]. 

 To address this problem, an INS has been designed using an IMM framework. The 

vehicle kinematics are predicted using a model that treats the vehicle as a three-dimensional 

frame in space that can rotate about three axes. The IMM model uses two sets of tuned 

noise parameters that allow the system to vary its confidence in the available feedback 

sensors. This can improve system performance in situations where a sensor becomes less 

reliable for predicting system states, especially during abrupt manoeuvres. The filter, in 

this case, allows the system to continuously switch between sets of noise parameters, as 

needed, to better track the actual trajectory of the vehicle. 

4.2. Methodology 

4.2.1. KITTI Vision Benchmark Data Set 

 The vehicle in this study is a 6 degree of freedom system that is equipped with an 

OXTS RT3003 sensor that includes a built-in IMU and DGPS unit that operates using the 

World Geodetic System 84 (WGS84) model [22]. The data set is obtained from a 

Volkswagen Passat B6 driving through a residential area in Karlsruhe, Germany [22]. The 

vehicle setup is shown in Figure 9. The IMU provides body frame acceleration and angular 

velocity measurements; the DGPS unit gives accurate positional readings that are used as 

the ground truth coordinates in this study. The body frame coordinates of the INS are the 

same as the GPS/IMU frame. 
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Figure 9 Vehicle and Sensor Configuration [22] 

4.2.2. Vehicle State Space Model 

 The vehicle state space model is a nonlinear system. The model considers the 

vehicle to be a moving frame in three-dimensional space that can rotate about three axes. 

Changes in the states of this system are a function of states, control inputs and process 

noise. The state space model is: 

 
𝐱̇ = 𝑓(𝐱, 𝐮, 𝐰) (57) 
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where 𝐱 is the state vector, 𝐮 is the system input vector and 𝐰 is the process noise vector 

[6]. The measurement model for the system is also a nonlinear function which is given by: 

 
𝐲 = ℎ(𝐱, 𝛎) (58) 

where 𝐲 is the measurement vector and 𝛎 is the measurement noise vector [6]. 

 The estimated states of the system are included in the following state vector: 

 
𝐱 = [𝐩, 𝐯, 𝐪, 𝐛a, 𝐛ω]T (59) 

where 𝐩 = [px, py, pz]
T are the vehicle position coordinates with respect to the world frame 

represented in the world frame, 𝐯 = [vx, vy, vz]
T are the vehicle velocities with respect to 

the world frame expressed in the body frame, 𝐪 = [q0, q1, q2, q3]
T is the quaternion that 

rotates a vector from the body frame to the world frame, 𝐛a = [bax, bay, baz]
T represents 

the accelerometer bias vector in the body frame and 𝐛ω = [bωx, bωy, bωz]
T is the 

gyroscope bias vector in the body frame  [51]. The choice of representing rotations with 

quaternion vectors is explained shortly. 

 The inputs for the state space model are given by an IMU. The IMU measurements 

are integrated over discrete time steps using the system kinematic equations to generate an 

estimated trajectory of the system states. The input vector is defined by: 

 
𝐮 = [𝐟m, 𝛚m]T (60) 
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where 𝐟m is the measured body frame linear acceleration and 𝛚m is the measured body 

frame angular velocity provided by the IMU accelerometer and gyroscope respectively. 

The model for the IMU accelerometer is: 

 
𝐟𝐦 = 𝐚 + 𝐛𝐚 − 𝑅q

T𝐠𝐞 + 𝛈𝐟𝐦 (61) 

where 𝐚 = [ax, ay, az]
T is the acceleration vector of the body frame with respect to the 

world frame represented in the body frame, 𝑅q is the rotation matrix that rotates a vector 

from the body frame to the world frame, 𝐠𝐞 = [0 0 9.81]T is the Earth’s gravity vector 

represented in the world frame in m/s2, 𝛈fm is zero-mean Gaussian noise such that 

𝛈fm~𝑁(0, 𝛔fm
2 ) and 𝛔fm

2  is the accelerometer noise variance  [51]. The gravity vector is 

transformed into the vehicle body frame coordinates and subtracted from the measured 

accelerometer reading. Variations in the accelerometer bias are modelled as a random walk 

process such that: 

 
𝐛̇a = 𝛈ba (62) 

where 𝛈ba is zero-mean Gaussian noise such that 𝛈ba~𝑁(0, 𝛔ba
2 ) and 𝛔ba

2  is the bias noise 

variance [6]. Rearranging the accelerometer measurement equation and isolating the 

vehicle acceleration vector gives: 

 
𝐚 = 𝐟m − 𝐛a + 𝑅𝐪

T𝐠𝐞 − 𝛈fm (63) 

The model for the IMU gyroscope sensor is: 
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𝛚m = 𝛚 + 𝐛ω + 𝛈ωm (64) 

where 𝛚 = [ωx, ωy, ωz]
T is the angular velocity vector of the body frame with respect to 

the world frame represented in the body frame and 𝛈ωm is zero-mean Gaussian noise such 

that 𝛈ωm~𝑁(0, 𝛔ωm
2 ) and 𝛔ωm

2  is the gyroscope noise variance  [51]. Variations in the 

gyroscope bias are also modelled as a random walk process such that: 

 
𝐛̇ω = 𝛈bω (65) 

where 𝛈bω is zero-mean Gaussian noise such that 𝛈bω~𝑁(0, 𝛔bω
2 ) and 𝛔bω

2  is the bias 

noise variance [6]. Gathering the noise terms for the accelerometer and gyroscope yields 

the process noise vector: 

 
𝐰 = [𝛈fm, 𝛈ωm, 𝛈ba, 𝛈bω]T (66) 

 The Euler angle representation for rotations can cause numerical singularities when 

a system performs certain rotation transitions [6]. To avoid this problem, the quaternion 

approach has been selected. For this application, rotations are represented by a unit 

quaternion vector that has the normality property ‖𝐪‖ = 1 [52]. Quaternions are 

represented as generalized complex numbers with four components such that 𝐪 = q0 +

q1𝐢 + q2𝐣 + q3𝐤 [53]. A three-dimensional rotation of a vector using quaternions can be 

represented as a single rotation by an angle 𝜃 about an axis 𝐧̂ such that [53]: 

 
𝐪 = cos (

𝜃

2
) + sin (

𝜃

2
) 𝐧̂ (67) 

The conjugate of a quaternion is given as [53]:  



53 

 

 
𝐪∗ = [q0, −q1, −q2, −q3]

T (68) 

Considering an arbitrary vector 𝛒 in ℝ3 space; this vector can be represented in the 

quaternion form as 𝛒̅ = (0 𝛒T)T [6]. The rotation of this augmented vector can be 

determined by: 

   
𝛒̅′ = 𝐪 ⊗ 𝛒̅ ⊗ 𝐪∗ (69) 

where 𝛒̅′ is the vector 𝛒̅ rotated by an angle 𝜃 about the axis 𝐧̂ [52]. In the above context, 

the ⊗ operator represents quaternion multiplication. The product of two quaternions 𝐪 and 

𝐩 is [52]: 

   𝐪 ⊗ 𝐩 = (q0p0 − q1p1 − q2p2 − q3p3) + (q0p1 + q1p0 + q2p3 − q3p2)𝐢 

   +(q0p2 − q1p3 + q3p1 + q2p0)𝐣 + (q0p3 + q1p3 − q2p1 + q3p0)𝐤 
(70) 

Modifying the quaternion representation into a vector form yields: 

   
𝐪̅ = q0 + 𝐪⃗⃗  (71) 

where 𝐪⃗⃗ = [q1, q2, q3]
T [6]. Using this form of the quaternion, the matrix equivalents for 

quaternion multiplication can be defined. The left and right quaternion-product matrices 

are [52]: 

   𝑄+ = [
q0 −𝐪⃗⃗ T

𝐪⃗⃗ (q0𝐼 + [𝐪⃗⃗ ×])
 ] = [

q0

q1
q2

q3

    

−q1 −q2 −q3

q0 −q3 q2
q3

−q2

q0

q1

−q1

q0

 ] 
(72) 
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   𝑄− = [
q0 −𝐪⃗⃗ T

𝐪⃗⃗ (q0𝐼 − [𝐪⃗⃗ ×])
 ] = [

q0

q1
q2

q3

    

−q1 −q2 −q3

q0 q3 −q2
−q3

q2

q0

−q1

q1

q0

 ] 
(73) 

where 𝐼 is the identity matrix and [𝐪⃗⃗ ×] is the skew-symmetric form of the vector 𝐪⃗⃗ . This 

form is written as [52]: 

   
[𝐪⃗⃗ ×] = [

0 −q3 q2

q3 0 −q1

−q2 q1 0
]  (74) 

With the quaternion multiplication matrices defined, the rotation of a vector between 

frames can be expressed in a more compact form. The vector rotation becomes [6]: 

   𝛒̅′ = 𝐪 ⊗ 𝛒̅ ⊗ 𝐪∗ = 𝑄+𝑄−T𝛒̅ 
(75) 

This process is equivalent to rotating the vector 𝛒 using a rotation matrix. The rotation 

matrix  𝑅q is parameterized using the quaternion components and is defined as [6]: 

 
𝑅q = I34𝑄

+𝑄−T𝐼34
T (76) 

where 𝐼34 is an identity matrix defined as: 

 
𝐼34 = [

0
0
0
   
1
0
0
   
0
1
0
   
0
0
1
] (77) 

This rotation matrix can be applied to the vector 𝛒 such that the rotated vector 𝛒′ = 𝑅q𝛒.  

