
Interactive Multiple Model Filtering for

Robotic Navigation and Tracking

Applications

by

©Patrick Joseph Glavine

A Thesis submitted to the School of Graduate Studies in partial fulfilment of the

requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

October 2019

St. John’s Newfoundland

i

Abstract

 The work contained in this thesis focuses on two main objectives. The first

objective is to evaluate the Interactive Multiple Model (IMM) filter method for robotic

applications including inertial navigation systems (INS) and computer vision tracking. The

second objective is to design an experimental testbed for multi-model mobile robot state

estimation research in the Intelligent Systems Laboratory (ISLAB) at Memorial University.

 An IMM estimator uses multiple filters that run simultaneously to produce a

combined weighted estimation of an observed system’s states. The weights are functions

of the likelihood of how well each individual filter matches the current behaviour exhibited

by the system. The performance of IMM filtering is evaluated using two different strategies

for augmenting the system’s filter banks. The first method uses multiple kinematic models

(constant velocity and constant acceleration models) in a mean-shift-based computer vision

tracking application. The results of this experiment indicate that the IMM improves

tracking performance due to its ability to adapt to the continuously changing motion

characteristics of 2D blobs in videos. The second approach uses the same kinematics for

each filter; however, the process and sensor noise parameters are tuned differently for each

model. This method is tested in INS applications for both an automobile and a skid-steer

mobile robot (Seekur Jr). Results show that the method improves INS tracking over single

model Extended Kalman Filter (EKF) designs. Furthermore, an augmented state-space

model containing skid-steer instantaneous center of rotation (ICR) kinematics is presented

for future testing on the Seekur Jr INS.

ii

 The experimental testbed designed in this thesis work is an operational data

acquisition system developed for use with the Seekur Jr robot. The Seekur Jr platform has

been Robot Operating System (ROS) enabled with access to data streams from 2D Lidar,

3D nodding Lidar, inertial measurement unit, digital compass, wheel encoder, onboard

Global Positioning System (GPS), real-time kinematic (RTK) differential global

positioning system (DGPS) ground truth, and vision sensors. The physical setup and data

networking aspects of the testbed have been used for validation of an IMM filter presented

in this thesis and is fully configured for future multi-model localization experiments of the

ISLAB.

iii

Acknowledgements

 Without the help of the following individuals, the completion of this Master of

Engineering degree would not have been possible. My supervisors, Dr. Oscar De Silva, Dr.

George Mann and Dr. Raymond Gosine, thank you for the unwavering support throughout

the entirety of my master’s program. The knowledge and expertise that you provided were

invaluable assets every step of the way. Your patience, dedication and enthusiasm towards

my learning and development as a researcher were essential for my successes. It was an

honour and a privilege to work with you at the Intelligent Systems Laboratory at Memorial

University.

 My labmates Mr. Ravindu Thalagala, Mr. Eranga Fernando, Dr. Trung Nguyen

and Dr. Thumeera Wanasinghe, thank you all for your constant support and assistance

throughout this program. You were all a pleasure to work with.

 Our engineering co-op work term student Mr. Matthew King, thank you for your

exceptional help with configuring the communication and control network for the Seekur

Jr experimental setup. Your work facilitated the entire testbed design process.

 To my supportive family, thank you for always believing me and encouraging me

to keep pursuing my interests. Without you, this accomplishment would never have been

possible.

 This research was supported by funding from the National Sciences and

Engineering Research Council of Canada (NSERC) and Memorial University of

Newfoundland, Canada.

iv

Table of Contents

Abstract ... i

Acknowledgements .. iii

Table of Contents ... iv

List of Tables .. viii

List of Figures ... ix

List of Abbreviations ... xi

1 Introduction .. 1

1.1. Introduction ... 1

1.2. Problem Statement .. 5

1.3. Objectives and Expected Contributions .. 6

1.4. Organization of Thesis .. 8

2 Background .. 10

2.1. Related Works .. 10

2.1.1. State Estimation Techniques and IMM Applications 10

2.1.2. Localization Experimental Testbeds ... 14

2.2. State Estimation Theory ... 15

2.2.1. The Linear Kalman Filter ... 15

2.2.2. Extended Kalman Filter .. 20

2.2.3. Interactive Multiple Model Filter ... 22

v

3 Computer Vision Tracking using the Interactive Multiple Model Filter 28

3.1. Problem Formulation ... 28

3.2. Methodology .. 29

3.2.1. Mean Shift Algorithm ... 29

3.2.2. Interactive Multiple Model Filter Tracking Implementation 35

3.2.3. Vision Tracker Design .. 36

3.3. Computer Vision Tracker Experiments ... 38

3.3.1. Constant Velocity Tracking .. 38

3.3.2. Constant Acceleration Tracking ... 40

3.3.3. Elliptic Path Tracking ... 41

3.3.4. Constant Acceleration with Occlusion Test .. 43

3.3.5. General Tracking Results .. 44

3.4. Conclusions .. 45

4 Vehicle Inertial Navigation System using the Interactive Multiple Model Filter .. 47

4.1. Problem Formulation ... 47

4.2. Methodology .. 48

4.2.1. KITTI Vision Benchmark Data Set .. 48

4.2.2. Vehicle State Space Model ... 49

4.2.3. Sensor Measurement Models .. 55

4.2.4. Coordinate Frame Transformations .. 56

4.2.5. Observability Analysis .. 59

4.3. Vehicle Inertial Navigation Experiment .. 65

vi

4.3.1. Inertial Navigation System Filter Implementation ... 65

4.3.2. Experimental Results and Analysis .. 67

4.4. Conclusions .. 74

5 Skid-Steer Robot Inertial Navigation System ... 76

5.1. Problem Formulation ... 76

5.2. Methodology .. 77

5.2.1. Skid Steer Robot Kinematics .. 77

5.2.2. Skid-Steer Robot Inertial Navigation System ... 81

5.2.3. Differential Global Positioning Systems .. 83

5.2.3.1. Differential Global Positioning System Background 83

5.2.3.2. Emlid Reach Differential Global Positioning System 85

5.2.4. Seekur Jr Robot ... 87

5.2.4.1. Seekur Jr Robot Overview ... 87

5.2.4.2. Advanced Robot Interface for Applications (ARIA) 88

5.2.4.3. Robot Operating System (ROS)... 89

5.2.4.4. Data Acquisition System Configuration .. 89

5.2.4.5. Physical Experimental Setup ... 92

5.2.5. Sensor Data Processing ... 95

5.2.5.1. General Data Processing .. 95

5.2.5.2. Magnetometer Calibration ... 95

5.3. Seekur Jr Inertial Navigation Experiment .. 98

5.3.1. Inertial Navigation System Filter Implementation ... 98

vii

5.3.2. Seekur Jr Experimental Results and Analysis .. 99

5.4. Conclusions .. 107

6 Conclusions and Future Work .. 110

6.1. Conclusions .. 110

6.1.1. Objective 1 Conclusions ... 110

6.1.2. Objective 2 Conclusions ... 111

6.1.3. Objective 3 Conclusions ... 112

6.1.4. Objective 4 Conclusions ... 112

6.2. Contributions .. 113

6.3. Future Work ... 114

Bibliography .. 117

viii

List of Tables

Table 1 Constant Velocity Tracking Results .. 39

Table 2 Constant Acceleration Tracking Results .. 41

Table 3 Elliptic Path Tracking Results ... 42

Table 4 Constant Acceleration with Occlusion Test... 44

Table 5 Reach Base Station Configuration ... 86

Table 6 Reach Rover Configuration ... 87

Table 7 Seekur Jr INS Positional RMS Error Results .. 103

ix

List of Figures

Figure 1 Mean Shift Vector .. 30

Figure 2 Mean Shift IMM Tracker Algorithm .. 37

Figure 3 Constant Velocity Test ... 38

Figure 4 Model Probabilities Constant Velocity Test... 39

Figure 5 Constant Acceleration Test ... 40

Figure 6 Elliptic Path Test .. 42

Figure 7 Constant Acceleration with Occlusion Test ... 43

Figure 8 IMM-Mean Shift Juggling Tracking .. 45

Figure 9 Vehicle and Sensor Configuration .. 49

Figure 10 Geodetic, ECEF and Tangent Plane Coordinate Systems 57

Figure 11 Map of Vehicle Trajectory in Karlsruhe, Germany .. 65

Figure 12 Interactive Multiple Model Filter Vehicle INS Implementation 67

Figure 13 EKF and IMM Vehicle Trajectory Estimates ... 68

Figure 14 Vehicle IMM Filter Position Estimates .. 69

Figure 15 Vehicle IMM Filter Position Error ... 70

Figure 16 Vehicle IMM Filter Velocity Estimates ... 71

Figure 17 Vehicle IMM Filter Roll, Pitch and Yaw Estimates... 72

Figure 18 Vehicle IMM Filter Accelerometer and Gyroscope Bias Estimates 72

Figure 19 Vehicle IMM Filter Model Probabilities .. 73

Figure 20 Skid-steer Kinematics 2D Robot .. 79

Figure 21 Differential-Drive Robot Kinematics ... 81

x

Figure 22 Differential Global Positioning System Overview .. 84

Figure 23 Emlid Reach RTK GNSS Module .. 85

Figure 24 Emlid ReachView App .. 86

Figure 25 Seekur Jr Robot Physical Dimensions .. 88

Figure 26 Seekur Jr Network Overview ... 90

Figure 27 Reach Rover to NUC Connection .. 91

Figure 28 Reach 3DR Radio Wiring Schematic ... 91

Figure 29 Seekur Jr Data Acquisition System Setup ... 93

Figure 30 Reach Rover Orientation on Seekur Jr ... 94

Figure 31 Reach DGPS Base Station Setup .. 94

Figure 32 Magnetometer Calibration Plots ... 97

Figure 33 Seekur Jr Robot Trajectory Experiment Location .. 98

Figure 34 Seekur Jr EKF and IMM-INS Robot Trajectory Estimates............................ 101

Figure 35 Seekur Jr IMM-INS Position Estimates ... 101

Figure 36 Seekur Jr IMM-INS Position Errors ... 102

Figure 37 Seekur Jr INS RMS Error Comparison for IMM vs EKF 103

Figure 38 Seekur Jr IMM-INS Filter Velocity Estimates ... 104

Figure 39 Seekur Jr IMM-INS Roll, Pitch and Yaw Estimates 105

Figure 40 Seekur Jr IMM-INS Accelerometer Bias Estimates 105

Figure 41 Seekur Jr IMM-INS Gyroscope Bias Estimates ... 106

Figure 42 Seekur Jr IMM-INS Model Probabilities ... 107

xi

List of Abbreviations

ARIA Advanced Robot Interface for Applications

CA Constant Acceleration (Model)

CPU Central Processing Unit

CV Constant Velocity (Model)

DGPS Differential Global Positioning System

EKF Extended Kalman Filter

GNSS Global Navigation Satellite System

GPS Global Positioning System

ICR Instantaneous Center of Rotation

IMM Interactive Multiple Model

IMU Inertial Measurement Unit

INS Inertial Navigation System

IP Internet Protocol

ISLAB Intelligent Systems Laboratory

KLT Kanade-Lucas-Tomasi

MCL Monte Carlo Localization

MHE Moving-Horizon Estimation

NED North-East-Down

PDF Probability Density Function

xii

RMS Root Mean Square

ROS Robot Operating System

RTK Real-Time Kinematic

SBAS Satellite-Based Augmentation System

SLAM Simultaneous Localization and Mapping

SPS Standard Positioning Service

SSH Secure Shell

TCP Transmission Control Protocol

UART Universal Asynchronous Receiver-Transmitter

UAV Unmanned Aerial Vehicle

UKF Unscented Kalman Filter

WGS84 World Geodetic System 84

 1

Chapter 1

Introduction

About this chapter: This chapter discusses autonomous system technologies and

introduces typical methods used for state estimation. The Kalman filter and nonlinear

variations are introduced, as well as the interactive multiple model filter, which is the main

filtering technique investigated in this thesis. The chapter introduces the thesis problem

statement and the main objectives of this Master of Engineering research project.

1.1. Introduction

 Improvements in computing technology and the rapid development of intelligent

control systems has led to the integration of autonomous technologies in most industries

worldwide. Examples of these technologies include robotic manufacturing equipment [1],

self-piloting unmanned-aerial vehicles (UAVs) [2] and planetary rovers for space

exploration [3]. Incorporating autonomous systems in engineering or commercial settings

can improve task efficiency, ensure repeatable work precision and eliminate the risk of

human injury in dangerous environments.

 The growth of autonomous technologies has been facilitated by advancements in

integrated circuit design for sensors, computing devices, and intelligent control algorithms

[4]. Improved central-processing unit (CPU) architectures provides the required power to

implement sophisticated software packages for autonomous systems. The increased CPU

2

computing speed allows large datasets to be quickly processed for real-time use in software

applications. This has been a driving force for the development of vision-based systems

that rely on high-resolution cameras for control-loop feedback [5]. The development of

advanced sensing devices has ensured that autonomous systems are provided with

consistently precise measurement information and minimizes the influence of noise

corruption on sensor signals [4].

 Most autonomous systems have two main processes that must be completed

simultaneously during typical operations. The first process is state estimation; the system

must use the available sensor information and control system inputs to determine the

current state of the system (i.e.: robotic end-effector position, velocity and orientation) [6].

The second process is control; given the current state of the system, the next control inputs

required to reach the goal state (i.e.: move robotic end-effector from the current position to

the workpiece) must be determined [7].

 The research work contained in this thesis studies the state estimation problem for

autonomous systems. One of the most globally popular state estimation techniques used in

many engineering applications is known as the Kalman filter [6]. This algorithm is best

suited for linear time-invariant systems [8]. The algorithm assumes a stochastic system

model with noise-corrupted measurements [6]. It optimizes estimation performance by

adaptively adjusting the estimator gain in response to the changing mean-squared error of

the state covariance [6]. The Kalman filter is an effective estimation method when the

system is linear, and the dynamic model is well-defined [7].

3

 The Extended Kalman Filter (EKF) addresses the problem of nonlinearity in the

system model [7]. The algorithm linearizes the system dynamic equations about an

operating point that is defined by the most recent state estimate [6]. The EKF is then

implemented in the same way as the Kalman filter using the nonlinear system equations to

predict the next set of system states [7]. For highly nonlinear systems, the EKF can show

unstable behaviour and produce high errors due to abrupt changes in system states near the

linearized operating point [9]. When this occurs, the estimator can quickly diverge from

the true state of the system. This issue is handled by another version of the Kalman filter

known as the unscented Kalman filter (UKF). The UKF method uses the unscented

transform to propagate sample points through the nonlinear function to produce a Gaussian

approximation of the function [10]. This method, however, can be slower than the EKF in

practical applications [11].

 One of the common disadvantages of the Kalman filter, EKF and UKF is their

limitation of having a single dynamic model for state estimate propagation. In many cases,

the behaviour of a system varies depending on several possible factors including abrupt

changes in the control inputs or arbitrary system interactions with external surroundings.

Examples of these include aggressive turning manoeuvres made by an aircraft [12] or an

autonomous ground vehicle skidding/slipping laterally across a surface [13]. Using a single

system model may not account for these dynamic changes, therefore, including multiple

models may improve an estimator’s ability to maintain accurate state tracking [14].

 There are several different strategies for incorporating multiple system models in

an estimator. Among which, the interactive multiple model (IMM) algorithm is a preferred

4

and established method used in many aircraft target tracking applications [15] [16] [17]

[18]. Recent work in [19] [20] [21], investigates its application for vehicle navigation

systems. The IMM filter addresses the multiple model estimation problem by running a

bank of filters simultaneously in parallel and combining the estimates of each filter using

weighted probabilities [14]. The probabilities are recursively calculated by the filter and

represent the likelihood of how well the models each capture the current dynamic

behaviour that the system is exhibiting [19]. The main disadvantage of this filtering

technique is its suboptimality due to the estimates being a mixed result from multiple

possible models. However, if the models included in the IMM design are limited to realistic

candidates that capture the expected system dynamics and their uncertainties, then these

errors can be minimized and the benefits of using multiple models can improve tracking

results [14]. The Intelligent Systems Laboratory (ISLAB) of Memorial University of

Newfoundland is currently developing multiple model navigation techniques for its robotic

fleet comprised of a Seekur Jr, Pioneer robots and micro aerial platforms. The long-term

objective of this research group is developing reliable fleet operations for missions that

have changing operating conditions. This thesis evaluates the IMM filter for this purpose

by designing filtering banks to effectively capture the operating modes and uncertainties

of robotic tracking and localization applications. The thesis first evaluates the IMM

strategy for a computer vision tracking problem to validate algorithm performance. The

IMM method is then implemented and validated for vehicle localization using the KITTI

Vision Benchmark dataset [22]. The IMM filter design is then modified for localization of

the Seekur Jr mobile robot [23].

5

1.2. Problem Statement

 The objective of this research work is to evaluate the effectiveness of IMM filter

integration in robotic navigation and tracking applications. The main experiments

contained herein are:

• Computer Vision Tracking – Tracking the motion of arbitrary blob targets in video

sequences using a colour-based mean shift tracker paired with an IMM filter to

improve accuracy. Tests include tracking a constant velocity target, a constant

acceleration target, circular motion tracking and general object tracking.

• Automobile Inertial Navigation System (INS) – Designing an INS with an IMM

framework using the KITTI Vision Benchmark dataset. The IMM uses differently

tuned sets of sensor noise parameters to shift the filter’s reliance on each sensor for

different driving scenarios (i.e.: driving in a straight line or performing an abrupt

turn). The dataset provides inertial measurement unit (IMU), differential global

positioning system (DGPS) and orientation measurements. The INS estimates the

physical states of the vehicle system such as position, velocity, orientation and

sensor biases.

• Skid-Steer Robot INS Design – Designing an INS for a skid-steer mobile robot

(Seekur Jr Robot) using an IMM filter. The INS used in the automobile experiment

has been redesigned for the Seekur Jr. The varied noise parameter approach is tested

experimentally with the robot. The framework for incorporating a skid-steer

instantaneous center of rotation (ICR) tracking model in the IMM framework has

6

been presented and is discussed for future work. The Seekur Jr is equipped with an

Emlid Reach module [24] to provide IMU and DGPS measurements for IMM

experiments.

1.3. Objectives and Expected Contributions

 The focus of this thesis is to evaluate the effectiveness of IMM filtering for robotic

navigation and tracking applications. This is achieved by designing and evaluating IMM

filters for robotic tracking and navigation problems and developing an experimental testbed

for multi-model estimator performance evaluation. The objectives of the thesis are as

follows:

Objective 1 – Design an effective computer vision tracking system that implements

mean shift and IMM filtering techniques.

Objective 2 – Demonstrate the effectiveness of IMM filtering for automobile INS

applications.

Objective 3 – Design an IMM-INS for skid-steer mobile robots using ICR tracking for

outdoor navigation applications.

Objective 4 – Develop an experimental testbed for the Seekur Jr robot for multi-model

localization research work.

7

The contributions of this thesis are as follows:

Contribution 1 – IMM design and validation for computer vision target tracking and

robotic inertial navigation applications. This evaluates two different

strategies for augmenting the model bank of IMM filters (i.e.:

models with different process and sensor noise characteristics and

models with different system dynamics).