 With this quaternion and rotation matrix parameterization established, the angular 

velocity of the vehicle can be expressed as the time derivative of the quaternion state. It is 
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shown in [6] that the orientation of a system, given a gyroscope measurement can be 

calculated by: 

 
𝐪̇ =

1

2
𝑄+(𝛚m − 𝐛ω + 𝛈ωm) (78) 

This leads to the overall state space model for the vehicle which is [51]: 

 𝐱̇ = f(𝐱, 𝐮,𝐰) =

[
 
 
 
 
 
𝐩̇
𝐯̇
𝐪̇

𝐛̇a

𝐛̇ω]
 
 
 
 
 

=

[
 
 
 
 
 

𝑅q𝐯

𝐟m − 𝐛a + 𝑅q
T𝐠𝐞 + 𝛈fm

0.5𝑄+(𝛚m − 𝐛ω + 𝛈ωm)
𝛈ba

𝛈bω ]
 
 
 
 
 

 
(79) 

Using this kinematic model, the physical states of the automobile system can be recursively 

predicted by integrating the IMU sensor data. Corrections for the filter are provided by 

secondary sensing devices which will be discussed in the following section.  

4.2.3. Sensor Measurement Models 

 The INS filter uses a DGPS and orientation sensor for estimate correction. Both 

sensors are built into the OXTS RT3003 [54]. The measurement vector for the filter is 

given by: 

 
𝐲 = [𝐲p, 𝐲q]

T (80) 

where 𝐲p is the DGPS position measurement vector and 𝐲q is the vehicle orientation 

measurement vector represented using quaternions. The DGPS orientation is needed to 

improve the vehicle heading observability. Observability analysis for the system will be 

discussed in a later section. The GPS and orientation measurement models are: 
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𝐲p = 𝐩 + 𝛈p (81) 

 
𝐲q = 𝐪 + 𝛈q (82) 

where 𝛈p and 𝛈q are zero-mean Gaussian noise vectors such that 𝛈p~𝑁(0, 𝛔p
2) and 

𝛈q~𝑁(0, 𝛔q
2); 𝛔p

2  and 𝛔q
2 are the variances of the GPS and orientation measurement noises 

respectively  [51]. The measurement model noise vector is: 

 
𝛎 = [𝛈p, 𝛈q]

T
 (83) 

In the KITTI dataset, the roll, pitch and yaw of the vehicle body frame are provided [22]. 

The measurements have been converted to quaternion values in the estimator measurement 

model. 

4.2.4. Coordinate Frame Transformations 

 The GPS sensor used in the KITTI data set operates using the WGS84 model [54]. 

To simplify the analysis, the GPS coordinates from the dataset were converted from the 

geodetic coordinates to a local tangent frame with a fixed origin. The geodetic coordinates 

are first converted into Earth-centered Earth-fixed (ECEF) coordinates before being 

transformed to the tangent plane. Figure 10 illustrates the three coordinate systems below. 
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Figure 10 Geodetic, ECEF and Tangent Plane Coordinate Systems [6] 

The geodetic coordinate system uses a reference ellipsoid to accurately approximate the 

geoid shape of the earth. In the WGS84 model, the reference ellipsoid can be defined by 

the parameters: 

a = 6378137 m 

1

f
= 298.257223563 

e = √f(2 − f) 

where a is the equatorial radius of the reference ellipse, f is the reference ellipse flatness 

and e is the eccentricity of the reference ellipse [6]. The meridian radius of a geodetic 

coordinate is defined as: 

 rM(ϕ) =
a(1 − e2)

(1 − e2sin2(ϕ))
3
2

 (84) 

where ϕ is the latitude of the point of interest [6]. Similarly, the prime normal radius of 

curvature is given by [6]: 
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 rN(ϕ) =
a

(1 − e2sin2(ϕ))
1
2

 (85) 

Using the above relationships, the conversion from geodetic to ECEF coordinates is: 

 
x = (rN + h) cos(ϕ) cos (λ) (86) 

 
y = (rN + h) cos(ϕ) sin(λ) (87) 

 
z = (rN(1 − e2) + h) sin(ϕ) (88) 

where h is the altitude and 𝜆 is the longitude of the point of interest [6]. The vector from a 

local tangent plane origin to an arbitrary point can be defined using: 

 
∆𝐱̂e = 𝐏e − 𝐏0

e = [x, y, z]e − [x0, y0, z0]
e (89) 

𝐏0
e is the origin of the local tangent plane represented in the ECEF frame and 𝐏e is a vector 

to an arbitrary point in the ECEF frame [6]. The difference between these coordinates 

produces the vector ∆𝐱̂e which is a vector that points from the tangent plane origin to the 

arbitrary point 𝐏e. The rotation matrix that rotates a vector from the ECEF frame to the 

local tangent plane is given by [6]: 

 
𝑅𝐞

t = [

−sin(ϕ) cos(λ) − sin(ϕ) sin(λ) cos(ϕ)

−sin(λ) cos(λ) 0

− cos(ϕ) cos(λ) − cos(ϕ) sin(λ) − sin(ϕ)
    

    

] (90) 

Finally, the vector that defines a point with respect to the tangent frame, represented in the 

tangent plane is: 
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𝐏t = 𝑅𝐞

t∆𝐱̂e (91) 

 Using this process, the GPS data provided by the OXTS RT3003 was converted to 

local tangent plane coordinates. The first point in the dataset was used as the origin 

reference coordinate and was offset by the 0.93 m height of the GPS unit above ground 

level. Readers are directed to [6] for further information on this coordinate transformation. 

4.2.5. Observability Analysis 

 Observability is the standard measure of a system’s ability to determine state 

values, given the system inputs and available sensor data [38]. When a system is fully 

observable, all states can be solved given the current inputs and sensor information at that 

instant in time [38]. Observability status may change when states have values that render 

other states unobservable or sensor availability changes. Typically, a system is evaluated 

using many test scenarios to determine when or if states become unobservable during 

operations. 

 The approach for determining the observability of a linear system involves 

constructing the observability matrix for the system using the system matrix 𝐹 and output 

matrix 𝐻 [38]. The observability matrix 𝒪 is: 

 
𝒪 = [𝐻 𝐻𝐹 𝐻𝐹2 ⋯𝐻𝐹𝑛−1]T (92) 

where 𝑛 is the number of system states. A system is fully observable when this matrix is 

full rank [38]. The rank of this matrix was found to be sixteen for the designed INS, 
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however, since the system is nonlinear, this metric is not adequate for determining system 

observability. 

 Another approach for determining system observability that applies to nonlinear 

systems involves rewriting the state space model in its noise-free affine form and using Lie 

derivatives to construct the observability matrix [55]. The affine form of a system model 

has the structure: 

 
𝐱̇ = 𝑓0(𝐱) + 𝑓1(𝐱)𝐮1 + 𝑓2(𝐱)𝐮2 + ⋯+ 𝑓𝑛(𝐱)𝐮𝑛 (93) 

where 𝑛 is the total number of system inputs [55]. For the designed INS system, the noise-

free affine form is: 

 
𝐱̇ =

[
 
 
 
 
 
𝐩̇
𝐯̇
𝐪̇

𝐛̇a

𝐛̇ω]
 
 
 
 
 

=

[
 
 
 
 

𝐯
𝐠𝐞 − 𝑅q𝐛a

−0.5𝑄+𝐛ω

0
0 ]

 
 
 
 

+

[
 
 
 
 
0
𝑅q

0
0
0 ]

 
 
 
 

𝐟m +

[
 
 
 
 

0
0

0.5𝑄+

0
0 ]

 
 
 
 

𝛚m (94) 

 

𝑓0 =

[
 
 
 
 

𝐯
𝐠𝐞 − 𝑅q𝐛a

−0.5𝑄+𝐛ω

0
0 ]

 
 
 
 

,    𝑓1 =

[
 
 
 
 
0
𝑅q

0
0
0 ]

 
 
 
 

,    𝑓2 =

[
 
 
 
 

0
0

0.5𝑄+

0
0 ]

 
 
 
 

 

 

(95) 

For convenience when taking the Lie derivatives, the velocity has been expressed in the 

world frame.  

 The observability matrix is constructed by taking the Lie derivatives of the noise-

free measurement function ℎ(𝐱) with respect to the components of the affine system model 

𝑓𝑛(𝐱) [55]. The following demonstrates the implementation of this process. 
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 Considering the system when the measurement model only contains the DGPS 

readings: 

 
𝐲 = ℎ(𝐱) = 𝐩 (96) 

The zeroth Lie derivative is simply [55]: 

 
ℒ0ℎ(𝐱) = ℎ(𝐱) = 𝐩 (97) 

The gradient of this Lie derivative is: 

 
∇ℒ0ℎ(𝐱) =

𝜕ℒ0ℎ(𝐱)

𝜕𝐱
= [𝐼3×3 03×13] (98) 

This matrix has a rank of 3 and spans 𝐩 indicating that position is observable using this 

equation. The higher order Lie derivatives can be calculated recursively such that [55]: 

 ℒ𝑓𝑗

𝑖+1ℎ(𝐱) = ∇ℒ𝑖ℎ(𝐱) ∙ 𝑓𝑗 , {𝑖 ∣ 𝑖 ∈ ℝ, 𝑖 ≥ 0} (99) 

Furthermore, higher order mixed Lie derivatives with respect to different functions in the 

affine form of the system model can be calculated using [55]: 

  ℒ𝑓𝑗𝑓𝑘

𝑖+1 ℎ(𝐱) = ∇ℒ𝑓𝑗

𝑖 ℎ(𝐱) ∙ 𝑓𝑘 , {𝑖 ∣ 𝑖 ∈ ℝ, 𝑖 ≥ 0} (100) 