Contribution 2 – Development of an experimental testbed for multiple model

estimation based on the Seekur Jr platform. As part of the thesis

work the Seekur Jr platform is Robot Operating System (ROS)

enabled with access to data streams from 2D Lidar, 3D nodding

Lidar, IMU, digital compass, wheel encoder, onboard Global

Positioning System (GPS), real-time kinematic (RTK) DGPS

ground truth, and vision sensors.

Contribution 3 – Design and experimental validation of an IMM filter for the Seekur

Jr mobile robot. The experimental testbed developed in this thesis

is used for this purpose.

8

1.4. Organization of Thesis

 The following briefly discusses the contents found in each chapter of this thesis:

Chapter 1 – This chapter introduces the research topics and outlines the objectives of

the research work.

Chapter 2 – This chapter discusses related works to this research and provides the

necessary theoretical background information regarding existing Kalman

filter state estimation techniques including the linear Kalman filter, EKF

and IMM. The advantages and disadvantages of these techniques are also

discussed.

Chapter 3 – This chapter introduces mean shift theory and its usage in computer vision

tracker design. The design process for a two model IMM filter is

presented. The vision system is tested on several target tracking scenarios

with quantitative analysis and comparisons.

Chapter 4 – This chapter presents the vehicle state space model and measurement

model used to design the INS for an automobile. Nonlinear observability

analysis for the system is included. The experimental validation of the

INS using a two-mode IMM filter is discussed.

Chapter 5 – This chapter introduces skid-steer kinematic models for tracking mobile

robot ICRs during operations. The developed experimental platform

using the Seekur Jr robot is discussed in detail, including platform design,

9

sensors used and data processing techniques. The INS is tested using a

dataset collected by the Seekur Jr and the results of this experiment are

discussed.

Chapter 6 – This chapter presents the conclusions that were drawn from the

experiments conducted during this research project. The overall

advantages and disadvantages of IMM filtering are discussed with regards

to the applications that have been presented. Additional research topics

and required work to advance this project further are discussed.

 10

Chapter 2

Background

About this chapter: This chapter reviews existing state estimation techniques that are

commonly used in robotic tracking, navigation, and control applications. Kalman filter,

EKF and IMM filter theory is discussed in detail to provide the necessary background for

understanding the estimators designed in the experiments of chapters 3-5.

2.1. Related Works

2.1.1. State Estimation Techniques and IMM Applications

 The area of state estimation for autonomous systems is a rapidly advancing field

driven by the work of researchers worldwide. Many methods have been developed over

the years for addressing the state estimation problem for various systems. Some standard

methods typically employed for tracking and localization tasks include the Kalman filter

[8], EKF [6], UKF [9], Monte Carlo localization (MCL) [25], grid-based localization [26],

and simultaneous localization and mapping (SLAM) [27].

 The Kalman filter provides the optimal solution for stochastic linear time-invariant

systems [8]. The algorithm has been modified over the years to solve numerous problems,

including systems governed by nonlinear functions. The EKF method uses a first order

Taylor series expansion to linearize the nonlinear system equations [6]. The UKF employs

11

the unscented transform to propagate sample points through the nonlinear function to

estimate the mean and covariance of the system states [9]. Although the UKF can perform

better than the EKF for highly nonlinear systems, the EKF still remains one of the most

widely used Kalman filter formulations for nonlinear state estimation [9].

 MCL is a non-parametric localization approach that uses a distribution of weighted

samples (particles) to estimate the current and future states of the tracked system given the

system inputs and current sensor observations [25]. The samples are recursively propagated

forward using the system process model and the sensor information provides corrections

to these sample estimates [25]. Successful convergence of this filter occurs when the mean

of the particle distribution approaches the true state of the system [7]. MCL can maintain

multiple hypotheses for the states of the system and is effective for nonlinear applications

[7]. However, if too many samples are used, the algorithm can become computationally

expensive, and if too few samples are used, particle deprivation can occur and the filter

may not find the solution [7]. Grid-based localization is another effective tracking

technique, especially for indoor, structured environment applications. For mobile robot

localization, grid-based methods typically require a map that is subdivided into discrete

points (grains) [26]. The grains can be assigned an occupancy status to indicate obstacles

in the environment [26]. Localization is performed by first propagating the robot states

forward using the system motion model [7]. Next, sensor data (i.e.: laser scans) are

observed and the algorithm updates its belief states for the robot pose [26]. Like MCL, this

algorithm can also maintain multiple hypotheses for the robot pose. Grain coarseness can

dictate the effectiveness of this localization method [7]. Fine grains produce accurate

12

tracking results but cause the process to become computationally expensive while coarse

grains improve computation time but reduce accuracy [26].

 SLAM is a highly explored area of state estimation due to its applications for robot

operations in unstructured environments. The process involves continuously generating

and updating a navigation map using landmarks and features detected by onboard sensors

while simultaneously using the map to perform localization [27]. Many types of sensors

can be used for the SLAM mapping process including cameras [28], radar [29], sonar [30]

and laser [31]. One of the main issues with SLAM is the computational cost of processing

the large amounts of sensor data [27]. Fortunately, the improvements to computing

technologies and to SLAM algorithms in recent years have made implementing these

systems progressively more feasible for real-time applications [27].

 The IMM filtering method for tracking and localization can be implemented in

combination with many of the previously discussed estimation techniques using its model

probability mixing framework. For example, the work in [32] implements a three-mode

IMM paired with particle filtering for manoeuvring target tracking using only bearing

measurements. The modes of the filter include different possible kinematic models that

reflect the expected target behaviour [32]. The results of this work demonstrate the high

accuracy tracking potential of the IMM approach, however, the high computational load of

the particle filter in this experiment was an issue [32]. Another example is the work in [33]

which implements an IMM using UKFs with different kinematic models in the filter bank.

The results of this implementation show reasonable tracking results with improvements

over the single Kalman filter that was compared [33].

13

 The adaptability of the IMM filter makes it a popular choice for manoeuvring target

tracking since their motion is generally unpredictable [14]. For this reason, it is a favoured

option for tracking and state estimation in the aerospace industry as shown in [15] [16] [17]

[18]. Generally, ground vehicles like automobiles or mobile robots have predictable motion

trajectories while operating in controlled environments. However, changes in operation

terrain or weather conditions can cause unpredictable vehicle movement to occur.

Furthermore, aggressive turning manoeuvres made by these systems, especially at high

speeds, can lead to sliding/slipping. For these reasons, the IMM method can be a beneficial

algorithm to incorporate in typical ground vehicle and mobile robot INS applications. In

both [19] and [20], IMMs are designed to address these issues in road vehicle localization.

Both papers implement two mode IMMs using EKFs for varying driving conditions. In

[19], the first mode models the vehicle kinematic states with no-slip assumptions, while

the second mode considers the vehicle dynamics such as lateral forces. The results of this

work show that estimates of the kinematic model are more accurate for low-speed

operations with low tire slippage, while the dynamic model is more accurate when large

tire slippage occurred. When both models are included in the IMM estimator, the vehicle

localization becomes more robust and adaptable for the driving conditions [19]. Similarly,

in [20] the two modes of the IMM consider different kinematic behaviours of the vehicle.

One model is a first-order function for straight driving motion while the other is a second-

order equation designed for turning manoeuvres [20]. The findings in [20] reported similar

results to [19] indicating that the IMM algorithm is indeed a good candidate for

manoeuvring ground vehicle and mobile robot localization tasks. The robotic fleet of the

14

ISLAB is being developed for missions involving changing operating conditions including

indoor-outdoor transitions, kinodynamic model changes of the robots, environmental

disturbance level changes, etc. Therefore, the IMM algorithm is deemed a leading

candidate to address this long-term objective.

2.1.2. Localization Experimental Testbeds

 Many research groups have developed experimental testbeds for autonomous

system algorithm development. Several of these testbeds have produced datasets that are

available online including [34] [22] and [35]. Each of the available datasets contains

various combinations of sensing devices for different applications. In many cases, it is

difficult to obtain an online dataset that contains all the specific sensor data required for a

given localization filter application. This can limit the choices of potential models that can

be incorporated into an IMM filter design. Furthermore, the online datasets are for filter

design purposes only; control algorithms cannot be evaluated using the available data that

these testbeds provide.

 The ISLAB at Memorial University has developed several experimental testbed

setups for robotic localization and control algorithm testing. Two examples of these

testbeds are illustrated in [36] and [37]. In [36] a 3D sensor node for multi-robot

localization was designed using an ultrasonic-based range measurement apparatus and

infrared camera. The sensor apparatus was evaluated using two Pioneer robots and an aerial

robot in the ISLAB. In [37], a multi-robot cooperative localization strategy was tested using

15

the same two Pioneer robots and the Seekur Jr in the ISLAB. For this experiment, the robots

relied on odometry and laser scan measurements for localization.

 The experimental testbed designed for this thesis has been developed with the

intention of providing a robust platform for future multi-model localization research at the

ISLAB. The testbed builds upon the work in [36] and [37] by integrating ROS with the

Seekur Jr onboard computer to facilitate sensor configuration and control implementation.

The system has been updated to enable outdoor experiments using DGPS and has access

to additional sensors including magnetometer, wheel encoders, 2D Lidar, 3D nodding

Lidar, IMU and vision sensors. The abundance of sensing devices and the expandability of

the system make it a powerful platform for exploring many different IMM model

configurations.

2.2. State Estimation Theory

2.2.1. The Linear Kalman Filter

The Kalman filter is an optimal algorithm for estimating the states of a stochastic

linear Gaussian time-invariant system, given the system dynamic model, system inputs and

measurement feedback [7]. The algorithm assumes that system processes contain

uncertainties and that sensor measurements are corrupted by noise. These uncertainties are

modelled as zero-mean Gaussian distributions [6]. The filter operates by first predicting

the future states of the system using the process model and inputs. A state covariance matrix

is then updated to reflect the variance of the estimated states based on process uncertainties

16

[6]. The algorithm then uses the current system measurement, measurement estimate and

measurement noise to determine the innovation covariance [7]. The innovation covariance

is used to determine the correction required to generate an optimal estimate for the system

states given the available sensor information [6]. The correction is represented by the

Kalman gain matrix, which is determined from the covariance and innovation covariance

matrices [7]. This gain matrix is multiplied by the current measurement residual and added

to the current uncorrected state estimate vector. The Kalman gain is then used to correct

the covariance matrix of the system.

Consider a linear time-invariant system defined by:

 𝐱̇ = 𝐹𝐱 + 𝐵𝐮 + 𝐺𝐰 (1)

where 𝐱 is the system state vector, 𝐹 is the system matrix, 𝐵 is the input matrix, 𝐮 is the

input vector, 𝐺 is the process noise matrix and 𝐰 is the process noise vector [38]. The

measurement model for this system is:

 𝐲 = 𝐻𝐱 + 𝛎 (2)

where 𝐲 is the measurement vector, 𝐻 is the output matrix and 𝛎 is the measurement noise

vector [38]. The noise vectors are defined such that 𝐸〈𝐰𝐰T〉 = 𝑄𝑤 and 𝐸〈𝛎𝛎T〉 = 𝑅ν

where 𝐸〈∙〉 denotes the expected value [6]. The linear observer for this system is:

 𝐱̇̂ = 𝐹𝐱̂ + 𝐵𝐮 + 𝐿(𝐲 − 𝐲̂) (3)

17

where 𝐱̂ is the estimated state vector, 𝐿 is the observer gain and 𝐲̂ is the measurement

estimate such that 𝐲̂ = 𝐻𝐱̂ [38]. The linear error state for this system is [38]:

 δ𝐱 = 𝐱 − 𝐱̂ (4)

Differentiation of the error state and substitution gives:

 δ𝐱̇ = (𝐹 − 𝐿𝐻)δ𝐱 + 𝐺𝐰 − 𝐿𝛎 (5)

The Kalman filter automatically determines the optimal observer gain using the noise

parameters for the system. The observer gain 𝐿 in the observer equations is replaced by the

Kalman gain 𝐾, given by:

 𝐾 = 𝑃𝐻T𝑅𝜈
−1 (6)

where 𝑃 is the state covariance matrix defined by 𝐸〈(𝐱 − 𝐸〈𝐱〉)(𝐱 − 𝐸〈𝐱〉)T〉 [6].

 For computer implementations, the Kalman filter is typically used in its discrete

form. The system equation for the filter becomes:

 𝐱̂𝑘
− = 𝛷𝐱̂𝑘−1

+ + 𝛤𝐮𝑘 (7)

where 𝛷 is the state transition matrix, 𝛤 is the discrete time input matrix and 𝑘 is the

discrete time increment [6]. Here, the + and − superscripts denote corrected and

uncorrected quantities respectively. The state transition matrix is [6]:

 𝛷 = 𝑒𝐹𝑇 ≈ 𝐼 + 𝐹𝑇 (8)

18

In this equation, 𝑇 is the sampling time and 𝐼 is the identity matrix. The discrete time input

matrix is [6]:

𝛤 = ∫𝑒𝐹(𝑇−𝜆)𝐵𝑑𝜆

𝑇

0

≈ 𝐵𝑇 (9)

The discrete time process noise matrix is [6]:

 𝑄𝑑 = 𝐺𝑑𝑄𝑤𝐺𝑑
T (10)

Where 𝐺𝑑 is defined by [6]:

𝐺𝑑 = ∫𝑒𝐹(𝑇−𝜆)𝐺𝑑𝜆

𝑇

0

≈ 𝐺𝑇 (11)

The uncorrected state covariance matrix estimate is [6]:

 𝑃̂𝑘
− = 𝛷𝑃̂𝑘−1

+ 𝛷T + 𝑄𝑑 (12)

and the innovation covariance matrix is given by:

 𝑆𝑘 = 𝐻𝑃̂𝑘
−𝐻T + 𝑅𝑑 (13)

where 𝑅𝑑 is the discrete time measurement noise matrix which is equivalent to 𝑅𝜈 [6]. The

Kalman gain for the discrete time system is [6]:

 𝐾𝑘 = 𝐻𝑃̂𝑘
−𝑆𝑘

−1 (14)

19

This gain represents the level of trust that the estimator has in the measurement update [7].

The Kalman gain determines how much correction will be applied to the state estimate 𝐱̂𝑘
−

using the measurement residual [7]. The corrected state estimate is given by:

 𝐱̂𝑘
+ = 𝐱̂𝑘

− + 𝐾𝑘(𝐲𝑘 − 𝐻𝐱̂𝑘
−) (15)

The term (𝐲𝑘 − 𝐻𝐱̂𝑘
−) is referred to as innovation [6]. Finally, the state covariance estimate

is corrected using [6]:

 𝑃̂𝑘
+ = 𝑃̂𝑘

− − 𝐾𝑘𝐻𝑃̂𝑘
− (16)

 This process is recursively applied to predict the states of the system for all future

time. Generally, accurate initialization of the system states in the prediction model is

required for the Kalman filter estimates to converge to the true system states.

 The Kalman filter algorithm does have some limitations that need to be considered

before implementation. First, the Kalman filter is only optimal if the system dynamics are

linear and the system uncertainties are additive Gaussian distributions [7]. For non-linear

systems, the Kalman filter may still be applied using modified versions like the EKF, but

the solution is no longer optimal [6]. Another limitation of the Kalman filter is that it may

require tuning of the noise parameters to effectively track system states [6]. This limitation

is further complicated by the selection of the dynamic model which needs to match the true

dynamics of the system under study.

20

2.2.2. Extended Kalman Filter

 The EKF is a suboptimal version of the Kalman filter that is used for state

estimation of nonlinear systems. The algorithm applies the same prediction process as the

Kalman Filter but first requires the set of nonlinear dynamic equations to be linearized

about a nominal trajectory defined by the most recent state estimate [39].

 Considering a nonlinear system model given by:

𝐱̇ = 𝑓(𝐱, 𝐮, 𝐰) (17)

𝐲 = ℎ(𝐱, 𝛎) (18)

The state observer for this nonlinear system is defined by [6]:

𝐱̇̂ = 𝑓(𝐱̂, 𝐮) + 𝐾(ℎ(𝐱, 𝛎) − ℎ(𝐱̂)) (19)

The error state equation, δ𝐱 = 𝐱 − 𝐱̂, becomes [6]:

δ𝐱̇ = 𝑓(𝐱, 𝐮,𝐰) − 𝑓(𝐱̂, 𝐮) − 𝐾(ℎ(𝐱, 𝛎) − ℎ(𝐱̂)) (20)

The linearization of the error state equation is obtained from a first order Taylor series

expansion about the current nominal estimate such that [6]:

𝛿𝐱̇ = 𝑓(𝐱̂, 𝐮) +
𝜕𝑓(𝐱, 𝐮,𝐰)

𝜕𝐱
|
𝐱=𝐱̂
𝐰=0

𝛿𝐱 +
𝜕𝑓(𝐱, 𝐮,𝐰)

𝜕𝐰
|
𝐱=𝐱̂
𝐰=0

𝐰 − 𝑓(𝐱̂, 𝐮)

− 𝐾 (ℎ(𝐱̂) +
𝜕ℎ(𝐱, 𝛎)

𝜕𝐱
|
𝐱=𝐱̂
𝛎=0

𝛿𝐱 +
𝜕ℎ(𝐱, 𝛎)

𝜕𝛎
|
𝐱=𝐱̂
𝛎=0

𝛎 − ℎ(𝐱̂))

(21)

21

In this case, the nominal estimate is (𝐱 = 𝐱̂, 𝐰 = 0, 𝛎 = 0). Simplification of this

linearization yields:

𝛿𝐱̇ = (𝐹 − 𝐾𝐻)𝛿𝐱 + 𝐺𝑤𝐰 − 𝐾𝐺𝜈𝛎 (22)

where 𝐹 is the linearized system matrix, 𝐾 is the Kalman Gain, 𝐻 is the linearized output

matrix, 𝐺𝑤 is the linearized process noise matrix and 𝐺ν is the linearized measurement

noise matrix [6]. The filter matrices are summarized below:

𝐹 =
𝜕𝑓(𝐱, 𝐮, 𝐰)

𝜕𝐱
|
𝐱=𝐱̂
𝐰=0

, 𝐺𝑤 =
𝜕𝑓(𝐱, 𝐮,𝐰)

𝜕𝐰
|
𝐱=𝐱̂
𝐰=0

𝐻 =
𝜕ℎ(𝐱, 𝛎)

𝜕𝐱
|
𝐱=𝐱̂
𝛎=0

, 𝐺ν =
𝜕ℎ(𝐱, 𝛎)

𝜕𝛎
|
𝐱=𝐱̂
𝛎=0

(23)

 Using this linearized error state model, the Kalman filter algorithm as described in section

2.2.1 can be implemented. The nonlinear system equations are used for the uncorrected

state estimate step of the Kalman filter, while the linearized filter matrices are used for

determining the covariance matrix and Kalman gain.