Using these properties, all possible Lie derivatives for this system can be obtained to 

generate a complete observability matrix [55]. This process can either be performed 

exhaustively using computer software or more efficiently by inspecting only the Lie 

derivatives that will yield enough linearly independent columns to make the observability 

matrix full rank. Using this constraint, the Lie derivatives that contain all elements equal 
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to zero are excluded. The following observability matrix is found to be full rank for the 

INS: 

𝒪 =

[
 
 
 
 
 

∇ℒ0ℎ(𝐱)

∇ℒ𝑓0
1 ℎ(𝐱)

∇ℒ𝑓0𝑓1
2 ℎ(𝐱)

∇ℒ𝑓0𝑓0
2 ℎ(𝐱)

∇ℒ𝑓0𝑓1𝑓0
3 ℎ(𝐱)]

 
 
 
 
 

 (101) 

 The remainder of the observability matrix generation process proceeds as follows: 

 
𝓛𝑓0

1 ℎ(𝐱) = ∇𝓛0ℎ(𝐱) ∙ 𝑓0 (102) 

The gradient of this Lie derivative is: 

 
∇ℒ𝑓0

1 ℎ(𝐱) =
𝜕∇ℒ0ℎ(𝐱) ∙ 𝑓0

𝜕𝐱
= [03×3 𝐼3×3 03×10] (103) 

This matrix is rank 3 and spans 𝐯 indicating that the velocity can be determined using this 

equation. The next Lie derivative evaluated is: 

 
ℒ𝑓0𝑓1

2 ℎ(𝐱) = ∇ℒ𝑓0
1 ℎ(𝐱) ∙ 𝑓1 = 𝑅q (104) 

To evaluate the gradient of the rotation matrix 𝑅q, it must first be converted into a 9 × 1 

column vector using the elementary vectors 𝐞1, 𝐞2 and 𝐞3 defined as [55]: 

 
𝐞1 = [

1
0
0
] , 𝐞2 = [

0
1
0
] , 𝐞3 = [

0
0
1
] (105) 

The Lie derivative in equation (104) becomes [55]: 

 
ℒ𝑓0𝑓1

2 ℎ(𝐱) = [

𝑅q𝑒1

𝑅q𝑒2

𝑅q𝑒3

] = 𝑅q𝐞𝑖, ∀ 𝑖 = 1…3 (106) 
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Considering the quaternion form of the vector 𝐞𝑖 such that 𝐞̅𝑖 = (0 𝐞𝑖)
T, the right 

quaternion-product matrix [𝐞̅𝑖]
− can be generated for the vector 𝐞̅𝑖 using the same process 

presented in equation (73). Quaternion differentiation can be achieved using the following 

relation [6]: 

 𝜕

𝜕𝐪
(𝐪 ⊗ 𝛒̅ ⊗ 𝐪∗) = 2𝑄−T[𝛒̅]− (107) 

Recognizing that 𝐪 ⊗ 𝐞̅𝑖 ⊗ 𝐪∗ is equivalent to 𝑅q𝐞𝑖, the gradient of the Lie derivative in 

equation (106) is: 

 
∇ℒ𝑓0𝑓1

2 ℎ(𝐱) = [09×6 2𝐼34Q
−T[𝐞̅𝑖]

− 09×6] (108) 

Where 2𝐼34𝑄
−T[𝐞̅𝑖]

− is a 9 × 4 matrix with a rank of 4 that spans 𝐪 indicating that the 

orientation of the system can be determined using this equation. The remaining vector 

space that is unobservable at this point spans 𝐛ω and 𝐛a. Since the vector space for 𝐩, 𝐯 

and 𝐪 is spanned by the previously determined Lie derivatives in the observability matrix, 

the remaining Lie derivative gradients will be calculated with respect to 𝐛ω and 𝐛a only, 

to present the resulting observability matrix entries more compactly. The next Lie 

derivative required is: 

 
ℒ𝑓0𝑓0

2 ℎ(𝐱) = ∇ℒ𝑓0
1 ℎ(𝐱) ∙ 𝑓0 = 𝐠𝐞 − 𝑅q𝐛a (109) 

The gradient of this Lie derivative with respect to 𝐛ω and 𝐛a is: 

 
∇𝐛ω,𝐛a

ℒ𝑓0𝑓0
2 ℎ(𝐱) = [03×3 −𝑅q] (110) 
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This matrix is rank 3 and spans 𝐛a indicating that the accelerometer bias is observable 

using this equation. The final Lie derivate needed is: 

 
ℒ𝑓0𝑓1𝑓0

3 ℎ(𝐱) = ∇ℒ𝑓0𝑓1
1 ℎ(𝐱) ∙ 𝑓0 = −𝐼34𝑄

−T[𝐞̅𝑖]
−𝑄+𝐛ω (111) 

The gradient of this Lie derivative with respect to 𝐛ω and 𝐛a is: 

 
∇𝐛ω,𝐛a

ℒ𝑓0𝑓1𝑓0
3 ℎ(𝐱) = [−𝐼34𝑄

−T[𝐞̅𝑖]
−𝑄+ 09×3] (112) 

This matrix is rank 3 and spans 𝐛ω indicating that the gyroscope bias is observable using 

this equation. These calculations prove the claim that the observability matrix in equation 

(101) is full rank and thus the system states should be locally weakly observable (according 

to Theorem 3.1 in [56]) given a measurement model that provides position [55]. Local 

weak observability relates to the ability of a system state to be distinguishable when 

initialized in a close neighbourhood of its true value without needing a considerable amount 

of time to stabilize to the true state [56]. It was found experimentally that without heading 

measurements, the filter diverges quickly due to instabilities. This was not further 

investigated in this thesis since the experiments performed had access to compass heading 

measurements to overcome this issue. However, it is important to note that following a 

suitable initialization and careful tuning procedure should allow the filter to operate 

without heading measurements, as indicated by the observability study. For the 

experiments of this thesis, a heading measurement was always used for more reliable 

operation of the filters.   
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4.3. Vehicle Inertial Navigation Experiment 

4.3.1. Inertial Navigation System Filter Implementation 

 The vehicle trajectory used in this study was obtained in a residential area in 

Karlsruhe, Germany [22]. The vehicle drove in a looping path that involved two U-turn 

type manoeuvres which provided approximately 116 seconds of data measurements. The 

map of the area is shown below in Figure 11 with the blue line roughly outlining the path 

that the vehicle travelled. During INS testing and validation, random Gaussian noise was 

added to the DGPS data to mimic the reduced accuracy of GPS. Gaussian noise was also 

added to the heading measurements to test orientation tracking. 

 

Figure 11 Map of Vehicle Trajectory in Karlsruhe, Germany [57] 

 The INS algorithm was developed and tested using MATLAB. The EKF linearized 

matrices were all pre-calculated using MATLAB’s symbolic toolbox to reduce 

computation time while running the state estimator. For the OXTS RT3003 module, GPS 
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accuracy using Standard Positioning Service (SPS) or a Satellite-Based Augmentation 

System (SBAS) is 1.5 𝑚 and 0.6 𝑚 respectively [54]. For the simulations, the uncertainty 

in the GPS measurements was modelled as random additive Gaussian noise ranging from 

0 𝑚 to 1 𝑚 in both the 𝑥 and 𝑦 directions, and ranging from 0 𝑚 to 0.2 𝑚 in the 𝑧 direction. 

This gives an approximate Euclidean position accuracy range of 0 𝑚 to 1.48 𝑚. The 𝑧 

direction was assigned less uncertainty using the assumption that the vehicle altitude will 

not change substantially in a 0 𝑚 to 1 𝑚 𝑥, 𝑦 area on a smooth road profile. Similarly, noise 

is added to the roll, pitch, yaw measurements provided in the data set to introduce some 

uncertainty to these values. Random Gaussian noise is added to each measurement ranging 

from approximately 0 to 30. The original measurements without added noise are used as 

the true orientation angles during analysis.  

 The IMM algorithm was implemented as shown in Figure 12. The two EKF models 

used within the IMM are designed to contain differently tuned measurement and process 

noise parameters. The first EKF filter was tuned by testing sets of process and measurement 

noise parameters that minimized the root mean square (RMS) Euclidean position error and 

RMS orientation angle errors. These parameters were used for the single EKF filter and for 

the first mode of the IMM filter during testing. Keeping the noise parameters of the first 

mode fixed, this process was repeated to select noise parameters for the second mode of 

the IMM filter. The switching matrix probabilities for transitioning from one mode to 

another were both set to 3%. Both initial model probabilities were set to 50% since the 

system behaviour is unpredictable until the filter stabilizes. In certain instances, the 

likelihood of either model may approach zero causing matrix singularities. To address this 
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problem in the MATLAB simulator, conditions have been set such that if the likelihood of 

one model approaches zero while the other has a finite value, then the likelihood of the 

finite value model is assigned a magnitude of 1 while the other is given 0 weight. 

 

Figure 12 Interactive Multiple Model Filter Vehicle INS Implementation 

4.3.2. Experimental Results and Analysis 

 The INS system was tested using both the single EKF and IMM filter for 

comparison. For convenience, since differences in the results of both algorithms are not 

visibly apparent, only the IMM filter plots are presented except for Figure 13 which shows 

both estimated trajectories.  
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 The position estimate results shown in Figure 13 validate the accuracy of the IMM 

two mode state predictor. The DGPS ground truth model is represented by the blue line 

while the IMM and EKF prediction results are indicated by the red and green lines 

respectively. Both the EKF and IMM algorithms were able to accurately predict the 

position of the vehicle during all sequences of the trajectory. The IMM estimates tend to 

transition more abruptly than the EKF predictions because of the switching between modes. 

It is evident that the IMM tracker tends to predict the path of the vehicle better than the 

EKF filter during the two U-turn manoeuvres shown near positions (−425 𝑚,−42 𝑚) and 

(228 𝑚, 13 𝑚). In both cases, the EKF algorithm predicts that the vehicle followed a 

trajectory on the inside of the true vehicle path while the IMM filter follows the true path 

more closely. 

 

Figure 13 EKF and IMM Vehicle Trajectory Estimates 
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 The IMM filter generally tracks the position of the vehicle well in all three 

directions as shown in Figure 14. To evaluate the EKF and IMM filters, the RMS Euclidean 

positional error during the full tracking sequence was calculated for twenty simulations. 

The EKF filter produced an average positional error of 0.8001 𝑚 while the IMM filter 

gave an average error of 0.7553 𝑚. This is an average positional prediction improvement 

of 0.0448 𝑚 for this trajectory. Based on this, applying the IMM filter to track a system 

undergoing more turning manoeuvres would potentially reduce a large RMS position error 

that is likely to occur if a single EKF is used. Furthermore, the IMM filter can still be 

improved and refined by using more than two models or tuning the noise parameters. 

 

Figure 14 Vehicle IMM Filter Position Estimates 

 Figure 15 shows the IMM estimated position errors during the simulation. The 95% 

confidence bounds of each error vector is calculated by multiplying the combined 
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covariance matrix elements (from Eq. (36)) for each position state by a factor of two. In 

general, all position errors are below the confidence bound. The position error in the 𝑧 

direction is below the error bound for all simulated time, while the 𝑥 and 𝑦 errors 

periodically exceed the bounds during times when the vehicle is turning or highly 

erroneous GPS measurements are provided. 

 

Figure 15 Vehicle IMM Filter Position Error 

 The velocity estimates from the IMM filter give expected results that are shown 

below in Figure 16. The 𝑥 direction of the vehicle points along its forward axis, therefore, 

the vehicle velocity is generally forward during all time instances with varying speeds. The 

𝑦 and 𝑧 axes point leftward and upward on the vehicle respectively, therefore, these 

velocity components are generally small. The Ackerman design of the vehicle steering 

system causes the instantaneous center of rotation for the vehicle to be located somewhere 
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in the direction of the inside of the turn. As the vehicle performs the turning motion, the 

velocity vector is generally not perfectly tangential to the turning path and there is likely 

tire deformation from the lateral friction load that causes slippage [13]. As a result, there 

are instances during the turn where the velocity vector has components in both the 𝑥 and 𝑦 

directions as shown at times 34 𝑠 and 76 𝑠. If steering data were included with the data set, 

the Ackermann motion model could have been included in the IMM design to improve 

these estimates. 

 

Figure 16 Vehicle IMM Filter Velocity Estimates 

 The orientation angle predictions obtained using the IMM filter are shown in Figure 

17. The IMM filter accurately tracks all roll, pitch and yaw angles during the simulation. 

Roll and pitch generally remained constant throughout the duration of the vehicle trajectory 

while the yaw showed large variations during turning manoeuvres. The mean orientation 
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angle error for both EKF and IMM were approximately 3.0550 with negligible difference 

between either result. With further noise parameter turning or the inclusion of more than 

two filter models, it is likely that the IMM can yield better results. 

 

Figure 17 Vehicle IMM Filter Roll, Pitch and Yaw Estimates 

 

Figure 18 Vehicle IMM Filter Accelerometer and Gyroscope Bias Estimates 
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 The IMM filter accelerometer and gyroscope biases are shown below in Figure 18. 

The accelerometer bias in the 𝑧 direction does not experience drastic fluctuations during 

simulation, while the 𝑥 and 𝑦 biases tend to have steep transitions during the turning 

manoeuvres. The accelerometer biases have large spikes initially that tend to settle the 

longer the simulation runs. The gyroscope biases all show rapid transitions as the system 

starts up and then settle to relatively steady state values after the vehicle has been moving 

for approximately 40 seconds.   

 Figure 19 shows the probabilities of each EKF filter mode in the IMM for the 

duration of the simulation. The model used in the single EKF filter typically has a higher 

probability than model 2, however, model 2 does improve the INS performance with its 

state estimate contribution. 

 

Figure 19 Vehicle IMM Filter Model Probabilities 
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4.4. Conclusions 

 This chapter has presented an INS system for predicting the states of an automobile 

driving around a looping path. The EKF algorithm is shown to be a valid method for 

predicting the dynamics of a nonlinear state-space model through the process of 

linearization. Incorporating multiple EKF models within an IMM algorithm has been 

shown to improve the tracking accuracy of the INS system. This is most visibly apparent 

when the vehicle performs a turn during the trajectory. The IMM mode switching and 

prediction mixing allows the estimator to adaptively adjust the noise parameters during 

straightaways or turning manoeuvres.  

 The extent of the tracking performance improvements through noise tuning can be 

further explored by additional parameter adjustments that may reduce localization error. 

Adding more models to the IMM filter bank that contain additional noise figures can 

potentially improve filter performance at the expense of higher computational demand. To 

test this hypothesis, a dataset from an automobile that performs many consecutive turning 

manoeuvres would be required. This would provide better insight into IMM filter 

performance versus single model filters for highly dynamic trajectories. Furthermore, the 

inclusion of multiple system models, as demonstrated in section 3.2.2 could potentially 

improve IMM localization. The vehicle under study in the KITTI Vision Benchmark 

dataset has an Ackermann steering configuration, therefore, including this steering system 

geometry in another IMM mode may improve tracking. This type of model typically 
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requires the inclusion of vehicle steering angle as feedback; therefore, it was not included 

in this experiment due to that data being unavailable. 
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Chapter 5 

Skid-Steer Robot Inertial Navigation 

System 

About this chapter: This chapter analyses an INS estimation system for a skid-steer 

mobile robot. The chapter examines the performance of the filter developed in Chapter 4 

when applied to the Seekur Jr mobile robot. The IMM has been redesigned to include a 

skid-steer motion model that tracks the instantaneous centers of rotations of the robot to 

predict slippage and improve state tracking. The chapter also presents the design of an 

experimental testbed for the purpose of multi-model estimation research and validates an 

IMM filter design for navigation of the Seekur Jr mobile robot. 

5.1. Problem Formulation 

 Several steering configurations exist for mobile robots that allow for many different 

motion trajectories [7]. One popular method of steering that is used extensively in mobile 

robot designs is the skid steer configuration [58]. This configuration relies on lateral wheel 

slippage that allows the robot to make turning manoeuvres. The wheel-ground interactions 

associated with this type of steering are complex and cannot be modelled easily [59]. This 

leads to difficulty when developing a state estimator that can accurately track the system 

when unmodeled slippage occurs [58]. Many methods for dealing with this problem exist, 
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however, often they require many physical parameters to be known which may not be 

readily available or may change as the system operates [59]. For example, dynamic models 

can predict the longitudinal and lateral forces experienced by robot wheels during a skid 

[60]. However, if the ground terrain changes then the friction between the ground and 

wheel will also change leading to estimation errors [60].  

 The approach that has been selected to address this problem involves adding a 

second motion model to the IMM filter that tracks the ICRs of the left and right side of the 

robot. This model allows the lateral velocity of the robot to be tracked more accurately 

which provides detection of slipping that cannot be as apparently captured with the vehicle 

model in 4.2.2. The experiment has been performed using the Seekur Jr robot in the ISLAB 

at Memorial University of Newfoundland. 

5.2. Methodology 

5.2.1. Skid Steer Robot Kinematics 

 Skid-steer is a steering configuration that requires lateral wheel slippage to perform 

a turning manoeuvre [60]. Instead of an actuated steering mechanism that changes the 

direction of the robot wheels, skid-steer turns the robot by rotating the wheels on each side 

at different speeds and/or directions to induce a turn [59]. This allows the robot to rotate in 

place for efficient manoeuvres in confined spaces. One main drawback of this 

configuration is that the slippage of the wheels is difficult to model, especially on dynamic 
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outdoor terrains [60]. This makes it challenging to predict the motion of these systems 

accurately. 

 Many methods exist that model the complex ground to wheel interactions arising 

in skid-steer configurations, however, these models typically require dynamic physical 

parameters of the robot such as tire deflection and terrain friction coefficient [60]. These 

are continuously varying parameters that cause the lateral forces on the robot wheels to 

fluctuate, making state prediction complicated [60].  

 Another approach to modelling the skid-steer configuration considers the locations 

of the ICRs for the left and right side of the robot as changing vectors [58]. These vectors 

are added to the vehicle state space model to account for the lateral slippage of the skid-

steer robot during turn manoeuvres. Considering the case of a 2D skid-steer mobile robot 

as depicted in Figure 20. The instantaneous center of rotation of the robot body relative to 

the ground is given by the coordinates (𝐱ICR, 𝐲ICR). The Y coordinate of this point can be 

calculated by: 

 𝐲ICR =
𝐯x

𝛚z
 (113) 

where 𝐯x is the velocity of the robot in the X direction and 𝛚z is the angular velocity of the 

robot about the Z-axis (the Z-axis points out of the page in Figure 20) [58].  
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Figure 20 Skid-steer Kinematics 2D Robot [61] 

 The individual wheel velocities of the left and right side of the robot with respect 

to the robot body are denoted as 𝐯x
l  and 𝐯x

r respectively. Using these wheel velocities, the 

Y coordinates of the ICRs for the left and right side of the robot are: 

 
𝐲ICRl

=
𝐯x

l − 𝐯x

𝛚𝐳
 (114) 

 
𝐲ICRr

=
𝐯x

r − 𝐯x

𝛚z
 (115) 

respectively [58]. The X coordinate of the robot body ICR with respect to the ground is: 

 𝐱ICR =
−𝐯y

𝛚z
 (116) 
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where 𝐯y is the robot lateral velocity in the Y direction [58]. It is shown [59] that all the 

described ICR coordinates lie on a line parallel to the robot Y axis, therefore: 

 𝐱ICRr
= 𝐱ICRl

= 𝐱ICR =
−𝐯y

𝛚z
 (117) 

Manipulating equations (114), (115) and (116) to isolate the body linear and angular 

velocities in terms of the ICR coordinates and wheel velocities gives: 

 
𝐯x =

𝐯x
l𝐲ICRr

− 𝐯x
r𝐲ICRl

−|𝐲ICRr
− 𝐲ICRl

|
 (118) 

 
𝐯y =

(𝐯x
r − 𝐯x

l)𝐱ICR

−|𝐲ICRr
− 𝐲ICRl

|
 

(119) 

 
𝛚z = −

𝐯x
r − 𝐯x

l

−|𝐲ICRr
− 𝐲ICRl

|
 

(120) 

The absolute values in the denominators of these equations are used to ensure filter 

convergence by avoiding division by zero and keeping the denominators negative [58].  