 The EKF has several limitations that can hinder its performance for nonlinear state

estimation applications. The filter uses a first order Taylor series expansion to linearize the

error dynamics and determine the state covariance. This approximation may not be accurate

enough for highly linear systems [9]. If the sampling time is not small enough, the filter

can quickly diverge if the states vary significantly between time steps. The linearization

process is also computationally expensive, making the filter generally slower than the

linear Kalman filter during implementation [6]. This may not be adequate for systems that

22

are highly nonlinear [10]. Another formulation, the Unscented Kalman filter uses the

unscented transform of sample points through a nonlinear function to produce a Gaussian

approximation of the function [10]. This can yield more accurate results than the Extended

Kalman Filter, however, it can still be computationally expensive [9]. Similarly,

optimization techniques for nonlinear systems like Moving-Horizon Estimation (MHE)

can outperform an EKF for highly nonlinear systems, however, optimizing the numerical

solution for these equations is computationally demanding [40].

2.2.3. Interactive Multiple Model Filter

 The IMM algorithm is a state prediction method that adaptively predicts the states

of systems that have varying dynamics [14]. In general, designing a filter for state

estimation requires an accurately defined system model that effectively represents all

system dynamics, parameters and inputs. If this information is unavailable, then a filter

model must be selected based on the expected behaviour of the system. This can often lead

to incorrect assumptions that produce inaccurate predictions, especially if the system

dynamics change for different scenarios [14]. For example, an application that can benefit

from multiple dynamic models is a mobile robot with caster wheels. The motion

characteristics of caster-wheeled robots change frequently when these robots alternate

between lateral and longitudinal movements.

 The IMM algorithm facilitates the model selection process by running multiple

Kalman filters in parallel [19]. Instead of switching between filters for the best state

estimate, the IMM estimates are the result of mixing estimates from each filter to yield a

23

cumulative prediction that is weighted based on the measurement residuals of each model

prediction and the measured state [14]. After each measurement, the likelihoods of each

model are calculated to determine the contributions of each filter to the mixed state

estimate.

 The IMM algorithm recursively calculates filter performance and uses conditional

probabilities to determine when mode transition is required to maintain an accurate

estimation [14]. The formulation here assumes a two-mode filter but can be extended to

include any number of modes. The state switching matrix is given by:

𝑝𝑖𝑗 = [
p𝑖𝑖 p𝑖𝑗
p𝑗𝑖 p𝑗𝑗

] (24)

where p𝑖𝑗 represents the probability of switching from mode 𝑖 to 𝑗. The elements in the

state switching matrix are selected parameters that govern the likelihood of switching

modes or remaining in the current mode [14]. The probability of each model is defined by:

𝛍 = [μ𝑖 μ𝑗] (25)

 The normalization vector for maintaining a total model probability of 1 given 𝑁

filter modes is calculated as [14]:

𝛙̅𝑗 = ∑𝑝𝑖𝑗𝛍𝑖

𝑁

𝑖=1

 (26)

 The conditional model probabilities are used to mix the state estimates and

covariance matrices. The conditional probability matrix is given by:

24

𝜇𝑖|𝑗 =
𝑝𝑖𝑗𝛍̂𝑖

𝛙̅𝑗
 (27)

where 𝛍̂𝑖 is the estimate of the probabilities for each model from the previous time

increment [14]. The IMM uses the conditional probabilities and the current state estimate

from each individual model to produce a set of mixed state estimates and covariance

matrices. The mixed state estimates are calculated by:

𝐗̂0𝑗 = ∑𝐗̂𝑖𝜇𝑖|𝑗

𝑁

𝑖=1

 (28)

where 𝐗̂0𝑗 is the mixed state estimate for model 𝑗 and 𝐗̂𝑖 is the current state estimate for

model 𝑖 [14]. For a two-mode system, this equation will yield two mixed states, 𝐗̂01 and

𝐗̂02, that are a mixture of the state predictions 𝐗̂1 and 𝐗̂2 given by the individual Kalman

filters and their conditional probabilities.

 Similarly, the mixed covariance matrix estimates are computed using the current

covariance matrix estimate for each individual filter, the state estimates of each filter, the

mixed state estimates and the conditional probability matrix [19]. The mixed covariance

matrices are given by [14]:

𝑃̂0𝑗 = ∑𝜇𝑖|𝑗 [𝑃̂𝑖 + (𝐗̂𝑖 − 𝐗̂0𝑗)(𝐗̂𝑖 − 𝐗̂0𝑗)
T
]

𝑁

𝑖=1

 (29)

25

 The innovations and innovation covariance matrices for each model are computed

to determine the likelihood of each model. The innovation and innovation covariance

matrices are given by:

𝐙𝑗 = 𝐲 − 𝐲̂𝑗 (30)

𝑆𝑗 = 𝐻𝑗𝑃̂0𝑗(𝐻𝑗)T + 𝑅 (31)

where 𝐙𝑗 is the innovation of model 𝑗 at the current time increment, 𝐲 and 𝐲̂𝑗 are the vectors

containing the measurements and measurement estimates of the system states at the current

time increment respectively, 𝐻𝑗 is the output matrix of model 𝑗, 𝑆𝑗 is the innovation

covariance matrix of model 𝑗 and 𝑅 is the covariance matrix of the measurement noise

[14]. The likelihoods (⋀𝑗) of each model matching the current system dynamics are

computed by [14]:

⋀𝑗 =
1

√|2𝜋𝑆𝑗|
𝑒𝑥𝑝 [−

1

2
(𝐙𝑗)T(𝑆𝑗)−1(𝒁𝑗)] (32)

 Using the likelihood of each model, the probability normalizing constant is

calculated as [14]:

c = ∑⋀𝑖𝛙̅𝑖

𝑁

𝑖=1

 (33)

 The estimates of the probabilities for each model are updated for the next iteration

using [14]:

26

𝛍̂𝑗 =
⋀𝑗𝛙̅𝑗

c
 (34)

 The final steps involve combining the state estimates with the recently calculated

model probabilities to produce an overall system state estimate and system covariance

estimate. The combined state estimate is:

𝐗̂ = ∑𝐗̂𝑖𝛍̂𝑖

𝑁

𝑖=1

 (35)

and the combined covariance matrix estimate is given by [14]:

𝑃̂ = ∑𝛍̂𝑖 [𝑃̂𝑖 + (𝐗̂𝑖 − 𝐗̂)(𝐗̂𝑖 − 𝐗̂)
T
]

𝑁

𝑖=1

 (36)

 IMM filters can be designed for nonlinear systems using parallel EKFs. In that case,

the linearized filter matrices are used in the IMM filter.

 The main disadvantage of using an IMM filter is that it does not give optimal state

estimation results [14]. If a system is strictly governed by a set of fixed linear time-invariant

dynamic equations, then a Kalman filter derived from that set of equations will yield the

optimal estimator solution [7]. Furthermore, it is more computationally efficient to run a

single Kalman filter instead of an IMM with multiple modes. The increase in computational

complexity of an IMM filter scales with the number of modes that the filter contains. The

calculation of this complexity value is not evaluated in this thesis. This is not necessarily a

significant issue when using an IMM for nonlinear systems since existing filters like the

27

EKF are already linearized approximations. An IMM utilizing parallel EKFs can

outperform the single model filter if configured and tuned correctly.

 28

Chapter 3

Computer Vision Tracking using the

Interactive Multiple Model Filter

About this chapter: This chapter1 analyses the problem of tracking a target in a video

sequence autonomously using a combination of computer vision tracking techniques. The

IMM filter is used for target trajectory prediction, and the mean shift algorithm is used for

measurement updates.

3.1. Problem Formulation

 Computer vision object tracking is a rapidly developing technology that is

becoming widely used in many real-world applications. Some of these applications include

mobile robot target tracking [40], traffic monitoring [41] and automatic guidance systems

[42]. This area of research focuses on finding an object in a video frame and sequentially

detecting the same object in successive frames. Some common methods for object tracking

include mean shift [43], active contours [44] and Kanade-Lucas-Tomasi (KLT) tracking

[45].

1 This chapter is based on the following publication of the author:

P. J. Glavine, O. D. Silva, G. Mann and R. Gosine, "Color-Based Object Tracking using Mean Shift and Interactive

Multiple Model Kalman Filtering," in Newfoundland Electrical and Computer Engineering Conference (NECEC), St.

John's, 2017.

29

 Tracking an object in a video sequence requires the target to be defined such that it

can be accurately detected between video frames. This process becomes difficult when the

video contains object clutter, lighting changes, or a target that changes size, shape or colour

for example. Furthermore, the object becomes even more difficult to track when it moves

unpredictably in an arbitrary fashion. The object tracking method discussed in this chapter

uses a mean shift colour-based approach paired with the IMM filter. The mean shift tracker

is used to identify the tracked target using its colour histogram. The position of the target

that is calculated by the mean shift tracker is used as the measurement for the IMM filter.

The IMM filter estimates the trajectory of the target using a combination of two kinematic

motion models, the constant velocity model and constant acceleration model. This

implementation allows the tracker to switch between prediction models when the tracked

target abruptly changes directions or begins accelerating unexpectedly.

3.2. Methodology

3.2.1. Mean Shift Algorithm

 The mean shift algorithm is a method for finding the mode of a nonparametric

dataset through gradient ascension [46]. This is done by iteratively calculating the mean of

a set of sample points within a window and shifting a position estimate to the location of

the sample data centroid [47]. This method can be applied to computer vision tracking by

representing a target using a colour histogram which approximates its probability

distribution function (PDF) [48]. The algorithm uses gradient ascension to move an initial

30

position estimate towards the center of a target candidate in successive images.

Convergence occurs when the original target and candidate have matching PDFs [48].

 Given an initial position 𝐲0, the mode of a random dataset can be found by

iteratively travelling from 𝐲0 to a new location 𝐲1 by a vector defined as [46]:

 𝐦ℎ(𝐲) = [
1

𝑛𝑥
∑𝐱𝑖

𝑛𝑥

𝑖=1

] − 𝐲0 (37)

Where 𝐦ℎ is the mean shift vector, 𝑛𝑥 is the number of data points in the current window,

and 𝐱𝑖 is the vector containing the x and y coordinates of the 𝑖𝑡ℎ data point. The position

𝐲1 in Figure 1 defines the centroid, or mean location, of the data points in the circular

window.

Figure 1 Mean Shift Vector

 Weights can be assigned to the data points based on their spatial distance from 𝐲0

by defining a kernel mask for the window [43]. The weighted mean shift vector is given

by [46]:

31

 𝐦ℎ(𝐲) = [
∑ 𝑤𝑖(𝐲0)𝐱𝑖

𝑛𝑥
𝑖=1

∑ 𝑤𝑖(𝐲0)
𝑛𝑥

𝑖=1

] − 𝐲0 (38)

where 𝑤𝑖 is the kernel weight of the 𝑖𝑡ℎ pixel in the window. The Gaussian kernel has been

used in this tracking application, it is defined by [46]:

 𝐾(𝐱) = 𝑐 ∙ 𝑒𝑥𝑝 (−
1

2
‖𝐱‖2) (39)

where c is a constant. This kernel is radially symmetric, therefore it can be expressed as

[48]:

 𝐾(𝐱) = 𝑐𝑘(‖𝐱‖𝟐) (40)

where 𝑘 is the kernel profile. Masking a window of a nonparametric data set with a kernel

function allows the PDF of the dataset to be approximated as [47]:

 𝑃(𝐱) =
1

𝑛
𝑐 ∑𝑘(‖𝐱 − 𝐱𝑖‖

2)

𝑛

𝑖=1

 (41)

where ‖𝐱 − 𝐱𝑖‖
2 represents the distance from the point 𝐱 to the 𝑖𝑡ℎ data point in the kernel.

Higher weights are assigned to points that are closer to 𝐱. Differentiating and manipulation

of Eq. (41) gives [47]:

∇𝑃(𝐱) =

1

𝑛
𝑐 [∑𝑔𝑖

𝑛

𝑖=1

] [
∑ 𝐱𝑖𝑔𝑖

𝑛
𝑖=1

∑ 𝑔𝑖
𝑛
𝑖=1

− 𝐱] (42)

32

where 𝑔𝑖 is the negative gradient of the kernel profile at the 𝑖𝑡ℎ data point defined such that

𝑔(𝐱) = −𝑘′(𝐱) [48]. The mean shift vector from Eq. (42) is [46]:

 𝐦ℎ(𝐱) = [
∑ 𝐱𝑖𝑔𝑖

𝑛
𝑖=1

∑ 𝑔𝑖
𝑛
𝑖=1

− 𝐱] (43)

Therefore, the mean shift can be expressed as:

 𝐦ℎ(𝐱) =
𝛻𝑃(𝐱)

1
𝑛 𝑐 ∑ 𝑔𝑖

𝑛
𝑖=1

 (44)

which shows that the mean shift vector is the gradient of the estimated PDF for the

nonparametric dataset [47].

 In this vision tracking experiment, the target model is represented using a weighted

colour histogram which represents the PDF of the pixels (data points) in the target [48].

The target colour histogram is defined as [43]:

 𝑞̂ = {𝑞̂𝑢}𝑢=1..𝑚 ∑ 𝑞̂𝑢
𝑚
𝑢=1 = 1 (45)

where 𝑚 is the total number of bins in the colour histogram. The target candidate is given

by [43]:

 𝑝̂(𝐲) = {𝑝̂𝑢(𝐲)}𝑢=1..𝑚 ∑ 𝑝̂𝑢
𝑚
𝑢=1 = 1 (46)

The target candidate histogram 𝑝̂(𝐲) defines a potential match for the original target

histogram 𝑞̂ in the current image frame at location 𝐲. The colour histogram of the target

candidate can be generated using [43]:

33

 𝑝̂𝑢(𝐲) =
1

∑ 𝑘 (‖
𝐲 − 𝐱𝑖

h
‖

2
)

𝑛ℎ

𝑖=1

∑𝑘 (‖
𝐲 − 𝐱𝑖

ℎ
‖

2

)

𝑛ℎ

𝑖=1

𝛿[𝑏(𝐱𝑖) − 𝑢] (47)

where h is the kernel bandwidth, 𝑛ℎ is the number of pixels within the kernel, 𝑏(𝐱𝑖) is the

colour of the 𝑖𝑡ℎ pixel in the kernel, 𝑢 is the set of colour bin values in the range 1. .𝑚 and

𝛿 is the Kronecker delta function. The expression 𝛿[𝑏(𝐱𝑖) − 𝑢] equals one when the colour

of pixel 𝐱𝑖 has the same value as 𝑢. When this occurs, the histogram bin 𝑢 will increase by

a normalized value defined by the kernel weight at 𝐱𝑖. Summing this expression over all

pixel values in the kernel generates a colour probability distribution [47]. The original

target model 𝑞̂ is calculated using the same method.

 The Bhattacharyya coefficient measures the similarity of two probability

distributions [49]. It is used to determine if the target candidate matches the original target.

The coefficient is defined by [46]:

 ρ[𝑝̂(𝐲), 𝑞̂] = ∑ √𝑝̂𝑢(𝐲)𝑞̂𝑢

𝑚

𝑢=1

 (48)

Two probability distributions are similar when the Bhattacharyya coefficient is maximized;

this is equivalent to minimizing the distance given by [43]:

 d = √1 − ρ[𝑝̂(𝐲), 𝑞̂] (49)

Performing a Taylor series expansion of the Bhattacharyya coefficient about an operating

point defined as 𝐲̂0 (initial target position) yields [43]:

34

 ρ[𝑝̂(𝐲), 𝑞̂] = ρ[𝑝̂(𝐲̂0), 𝑞̂] +
𝐶ℎ

2
∑[∑ 𝛿[𝑏(𝐱𝑖) − 𝑢]√

𝑞̂𝑢

𝑝̂𝑢(𝐲̂0)

𝑚

𝑢=1

]

𝑚

𝑢=

𝑘 (‖
𝐲 − 𝐱𝑖

h
‖

2

) (50)

where 𝐶ℎ is a normalization constant. This linear approximation assumes that 𝑝̂(𝐲) does

not change significantly from the initial estimate 𝑝̂(𝐲̂0) when the distance function d is

minimized for the current frame [43]. This is a reasonable assumption when the target does

not move substantial distances between frames. Maximizing the Bhattacharyya coefficient

is dependent on the maximization of the second term in Eq. (50). This equation contains

the weights which are given by [47]:

 𝑤𝑖(𝐲0) = ∑ 𝛿[𝑏(𝐱𝑖) − 𝑢]√
𝑞̂𝑢

𝑝̂𝑢(𝐲̂0)

𝑚

𝑢=1

 (51)

Combining the weights from Eq. (51) and the gradient form of the mean shift vector in Eq.

(43) gives [43]:

𝐲̂1 =
∑ 𝐱𝑖𝑤𝑖𝑔 (‖

𝐲0 − 𝐱𝑖

h
‖

2
)𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1 𝑔 (‖

𝐲0 − 𝐱𝑖

h
‖

2
)

(52)

The initialized position 𝐲̂0 is iteratively updated using the new position 𝐲̂1 until the distance

between the distributions 𝑝̂(𝐲) and 𝑞̂ is minimized below a selected threshold [43].

35

3.2.2. Interactive Multiple Model Filter Tracking Implementation

 For this application, the IMM filter uses two linear system models to predict the

kinematic states of a “blob” in two-dimensional space. The two kinematic models that were

used for tracking targets in this system are the constant velocity (CV) and the constant

acceleration (CA) models.

 The CV model assumes that the target has a constant velocity, with acceleration

considered to be a random walk process of zero mean Gaussian noise [14]. The system

dynamics are given by:

 [

𝐯x

𝐯y

𝐚x

𝐚y

] = [

0 0 1
0 0 0
0
0

0
0

0
0

0
1
0
0

] [

𝐱
𝐲
𝐯x

𝐯y

] + [

0 0
0 0
1 0
0 1

] [
𝛈ax

𝛈ay
] (53)

where (𝐱, 𝐲), (𝐯x, 𝐯y) and (𝐚x, 𝐚y) are pixel coordinates, velocities and accelerations

respectively. The noise vector [𝛈ax 𝛈ay]
T represents the random walk acceleration process

[14].

 The CA model assumes that the target has a constant acceleration, with variation in

acceleration (jerk) modelled as a random walk process of zero mean Gaussian noise [14].

The system dynamics are given by:

[

𝐯x

𝐯y

𝐚x

𝐚y

𝐚̇x

𝐚̇y]

=

[

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0]

[

𝐱
𝐲
𝐯x

𝐯y

𝐚x
𝐚y]

+

[

0 0
0 0
0 0
0 0
1 0
0 1]

[
𝛈jx

𝛈jy
]

(54)

36

Here, (𝐚̇x, 𝐚̇y) represent the jerk that the blob undergoes defined by the random noise vector

[𝛈jx 𝛈jx]
T
 [14].

 In both cases, the process and measurement noise covariance matrices are given by:

𝑄 = [
𝜎𝑄𝑥

2 0

0 𝜎𝑄𝑦
2] 𝑅 = [

𝜎𝑅𝑥
2 0

0 𝜎𝑅𝑦
2] (55)

where 𝜎𝑄
2 and 𝜎𝑅

2 are the variances of the process and measurement noises respectively

[6]. The process and measurement noise variances are tuned to match the uncertainty in

system motion and position measurements respectively.

3.2.3. Vision Tracker Design

 The tracking algorithm was implemented as shown in Figure 2 using MATLAB.