 Considering the case where 𝐯y is constrained to be zero (no slip constraint), the 

coordinate 𝐱ICR also becomes zero and therefore lies along the Y-axis. This constraint is 

commonly imposed when modelling two-wheel differential-drive robots for odometry state 

estimators [7]. The differential-drive robot configuration is shown in Figure 21. Its 

kinematics are summarized below: 

 
𝐯x =

𝐯x
l + 𝐯x

r

2
 (121) 

 𝐯y = 0 (122) 
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𝛚z =

𝐯x
r − 𝐯x

l

b
 

(123) 

where b is the distance between the robot wheels [58].  

 

Figure 21 Differential-Drive Robot Kinematics 

 Experiments in [58] show that the estimation of ICR coordinates can improve skid-

steer robot navigation over using differential-drive robot kinematics. The experiments also 

show that the ICR odometry is much better at maintaining robot localization during periods 

of GPS dropout over the differential-drive for wheeled mobile robots [58]. Considering 

scenarios like the robot operating in GPS denied areas, the robot transitioning from an 

outdoor to an indoor environment, or other sensor systems becoming unreliable, the 

inclusion of the ICR kinematics in the IMM-INS designed in section 4.2.2 should improve 

state estimation performance when any of these conditions occur.  

5.2.2. Skid-Steer Robot Inertial Navigation System  

 The motion of wheeled mobile robots is not always constrained to a 2-D horizontal 

plane. However, on relatively flat terrains this assumption is an adequate approximation 
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[7]. That considered, the position of the ICR locations along the Z-axis should not change 

substantially during operations. Using this assumption, the INS design for the vehicle 

model in section 4.2.2 can be modified to include skid-steer kinematics. 

 It has been shown in [58] that variations in the ICR coordinates can be modelled as 

random walk processes such that: 

 𝐱̇ICR = 𝛈xICR
, 𝐲̇ICRl

= 𝛈yICRl
, 𝐲̇ICRr

= 𝛈yICRr
  (124) 

where 𝛈xICR
, 𝛈yICRl

, and 𝛈yICRr
, are zero-mean Gaussian noise vectors with variances 𝛔xICR

2 , 

𝛔yICRl

2 , and 𝛔yICRr

2 , respectively. 

 The estimated states of the system are included in the following state vector: 

 
𝐱 = [𝐩, 𝐯, 𝐪, 𝐛a, 𝐛ω, 𝐱ICRl

, 𝐲ICRl
, 𝐲ICRr

]
T
 (125) 

Therefore, the skid-steer mobile robot state space model is: 

 𝐱̇ = f(𝐱, 𝐮,𝐰) =

[
 
 
 
 
 
 
 
 

 

𝐩̇
𝐯̇
𝐪̇

𝐛̇a

𝐛̇ω

𝐱̇ICR

𝐲̇ICRl

𝐲̇ICRr

 

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

𝑅q𝐯

𝐟m − 𝐛a + 𝑅q
T𝐠e + 𝛈fm

0.5𝑄+(𝛚m − 𝐛ω + 𝛈ωm)
𝛈ba
𝛈bω
𝛈xICR

𝛈yICRl

𝛈yICRr ]
 
 
 
 
 
 
 
 

 
(126) 

 The measurement model for this system includes DGPS positional feedback, 

magnetometer readings and wheel encoder readings from the left and right side of the robot 

that determine 𝐯x
l , 𝐯x

r and 𝛚z. The measurement vector for the system is given by: 
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𝐲 = [𝐲p, 𝐲m, 𝐯x

l , 𝐯x
r, 𝛚z]

T (127) 

where 𝐲m is the magnetometer measurement vector. The measurement model for the 

magnetometer is given as: 

 
𝐲m = 𝑅q

T𝐦e + 𝛈m (128) 

where 𝐦e is the local magnetic field vector in the world frame and 𝛈m is zero-mean 

Gaussian noise corrupting the measurement such that 𝛈m~𝑁(0, 𝛔m
2 ) with variance 𝛔m

2  

[51]. The robot velocity measurements are obtained from Eq. (118)-(120).  

5.2.3. Differential Global Positioning Systems 

5.2.3.1. Differential Global Positioning System Background 

 Standard GPS systems encounter many sources of error when determining position. 

The main sources include ionospheric delay, tropospheric delay, ephemeris, clock errors 

and multipath signal reflection [62]. Ionospheric and tropospheric delays involve the 

slowing of satellite signal propagation due to complex signal interactions with the physical 

compositions of these atmospheric layers [6]. Ephemeris errors occur when a satellite has 

an orbital trajectory bias [6]. The satellite transmits incorrect ephemeris data since its orbit 

does not match its expected trajectory. Clock errors are the result of drift in the atomic 

clocks of satellites which cause an offset with respect to GPS receiver clocks [63]. 

Multipath error occurs when the transmitted satellite signal reflects off objects near the 

GPS receiver causing several extra delayed signals to be perceived by the receiver [63]. 
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 The DGPS configuration is an effective way to reduce the impact of multiple error 

sources in a GPS system. To implement this system, two GPS units operate in unison. One 

unit is designated as the stationary base station, while the second unit is the moving rover 

[64]. The exact position of the base station must be known accurately [64]. The base station 

receives Global Navigation Satellite System (GNSS) signals and calculates the 

pseudoranges to the visible satellites [65]. The pseudorange errors are calculated using the 

accurately known position of the base station [65]. The error corrections are transmitted to 

the rover unit via a radio signal [64]. The rover applies the pseudorange error corrections 

to the incoming GNSS signals to improve its positional estimate substantially [64]. This 

process is depicted below in Figure 22. 

 

Figure 22  Differential Global Positioning System Overview [61] [24] 



85 

 

5.2.3.2. Emlid Reach Differential Global Positioning System 

 The Emlid Reach GPS module is an Intel Edison computer chip with an integrated 

IMU and GPS sensor. The Reach units used in the Seekur Jr experiments are the RTK 

GNSS modules shown in Figure 23.  

 

Figure 23 Emlid Reach RTK GNSS Module [24] [66] 

 For the DGPS application, two Reach units are used. One unit is fixed to a 

stationary tripod while the other is secured to the Seekur Jr robot. The position of the base 

station unit is determined by averaging its standalone GPS readings over a long period of 

time. This averaged positional value is then set as its fixed location in its configuration 

files. The DGPS correction process is completed directly on the Reach unit. The 

manufacturer uses the open-source RTK processing software known as RTKLIB for this 

procedure [64] [65]. 

 The implemented base station and rover parameters are summarized in Table 5 and 

Table 6 respectively. The Reach units are programmed using the ReachView app shown in 

Figure 24. Parameters have been selected based on the recommendations from Emlid 
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support staff. Further details on the specific implementation and calibration of the Reach 

units will be discussed in section 5.2.4.4. 

 

Figure 24  Emlid ReachView App [67] 

Table 5 Reach Base Station Configuration 

Reach Base Station Module 

Base Mode 

Corrections Output (Serial) 
Device Baud Rate 

UART 57600 

Base Coordinates 
Coordinates Input Mode Coordinate Accumulation Time 

Average Single 5 Minutes 

RTK Settings 

RTK 
Positioning Mode GPS AR Mode 

Static Fix-and-hold 

GLONASS AR Mode Elevation Mask Angle SNR Mask 

On 15 Degrees 35 Degrees 

Max Acceleration 
Vertical Horizontal 

1 m/s² 1 m/s² 
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Table 6 Reach Rover Configuration 

Reach Rover Module 

RTK Settings 

RTK 
Positioning Mode GPS AR Mode 

Kinematic Fix-and-hold 

GLONASS AR Mode Elevation Mask Angle SNR Mask 

On 15 Degrees 35 Degrees 

Max Acceleration 
Vertical Horizontal 

1 m/s² 1 m/s² 

Correction Input 

Base Correction (Serial) 

Device Baud Rate 

UART 57600 

Format 
  

RTCM3 

Position Output 

Output 1 (TCP) 

Role Address 

Server localhost 

Port Format 

8889 LLH 

5.2.4. Seekur Jr Robot 

5.2.4.1. Seekur Jr Robot Overview 

 The Seekur Jr is a four-wheeled skid-steer all-terrain mobile robot produced by 

Omron Adept – Mobile Robots [23]. It has a built-in computer system that can be used for 

controlling the robot and interfacing with the onboard sensors [23]. The Seekur Jr in the 

ISLAB at Memorial University is equipped with a laser rangefinder, depth camera, 

gyroscope, wheel encoders, Trimble GPS and bumper sensors. Two independent motors 

drive the wheels on the left and right side of the robot [23]. A dimensioned drawing of the 

robot is shown in Figure 25.  
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Figure 25 Seekur Jr Robot Physical Dimensions [61] 

5.2.4.2. Advanced Robot Interface for Applications (ARIA) 

 The Seekur Jr onboard computer uses the Advanced Robot Interface for 

Application (ARIA) software developed by Omron Adept – Mobile Robots to manage 

robot communications, sensing devices and robot internal processes [23]. The onboard 

computer runs a server application that initializes the selected robot sensors and connects 

to an ARIA client application [23]. A remote computer runs the client application which 

forms a Transmission Control Protocol (TCP) connection with the Seekur Jr to establish 

data and control communications. The client requests specific data packets from the server 

that contain information such as robot parameters, robot statuses and sensor readings [23]. 

The client also sends command velocities to the Seekur Jr motor controllers that move the 



89 

 

robot. The client has been integrated with ROS to support data acquisition and modular 

development of the system. 

5.2.4.3. Robot Operating System (ROS) 

 ROS is a platform used for integrating computer software with robotic hardware 

[68]. The system is comprised of programming libraries and applications specifically 

designed for robotics research and development. The Seekur Jr experiment primarily uses 

ROS to gather data from the ARIA client as it is streamed from the onboard ARIA server.  

 The ARIA client has been configured to publish incoming sensor data as ROS 

topics, which are data structures that can be accessed by ROS nodes. The data is gathered 

using the rosbag tool which subscribes to selected ROS topics and stores the data in the 

time-stamped rosbag format. This process prevents the data from multiple sensors from 

becoming desynchronized.  

5.2.4.4. Data Acquisition System Configuration 

 The Seekur Jr hardware network is shown in Figure 26. The Intel NUC computer 

[69] is the central data acquisition device that connects to all other devices on the network. 

ROS and ARIA are both installed on the NUC. The NUC connects to the Seekur Jr via an 

ethernet connection and through the Seekur Jr Wi-Fi network simultaneously. The NUC 

runs the ARIA client which connects to the Seekur Jr ARIA server through the ethernet 

connection. This connection is used to transfer sensor data packets from the Seekur Jr to 

the NUC and to send control commands from the NUC to the Seekur Jr. The Wi-fi 

connection is used to initialize the ARIA server/client applications and interface with the 
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robot during outdoor experiments using a remote computer (laptop). The setup does not 

have a computer screen; therefore, the laptop is necessary to configure the system when 

outdoors. The purpose for using three computer devices in this network is to facilitate 

system development. The NUC computer has many available ports to allow multiple 

devices to interface with the network and provides a portable platform for testing and 

developing software.  

 

Figure 26 Seekur Jr Network Overview [61] [24] [70] [69] 

 The Reach rover module streams accelerometer, gyroscope, magnetometer and 

GPS data through a USB connection to the NUC. The USB connection has been modified 

to mimic an ethernet connection. A custom TCP server has been installed on the Reach 

module that preprocesses and sends the Reach IMU data to a custom TCP client ROS node 

on the NUC. The Reach unit has been configured using the ReachView app to 

automatically output its GPS data through a specific TCP port (details in Section 5.2.3.2). 

An additional TCP client ROS node has been created on the NUC to receive the GPS data 
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through that port. Both client nodes on the NUC parse, timestamp, and publish the sensor 

data as ROS topics. The data is recorded using the rosbag tool to subscribe to the sensor 

topics. Figure 27 illustrates the configuration of the NUC with the Reach rover. 

 

Figure 27 Reach Rover to NUC Connection [24] [69] 

 The Reach rover receives DGPS corrections and base station parameters from the 

base station Reach module via a 3DR radio pair. Each Reach unit is connected to a 3DR 

radio using a six-pin ribbon cable connector. The wiring scheme is shown in Figure 28 

below. The data transmits using the RTCM3 format at a baud rate of 57600. The base 

station Reach unit and 3DR radio are powered by a battery pack using a micro USB cable. 

 

Figure 28 Reach 3DR Radio Wiring Schematic [71] 
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 Using the laptop, the Seekur Jr computer and NUC can be remotely accessed to 

initialize the ROS data acquisition nodes, the robot controller node and the Reach IMU 

data server. The laptop connects to the NUC and Seekur Jr through a Secure Shell (SSH) 

login using their Internet Protocol (IP) addresses to access their root directories. This 

process is used to initialize the ARIA server on the Seekur Jr during system start-up. During 

outdoor experiments, the laptop is used to SSH into the NUC root directory. While logged 

into the NUC, the ARIA client and roscore applications are launched. Using the USB IP 

address of the Reach rover module, the Reach root directory is accessed from the NUC to 

initialize the Reach IMU TCP data server. On the NUC, the Reach GPS and IMU data 

client nodes are launched and the rosbag recorder is activated. A USB gamepad controller 

is connected to the NUC to control the motion of the robot. The controller uses a ROS node 

to interface with the ARIA client to send command signals from the NUC to the Seekur Jr 

onboard computer. This control node is launched while logged into the NUC via the SSH 

connection with the laptop. 

5.2.4.5. Physical Experimental Setup 

 The Seekur Jr experiments were performed on a parking lot behind the Memorial 

University S. J. Carew Building. The robot was equipped with the data acquisition 

hardware discussed in section 5.2.4.4 and is shown in Figure 29. The Reach rover GPS 

antenna was attached to a rigid ground plate to improve signal reception quality [72]. The 

ground plate was mounted high above the other electronics on the Seekur Jr to reduce 

potential electronic radio frequency interference. The Reach unit was strapped to the center 

of the Seekur Jr roof. Figure 30 shows the orientation of the Reach rover on the Seekur Jr. 
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The sensor axes have been aligned with the robot body frame to simplify coordinate 

transformations. The 3DR radio receiver for DGPS corrections is strapped to the roof of 

the Seekur Jr and is connected to the Reach via a universal asynchronous receiver-

transmitter (UART) cable. The NUC computer is mounted on the front of the robot. Two 

11.1V batteries, wired in series, power the NUC. The Reach rover and 3DR radio are 

powered through the micro USB connection between the Reach and NUC. The gamepad 

used to control the robot is connected to the NUC through USB. The wi-fi router for the 

Seekur Jr is located at the rear of the robot. 

 

Figure 29  Seekur Jr Data Acquisition System Setup 
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Figure 30 Reach Rover Orientation on Seekur Jr [61] [66] 

 The DGPS base station is shown in Figure 31. The base station GPS antenna is 

mounted to a rigid conductive ground plate. The base station reach unit and 3DR radio are 

securely fastened to the center shaft of the tripod. The 3DR radio is connected to the Reach 

unit via a UART cable. Both the Reach and radio are powered by the tripod mounted 

battery. 

 

Figure 31 Reach DGPS Base Station Setup 
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5.2.5. Sensor Data Processing 

5.2.5.1. General Data Processing 

 During testing, all sensor data was gathered in rosbag format. The data from the 

Reach IMU was manually parsed using a Python script in ROS. The data from the Reach 

TCP server was sent in a time-stamped string format containing accelerometer, gyroscope 

and magnetometer readings in each message. The ROS node receiving the string data 

deconstructs the string and stores each message in standard ROS data types for IMU data.  

 The sensor data is post-processed using MATLAB. The built-in rosbag 

“readMessages” function was used to read the data. The data was manually time 

synchronized in MATLAB and outputted in matrices for use in the filter experiments. The 

DGPS measurements were processed using the same procedure discussed in section 4.2.4. 

5.2.5.2. Magnetometer Calibration 

 Magnetometers are sensitive to magnetic interference from nearby electrical 

devices or magnetic objects [73]. This causes magnetometer data to become offset, skewed 

or scaled which can reduce the quality of INS estimations. Two types of magnetic distortion 

affect magnetometer performance, hard-iron and soft-iron distortions. Hard-iron 

distortions are caused by objects that generate a constant magnetic field that is added to 

magnetometer measurements [73]. Soft-iron distortions are caused by objects that easily 

become magnetized or demagnetized by magnetic field changes [73]. 
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 Simple techniques have been employed to compensate for both sources of distortion 

in the Reach magnetometer data. The hard-iron distortions are readily removed by applying 

offsets to the data along each sensor axis. The biases for the magnetometer along each axis 

are obtained using: 

 
𝐦bi

=
𝐦maxi

+ 𝐦mini

2
 (129) 

where 𝐦b is the magnetic bias and i is the sensor axis [74]. The magnetic bias 𝐦b must be 

calculated for each individual sensor axis. The bias is subtracted from each data point along 

each axis.  

 The soft-iron effects are reduced using a normalized scaling factor. The 

unnormalized scaling factor is calculated along each axis such that: 

 𝐦si
=

𝐦maxi
− 𝐦mini

2
 

(130) 

where 𝐦si
 is the magnetic scale factor along axis i [74]. The normalized scaling factor is: 

 𝐦S =
∑ 𝐦si

N
i=1

N
 (131) 

where N is the total number of sensor axes, in this case, three [74]. The calibrated 

magnetometer data for a given axis is [74]: 

 𝐦ci
= 𝐦S(𝐦i − 𝐦bi

) 
(132) 

Here, 𝐦i is the magnetometer data measurement along axis i. 
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 This method was implemented when calibrating the Reach magnetometer for the 

Seekur Jr experiments. The process was initially applied to a test set of data that was 

obtained by gathering IMU data while the Reach unit was rotated in “figure-8” patterns 

along each of the sensor axes. The data in Figure 32(a) shows the uncalibrated 

magnetometer data which is skewed along each axis, contains offsets relative to the (0,0) 

origin and is scaled. The calibrated data in Figure 32(b) shows the data has been normalized 

along each axis. Many of the distortions have been removed and each axis contains 

symmetrically scaled data values. The data response surface closely resembles a sphere 

centered on the (0,0) origin. 