The mean shift begins with the initialization of a target model by the user. A Gaussian filter

is applied to generate a set of weights for the target model. An indexed colour map is

obtained from the target model and is used to generate the colour histogram. In the next

frame, a target candidate window is initialized from the target coordinates in the previous

frame. The new target candidate colour histogram is generated and the weighted mean shift

vector is computed. The target position is updated, the weights are recomputed and the

Bhattacharyya distance is calculated using the current target candidate and the target

model. The mean shift process repeats until the Bhattacharyya distance is below the

convergence threshold value.

37

 The Kalman filter models use the mean shift position estimate as a measurement to

update the system states. The estimates and covariance matrices from each Kalman filter

are inputs for the IMM filter which computes the combined state estimate. Using the

available measurements, the probabilities of each filter model are calculated and the

combined weighted estimate from each filter is computed to yield the overall IMM

estimate.

Figure 2 Mean Shift IMM Tracker Algorithm

38

3.3. Computer Vision Tracker Experiments

3.3.1. Constant Velocity Tracking

 The first test involved tracking a red circular target moving in a horizontal straight

line with a constant velocity. The center of the circle contains a blue pixel that was used

for calculating position tracking error. The constant velocity test is shown in Figure 3

below.

Frame 1

Frame 33

Frame 66

Frame 99

Frame 132

Frame 165

Figure 3 Constant Velocity Test

 The tracking results are shown in Table 1. Kalman and IMM filter results are based

on five test trial averages since the target motion and measurements are considered

Gaussian processes. The addition of Kalman filtering improves tracking accuracy in all

cases. The IMM filter outperforms both single-filter models.

39

Table 1 Constant Velocity Tracking Results

Mean Shift Tracking

Mean Error X (Pixels) Mean Error Y (Pixels) Frames per Measurement

4.4121 0 1

Mean Shift with Constant Velocity Kalman Filter Model (5 Trial Average)

Mean Error X (Pixels) Mean Error Y (Pixels) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2
Frames per

Measurement

2.5054 0 0.01 0.01 40 0 1

Mean Shift and Constant Acceleration Kalman Filter Model (5 Trial Average)

Mean Error X (Pixels) Mean Error Y (Pixels) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2
Frames per

Measurement

2.2634 0 3 3 20 0 1

Mean Shift and IMM Kalman Filter Model (5 Trial Average)

Mean Error

X (Pixels)

Mean Error

Y (Pixels)

𝜎𝑄𝑥
2

(CV)

𝜎𝑄𝑦
2

(CV)

 𝜎𝑄𝑥
2

(CA)

𝜎𝑄𝑦
2

(CA)

 𝜎𝑅𝑥
2

(CV)

𝜎𝑅𝑦
2

(CV)

𝜎𝑅𝑥
2

(CA)

𝜎𝑅𝑦
2

(CA)

Frames per

Measurement

1.3697 0 0.01 0.01 3 3 40 0 20 0 1

 The model probabilities during the constant velocity test are shown in Figure 4.

Initially, the constant acceleration model obtains a higher probability. This is because the

target instantaneously transitions from a resting state to a constant velocity motion at the

beginning of the video sequence. The IMM filter velocities and accelerations are initialized

with values of zero, therefore, the filter initially lags behind the motion of the target. The

filter estimates a transient period of target acceleration before the system reaches a steady

state. Once this occurs, the acceleration becomes a low value, and the probabilities of the

constant velocity and acceleration models rise and lower respectively.

Figure 4 Model Probabilities Constant Velocity Test

40

3.3.2. Constant Acceleration Tracking

 The second test involved tracking a red circular target with a blue pixel center

moving in a horizontal straight line with a constant acceleration. The actual center position

for all frames was calculated by sampling the blue pixel location for ten frames and taking

an average to determine the acceleration. The constant acceleration test is shown in Figure

5.

Frame 1

Frame 11

Frame 22

Frame 33

Frame 44

Frame 55

Figure 5 Constant Acceleration Test

 As shown in Table 2, Kalman and IMM filtering improve tracking accuracy in all

cases over using the mean shift method alone. Again, the IMM filter outperforms both

single-filter models, however, not as substantially in this case. For this test, the single filter

CA model also accurately tracks the target for all frames because there is no transient

acceleration period at the beginning of the video sequence like in the CV test.

41

Table 2 Constant Acceleration Tracking Results

Mean Shift Tracking

Mean Error X (Pixels) Mean Error Y (Pixels) Frames per Measurement

5.9416 0 1

Mean Shift with Constant Velocity Kalman Filter Model (5 Trial Average)

Mean Error X (Pixels) Mean Error Y (Pixels) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2
Frames per

Measurement

3.806 0 3 3 50 0 1

Mean Shift and Constant Acceleration Kalman Filter Model (5 Trial Average)

Mean Error X (Pixels) Mean Error Y (Pixels) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2
Frames per

Measurement

2.9628 0 0.0001 0.0001 50 0 1

Mean Shift and IMM Kalman Filter Model (5 Trial Average)

Mean Error

X (Pixels)

Mean Error

Y (Pixels)

𝜎𝑄𝑥
2

(CV)

𝜎𝑄𝑦
2

(CV)

 𝜎𝑄𝑥
2

(CA)

𝜎𝑄𝑦
2

(CA)

 𝜎𝑅𝑥
2

(CV)

 𝜎𝑅𝑦
2

(CV)

𝜎𝑅𝑥
2

(CA)

𝜎𝑅𝑦
2

(CA)

Frames per

Measurement

2.9309 0 3 3 0.001 0.001 50 0 50 0 1

3.3.3. Elliptic Path Tracking

 The next testing setup for the tracking systems was comprised of a red circular

target moving in a circular path with a constant angular velocity and radius relative to the

center point. The sequence was generated by plotting markers on a figure in MATLAB and

using the “getframe” function to build a video. The center of the red circle contains a blue

pixel which was used to accurately determine the target center for all frames. The aspect

ratio of the MATLAB figure caused the circular motion to become slightly elliptic in the

video sequence, therefore, the motion contained small tangential acceleration components

at different points along the path. The actual center position for all frames was calculated

by measuring the blue pixel location when the target angle with respect to the center was

00, 900, 1800 and 2700. These pixel locations were used to calculate the major and minor

axes of the ellipse and a set of actual target center locations was estimated using:

𝑥 = 𝑥𝑐 + acos𝜃 𝑦 = 𝑦𝑐 + bsin𝜃 (56)

42

where 𝑥 and 𝑦 are the target coordinates, 𝑥𝑐 and 𝑦𝑐 are the ellipse center coordinates, a is

the major axis, b is the minor axis and 𝜃 is the angle to point (𝑥, 𝑦) measured from the

horizontal axis at the ellipse center. The elliptic path test is shown in Figure 6.

Frame 1

Frame 80

Frame 160

Frame 240

Frame 320

Frame 400

Figure 6 Elliptic Path Test

Table 3 Elliptic Path Tracking Results

Mean Shift Tracking

Mean Error X (Pixels) Mean Error Y (Pixels) Frames per Measurement

5.4363 4.9410 1

Mean Shift with Constant Velocity Kalman Filter Model (5 Trial Average)

Mean Error X (Pixels) Mean Error Y (Pixels) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2
Frames per

Measurement

5.4373 4.9313 25 5 0.2 0.3 1

Mean Shift and Constant Acceleration Kalman Filter Model (5 Trial Average)

Mean Error X (Pixels) Mean Error Y (Pixels) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2
Frames per

Measurement

5.4538 4.9006 20 10 0.3 0.5 1

Mean Shift and IMM Kalman Filter Model (5 Trial Average)

Mean Error

X (Pixels)

Mean Error

Y (Pixels)

𝜎𝑄𝑥
2

(CV)

𝜎𝑄𝑦
2

(CV)

 𝜎𝑄𝑥
2

(CA)

𝜎𝑄𝑦
2

(CA)

 𝜎𝑅𝑥
2

(CV)

 𝜎𝑅𝑦
2

(CV)

𝜎𝑅𝑥
2

(CA)

 𝜎𝑅𝑦
2

(CA)

Frames per

Measurement

5.4330 4.9322 25 8 20 8 0.3 0.3 0.3 0.3 1

 Elliptic path tracking results are found in Table 3. All results involving a Kalman

or IMM filter are based on averages from five test trials. The results from this test are

43

mixed, the single Kalman filter models both improved the tracking results in the Y direction

over using the mean shift tracker alone, however, both filters performed slightly worse than

the standalone mean shift for X direction tracking. The IMM filter slightly improved

tracking accuracy in both directions but failed to improve Y direction tracking as much as

the single Kalman filter models.

3.3.4. Constant Acceleration with Occlusion Test

 The constant acceleration occlusion test includes an additional circular target

travelling perpendicular to the path of the red circle. The green circle intersects the path of

the red circle during the middle frame of the sequence, completely covering the target. The

constant acceleration occlusion test is shown in Figure 7.

Frame 1

Frame 22

Frame 30

Frame 36

Frame 40

Frame 44

Figure 7 Constant Acceleration with Occlusion Test

44

Table 4 Constant Acceleration with Occlusion Test

Mean Shift Tracking

Tracking Success Rate (%) Frames per Measurement Convergence Max Iterations

0 1 20

Mean Shift with Constant Velocity Kalman Filter Model (5 Trial Average)

Tracking Success Rate

(%)
𝜎𝑄𝑥

2 𝜎𝑄𝑦
2 𝜎𝑅𝑥

2 𝜎𝑅𝑦
2

Frames per

Measurement

Convergence

Max Iterations

100 0.001 0.001 2 2 3 10

Mean Shift and Constant Acceleration Kalman Filter Model (5 Trial Average)

Tracking Success Rate (%) 𝜎𝑄𝑥
2 𝜎𝑄𝑦

2 𝜎𝑅𝑥
2 𝜎𝑅𝑦

2
Frames per

Measurement

Convergence

Max Iterations

100 0.001 0.001 2 2 3 10

Mean Shift and IMM Kalman Filter Model (5 Trial Average)

Tracking Success
Rate (%)

𝜎𝑄𝑥
2

(CV)

𝜎𝑄𝑦
2

(CV)

 𝜎𝑄𝑥
2

(CA)

𝜎𝑄𝑦
2

(CA)

 𝜎𝑅𝑥
2

(CV)

 𝜎𝑅𝑦
2

(CV)

𝜎𝑅𝑥
2

(CA)

 𝜎𝑅𝑦
2

(CA)

Frames per
Measurement

Convergence

Max

Iterations

100 0.1 0.001 0.1 0.001 40 0.1 40 0.1 3 10

 The test results are shown in Table 4. The mean shift algorithm was unable to track

the target while it is briefly occluded by the green circle. The number of frames per

measurement was increased for the Kalman and IMM filter tests to demonstrate their ability

to track without mean shift measurements for short periods of time. The filters successfully

tracked the target for all trials tested. The Kalman and IMM filters use the object kinematic

state estimates to continue tracking the target when mean shift measurements are

unavailable or unreliable.

3.3.5. General Tracking Results

 The designed vision tracker is capable of tracking objects in real-world video

sequences as shown in Figure 8. The red ball is accurately tracked for the entire duration

of the video including instances where the ball is partially occluded by the juggler’s hand.

The blue box indicates the tracking window and the green dotted path is the trajectory of

the ball. The tracking demonstration in Figure 8 is available for viewing online at

https://www.youtube.com/watch?v=O4t1poYL6rw.

https://www.youtube.com/watch?v=O4t1poYL6rw

45

Frame 1

Frame 202

Frame 100

Frame 253

Frame 151

Frame 325

Figure 8 IMM-Mean Shift Juggling Tracking [50]

3.4. Conclusions

 The IMM filter improved the tracking results of the mean shift method for all cases.

Blending the predictions of different kinodynamic models together allows the tracker to

react quickly to abrupt changes in the motion characteristics of the blob. The results of the

CV test indicate that the IMM filter is more reliable than a single Kalman filter model when

instantaneous kinematic transitions occur in the behaviour of the target. Using the IMM

filter did not yield a large difference in tracking accuracy for the synthetic videos involving

the red circle. This is because the tested motion paths were relatively simple and stable,

46

therefore, the tracking estimation of each evaluated technique was quite accurate. It is

expected that for target tracking in unstructured scenarios where the object motion

characteristics are dynamic and change rapidly, the added computational cost of using an

IMM filter may be worth the improved tracking accuracy. The IMM filter kinematic state

estimates also allow the system to effectively follow targets that are briefly occluded by

objects which is a frequent problem in most real-world video tracking applications.

 Another observation that was qualitatively analyzed during the tracker testing

concerns the computational improvements of pairing the mean shift algorithm with a

Kalman or IMM filter. The mean shift algorithm runs multiple, intensive image processing

operations in several loops before PDF similarity convergence occurs. The IMM filter only

needs to perform several matrix operations to update the system states. Since the IMM

filter can accurately track a target for multiple frames without a mean shift measurement

update, it can reduce the frequency of mean shift computations and improve algorithm

efficiency. The extent of this efficiency improvement is a function of mean shift

convergence threshold, video resolution, frames per measurement and several other factors.

The quantitative analysis of this observation is not covered in this thesis but can be

examined in future work with the vision tracker.

 47

Chapter 4

Vehicle Inertial Navigation System using

the Interactive Multiple Model Filter

About this chapter: This chapter2 analyses an INS state estimation system for an

automobile. The system uses a vehicle kinematic model to predict motion and corrects the

estimates using GPS and heading sensor feedback. The state estimator uses an IMM filter

that uses differently tuned noise parameters to improve estimator performance. The varied

noise parameters allow the filter to shift its confidence between the GPS and heading

sensors when one sensor more correctly reflects the actual trajectory of the vehicle.

4.1. Problem Formulation

 Localization is one of the first major tasks required for a fully autonomous system

to function properly [7]. This is a diverse problem which is necessary for accurate tracking

of robot or vehicle movement during operations. Without accurate localization, a system

cannot be controlled safely or perform tasks with precision. Furthermore, if an autonomous

2 This chapter is based on the following publication of the author:

P. J. Glavine, O. D. Silva, G. Mann and R. Gosine, "GPS Integrated Inertial Navigation System Using Interactive Multiple

Model Extended Kalman Filtering," in 2018 Moratuwa Engineering Research Conference (MERCon), Moratuwa, 2018.

48

system has rapidly changing dynamics, it can be difficult to maintain accurate localization

estimates using a single process or measurement model [19].

 To address this problem, an INS has been designed using an IMM framework. The

vehicle kinematics are predicted using a model that treats the vehicle as a three-dimensional

frame in space that can rotate about three axes. The IMM model uses two sets of tuned

noise parameters that allow the system to vary its confidence in the available feedback

sensors. This can improve system performance in situations where a sensor becomes less

reliable for predicting system states, especially during abrupt manoeuvres. The filter, in

this case, allows the system to continuously switch between sets of noise parameters, as

needed, to better track the actual trajectory of the vehicle.

4.2. Methodology

4.2.1. KITTI Vision Benchmark Data Set

 The vehicle in this study is a 6 degree of freedom system that is equipped with an

OXTS RT3003 sensor that includes a built-in IMU and DGPS unit that operates using the

World Geodetic System 84 (WGS84) model [22]. The data set is obtained from a

Volkswagen Passat B6 driving through a residential area in Karlsruhe, Germany [22]. The

vehicle setup is shown in Figure 9. The IMU provides body frame acceleration and angular

velocity measurements; the DGPS unit gives accurate positional readings that are used as

the ground truth coordinates in this study. The body frame coordinates of the INS are the

same as the GPS/IMU frame.

49

Figure 9 Vehicle and Sensor Configuration [22]

4.2.2. Vehicle State Space Model

 The vehicle state space model is a nonlinear system. The model considers the

vehicle to be a moving frame in three-dimensional space that can rotate about three axes.

Changes in the states of this system are a function of states, control inputs and process

noise. The state space model is:

𝐱̇ = 𝑓(𝐱, 𝐮, 𝐰) (57)

50

where 𝐱 is the state vector, 𝐮 is the system input vector and 𝐰 is the process noise vector

[6]. The measurement model for the system is also a nonlinear function which is given by:

𝐲 = ℎ(𝐱, 𝛎) (58)

where 𝐲 is the measurement vector and 𝛎 is the measurement noise vector [6].

 The estimated states of the system are included in the following state vector:

𝐱 = [𝐩, 𝐯, 𝐪, 𝐛a, 𝐛ω]T (59)

where 𝐩 = [px, py, pz]
T are the vehicle position coordinates with respect to the world frame

represented in the world frame, 𝐯 = [vx, vy, vz]
T are the vehicle velocities with respect to

the world frame expressed in the body frame, 𝐪 = [q0, q1, q2, q3]
T is the quaternion that

rotates a vector from the body frame to the world frame, 𝐛a = [bax, bay, baz]
T represents

the accelerometer bias vector in the body frame and 𝐛ω = [bωx, bωy, bωz]
T is the

gyroscope bias vector in the body frame [51]. The choice of representing rotations with

quaternion vectors is explained shortly.

 The inputs for the state space model are given by an IMU. The IMU measurements

are integrated over discrete time steps using the system kinematic equations to generate an

estimated trajectory of the system states. The input vector is defined by:

𝐮 = [𝐟m, 𝛚m]T (60)

51

where 𝐟m is the measured body frame linear acceleration and 𝛚m is the measured body

frame angular velocity provided by the IMU accelerometer and gyroscope respectively.