  

(a) 

 

(b) 

Figure 32 Magnetometer Calibration Plots 
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5.3. Seekur Jr Inertial Navigation Experiment 

5.3.1. Inertial Navigation System Filter Implementation 

 The Seekur Jr INS experiment location is shown in Figure 33. The DGPS trajectory 

of the robot is plotted in red. The blue circle indicates the starting position of the robot. 

The yellow circle indicates the location of the DGPS base station during the experiments. 

The robot path was chosen such that abrupt turning manoeuvres were performed. The 

DGPS position solution was used as the ground truth for the INS filter. Random Gaussian 

noise was added to these measurements to mimic the reduced accuracy of a single GPS 

sensor. The noisy data was used by the INS for robot state estimate tracking. 

 

Figure 33 Seekur Jr Robot Trajectory Experiment Location [75] 

 The INS algorithm designed in section 5.2.2 was modified to incorporate the Seekur 

Jr onboard sensors and data processing system. Due to issues encountered with the Seekur 

Jr encoders, the modified skid-steer ICR-INS model could not be evaluated. The ARIA 
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client and server were modified to access the Seekur Jr motor data packets, which contain 

the robot left and right wheel velocities. These velocities can be used to implement the 

ICR-INS filter, however, when the robot is moving, these data packets stop streaming to 

the ARIA client. It is likely that this problem is due to Seekur Jr using the requested data 

packets for control processes, making them unavailable for the client. The modified ARIA 

client and server were tested using the MobileSim robot simulation software provided by 

Omron Adept – Mobile Robots [23]. The results show that the motor data packets 

containing the encoder readings publish correctly from the simulated robot, therefore, the 

process should work on the Seekur Jr. This issue is to be resolved in future work on this 

system. 

5.3.2. Seekur Jr Experimental Results and Analysis 

 The Seekur Jr INS was tested using both a single EKF and IMM filter for 

comparison. The graphs in this section represent the results from a single algorithm run 

using a GPS noise factor of 0.2. The GPS noise factor is a number used during filter testing 

to control the magnitude of the synthetic noise that was added to the DGPS measurements. 

A GPS noise factor of 0.2 adds random Gaussian position noise between the values of ±0.2 

meters to the DGPS data to simulate lower GPS accuracy. The filter was tuned using the 

process discussed in section 4.3.1. The models were tuned using data corrupted by a GPS 

noise factor of 0.2. The accelerometer, gyroscope and magnetometer data were measured 

using the Reach module that is attached to the Seekur Jr for navigation purposes. This 

module uses an MPU-9250 9-axis IMU sensor [76]. 
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 The results in Figure 34 show the accuracy of the EKF and IMM filters tracking 

the robot position in the X-Y plane. The blue line indicates the Reach module DGPS 

trajectory, which is used as the ground truth in this experiment. The plotted DGPS data 

does not contain synthetically added noise. The final portion of the robot trajectory (long 

straightaway segment crossing the S. J. Carew building parking lot in Figure 33) was 

excluded because the IMM and EKF performed nearly identically for that part of the path. 

Removing that section yields results that improve the illustrated comparison of an IMM 

and EKF for trajectories with multiple turning manoeuvres. Note that the mirrored 

orientation of the robot trajectory in Figure 34 relative to Figure 33 is due to a rotation from 

the DGPS North-East-Down (NED) frame to the body frame of the Reach module which 

was not readjusted before plotting. The encircled portions of the graph identify periods 

where the IMM outperformed the EKF. Near the position (10 𝑚, 3 𝑚) at the beginning of 

the trajectory, the robot was driven down over the edge of a curb. The sudden impact caused 

the IMU readings to spike. The shock to the measurements was filtered to reduce the 

stability issues encountered when running the estimators. It can be seen in the encircled 

area near the impact site, that the IMM filter tracks the robot more accurately than the EKF 

for a time after the impact. The two other encircled graph segments indicate better tracking 

by the IMM over the EKF at the beginning of two different turn manoeuvres. Both filters 

have accurate trajectory tracking for the duration of the test run. The remaining graphs 

illustrate the results for only the IMM filter for convenience. The filter accurately tracks 

the position of the robot in all three directions as shown in Figure 35. The curb impact time 

is approximately 50𝑠 as shown by the large oscillations in the Z-position in Figure 35.  
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Figure 34 Seekur Jr EKF and IMM-INS Robot Trajectory Estimates 

 

Figure 35 Seekur Jr IMM-INS Position Estimates 
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Figure 36 Seekur Jr IMM-INS Position Errors 

 Figure 36 shows the IMM estimated position errors. The positional errors are 

generally below by the 95% confidence bounds for each error vector. The errors can be 

seen exceeding the confidence bounds near times when the robot was performing turns. 

The results shown in Figure 37 illustrate the differences in the IMM and EKF positional 

RMS errors. The RMS error magnitude graph in Figure 37 is a measure of the magnitude 

of the combined RMS error vectors along each axis. The GPS noise factor for each set of 

trials is on the X-axis of the plots. The trials run the filters 30 times and average the results 

to more accurately measure filter performance. The averaged results are plotted in Figure 

37 and tabulated in Table 7. The error of the IMM filter is lower than the EKF for all tested 

GPS noise factor values. Based on this observation, it is likely that having multiple models 

that use different sets of noise parameters can maintain accurate tracking results despite 
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changing accuracies of sensing devices. This can be especially useful if a sensor 

experiences interference and the system must switch estimation reliance to other sensors.  

 

Figure 37 Seekur Jr INS RMS Error Comparison for IMM vs EKF 

Table 7 Seekur Jr INS Positional RMS Error Results 

Positional RMS Error Results 

GPS 

Data 

Noise 

Factor 

Average 

X 

Position 

RMS 

Error 

IMM 

[m] 

Average 

X 

Position 

RMS 

Error 

EKF 

[m] 

Average 

Y 

Position 

RMS 

Error 

IMM 

[m] 

Average 

Y 

Position 

RMS 

Error 

EKF 

[m] 

Average 

Z 

Position 

RMS 

Error 

IMM 

[m] 

Average 

Z 

Position 

RMS 

Error 

EKF 

[m] 

Average 

Positional 

RMS 

Error 

IMM [m] 

Average 

Positional 

RMS 

Error 

EKF [m] 

0.1 0.0393 0.0628 0.0346 0.0796 0.0478 0.1034 0.0778 0.145 

0.15 0.0482 0.0773 0.0383 0.0891 0.0446 0.098 0.0886 0.1537 

0.2 0.079 0.094 0.0619 0.1016 0.0646 0.1099 0.1375 0.177 

0.3 0.1017 0.1305 0.0936 0.1338 0.1077 0.1344 0.1938 0.2304 

0.4 0.143 0.1679 0.1203 0.1703 0.1005 0.1712 0.2496 0.2948 

0.5 0.1753 0.2342 0.1781 0.2275 0.1615 0.231 0.3381 0.4013 

 The velocity estimates of the IMM are shown in Figure 38. The velocity of the 

robot behaves as expected. The path of the robot trajectory has a slight incline, which is 
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represented by the low-velocity values in the Z direction. The Y velocity typically has a 

value of zero, with spikes near turn manoeuvres and the curb drop impact. The spikes are 

likely due to the skid-steer steering of the robot inducing lateral velocities during turns. 

The X velocity is the expected profile given the trajectory followed by the robot. 

 

Figure 38 Seekur Jr IMM-INS Filter Velocity Estimates 

 The roll, pitch and yaw angles estimated by the IMM filter are shown in Figure 39. 

Near the curb impact time, the orientation angles spike. The robot moved over the curb one 

wheel at a time, which causes all angles to quickly transition before settling during the first 

straightaway section. As expected, the roll and pitch of the robot typically remain near 

constant values during the test run. The estimated changes in the yaw heading match the 

turns made by the robot. 
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Figure 39 Seekur Jr IMM-INS Roll, Pitch and Yaw Estimates 

 

Figure 40 Seekur Jr IMM-INS Accelerometer Bias Estimates 
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Figure 41 Seekur Jr IMM-INS Gyroscope Bias Estimates 

 Figure 40 and Figure 41 illustrate the accelerometer and gyroscope biases. In each 

graph, the biases abruptly change in response to the curb impact and turning manoeuvres. 

The biases gradually shift towards their steady-state values following each manoeuvre as 

expected. 

 The results in Figure 42 indicate the unsmoothed model probabilities for each mode 

of the IMM-INS. The red line indicates the first mode of the IMM which has the same 

tuning parameters as the EKF that was tested. This plot shows that this model typically has 

the higher probability for the duration of the test, however, the influence of the second 

model is also contributing to the state estimates in the IMM-INS. Near the time associated 

with the curb impact, it is shown that both models contribute to the combined state 

estimates approximately evenly. IMM probabilities based on varying noise parameter 



107 

 

models seem to have higher model switching sensitivity than when multiple process 

models are used as demonstrated in Figure 4. However, this may also be the result of the 

small differences in the noise tuning parameters of each filter causing both models to 

rapidly switch due to consistently similar likelihoods. 