The model for the IMU accelerometer is:

𝐟𝐦 = 𝐚 + 𝐛𝐚 − 𝑅q

T𝐠𝐞 + 𝛈𝐟𝐦 (61)

where 𝐚 = [ax, ay, az]
T is the acceleration vector of the body frame with respect to the

world frame represented in the body frame, 𝑅q is the rotation matrix that rotates a vector

from the body frame to the world frame, 𝐠𝐞 = [0 0 9.81]T is the Earth’s gravity vector

represented in the world frame in m/s2, 𝛈fm is zero-mean Gaussian noise such that

𝛈fm~𝑁(0, 𝛔fm
2) and 𝛔fm

2 is the accelerometer noise variance [51]. The gravity vector is

transformed into the vehicle body frame coordinates and subtracted from the measured

accelerometer reading. Variations in the accelerometer bias are modelled as a random walk

process such that:

𝐛̇a = 𝛈ba (62)

where 𝛈ba is zero-mean Gaussian noise such that 𝛈ba~𝑁(0, 𝛔ba
2) and 𝛔ba

2 is the bias noise

variance [6]. Rearranging the accelerometer measurement equation and isolating the

vehicle acceleration vector gives:

𝐚 = 𝐟m − 𝐛a + 𝑅𝐪

T𝐠𝐞 − 𝛈fm (63)

The model for the IMU gyroscope sensor is:

52

𝛚m = 𝛚 + 𝐛ω + 𝛈ωm (64)

where 𝛚 = [ωx, ωy, ωz]
T is the angular velocity vector of the body frame with respect to

the world frame represented in the body frame and 𝛈ωm is zero-mean Gaussian noise such

that 𝛈ωm~𝑁(0, 𝛔ωm
2) and 𝛔ωm

2 is the gyroscope noise variance [51]. Variations in the

gyroscope bias are also modelled as a random walk process such that:

𝐛̇ω = 𝛈bω (65)

where 𝛈bω is zero-mean Gaussian noise such that 𝛈bω~𝑁(0, 𝛔bω
2) and 𝛔bω

2 is the bias

noise variance [6]. Gathering the noise terms for the accelerometer and gyroscope yields

the process noise vector:

𝐰 = [𝛈fm, 𝛈ωm, 𝛈ba, 𝛈bω]T (66)

 The Euler angle representation for rotations can cause numerical singularities when

a system performs certain rotation transitions [6]. To avoid this problem, the quaternion

approach has been selected. For this application, rotations are represented by a unit

quaternion vector that has the normality property ‖𝐪‖ = 1 [52]. Quaternions are

represented as generalized complex numbers with four components such that 𝐪 = q0 +

q1𝐢 + q2𝐣 + q3𝐤 [53]. A three-dimensional rotation of a vector using quaternions can be

represented as a single rotation by an angle 𝜃 about an axis 𝐧̂ such that [53]:

𝐪 = cos (

𝜃

2
) + sin (

𝜃

2
) 𝐧̂ (67)

The conjugate of a quaternion is given as [53]:

53

𝐪∗ = [q0, −q1, −q2, −q3]

T (68)

Considering an arbitrary vector 𝛒 in ℝ3 space; this vector can be represented in the

quaternion form as 𝛒̅ = (0 𝛒T)T [6]. The rotation of this augmented vector can be

determined by:

𝛒̅′ = 𝐪 ⊗ 𝛒̅ ⊗ 𝐪∗ (69)

where 𝛒̅′ is the vector 𝛒̅ rotated by an angle 𝜃 about the axis 𝐧̂ [52]. In the above context,

the ⊗ operator represents quaternion multiplication. The product of two quaternions 𝐪 and

𝐩 is [52]:

 𝐪 ⊗ 𝐩 = (q0p0 − q1p1 − q2p2 − q3p3) + (q0p1 + q1p0 + q2p3 − q3p2)𝐢

 +(q0p2 − q1p3 + q3p1 + q2p0)𝐣 + (q0p3 + q1p3 − q2p1 + q3p0)𝐤
(70)

Modifying the quaternion representation into a vector form yields:

𝐪̅ = q0 + 𝐪⃗⃗ (71)

where 𝐪⃗⃗ = [q1, q2, q3]
T [6]. Using this form of the quaternion, the matrix equivalents for

quaternion multiplication can be defined. The left and right quaternion-product matrices

are [52]:

 𝑄+ = [
q0 −𝐪⃗⃗ T

𝐪⃗⃗ (q0𝐼 + [𝐪⃗⃗ ×])
] = [

q0

q1
q2

q3

−q1 −q2 −q3

q0 −q3 q2
q3

−q2

q0

q1

−q1

q0

]
(72)

54

 𝑄− = [
q0 −𝐪⃗⃗ T

𝐪⃗⃗ (q0𝐼 − [𝐪⃗⃗ ×])
] = [

q0

q1
q2

q3

−q1 −q2 −q3

q0 q3 −q2
−q3

q2

q0

−q1

q1

q0

]
(73)

where 𝐼 is the identity matrix and [𝐪⃗⃗ ×] is the skew-symmetric form of the vector 𝐪⃗⃗ . This

form is written as [52]:

[𝐪⃗⃗ ×] = [

0 −q3 q2

q3 0 −q1

−q2 q1 0
] (74)

With the quaternion multiplication matrices defined, the rotation of a vector between

frames can be expressed in a more compact form. The vector rotation becomes [6]:

 𝛒̅′ = 𝐪 ⊗ 𝛒̅ ⊗ 𝐪∗ = 𝑄+𝑄−T𝛒̅
(75)

This process is equivalent to rotating the vector 𝛒 using a rotation matrix. The rotation

matrix 𝑅q is parameterized using the quaternion components and is defined as [6]:

𝑅q = I34𝑄

+𝑄−T𝐼34
T (76)

where 𝐼34 is an identity matrix defined as:

𝐼34 = [

0
0
0

1
0
0

0
1
0

0
0
1
] (77)

This rotation matrix can be applied to the vector 𝛒 such that the rotated vector 𝛒′ = 𝑅q𝛒.

 With this quaternion and rotation matrix parameterization established, the angular

velocity of the vehicle can be expressed as the time derivative of the quaternion state. It is

55

shown in [6] that the orientation of a system, given a gyroscope measurement can be

calculated by:

𝐪̇ =

1

2
𝑄+(𝛚m − 𝐛ω + 𝛈ωm) (78)

This leads to the overall state space model for the vehicle which is [51]:

 𝐱̇ = f(𝐱, 𝐮,𝐰) =

[

𝐩̇
𝐯̇
𝐪̇

𝐛̇a

𝐛̇ω]

=

[

𝑅q𝐯

𝐟m − 𝐛a + 𝑅q
T𝐠𝐞 + 𝛈fm

0.5𝑄+(𝛚m − 𝐛ω + 𝛈ωm)
𝛈ba

𝛈bω]

(79)

Using this kinematic model, the physical states of the automobile system can be recursively

predicted by integrating the IMU sensor data. Corrections for the filter are provided by

secondary sensing devices which will be discussed in the following section.

4.2.3. Sensor Measurement Models

 The INS filter uses a DGPS and orientation sensor for estimate correction. Both

sensors are built into the OXTS RT3003 [54]. The measurement vector for the filter is

given by:

𝐲 = [𝐲p, 𝐲q]

T (80)

where 𝐲p is the DGPS position measurement vector and 𝐲q is the vehicle orientation

measurement vector represented using quaternions. The DGPS orientation is needed to

improve the vehicle heading observability. Observability analysis for the system will be

discussed in a later section. The GPS and orientation measurement models are:

56

𝐲p = 𝐩 + 𝛈p (81)

𝐲q = 𝐪 + 𝛈q (82)

where 𝛈p and 𝛈q are zero-mean Gaussian noise vectors such that 𝛈p~𝑁(0, 𝛔p
2) and

𝛈q~𝑁(0, 𝛔q
2); 𝛔p

2 and 𝛔q
2 are the variances of the GPS and orientation measurement noises

respectively [51]. The measurement model noise vector is:

𝛎 = [𝛈p, 𝛈q]

T
 (83)

In the KITTI dataset, the roll, pitch and yaw of the vehicle body frame are provided [22].

The measurements have been converted to quaternion values in the estimator measurement

model.

4.2.4. Coordinate Frame Transformations

 The GPS sensor used in the KITTI data set operates using the WGS84 model [54].

To simplify the analysis, the GPS coordinates from the dataset were converted from the

geodetic coordinates to a local tangent frame with a fixed origin. The geodetic coordinates

are first converted into Earth-centered Earth-fixed (ECEF) coordinates before being

transformed to the tangent plane. Figure 10 illustrates the three coordinate systems below.

57

Figure 10 Geodetic, ECEF and Tangent Plane Coordinate Systems [6]

The geodetic coordinate system uses a reference ellipsoid to accurately approximate the

geoid shape of the earth. In the WGS84 model, the reference ellipsoid can be defined by

the parameters:

a = 6378137 m

1

f
= 298.257223563

e = √f(2 − f)

where a is the equatorial radius of the reference ellipse, f is the reference ellipse flatness

and e is the eccentricity of the reference ellipse [6]. The meridian radius of a geodetic

coordinate is defined as:

 rM(ϕ) =
a(1 − e2)

(1 − e2sin2(ϕ))
3
2

 (84)

where ϕ is the latitude of the point of interest [6]. Similarly, the prime normal radius of

curvature is given by [6]:

58

 rN(ϕ) =
a

(1 − e2sin2(ϕ))
1
2

 (85)

Using the above relationships, the conversion from geodetic to ECEF coordinates is:

x = (rN + h) cos(ϕ) cos (λ) (86)

y = (rN + h) cos(ϕ) sin(λ) (87)

z = (rN(1 − e2) + h) sin(ϕ) (88)

where h is the altitude and 𝜆 is the longitude of the point of interest [6]. The vector from a

local tangent plane origin to an arbitrary point can be defined using:

∆𝐱̂e = 𝐏e − 𝐏0

e = [x, y, z]e − [x0, y0, z0]
e (89)

𝐏0
e is the origin of the local tangent plane represented in the ECEF frame and 𝐏e is a vector

to an arbitrary point in the ECEF frame [6]. The difference between these coordinates

produces the vector ∆𝐱̂e which is a vector that points from the tangent plane origin to the

arbitrary point 𝐏e. The rotation matrix that rotates a vector from the ECEF frame to the

local tangent plane is given by [6]:

𝑅𝐞

t = [

−sin(ϕ) cos(λ) − sin(ϕ) sin(λ) cos(ϕ)

−sin(λ) cos(λ) 0

− cos(ϕ) cos(λ) − cos(ϕ) sin(λ) − sin(ϕ)

] (90)

Finally, the vector that defines a point with respect to the tangent frame, represented in the

tangent plane is:

59

𝐏t = 𝑅𝐞

t∆𝐱̂e (91)

 Using this process, the GPS data provided by the OXTS RT3003 was converted to

local tangent plane coordinates. The first point in the dataset was used as the origin

reference coordinate and was offset by the 0.93 m height of the GPS unit above ground

level. Readers are directed to [6] for further information on this coordinate transformation.

4.2.5. Observability Analysis

 Observability is the standard measure of a system’s ability to determine state

values, given the system inputs and available sensor data [38]. When a system is fully

observable, all states can be solved given the current inputs and sensor information at that

instant in time [38]. Observability status may change when states have values that render

other states unobservable or sensor availability changes. Typically, a system is evaluated

using many test scenarios to determine when or if states become unobservable during

operations.

 The approach for determining the observability of a linear system involves

constructing the observability matrix for the system using the system matrix 𝐹 and output

matrix 𝐻 [38]. The observability matrix 𝒪 is:

𝒪 = [𝐻 𝐻𝐹 𝐻𝐹2 ⋯𝐻𝐹𝑛−1]T (92)

where 𝑛 is the number of system states. A system is fully observable when this matrix is

full rank [38]. The rank of this matrix was found to be sixteen for the designed INS,

60

however, since the system is nonlinear, this metric is not adequate for determining system

observability.

 Another approach for determining system observability that applies to nonlinear

systems involves rewriting the state space model in its noise-free affine form and using Lie

derivatives to construct the observability matrix [55]. The affine form of a system model

has the structure:

𝐱̇ = 𝑓0(𝐱) + 𝑓1(𝐱)𝐮1 + 𝑓2(𝐱)𝐮2 + ⋯+ 𝑓𝑛(𝐱)𝐮𝑛 (93)

where 𝑛 is the total number of system inputs [55]. For the designed INS system, the noise-

free affine form is:

𝐱̇ =

[

𝐩̇
𝐯̇
𝐪̇

𝐛̇a

𝐛̇ω]

=

[

𝐯
𝐠𝐞 − 𝑅q𝐛a

−0.5𝑄+𝐛ω

0
0]

+

[

0
𝑅q

0
0
0]

𝐟m +

[

0
0

0.5𝑄+

0
0]

𝛚m (94)

𝑓0 =

[

𝐯
𝐠𝐞 − 𝑅q𝐛a

−0.5𝑄+𝐛ω

0
0]

, 𝑓1 =

[

0
𝑅q

0
0
0]

, 𝑓2 =

[

0
0

0.5𝑄+

0
0]

(95)

For convenience when taking the Lie derivatives, the velocity has been expressed in the

world frame.

 The observability matrix is constructed by taking the Lie derivatives of the noise-

free measurement function ℎ(𝐱) with respect to the components of the affine system model

𝑓𝑛(𝐱) [55]. The following demonstrates the implementation of this process.

61

 Considering the system when the measurement model only contains the DGPS

readings:

𝐲 = ℎ(𝐱) = 𝐩 (96)

The zeroth Lie derivative is simply [55]:

ℒ0ℎ(𝐱) = ℎ(𝐱) = 𝐩 (97)

The gradient of this Lie derivative is:

∇ℒ0ℎ(𝐱) =

𝜕ℒ0ℎ(𝐱)

𝜕𝐱
= [𝐼3×3 03×13] (98)

This matrix has a rank of 3 and spans 𝐩 indicating that position is observable using this

equation. The higher order Lie derivatives can be calculated recursively such that [55]:

 ℒ𝑓𝑗

𝑖+1ℎ(𝐱) = ∇ℒ𝑖ℎ(𝐱) ∙ 𝑓𝑗 , {𝑖 ∣ 𝑖 ∈ ℝ, 𝑖 ≥ 0} (99)

Furthermore, higher order mixed Lie derivatives with respect to different functions in the

affine form of the system model can be calculated using [55]:

 ℒ𝑓𝑗𝑓𝑘

𝑖+1 ℎ(𝐱) = ∇ℒ𝑓𝑗

𝑖 ℎ(𝐱) ∙ 𝑓𝑘 , {𝑖 ∣ 𝑖 ∈ ℝ, 𝑖 ≥ 0} (100)

Using these properties, all possible Lie derivatives for this system can be obtained to

generate a complete observability matrix [55]. This process can either be performed

exhaustively using computer software or more efficiently by inspecting only the Lie

derivatives that will yield enough linearly independent columns to make the observability

matrix full rank. Using this constraint, the Lie derivatives that contain all elements equal

62

to zero are excluded. The following observability matrix is found to be full rank for the

INS:

𝒪 =

[

∇ℒ0ℎ(𝐱)

∇ℒ𝑓0
1 ℎ(𝐱)

∇ℒ𝑓0𝑓1
2 ℎ(𝐱)

∇ℒ𝑓0𝑓0
2 ℎ(𝐱)

∇ℒ𝑓0𝑓1𝑓0
3 ℎ(𝐱)]

 (101)

 The remainder of the observability matrix generation process proceeds as follows:

𝓛𝑓0

1 ℎ(𝐱) = ∇𝓛0ℎ(𝐱) ∙ 𝑓0 (102)

The gradient of this Lie derivative is:

∇ℒ𝑓0

1 ℎ(𝐱) =
𝜕∇ℒ0ℎ(𝐱) ∙ 𝑓0

𝜕𝐱
= [03×3 𝐼3×3 03×10] (103)

This matrix is rank 3 and spans 𝐯 indicating that the velocity can be determined using this

equation. The next Lie derivative evaluated is:

ℒ𝑓0𝑓1

2 ℎ(𝐱) = ∇ℒ𝑓0
1 ℎ(𝐱) ∙ 𝑓1 = 𝑅q (104)

To evaluate the gradient of the rotation matrix 𝑅q, it must first be converted into a 9 × 1

column vector using the elementary vectors 𝐞1, 𝐞2 and 𝐞3 defined as [55]:

𝐞1 = [

1
0
0
] , 𝐞2 = [

0
1
0
] , 𝐞3 = [

0
0
1
] (105)

The Lie derivative in equation (104) becomes [55]:

ℒ𝑓0𝑓1

2 ℎ(𝐱) = [

𝑅q𝑒1

𝑅q𝑒2

𝑅q𝑒3

] = 𝑅q𝐞𝑖, ∀ 𝑖 = 1…3 (106)

63

Considering the quaternion form of the vector 𝐞𝑖 such that 𝐞̅𝑖 = (0 𝐞𝑖)
T, the right

quaternion-product matrix [𝐞̅𝑖]
− can be generated for the vector 𝐞̅𝑖 using the same process

presented in equation (73). Quaternion differentiation can be achieved using the following

relation [6]:

 𝜕

𝜕𝐪
(𝐪 ⊗ 𝛒̅ ⊗ 𝐪∗) = 2𝑄−T[𝛒̅]− (107)

Recognizing that 𝐪 ⊗ 𝐞̅𝑖 ⊗ 𝐪∗ is equivalent to 𝑅q𝐞𝑖, the gradient of the Lie derivative in

equation (106) is:

∇ℒ𝑓0𝑓1

2 ℎ(𝐱) = [09×6 2𝐼34Q
−T[𝐞̅𝑖]

− 09×6] (108)

Where 2𝐼34𝑄
−T[𝐞̅𝑖]

− is a 9 × 4 matrix with a rank of 4 that spans 𝐪 indicating that the

orientation of the system can be determined using this equation. The remaining vector

space that is unobservable at this point spans 𝐛ω and 𝐛a. Since the vector space for 𝐩, 𝐯

and 𝐪 is spanned by the previously determined Lie derivatives in the observability matrix,

the remaining Lie derivative gradients will be calculated with respect to 𝐛ω and 𝐛a only,

to present the resulting observability matrix entries more compactly. The next Lie

derivative required is:

ℒ𝑓0𝑓0

2 ℎ(𝐱) = ∇ℒ𝑓0
1 ℎ(𝐱) ∙ 𝑓0 = 𝐠𝐞 − 𝑅q𝐛a (109)

The gradient of this Lie derivative with respect to 𝐛ω and 𝐛a is:

∇𝐛ω,𝐛a

ℒ𝑓0𝑓0
2 ℎ(𝐱) = [03×3 −𝑅q] (110)

64

This matrix is rank 3 and spans 𝐛a indicating that the accelerometer bias is observable

using this equation. The final Lie derivate needed is:

ℒ𝑓0𝑓1𝑓0

3 ℎ(𝐱) = ∇ℒ𝑓0𝑓1
1 ℎ(𝐱) ∙ 𝑓0 = −𝐼34𝑄

−T[𝐞̅𝑖]
−𝑄+𝐛ω (111)

The gradient of this Lie derivative with respect to 𝐛ω and 𝐛a is:

∇𝐛ω,𝐛a

ℒ𝑓0𝑓1𝑓0
3 ℎ(𝐱) = [−𝐼34𝑄

−T[𝐞̅𝑖]
−𝑄+ 09×3] (112)

This matrix is rank 3 and spans 𝐛ω indicating that the gyroscope bias is observable using

this equation. These calculations prove the claim that the observability matrix in equation

(101) is full rank and thus the system states should be locally weakly observable (according

to Theorem 3.1 in [56]) given a measurement model that provides position [55]. Local

weak observability relates to the ability of a system state to be distinguishable when

initialized in a close neighbourhood of its true value without needing a considerable amount

of time to stabilize to the true state [56]. It was found experimentally that without heading

measurements, the filter diverges quickly due to instabilities. This was not further

investigated in this thesis since the experiments performed had access to compass heading

measurements to overcome this issue. However, it is important to note that following a

suitable initialization and careful tuning procedure should allow the filter to operate

without heading measurements, as indicated by the observability study. For the

experiments of this thesis, a heading measurement was always used for more reliable

operation of the filters.

65

4.3. Vehicle Inertial Navigation Experiment

4.3.1. Inertial Navigation System Filter Implementation

 The vehicle trajectory used in this study was obtained in a residential area in

Karlsruhe, Germany [22]. The vehicle drove in a looping path that involved two U-turn

type manoeuvres which provided approximately 116 seconds of data measurements. The

map of the area is shown below in Figure 11 with the blue line roughly outlining the path

that the vehicle travelled. During INS testing and validation, random Gaussian noise was

added to the DGPS data to mimic the reduced accuracy of GPS. Gaussian noise was also

added to the heading measurements to test orientation tracking.

Figure 11 Map of Vehicle Trajectory in Karlsruhe, Germany [57]

 The INS algorithm was developed and tested using MATLAB. The EKF linearized

matrices were all pre-calculated using MATLAB’s symbolic toolbox to reduce

computation time while running the state estimator. For the OXTS RT3003 module, GPS

66

accuracy using Standard Positioning Service (SPS) or a Satellite-Based Augmentation

System (SBAS) is 1.5 𝑚 and 0.6 𝑚 respectively [54]. For the simulations, the uncertainty

in the GPS measurements was modelled as random additive Gaussian noise ranging from

0 𝑚 to 1 𝑚 in both the 𝑥 and 𝑦 directions, and ranging from 0 𝑚 to 0.2 𝑚 in the 𝑧 direction.

This gives an approximate Euclidean position accuracy range of 0 𝑚 to 1.48 𝑚. The 𝑧

direction was assigned less uncertainty using the assumption that the vehicle altitude will

not change substantially in a 0 𝑚 to 1 𝑚 𝑥, 𝑦 area on a smooth road profile. Similarly, noise

is added to the roll, pitch, yaw measurements provided in the data set to introduce some

uncertainty to these values. Random Gaussian noise is added to each measurement ranging

from approximately 0 to 30. The original measurements without added noise are used as

the true orientation angles during analysis.

 The IMM algorithm was implemented as shown in Figure 12. The two EKF models

used within the IMM are designed to contain differently tuned measurement and process

noise parameters. The first EKF filter was tuned by testing sets of process and measurement

noise parameters that minimized the root mean square (RMS) Euclidean position error and

RMS orientation angle errors. These parameters were used for the single EKF filter and for

the first mode of the IMM filter during testing. Keeping the noise parameters of the first

mode fixed, this process was repeated to select noise parameters for the second mode of

the IMM filter. The switching matrix probabilities for transitioning from one mode to

another were both set to 3%. Both initial model probabilities were set to 50% since the

system behaviour is unpredictable until the filter stabilizes. In certain instances, the

likelihood of either model may approach zero causing matrix singularities. To address this

67

problem in the MATLAB simulator, conditions have been set such that if the likelihood of

one model approaches zero while the other has a finite value, then the likelihood of the

finite value model is assigned a magnitude of 1 while the other is given 0 weight.

Figure 12 Interactive Multiple Model Filter Vehicle INS Implementation

4.3.2. Experimental Results and Analysis

 The INS system was tested using both the single EKF and IMM filter for

comparison. For convenience, since differences in the results of both algorithms are not

visibly apparent, only the IMM filter plots are presented except for Figure 13 which shows

both estimated trajectories.

68

 The position estimate results shown in Figure 13 validate the accuracy of the IMM

two mode state predictor. The DGPS ground truth model is represented by the blue line

while the IMM and EKF prediction results are indicated by the red and green lines

respectively. Both the EKF and IMM algorithms were able to accurately predict the

position of the vehicle during all sequences of the trajectory. The IMM estimates tend to

transition more abruptly than the EKF predictions because of the switching between modes.

It is evident that the IMM tracker tends to predict the path of the vehicle better than the

EKF filter during the two U-turn manoeuvres shown near positions (−425 𝑚,−42 𝑚) and

(228 𝑚, 13 𝑚). In both cases, the EKF algorithm predicts that the vehicle followed a

trajectory on the inside of the true vehicle path while the IMM filter follows the true path

more closely.

Figure 13 EKF and IMM Vehicle Trajectory Estimates

69

 The IMM filter generally tracks the position of the vehicle well in all three

directions as shown in Figure 14. To evaluate the EKF and IMM filters, the RMS Euclidean

positional error during the full tracking sequence was calculated for twenty simulations.

The EKF filter produced an average positional error of 0.8001 𝑚 while the IMM filter

gave an average error of 0.7553 𝑚. This is an average positional prediction improvement

of 0.0448 𝑚 for this trajectory. Based on this, applying the IMM filter to track a system

undergoing more turning manoeuvres would potentially reduce a large RMS position error

that is likely to occur if a single EKF is used. Furthermore, the IMM filter can still be

improved and refined by using more than two models or tuning the noise parameters.

Figure 14 Vehicle IMM Filter Position Estimates

 Figure 15 shows the IMM estimated position errors during the simulation. The 95%

confidence bounds of each error vector is calculated by multiplying the combined

70

covariance matrix elements (from Eq. (36)) for each position state by a factor of two. In

general, all position errors are below the confidence bound. The position error in the 𝑧

direction is below the error bound for all simulated time, while the 𝑥 and 𝑦 errors

periodically exceed the bounds during times when the vehicle is turning or highly

erroneous GPS measurements are provided.

Figure 15 Vehicle IMM Filter Position Error

 The velocity estimates from the IMM filter give expected results that are shown

below in Figure 16. The 𝑥 direction of the vehicle points along its forward axis, therefore,

the vehicle velocity is generally forward during all time instances with varying speeds. The

𝑦 and 𝑧 axes point leftward and upward on the vehicle respectively, therefore, these

velocity components are generally small. The Ackerman design of the vehicle steering

system causes the instantaneous center of rotation for the vehicle to be located somewhere

71

in the direction of the inside of the turn. As the vehicle performs the turning motion, the

velocity vector is generally not perfectly tangential to the turning path and there is likely

tire deformation from the lateral friction load that causes slippage [13]. As a result, there

are instances during the turn where the velocity vector has components in both the 𝑥 and 𝑦

directions as shown at times 34 𝑠 and 76 𝑠. If steering data were included with the data set,

the Ackermann motion model could have been included in the IMM design to improve

these estimates.

Figure 16 Vehicle IMM Filter Velocity Estimates

 The orientation angle predictions obtained using the IMM filter are shown in Figure

17. The IMM filter accurately tracks all roll, pitch and yaw angles during the simulation.

Roll and pitch generally remained constant throughout the duration of the vehicle trajectory

while the yaw showed large variations during turning manoeuvres. The mean orientation

72

angle error for both EKF and IMM were approximately 3.0550 with negligible difference

between either result. With further noise parameter turning or the inclusion of more than

two filter models, it is likely that the IMM can yield better results.

Figure 17 Vehicle IMM Filter Roll, Pitch and Yaw Estimates

Figure 18 Vehicle IMM Filter Accelerometer and Gyroscope Bias Estimates

73

 The IMM filter accelerometer and gyroscope biases are shown below in Figure 18.

The accelerometer bias in the 𝑧 direction does not experience drastic fluctuations during

simulation, while the 𝑥 and 𝑦 biases tend to have steep transitions during the turning

manoeuvres. The accelerometer biases have large spikes initially that tend to settle the

longer the simulation runs. The gyroscope biases all show rapid transitions as the system

starts up and then settle to relatively steady state values after the vehicle has been moving

for approximately 40 seconds.

 Figure 19 shows the probabilities of each EKF filter mode in the IMM for the

duration of the simulation. The model used in the single EKF filter typically has a higher

probability than model 2, however, model 2 does improve the INS performance with its

state estimate contribution.

Figure 19 Vehicle IMM Filter Model Probabilities

74

4.4. Conclusions

 This chapter has presented an INS system for predicting the states of an automobile

driving around a looping path. The EKF algorithm is shown to be a valid method for

predicting the dynamics of a nonlinear state-space model through the process of

linearization. Incorporating multiple EKF models within an IMM algorithm has been

shown to improve the tracking accuracy of the INS system. This is most visibly apparent

when the vehicle performs a turn during the trajectory. The IMM mode switching and

prediction mixing allows the estimator to adaptively adjust the noise parameters during

straightaways or turning manoeuvres.

 The extent of the tracking performance improvements through noise tuning can be

further explored by additional parameter adjustments that may reduce localization error.

Adding more models to the IMM filter bank that contain additional noise figures can

potentially improve filter performance at the expense of higher computational demand. To

test this hypothesis, a dataset from an automobile that performs many consecutive turning

manoeuvres would be required. This would provide better insight into IMM filter

performance versus single model filters for highly dynamic trajectories. Furthermore, the

inclusion of multiple system models, as demonstrated in section 3.2.2 could potentially

improve IMM localization. The vehicle under study in the KITTI Vision Benchmark

dataset has an Ackermann steering configuration, therefore, including this steering system

geometry in another IMM mode may improve tracking. This type of model typically

75

requires the inclusion of vehicle steering angle as feedback; therefore, it was not included

in this experiment due to that data being unavailable.

 76

Chapter 5

Skid-Steer Robot Inertial Navigation

System

About this chapter: This chapter analyses an INS estimation system for a skid-steer

mobile robot. The chapter examines the performance of the filter developed in Chapter 4

when applied to the Seekur Jr mobile robot. The IMM has been redesigned to include a

skid-steer motion model that tracks the instantaneous centers of rotations of the robot to

predict slippage and improve state tracking. The chapter also presents the design of an

experimental testbed for the purpose of multi-model estimation research and validates an

IMM filter design for navigation of the Seekur Jr mobile robot.

5.1. Problem Formulation

 Several steering configurations exist for mobile robots that allow for many different

motion trajectories [7]. One popular method of steering that is used extensively in mobile

robot designs is the skid steer configuration [58]. This configuration relies on lateral wheel

slippage that allows the robot to make turning manoeuvres. The wheel-ground interactions

associated with this type of steering are complex and cannot be modelled easily [59]. This

leads to difficulty when developing a state estimator that can accurately track the system

when unmodeled slippage occurs [58]. Many methods for dealing with this problem exist,

77

however, often they require many physical parameters to be known which may not be

readily available or may change as the system operates [59]. For example, dynamic models

can predict the longitudinal and lateral forces experienced by robot wheels during a skid

[60]. However, if the ground terrain changes then the friction between the ground and

wheel will also change leading to estimation errors [60].

 The approach that has been selected to address this problem involves adding a

second motion model to the IMM filter that tracks the ICRs of the left and right side of the

robot. This model allows the lateral velocity of the robot to be tracked more accurately

which provides detection of slipping that cannot be as apparently captured with the vehicle

model in 4.2.2. The experiment has been performed using the Seekur Jr robot in the ISLAB

at Memorial University of Newfoundland.

5.2. Methodology

5.2.1. Skid Steer Robot Kinematics

 Skid-steer is a steering configuration that requires lateral wheel slippage to perform

a turning manoeuvre [60]. Instead of an actuated steering mechanism that changes the

direction of the robot wheels, skid-steer turns the robot by rotating the wheels on each side

at different speeds and/or directions to induce a turn [59]. This allows the robot to rotate in

place for efficient manoeuvres in confined spaces. One main drawback of this

configuration is that the slippage of the wheels is difficult to model, especially on dynamic

78

outdoor terrains [60]. This makes it challenging to predict the motion of these systems

accurately.

 Many methods exist that model the complex ground to wheel interactions arising

in skid-steer configurations, however, these models typically require dynamic physical

parameters of the robot such as tire deflection and terrain friction coefficient [60]. These

are continuously varying parameters that cause the lateral forces on the robot wheels to

fluctuate, making state prediction complicated [60].

 Another approach to modelling the skid-steer configuration considers the locations

of the ICRs for the left and right side of the robot as changing vectors [58]. These vectors

are added to the vehicle state space model to account for the lateral slippage of the skid-

steer robot during turn manoeuvres. Considering the case of a 2D skid-steer mobile robot

as depicted in Figure 20. The instantaneous center of rotation of the robot body relative to

the ground is given by the coordinates (𝐱ICR, 𝐲ICR). The Y coordinate of this point can be

calculated by:

 𝐲ICR =
𝐯x

𝛚z
 (113)

where 𝐯x is the velocity of the robot in the X direction and 𝛚z is the angular velocity of the

robot about the Z-axis (the Z-axis points out of the page in Figure 20) [58].

79

Figure 20 Skid-steer Kinematics 2D Robot [61]

 The individual wheel velocities of the left and right side of the robot with respect

to the robot body are denoted as 𝐯x
l and 𝐯x

r respectively. Using these wheel velocities, the

Y coordinates of the ICRs for the left and right side of the robot are:

𝐲ICRl

=
𝐯x

l − 𝐯x

𝛚𝐳
 (114)

𝐲ICRr

=
𝐯x

r − 𝐯x

𝛚z
 (115)

respectively [58]. The X coordinate of the robot body ICR with respect to the ground is:

 𝐱ICR =
−𝐯y

𝛚z
 (116)

80

where 𝐯y is the robot lateral velocity in the Y direction [58]. It is shown [59] that all the

described ICR coordinates lie on a line parallel to the robot Y axis, therefore:

 𝐱ICRr
= 𝐱ICRl

= 𝐱ICR =
−𝐯y

𝛚z
 (117)

Manipulating equations (114), (115) and (116) to isolate the body linear and angular

velocities in terms of the ICR coordinates and wheel velocities gives:

𝐯x =

𝐯x
l𝐲ICRr

− 𝐯x
r𝐲ICRl

−|𝐲ICRr
− 𝐲ICRl

|
 (118)

𝐯y =

(𝐯x
r − 𝐯x

l)𝐱ICR

−|𝐲ICRr
− 𝐲ICRl

|

(119)

𝛚z = −

𝐯x
r − 𝐯x

l

−|𝐲ICRr
− 𝐲ICRl

|

(120)

The absolute values in the denominators of these equations are used to ensure filter

convergence by avoiding division by zero and keeping the denominators negative [58].

 Considering the case where 𝐯y is constrained to be zero (no slip constraint), the

coordinate 𝐱ICR also becomes zero and therefore lies along the Y-axis. This constraint is

commonly imposed when modelling two-wheel differential-drive robots for odometry state

estimators [7]. The differential-drive robot configuration is shown in Figure 21. Its

kinematics are summarized below:

𝐯x =

𝐯x
l + 𝐯x

r

2
 (121)

 𝐯y = 0 (122)

81

𝛚z =

𝐯x
r − 𝐯x

l

b

(123)

where b is the distance between the robot wheels [58].

Figure 21 Differential-Drive Robot Kinematics

 Experiments in [58] show that the estimation of ICR coordinates can improve skid-

steer robot navigation over using differential-drive robot kinematics. The experiments also

show that the ICR odometry is much better at maintaining robot localization during periods

of GPS dropout over the differential-drive for wheeled mobile robots [58]. Considering

scenarios like the robot operating in GPS denied areas, the robot transitioning from an

outdoor to an indoor environment, or other sensor systems becoming unreliable, the

inclusion of the ICR kinematics in the IMM-INS designed in section 4.2.2 should improve

state estimation performance when any of these conditions occur.

5.2.2. Skid-Steer Robot Inertial Navigation System

 The motion of wheeled mobile robots is not always constrained to a 2-D horizontal

plane. However, on relatively flat terrains this assumption is an adequate approximation

82

[7]. That considered, the position of the ICR locations along the Z-axis should not change

substantially during operations. Using this assumption, the INS design for the vehicle

model in section 4.2.2 can be modified to include skid-steer kinematics.

 It has been shown in [58] that variations in the ICR coordinates can be modelled as

random walk processes such that:

 𝐱̇ICR = 𝛈xICR
, 𝐲̇ICRl

= 𝛈yICRl
, 𝐲̇ICRr

= 𝛈yICRr
 (124)

where 𝛈xICR
, 𝛈yICRl

, and 𝛈yICRr
, are zero-mean Gaussian noise vectors with variances 𝛔xICR

2 ,

𝛔yICRl

2 , and 𝛔yICRr

2 , respectively.

 The estimated states of the system are included in the following state vector:

𝐱 = [𝐩, 𝐯, 𝐪, 𝐛a, 𝐛ω, 𝐱ICRl

, 𝐲ICRl
, 𝐲ICRr

]
T
 (125)

Therefore, the skid-steer mobile robot state space model is:

 𝐱̇ = f(𝐱, 𝐮,𝐰) =

[

𝐩̇
𝐯̇
𝐪̇

𝐛̇a

𝐛̇ω

𝐱̇ICR

𝐲̇ICRl

𝐲̇ICRr

]

=

[

𝑅q𝐯

𝐟m − 𝐛a + 𝑅q
T𝐠e + 𝛈fm

0.5𝑄+(𝛚m − 𝐛ω + 𝛈ωm)
𝛈ba
𝛈bω
𝛈xICR

𝛈yICRl

𝛈yICRr]

(126)

 The measurement model for this system includes DGPS positional feedback,

magnetometer readings and wheel encoder readings from the left and right side of the robot

that determine 𝐯x
l , 𝐯x

r and 𝛚z. The measurement vector for the system is given by:

83

𝐲 = [𝐲p, 𝐲m, 𝐯x

l , 𝐯x
r, 𝛚z]

T (127)

where 𝐲m is the magnetometer measurement vector. The measurement model for the

magnetometer is given as:

𝐲m = 𝑅q

T𝐦e + 𝛈m (128)

where 𝐦e is the local magnetic field vector in the world frame and 𝛈m is zero-mean

Gaussian noise corrupting the measurement such that 𝛈m~𝑁(0, 𝛔m
2) with variance 𝛔m

2

[51]. The robot velocity measurements are obtained from Eq. (118)-(120).

5.2.3. Differential Global Positioning Systems

5.2.3.1. Differential Global Positioning System Background

 Standard GPS systems encounter many sources of error when determining position.

The main sources include ionospheric delay, tropospheric delay, ephemeris, clock errors

and multipath signal reflection [62]. Ionospheric and tropospheric delays involve the

slowing of satellite signal propagation due to complex signal interactions with the physical

compositions of these atmospheric layers [6]. Ephemeris errors occur when a satellite has

an orbital trajectory bias [6]. The satellite transmits incorrect ephemeris data since its orbit

does not match its expected trajectory. Clock errors are the result of drift in the atomic

clocks of satellites which cause an offset with respect to GPS receiver clocks [63].

Multipath error occurs when the transmitted satellite signal reflects off objects near the

GPS receiver causing several extra delayed signals to be perceived by the receiver [63].

84

 The DGPS configuration is an effective way to reduce the impact of multiple error

sources in a GPS system. To implement this system, two GPS units operate in unison. One

unit is designated as the stationary base station, while the second unit is the moving rover

[64]. The exact position of the base station must be known accurately [64]. The base station

receives Global Navigation Satellite System (GNSS) signals and calculates the

pseudoranges to the visible satellites [65]. The pseudorange errors are calculated using the

accurately known position of the base station [65]. The error corrections are transmitted to

the rover unit via a radio signal [64]. The rover applies the pseudorange error corrections

to the incoming GNSS signals to improve its positional estimate substantially [64]. This

process is depicted below in Figure 22.

Figure 22 Differential Global Positioning System Overview [61] [24]

85

5.2.3.2. Emlid Reach Differential Global Positioning System

 The Emlid Reach GPS module is an Intel Edison computer chip with an integrated

IMU and GPS sensor. The Reach units used in the Seekur Jr experiments are the RTK

GNSS modules shown in Figure 23.

Figure 23 Emlid Reach RTK GNSS Module [24] [66]

 For the DGPS application, two Reach units are used. One unit is fixed to a

stationary tripod while the other is secured to the Seekur Jr robot. The position of the base

station unit is determined by averaging its standalone GPS readings over a long period of

time. This averaged positional value is then set as its fixed location in its configuration

files. The DGPS correction process is completed directly on the Reach unit. The

manufacturer uses the open-source RTK processing software known as RTKLIB for this

procedure [64] [65].