 

Figure 42 Seekur Jr IMM-INS Model Probabilities 

5.4. Conclusions 

 This chapter has presented a method for implementing skid-steer kinematics in the 

vehicle state-space model for the INS system and covered the design of a data acquisition 

system for the Seekur Jr robot to support multi-model estimator research. The performance 

of the IMM filter has been shown to effectively predict the states of a skid-steer mobile 

robot. The IMM filter generally outperformed the EKF in terms of RMS positional error. 
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This result may potentially change depending on the selection of noise parameters. A 

tuning experiment using a multi-factor design may be required to determine noise 

parameter interactions and definitively tune the system for future comparisons. The results 

show that an IMM filter with multiple noise parameter modes can facilitate tuning and 

achieve good performance without many test trials. The performance differences between 

the IMM and EKF were most noticeable near the curb impact and turning manoeuvres 

where the IMM typically maintained better tracking estimates. The multiple modes of the 

IMM generally reduce the likelihood of the filter failing to track the robot when its dynamic 

behavior changes. Although using multiple models does not guarantee that the filter will 

not fail, it does add robustness to the system. If one or more of the IMM models fail to 

track the system, the likelihood of those models drops to a very low value to remove the 

influence that those models have on the overall state estimates for the INS. 

 The experimental testbed designed for the Seekur Jr is a suitable configuration for 

future IMM localization research. The ARIA/ROS interface and data acquisition system 

can effectively obtain and process the onboard sensor data. The Emlid Reach modules have 

been configured for easy use in future experiments. The main concern moving forward 

with this equipment is the reliability issues experienced with maintaining fixed DGPS 

carrier lock during outdoor experiments. It is recommended that these modules be replaced 

in the future with more reliable hardware. Another issue that must be addressed in the 

future is debugging the encoder data stream issue experienced with ARIA. Obtaining robot 

side velocities will allow the skid-steer kinematic models to be incorporated in the IMM-

INS and tested. It is likely that the modified INS model in section 5.2.2 may improve filter 
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performance. The recommended course of action for fixing this problem is to identify 

whether the ARIA server on the Seekur Jr is intercepting the data packets when the robot 

is moving, and if so, develop code that makes these packets available when the robot is 

moving. 
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Chapter 6 

Conclusions and Future Work 

About this chapter: This chapter discusses the conclusions that were made during the 

experiments conducted for this thesis. The overall advantages and disadvantages of IMM 

filtering are discussed with regards to the applications that have been presented. Additional 

research topics and required work to advance this project further are discussed. 

6.1. Conclusions 

 This thesis has presented an analysis of IMM state estimator performance for 

computer vision tracking and mobile robot INS localization applications. The following 

discusses the conclusions for each experiment in terms of the objectives and expected 

contributions outlined in section 1.3.   

6.1.1. Objective 1 Conclusions 

Objective 1 – Design an effective computer vision tracking system that implements 

mean shift and IMM filtering techniques. 

 The designed computer vision tracker in Chapter 3 effectively tracked targets using 

mean shift paired with an IMM filter. The colour histogram approach can be inaccurate if 

the video background and tracked target have similar colours. Changing illumination 

effects in a video can also cause problems for this method. The vision system also does not 
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consider any changing scale sizes of tracked objects. The inclusion of an IMM filter assists 

the tracker by providing information regarding the motion characteristics of the target. 

Using an IMM filter generally outperformed single motion model Kalman filters in the 

tested scenarios. The two modes in the IMM allowed the tracker to adaptively switch 

kinematic models when a target exhibited constant velocity or acceleration behaviour.  The 

benefits of mode switching will likely have the biggest impact in general video target 

tracking rather than high contrast synthetic videos like those in sections 3.3.1-3.3.4. 

Additionally, the tracker computational demand can be reduced by adjusting how often the 

mean shift algorithm is executed. It was observed that the computational time of the IMM 

filter was significantly less than mean shift operations. Therefore, using the IMM filter to 

track the target for multiple frames between each mean shift update can potentially improve 

computing performance.  

6.1.2. Objective 2 Conclusions 

Objective 2 – Demonstrate the effectiveness of IMM filtering for automobile INS 

applications. 

 Chapter 4 illustrates the design process for an automobile IMM-INS using a vehicle 

state-space model. Both the IMM-INS and EKF-INS produced accurate tracking results for 

the states of the vehicle for the duration of the trajectory. The IMM filter used two modes 

that contained differently tuned noise parameters for the sensor and process models. The 

inclusion of multiple noise figures allowed the filter to shift its trust in the onboard sensors 

adaptively. The positional error of the IMM was typically less than the EKF positional 
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error. This can be visibly seen in Figure 13 where the IMM maintains better position 

estimates during two of the turning manoeuvres made by the vehicle.  

6.1.3. Objective 3 Conclusions 

Objective 3 – Design an IMM-INS for skid-steer mobile robots using ICR tracking for 

outdoor navigation applications. 

 Chapter 5 provides the framework required for incorporating two-dimensional 

skid-steer kinematics in the vehicle state-space model. The proposed model should provide 

improved tracking performance of the Seekur Jr robot when lateral skidding occurs during 

turns. As shown in [58], the ICR tracking in the EKF can improve filter performance when 

GPS data become unavailable for periods of time. The evaluated IMM in Chapter 5 

demonstrates that the method can outperform an EKF if tuned properly. In all tested 

scenarios, the IMM filter maintained lower RMS positional error than the EKF. The 

highlighted trajectory sections in Figure 34 illustrate areas where the IMM visibly performs 

better than the EKF. These locations correspond to turning manoeuvres and the time after 

the robot travelled over a curb. These results were expected based on the IMM localization 

results in Chapter 4. 

6.1.4. Objective 4 Conclusions 

Objective 4 – Develop an experimental testbed for the Seekur Jr robot for multi-model 

localization research work. 
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 The experimental testbed for the Seekur Jr robot detailed in Chapter 5 is complete 

except for encoder data streaming from the Seekur Jr motor encoders. The basic 

functionality of the encoder streaming has been configured and tested using a simulator 

with successful results. The ROS and ARIA system integration provides the framework for 

adding and configuring additional sensors for future work with the data acquisition system. 

The Emlid Reach DGPS equipment has been successfully configured and installed on the 

Seekur Jr robot. Postprocessing code has been successfully designed for synchronizing, 

calibrating and exporting Seekur Jr sensor data for state estimator applications. 

6.2. Contributions 

 The completion of the objectives in this thesis work has led the following 

contributions: 

Contribution 1 – IMM design and validation for computer vision target tracking and 

robotic inertial navigation applications. Two strategies for 

augmenting the model bank of IMM filters (i.e.: models with 

different process and sensor noise characteristics and models with 

different system dynamics) were tested and validated. This work 

was has yielded two publications: 

1) P. J. Glavine, O. D. Silva, G. Mann and R. Gosine, "Color-Based Object 

Tracking using Mean Shift and Interactive Multiple Model Kalman 
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Filtering," in Newfoundland Electrical and Computer Engineering 

Conference (NECEC), St. John's, 2017 

2) P. J. Glavine, O. D. Silva, G. Mann and R. Gosine, "GPS Integrated 

Inertial Navigation System Using Interactive Multiple Model Extended 

Kalman Filtering," in 2018 Moratuwa Engineering Research 

Conference (MERCon), Moratuwa, 2018 

Contribution 2 – Development of an experimental testbed for multiple model 

estimation based on the Seekur Jr platform. As part of the thesis 

work the Seekur Jr platform is ROS enabled with access to data 

streams from 2D Lidar, 3D nodding Lidar, IMU, digital compass, 

wheel encoder, onboard GPS, RTK DGPS ground truth, and vision 

sensors. 

Contribution 3 –  Design and experimental validation of an IMM filter using the 

developed Seekur Jr mobile robot testbed. The IMM filter strategy 

was validated for mobile robot navigation purposes in this thesis. 

6.3. Future Work 

 The following discusses potential research directions for the work completed in this 

thesis:  

• Computer Vision Tracker – Quantitative analysis of the mean shift IMM filter 

performance for general video tracking should be tested to determine tracker 

effectiveness for real-world video applications. Scale-invariant target 
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representation using image characteristics other than colour histogram should be 

explored to address the scaling and variable illumination issues. The reduction of 

the computational demand caused by using an IMM with the mean shift algorithm 

should also be quantitatively determined in the future. 

• Automobile INS – Further analysis of the effects of multiple noise models can be 

explored for this system. Expanding the number of modes used by the IMM may 

improve tracking accuracy results. The INS should be tested with a dataset from a 

vehicle that has performed many aggressive turning manoeuvres during its 

trajectory. Adding a dynamic model to the IMM that includes the Ackermann 

steering configuration of a typical automobile would also likely improve estimator 

performance. 

• Skid-steer Robot INS – The skid-steer kinematics discussed in Chapter 5 should be 

implemented in a future version of the Seekur Jr INS. Additionally, skid-steer 

models that include lateral wheel forces and wheel-ground interactions should be 

considered if the INS is tested on skid-steer robots or vehicles that have high 

velocities during operation. In [58], it was found that some of the assumptions 

employed in their ICR tracking method may breakdown for high-velocity skid-steer 

systems.  

• Seekur Jr Testbed – The encoder issue with the Seekur Jr should be further 

investigated to make the data available for future use in multi-model filter 

experiments. The Emlid Reach DGPS system should be eventually replaced with 

more reliable and user-friendly hardware. This recommendation results from the 
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difficulty of maintaining DGPS fixed position solutions during field tests, and the 

abundance of difficulties experienced when initially configuring the modules for 

use in the data acquisition system. 

• Indoor/Outdoor IMM – The IMM-INSs in this thesis mainly focused on outdoor 

navigation where GPS is available. Future work with these filters can include 

developing multiple models that rely on different sensors for either indoor or 

outdoor navigation. The IMM filter would likely facilitate the mode switching of 

the INS when the system transitions between outdoor and indoor environments. 

Furthermore, within the indoor/outdoor IMM modes, there can be additional modes 

implemented that contain multiple sets of noise parameters for shifting trust 

between sensors when operating in unstructured environments.    
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