 The implemented base station and rover parameters are summarized in Table 5 and

Table 6 respectively. The Reach units are programmed using the ReachView app shown in

Figure 24. Parameters have been selected based on the recommendations from Emlid

86

support staff. Further details on the specific implementation and calibration of the Reach

units will be discussed in section 5.2.4.4.

Figure 24 Emlid ReachView App [67]

Table 5 Reach Base Station Configuration

Reach Base Station Module

Base Mode

Corrections Output (Serial)
Device Baud Rate

UART 57600

Base Coordinates
Coordinates Input Mode Coordinate Accumulation Time

Average Single 5 Minutes

RTK Settings

RTK
Positioning Mode GPS AR Mode

Static Fix-and-hold

GLONASS AR Mode Elevation Mask Angle SNR Mask

On 15 Degrees 35 Degrees

Max Acceleration
Vertical Horizontal

1 m/s² 1 m/s²

87

Table 6 Reach Rover Configuration

Reach Rover Module

RTK Settings

RTK
Positioning Mode GPS AR Mode

Kinematic Fix-and-hold

GLONASS AR Mode Elevation Mask Angle SNR Mask

On 15 Degrees 35 Degrees

Max Acceleration
Vertical Horizontal

1 m/s² 1 m/s²

Correction Input

Base Correction (Serial)

Device Baud Rate

UART 57600

Format

RTCM3

Position Output

Output 1 (TCP)

Role Address

Server localhost

Port Format

8889 LLH

5.2.4. Seekur Jr Robot

5.2.4.1. Seekur Jr Robot Overview

 The Seekur Jr is a four-wheeled skid-steer all-terrain mobile robot produced by

Omron Adept – Mobile Robots [23]. It has a built-in computer system that can be used for

controlling the robot and interfacing with the onboard sensors [23]. The Seekur Jr in the

ISLAB at Memorial University is equipped with a laser rangefinder, depth camera,

gyroscope, wheel encoders, Trimble GPS and bumper sensors. Two independent motors

drive the wheels on the left and right side of the robot [23]. A dimensioned drawing of the

robot is shown in Figure 25.

88

Figure 25 Seekur Jr Robot Physical Dimensions [61]

5.2.4.2. Advanced Robot Interface for Applications (ARIA)

 The Seekur Jr onboard computer uses the Advanced Robot Interface for

Application (ARIA) software developed by Omron Adept – Mobile Robots to manage

robot communications, sensing devices and robot internal processes [23]. The onboard

computer runs a server application that initializes the selected robot sensors and connects

to an ARIA client application [23]. A remote computer runs the client application which

forms a Transmission Control Protocol (TCP) connection with the Seekur Jr to establish

data and control communications. The client requests specific data packets from the server

that contain information such as robot parameters, robot statuses and sensor readings [23].

The client also sends command velocities to the Seekur Jr motor controllers that move the

89

robot. The client has been integrated with ROS to support data acquisition and modular

development of the system.

5.2.4.3. Robot Operating System (ROS)

 ROS is a platform used for integrating computer software with robotic hardware

[68]. The system is comprised of programming libraries and applications specifically

designed for robotics research and development. The Seekur Jr experiment primarily uses

ROS to gather data from the ARIA client as it is streamed from the onboard ARIA server.

 The ARIA client has been configured to publish incoming sensor data as ROS

topics, which are data structures that can be accessed by ROS nodes. The data is gathered

using the rosbag tool which subscribes to selected ROS topics and stores the data in the

time-stamped rosbag format. This process prevents the data from multiple sensors from

becoming desynchronized.

5.2.4.4. Data Acquisition System Configuration

 The Seekur Jr hardware network is shown in Figure 26. The Intel NUC computer

[69] is the central data acquisition device that connects to all other devices on the network.

ROS and ARIA are both installed on the NUC. The NUC connects to the Seekur Jr via an

ethernet connection and through the Seekur Jr Wi-Fi network simultaneously. The NUC

runs the ARIA client which connects to the Seekur Jr ARIA server through the ethernet

connection. This connection is used to transfer sensor data packets from the Seekur Jr to

the NUC and to send control commands from the NUC to the Seekur Jr. The Wi-fi

connection is used to initialize the ARIA server/client applications and interface with the

90

robot during outdoor experiments using a remote computer (laptop). The setup does not

have a computer screen; therefore, the laptop is necessary to configure the system when

outdoors. The purpose for using three computer devices in this network is to facilitate

system development. The NUC computer has many available ports to allow multiple

devices to interface with the network and provides a portable platform for testing and

developing software.

Figure 26 Seekur Jr Network Overview [61] [24] [70] [69]

 The Reach rover module streams accelerometer, gyroscope, magnetometer and

GPS data through a USB connection to the NUC. The USB connection has been modified

to mimic an ethernet connection. A custom TCP server has been installed on the Reach

module that preprocesses and sends the Reach IMU data to a custom TCP client ROS node

on the NUC. The Reach unit has been configured using the ReachView app to

automatically output its GPS data through a specific TCP port (details in Section 5.2.3.2).

An additional TCP client ROS node has been created on the NUC to receive the GPS data

91

through that port. Both client nodes on the NUC parse, timestamp, and publish the sensor

data as ROS topics. The data is recorded using the rosbag tool to subscribe to the sensor

topics. Figure 27 illustrates the configuration of the NUC with the Reach rover.

Figure 27 Reach Rover to NUC Connection [24] [69]

 The Reach rover receives DGPS corrections and base station parameters from the

base station Reach module via a 3DR radio pair. Each Reach unit is connected to a 3DR

radio using a six-pin ribbon cable connector. The wiring scheme is shown in Figure 28

below. The data transmits using the RTCM3 format at a baud rate of 57600. The base

station Reach unit and 3DR radio are powered by a battery pack using a micro USB cable.

Figure 28 Reach 3DR Radio Wiring Schematic [71]

92

 Using the laptop, the Seekur Jr computer and NUC can be remotely accessed to

initialize the ROS data acquisition nodes, the robot controller node and the Reach IMU

data server. The laptop connects to the NUC and Seekur Jr through a Secure Shell (SSH)

login using their Internet Protocol (IP) addresses to access their root directories. This

process is used to initialize the ARIA server on the Seekur Jr during system start-up. During

outdoor experiments, the laptop is used to SSH into the NUC root directory. While logged

into the NUC, the ARIA client and roscore applications are launched. Using the USB IP

address of the Reach rover module, the Reach root directory is accessed from the NUC to

initialize the Reach IMU TCP data server. On the NUC, the Reach GPS and IMU data

client nodes are launched and the rosbag recorder is activated. A USB gamepad controller

is connected to the NUC to control the motion of the robot. The controller uses a ROS node

to interface with the ARIA client to send command signals from the NUC to the Seekur Jr

onboard computer. This control node is launched while logged into the NUC via the SSH

connection with the laptop.

5.2.4.5. Physical Experimental Setup

 The Seekur Jr experiments were performed on a parking lot behind the Memorial

University S. J. Carew Building. The robot was equipped with the data acquisition

hardware discussed in section 5.2.4.4 and is shown in Figure 29. The Reach rover GPS

antenna was attached to a rigid ground plate to improve signal reception quality [72]. The

ground plate was mounted high above the other electronics on the Seekur Jr to reduce

potential electronic radio frequency interference. The Reach unit was strapped to the center

of the Seekur Jr roof. Figure 30 shows the orientation of the Reach rover on the Seekur Jr.

93

The sensor axes have been aligned with the robot body frame to simplify coordinate

transformations. The 3DR radio receiver for DGPS corrections is strapped to the roof of

the Seekur Jr and is connected to the Reach via a universal asynchronous receiver-

transmitter (UART) cable. The NUC computer is mounted on the front of the robot. Two

11.1V batteries, wired in series, power the NUC. The Reach rover and 3DR radio are

powered through the micro USB connection between the Reach and NUC. The gamepad

used to control the robot is connected to the NUC through USB. The wi-fi router for the

Seekur Jr is located at the rear of the robot.

Figure 29 Seekur Jr Data Acquisition System Setup

94

Figure 30 Reach Rover Orientation on Seekur Jr [61] [66]

 The DGPS base station is shown in Figure 31. The base station GPS antenna is

mounted to a rigid conductive ground plate. The base station reach unit and 3DR radio are

securely fastened to the center shaft of the tripod. The 3DR radio is connected to the Reach

unit via a UART cable. Both the Reach and radio are powered by the tripod mounted

battery.

Figure 31 Reach DGPS Base Station Setup

95

5.2.5. Sensor Data Processing

5.2.5.1. General Data Processing

 During testing, all sensor data was gathered in rosbag format. The data from the

Reach IMU was manually parsed using a Python script in ROS. The data from the Reach

TCP server was sent in a time-stamped string format containing accelerometer, gyroscope

and magnetometer readings in each message. The ROS node receiving the string data

deconstructs the string and stores each message in standard ROS data types for IMU data.

 The sensor data is post-processed using MATLAB. The built-in rosbag

“readMessages” function was used to read the data. The data was manually time

synchronized in MATLAB and outputted in matrices for use in the filter experiments. The

DGPS measurements were processed using the same procedure discussed in section 4.2.4.

5.2.5.2. Magnetometer Calibration

 Magnetometers are sensitive to magnetic interference from nearby electrical

devices or magnetic objects [73]. This causes magnetometer data to become offset, skewed

or scaled which can reduce the quality of INS estimations. Two types of magnetic distortion

affect magnetometer performance, hard-iron and soft-iron distortions. Hard-iron

distortions are caused by objects that generate a constant magnetic field that is added to

magnetometer measurements [73]. Soft-iron distortions are caused by objects that easily

become magnetized or demagnetized by magnetic field changes [73].

96

 Simple techniques have been employed to compensate for both sources of distortion

in the Reach magnetometer data. The hard-iron distortions are readily removed by applying

offsets to the data along each sensor axis. The biases for the magnetometer along each axis

are obtained using:

𝐦bi

=
𝐦maxi

+ 𝐦mini

2
 (129)

where 𝐦b is the magnetic bias and i is the sensor axis [74]. The magnetic bias 𝐦b must be

calculated for each individual sensor axis. The bias is subtracted from each data point along

each axis.

 The soft-iron effects are reduced using a normalized scaling factor. The

unnormalized scaling factor is calculated along each axis such that:

 𝐦si
=

𝐦maxi
− 𝐦mini

2

(130)

where 𝐦si
 is the magnetic scale factor along axis i [74]. The normalized scaling factor is:

 𝐦S =
∑ 𝐦si

N
i=1

N
 (131)

where N is the total number of sensor axes, in this case, three [74]. The calibrated

magnetometer data for a given axis is [74]:

 𝐦ci
= 𝐦S(𝐦i − 𝐦bi

)
(132)

Here, 𝐦i is the magnetometer data measurement along axis i.

97

 This method was implemented when calibrating the Reach magnetometer for the

Seekur Jr experiments. The process was initially applied to a test set of data that was

obtained by gathering IMU data while the Reach unit was rotated in “figure-8” patterns

along each of the sensor axes. The data in Figure 32(a) shows the uncalibrated

magnetometer data which is skewed along each axis, contains offsets relative to the (0,0)

origin and is scaled. The calibrated data in Figure 32(b) shows the data has been normalized

along each axis. Many of the distortions have been removed and each axis contains

symmetrically scaled data values. The data response surface closely resembles a sphere

centered on the (0,0) origin.

(a)

(b)

Figure 32 Magnetometer Calibration Plots

98

5.3. Seekur Jr Inertial Navigation Experiment

5.3.1. Inertial Navigation System Filter Implementation

 The Seekur Jr INS experiment location is shown in Figure 33. The DGPS trajectory

of the robot is plotted in red. The blue circle indicates the starting position of the robot.

The yellow circle indicates the location of the DGPS base station during the experiments.

The robot path was chosen such that abrupt turning manoeuvres were performed. The

DGPS position solution was used as the ground truth for the INS filter. Random Gaussian

noise was added to these measurements to mimic the reduced accuracy of a single GPS

sensor. The noisy data was used by the INS for robot state estimate tracking.

Figure 33 Seekur Jr Robot Trajectory Experiment Location [75]

 The INS algorithm designed in section 5.2.2 was modified to incorporate the Seekur

Jr onboard sensors and data processing system. Due to issues encountered with the Seekur

Jr encoders, the modified skid-steer ICR-INS model could not be evaluated. The ARIA

99

client and server were modified to access the Seekur Jr motor data packets, which contain

the robot left and right wheel velocities. These velocities can be used to implement the

ICR-INS filter, however, when the robot is moving, these data packets stop streaming to

the ARIA client. It is likely that this problem is due to Seekur Jr using the requested data

packets for control processes, making them unavailable for the client. The modified ARIA

client and server were tested using the MobileSim robot simulation software provided by

Omron Adept – Mobile Robots [23]. The results show that the motor data packets

containing the encoder readings publish correctly from the simulated robot, therefore, the

process should work on the Seekur Jr. This issue is to be resolved in future work on this

system.

5.3.2. Seekur Jr Experimental Results and Analysis

 The Seekur Jr INS was tested using both a single EKF and IMM filter for

comparison. The graphs in this section represent the results from a single algorithm run

using a GPS noise factor of 0.2. The GPS noise factor is a number used during filter testing

to control the magnitude of the synthetic noise that was added to the DGPS measurements.

A GPS noise factor of 0.2 adds random Gaussian position noise between the values of ±0.2

meters to the DGPS data to simulate lower GPS accuracy. The filter was tuned using the

process discussed in section 4.3.1. The models were tuned using data corrupted by a GPS

noise factor of 0.2. The accelerometer, gyroscope and magnetometer data were measured

using the Reach module that is attached to the Seekur Jr for navigation purposes. This

module uses an MPU-9250 9-axis IMU sensor [76].

100

 The results in Figure 34 show the accuracy of the EKF and IMM filters tracking

the robot position in the X-Y plane. The blue line indicates the Reach module DGPS

trajectory, which is used as the ground truth in this experiment. The plotted DGPS data

does not contain synthetically added noise. The final portion of the robot trajectory (long

straightaway segment crossing the S. J. Carew building parking lot in Figure 33) was

excluded because the IMM and EKF performed nearly identically for that part of the path.

Removing that section yields results that improve the illustrated comparison of an IMM

and EKF for trajectories with multiple turning manoeuvres. Note that the mirrored

orientation of the robot trajectory in Figure 34 relative to Figure 33 is due to a rotation from

the DGPS North-East-Down (NED) frame to the body frame of the Reach module which

was not readjusted before plotting. The encircled portions of the graph identify periods

where the IMM outperformed the EKF. Near the position (10 𝑚, 3 𝑚) at the beginning of

the trajectory, the robot was driven down over the edge of a curb. The sudden impact caused

the IMU readings to spike. The shock to the measurements was filtered to reduce the

stability issues encountered when running the estimators. It can be seen in the encircled

area near the impact site, that the IMM filter tracks the robot more accurately than the EKF

for a time after the impact. The two other encircled graph segments indicate better tracking

by the IMM over the EKF at the beginning of two different turn manoeuvres. Both filters

have accurate trajectory tracking for the duration of the test run. The remaining graphs

illustrate the results for only the IMM filter for convenience. The filter accurately tracks

the position of the robot in all three directions as shown in Figure 35. The curb impact time

is approximately 50𝑠 as shown by the large oscillations in the Z-position in Figure 35.

101

Figure 34 Seekur Jr EKF and IMM-INS Robot Trajectory Estimates

Figure 35 Seekur Jr IMM-INS Position Estimates

102

Figure 36 Seekur Jr IMM-INS Position Errors

 Figure 36 shows the IMM estimated position errors. The positional errors are

generally below by the 95% confidence bounds for each error vector. The errors can be

seen exceeding the confidence bounds near times when the robot was performing turns.

The results shown in Figure 37 illustrate the differences in the IMM and EKF positional

RMS errors. The RMS error magnitude graph in Figure 37 is a measure of the magnitude

of the combined RMS error vectors along each axis. The GPS noise factor for each set of

trials is on the X-axis of the plots. The trials run the filters 30 times and average the results

to more accurately measure filter performance. The averaged results are plotted in Figure

37 and tabulated in Table 7. The error of the IMM filter is lower than the EKF for all tested

GPS noise factor values. Based on this observation, it is likely that having multiple models

that use different sets of noise parameters can maintain accurate tracking results despite

103

changing accuracies of sensing devices. This can be especially useful if a sensor

experiences interference and the system must switch estimation reliance to other sensors.

Figure 37 Seekur Jr INS RMS Error Comparison for IMM vs EKF

Table 7 Seekur Jr INS Positional RMS Error Results

Positional RMS Error Results

GPS

Data

Noise

Factor

Average

X

Position

RMS

Error

IMM

[m]

Average

X

Position

RMS

Error

EKF

[m]

Average

Y

Position

RMS

Error

IMM

[m]

Average

Y

Position

RMS

Error

EKF

[m]

Average

Z

Position

RMS

Error

IMM

[m]

Average

Z

Position

RMS

Error

EKF

[m]

Average

Positional

RMS

Error

IMM [m]

Average

Positional

RMS

Error

EKF [m]

0.1 0.0393 0.0628 0.0346 0.0796 0.0478 0.1034 0.0778 0.145

0.15 0.0482 0.0773 0.0383 0.0891 0.0446 0.098 0.0886 0.1537

0.2 0.079 0.094 0.0619 0.1016 0.0646 0.1099 0.1375 0.177

0.3 0.1017 0.1305 0.0936 0.1338 0.1077 0.1344 0.1938 0.2304

0.4 0.143 0.1679 0.1203 0.1703 0.1005 0.1712 0.2496 0.2948

0.5 0.1753 0.2342 0.1781 0.2275 0.1615 0.231 0.3381 0.4013

 The velocity estimates of the IMM are shown in Figure 38. The velocity of the

robot behaves as expected. The path of the robot trajectory has a slight incline, which is

104

represented by the low-velocity values in the Z direction. The Y velocity typically has a

value of zero, with spikes near turn manoeuvres and the curb drop impact. The spikes are

likely due to the skid-steer steering of the robot inducing lateral velocities during turns.

The X velocity is the expected profile given the trajectory followed by the robot.

Figure 38 Seekur Jr IMM-INS Filter Velocity Estimates

 The roll, pitch and yaw angles estimated by the IMM filter are shown in Figure 39.

Near the curb impact time, the orientation angles spike. The robot moved over the curb one

wheel at a time, which causes all angles to quickly transition before settling during the first

straightaway section. As expected, the roll and pitch of the robot typically remain near

constant values during the test run. The estimated changes in the yaw heading match the

turns made by the robot.

105

Figure 39 Seekur Jr IMM-INS Roll, Pitch and Yaw Estimates

Figure 40 Seekur Jr IMM-INS Accelerometer Bias Estimates

106

Figure 41 Seekur Jr IMM-INS Gyroscope Bias Estimates

 Figure 40 and Figure 41 illustrate the accelerometer and gyroscope biases. In each

graph, the biases abruptly change in response to the curb impact and turning manoeuvres.

The biases gradually shift towards their steady-state values following each manoeuvre as

expected.

 The results in Figure 42 indicate the unsmoothed model probabilities for each mode

of the IMM-INS. The red line indicates the first mode of the IMM which has the same

tuning parameters as the EKF that was tested. This plot shows that this model typically has

the higher probability for the duration of the test, however, the influence of the second

model is also contributing to the state estimates in the IMM-INS. Near the time associated

with the curb impact, it is shown that both models contribute to the combined state

estimates approximately evenly. IMM probabilities based on varying noise parameter

107

models seem to have higher model switching sensitivity than when multiple process

models are used as demonstrated in Figure 4. However, this may also be the result of the

small differences in the noise tuning parameters of each filter causing both models to

rapidly switch due to consistently similar likelihoods.

Figure 42 Seekur Jr IMM-INS Model Probabilities

5.4. Conclusions

 This chapter has presented a method for implementing skid-steer kinematics in the

vehicle state-space model for the INS system and covered the design of a data acquisition

system for the Seekur Jr robot to support multi-model estimator research. The performance

of the IMM filter has been shown to effectively predict the states of a skid-steer mobile

robot. The IMM filter generally outperformed the EKF in terms of RMS positional error.

108

This result may potentially change depending on the selection of noise parameters. A

tuning experiment using a multi-factor design may be required to determine noise

parameter interactions and definitively tune the system for future comparisons. The results

show that an IMM filter with multiple noise parameter modes can facilitate tuning and

achieve good performance without many test trials. The performance differences between

the IMM and EKF were most noticeable near the curb impact and turning manoeuvres

where the IMM typically maintained better tracking estimates. The multiple modes of the

IMM generally reduce the likelihood of the filter failing to track the robot when its dynamic

behavior changes. Although using multiple models does not guarantee that the filter will

not fail, it does add robustness to the system. If one or more of the IMM models fail to

track the system, the likelihood of those models drops to a very low value to remove the

influence that those models have on the overall state estimates for the INS.

 The experimental testbed designed for the Seekur Jr is a suitable configuration for

future IMM localization research. The ARIA/ROS interface and data acquisition system

can effectively obtain and process the onboard sensor data. The Emlid Reach modules have

been configured for easy use in future experiments. The main concern moving forward

with this equipment is the reliability issues experienced with maintaining fixed DGPS

carrier lock during outdoor experiments. It is recommended that these modules be replaced

in the future with more reliable hardware. Another issue that must be addressed in the

future is debugging the encoder data stream issue experienced with ARIA. Obtaining robot

side velocities will allow the skid-steer kinematic models to be incorporated in the IMM-

INS and tested. It is likely that the modified INS model in section 5.2.2 may improve filter

109

performance. The recommended course of action for fixing this problem is to identify

whether the ARIA server on the Seekur Jr is intercepting the data packets when the robot

is moving, and if so, develop code that makes these packets available when the robot is

moving.

110

Chapter 6

Conclusions and Future Work

About this chapter: This chapter discusses the conclusions that were made during the

experiments conducted for this thesis. The overall advantages and disadvantages of IMM

filtering are discussed with regards to the applications that have been presented. Additional

research topics and required work to advance this project further are discussed.

6.1. Conclusions

 This thesis has presented an analysis of IMM state estimator performance for

computer vision tracking and mobile robot INS localization applications. The following

discusses the conclusions for each experiment in terms of the objectives and expected

contributions outlined in section 1.3.

6.1.1. Objective 1 Conclusions

Objective 1 – Design an effective computer vision tracking system that implements

mean shift and IMM filtering techniques.

 The designed computer vision tracker in Chapter 3 effectively tracked targets using

mean shift paired with an IMM filter. The colour histogram approach can be inaccurate if

the video background and tracked target have similar colours. Changing illumination

effects in a video can also cause problems for this method. The vision system also does not

111

consider any changing scale sizes of tracked objects. The inclusion of an IMM filter assists

the tracker by providing information regarding the motion characteristics of the target.

Using an IMM filter generally outperformed single motion model Kalman filters in the

tested scenarios. The two modes in the IMM allowed the tracker to adaptively switch

kinematic models when a target exhibited constant velocity or acceleration behaviour. The

benefits of mode switching will likely have the biggest impact in general video target

tracking rather than high contrast synthetic videos like those in sections 3.3.1-3.3.4.

Additionally, the tracker computational demand can be reduced by adjusting how often the

mean shift algorithm is executed. It was observed that the computational time of the IMM

filter was significantly less than mean shift operations. Therefore, using the IMM filter to

track the target for multiple frames between each mean shift update can potentially improve

computing performance.

6.1.2. Objective 2 Conclusions

Objective 2 – Demonstrate the effectiveness of IMM filtering for automobile INS

applications.

 Chapter 4 illustrates the design process for an automobile IMM-INS using a vehicle

state-space model. Both the IMM-INS and EKF-INS produced accurate tracking results for

the states of the vehicle for the duration of the trajectory. The IMM filter used two modes

that contained differently tuned noise parameters for the sensor and process models. The

inclusion of multiple noise figures allowed the filter to shift its trust in the onboard sensors

adaptively. The positional error of the IMM was typically less than the EKF positional

112

error. This can be visibly seen in Figure 13 where the IMM maintains better position

estimates during two of the turning manoeuvres made by the vehicle.

6.1.3. Objective 3 Conclusions

Objective 3 – Design an IMM-INS for skid-steer mobile robots using ICR tracking for

outdoor navigation applications.

 Chapter 5 provides the framework required for incorporating two-dimensional

skid-steer kinematics in the vehicle state-space model. The proposed model should provide

improved tracking performance of the Seekur Jr robot when lateral skidding occurs during

turns. As shown in [58], the ICR tracking in the EKF can improve filter performance when

GPS data become unavailable for periods of time. The evaluated IMM in Chapter 5

demonstrates that the method can outperform an EKF if tuned properly. In all tested

scenarios, the IMM filter maintained lower RMS positional error than the EKF. The

highlighted trajectory sections in Figure 34 illustrate areas where the IMM visibly performs

better than the EKF. These locations correspond to turning manoeuvres and the time after

the robot travelled over a curb. These results were expected based on the IMM localization

results in Chapter 4.

6.1.4. Objective 4 Conclusions

Objective 4 – Develop an experimental testbed for the Seekur Jr robot for multi-model

localization research work.

113

 The experimental testbed for the Seekur Jr robot detailed in Chapter 5 is complete

except for encoder data streaming from the Seekur Jr motor encoders. The basic

functionality of the encoder streaming has been configured and tested using a simulator

with successful results. The ROS and ARIA system integration provides the framework for

adding and configuring additional sensors for future work with the data acquisition system.

The Emlid Reach DGPS equipment has been successfully configured and installed on the

Seekur Jr robot. Postprocessing code has been successfully designed for synchronizing,

calibrating and exporting Seekur Jr sensor data for state estimator applications.

6.2. Contributions

 The completion of the objectives in this thesis work has led the following

contributions:

Contribution 1 – IMM design and validation for computer vision target tracking and

robotic inertial navigation applications. Two strategies for

augmenting the model bank of IMM filters (i.e.: models with

different process and sensor noise characteristics and models with

different system dynamics) were tested and validated. This work

was has yielded two publications:

1) P. J. Glavine, O. D. Silva, G. Mann and R. Gosine, "Color-Based Object

Tracking using Mean Shift and Interactive Multiple Model Kalman

114

Filtering," in Newfoundland Electrical and Computer Engineering

Conference (NECEC), St. John's, 2017

2) P. J. Glavine, O. D. Silva, G. Mann and R. Gosine, "GPS Integrated

Inertial Navigation System Using Interactive Multiple Model Extended

Kalman Filtering," in 2018 Moratuwa Engineering Research

Conference (MERCon), Moratuwa, 2018

Contribution 2 – Development of an experimental testbed for multiple model

estimation based on the Seekur Jr platform. As part of the thesis

work the Seekur Jr platform is ROS enabled with access to data

streams from 2D Lidar, 3D nodding Lidar, IMU, digital compass,

wheel encoder, onboard GPS, RTK DGPS ground truth, and vision

sensors.

Contribution 3 – Design and experimental validation of an IMM filter using the

developed Seekur Jr mobile robot testbed. The IMM filter strategy

was validated for mobile robot navigation purposes in this thesis.

6.3. Future Work

 The following discusses potential research directions for the work completed in this

thesis:

• Computer Vision Tracker – Quantitative analysis of the mean shift IMM filter

performance for general video tracking should be tested to determine tracker

effectiveness for real-world video applications. Scale-invariant target

115

representation using image characteristics other than colour histogram should be

explored to address the scaling and variable illumination issues. The reduction of

the computational demand caused by using an IMM with the mean shift algorithm

should also be quantitatively determined in the future.

• Automobile INS – Further analysis of the effects of multiple noise models can be

explored for this system. Expanding the number of modes used by the IMM may

improve tracking accuracy results. The INS should be tested with a dataset from a

vehicle that has performed many aggressive turning manoeuvres during its

trajectory. Adding a dynamic model to the IMM that includes the Ackermann

steering configuration of a typical automobile would also likely improve estimator

performance.

• Skid-steer Robot INS – The skid-steer kinematics discussed in Chapter 5 should be

implemented in a future version of the Seekur Jr INS. Additionally, skid-steer

models that include lateral wheel forces and wheel-ground interactions should be

considered if the INS is tested on skid-steer robots or vehicles that have high

velocities during operation. In [58], it was found that some of the assumptions

employed in their ICR tracking method may breakdown for high-velocity skid-steer

systems.

• Seekur Jr Testbed – The encoder issue with the Seekur Jr should be further

investigated to make the data available for future use in multi-model filter

experiments. The Emlid Reach DGPS system should be eventually replaced with

more reliable and user-friendly hardware. This recommendation results from the

116

difficulty of maintaining DGPS fixed position solutions during field tests, and the

abundance of difficulties experienced when initially configuring the modules for

use in the data acquisition system.

• Indoor/Outdoor IMM – The IMM-INSs in this thesis mainly focused on outdoor

navigation where GPS is available. Future work with these filters can include

developing multiple models that rely on different sensors for either indoor or

outdoor navigation. The IMM filter would likely facilitate the mode switching of

the INS when the system transitions between outdoor and indoor environments.

Furthermore, within the indoor/outdoor IMM modes, there can be additional modes

implemented that contain multiple sets of noise parameters for shifting trust

between sensors when operating in unstructured environments.

 117

Bibliography

[1] V. Villani, F. Pini, F. Leali and C. Secchi, "Survey on human–robot collaboration

in industrial settings: Safety, intuitive interfaces and applications," Mechatronics,

vol. 55, pp. 248-266, 2018.

[2] P. Kemao, D. Miabo, C. B. M., C. Guowei, L. K. Yew and L. T. H., "Design and

Implementation of a Fully Autonomous Flight," in 26th Chinese Control

Conference, 2007.

[3] M. W. Powell, T. Crockett, J. M. Fox, J. C. Joswig, J. S. Norris, K. J. Rabe, M.

McCurdy and G. Pyrzak, "Targeting and Localization for Mars Rover Operations,"

[Online]. Available: https://www-

robotics.jpl.nasa.gov/publications/Mark_Powell/IEEE_IRI_06_Targeting.pdf.

[Accessed 24 November 2015].

[4] O. Kanoun and H.-R. Tränkler, "Sensor Technology Advances and Future

Trends," IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 6,

pp. 1497-1501, 2004.

[5] N. Sundaram, "Making Computer Vision Computationally Efficient," Berkeley,

2012.

[6] J. A. Farrell, Aided Navigation GPS with High Rate Sensors, The McGraw-Hill

Companies, 2008.

[7] S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics, MIT Press, 2005.

118

[8] R. E. Kalman, "A New Approach to Linear Filtering," Transactions of the ASME–

Journal of Basic Engineering, pp. 35-45, 1960.

[9] S. J. Julier and J. K. Uhlmann, "New extension of the Kalman filter to nonlinear

systems," in Signal Processing, Sensor Fusion, and Target Recognition VI,

Orlando, FL, United States, 1997.

[10] C. Stachniss, "SLAM Course - 06 - Unscented Kalman Filter (2013/2014; Cyrill

Stachniss)," Youtube, 2013.

[11] P. Abbeel, "EKF, UKF," University of California, Berkeley, [Online]. Available:

https://people.eecs.berkeley.edu/~pabbeel/cs287-fa13/slides/EKF_UKF.pdf.

[12] M. Xin and S. N. Balakrishnana, "A New State Observer and Flight Control of

Highly Maneuverable Aircraft," in American Control Conference, St. Louis, MO,

USA, 2009.

[13] C. B. Low and D. Wang, "GPS-Based Path Following Control for a Car-Like

Wheeled Mobile Robot With Skidding and Slipping," IEEE Transactions on

Control Systems Technology, vol. 16, no. 2, pp. 340-347, 2008.

[14] A. F. Genovese, "The Interacting Multiple Model Algorithm for Accurate State

Estimation of Maneuvering Targets," Johns Hopkins APL Technical Digest, vol.

22, no. 4, pp. 614-623, 2001.

[15] X. R. Li and Y. Bar-Shalom, "Design of Interacting Multiple Model Algorithm for

Air Traffic Control Tracking," IEEE Transactions on Control Systems Technology,

vol. 1, no. 3, pp. 186-194, 1993.

[16] R. Radhakrishnan, A. K. Singh, S. Bhaumik and N. K. Tomar, "IMM-Cubature

Quadrature Kalman Filter for Manoeuvring Target Tracking," IEEE International

119

Conference on Signal Processing, Informatics, Communication and Energy

Systems (SPICES), 2015.

[17] T. Cho, C. Lee and S. Choi, "Multi-Sensor Fusion with Interacting Multiple Model

Filter for Improved Aircraft Position Accuracy," Sensors, vol. 13, pp. 4122-4137,

2013.

[18] D. Svensson and L. Svensson, "A New Multiple Model Filter With Switch Time

Conditions," IEEE Transactions on Signal Processing, vol. 58, no. 1, pp. 11-25,

2010.

[19] K. Jo, K. Chu and M. Sunwoo, "Interacting Multiple Model Filter-Based Sensor

Fusion of GPS With In-Vehicle Sensors for Real-Time Vehicle Positioning," IEEE

Transactions on Intelligent Transportation Systems, vol. 13, no. 1, pp. 329-343,

2012.

[20] R. Toledo-Moreo, M. A. Zamora-Izquierdo and B. Úbeda-Miñarro, "High-

Integrity IMM-EKF-Based Road Vehicle Navigation With Low-Cost

GPS/SBAS/INS," IEEE Transactions on Intelligent Transportation Systems, vol.

8, no. 3, pp. 491-511, 2007.

[21] O. Törő, T. Bécsi, S. Aradi and P. Gáspár, "Sensitivity and Performance

Evaluation of Multiple-Model State Estimation Algorithms for Autonomous

Vehicle Functions," Journal of Advanced Transportation, vol. 2019, 2019.

[22] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, "Vision meets Robotics: The KITTI

Dataset," International Journal of Robotics Research (IJRR), 2013.

[23] Omron Adept Mobile Robots, Seekur Jr Manual, 2017.

120

[24] Emlid, "Reach RTK docs: Introduction," [Online]. Available:

https://docs.emlid.com/reach/img/reach/Reach_400x400-400x380.png. [Accessed

2019].

[25] F. Dellaert, D. Fox, W. Burgard and S. Thrun, "Monte Carlo Localization for

Mobile Robots," in IEEE International Conference on Robotics & Automation ,

Detroit, Michigan, 1999.

[26] J.-S. Gutmann, W. Burgard, D. Fox and K. Konolige, "An Experimental

Comparison of Localization Methods," in IEEE/RSJ Intl. Conference on Intelligent

Robots and Systems, Victoria, B.C., Canada, 1998.

[27] J. E. Guivant and E. M. Nebot, "Optimization of the Simultaneous Localization

and Map-Building Algorithm for Real-Time Implementation," IEEE Transactions

on Robotics and Automation, vol. 17, no. 3, pp. 242-257, 2001.

[28] A. J. Davison, I. D. Reid, N. D. Molton and O. Stasse, "MonoSLAM: Real-Time

Single Camera SLAM," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 29, no. 6, pp. 1052-1067, 2007.

[29] J. W. Marck, A. Mohamoud, E. v. Houwen and R. v. Hejster, "Indoor Radar

SLAM a Radar Application for Vision and GPS Denied Environments," in

European Radar Conference, Nuremberg, Germany, 2013.

[30] M. F. Fallon, J. Folkesson, H. McClelland and J. J. Leonard, "SLAM, Relocating

Underwater Features Autonomously Using Sonar-Based," IEEE Journal of

Oceanic Engineering, vol. 38, no. 3, pp. 500-513, 2013.

121

[31] P. Biber and W. Strasser, "The Normal Distributions Transform: A New Approach

to Laser Scan Matching," in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Las Vegas, NV, USA, 2003.

[32] H. Zhang, L. Li and W. Xie, "Constrained Multiple Model Particle Filtering for

Bearings-Only Maneuvering Target Tracking," IEEE Access, vol. 6, pp. 51721-

51734, 2018.

[33] H. Qian, D. An and Q. Xia, "IMM-UKF Based Land-Vehicle Navigation With

Low-Cost GPS/INS," in IEEE International Conference on Information and

Automation, Harbin, China, 2010.

[34] G. Pandey, J. McBride and R. Eustice, "Ford Campus Vision and Lidar Data Set,"

International Journal of Robotics Research, vol. 30, no. 13, pp. 1543-1552, 2011.

[35] K. Y. K. Leung, Y. Halpern, T. D. Barfoot and H. H. T. Liu, "The UTIAS Multi-

robot Cooperative Localization and Mapping Dataset," International Journal of

Robotics Research, vol. 30, no. 8, pp. 969-974, 2011.

[36] O. D. Silva, G. K. I. Mann and R. G. Gosine, "An Ultrasonic and Vision-Based

Relative Positioning Sensor for Multirobot Localization," IEEE Sensors Journal,

vol. 15, no. 3, pp. 1716-1726, 2015.

[37] T. R. Wanasinghe, G. K. I. Mann and R. G. Gosine, "Decentralized Cooperative

Localization Approach for Autonomous Multirobot Systems," Journal of Robotics,

2016.

[38] K. Ogata, Modern Control Engineering Fifth Edition, Prentice Hall, 2010.

122

[39] S. Rezaei and R. Sengupta, "Kalman Filter-Based Integration of DGPS and

Vehicle Sensors for Localization," IEEE Transactions on Control Systems

Technology, vol. 15, no. 6, 2007.

[40] E. L. Haseltine and J. B. Rawlings, "Critical Evaluation of Extended Kalman

Filtering and Moving-Horizon Estimation," Industrial & Engineering Chemistry

Research, vol. 44, pp. 2451-2460, 2005.

[41] A. Tsalatsanis, K. Valavanis and A. Yalcin, "Vision Based Target Tracking and

Collision Avoidance for Mobile Robots," Journal of Intelligent & Robotic

Systems, vol. 48, no. 2, 2007.

[42] B. Maurin, O. Masoud and N. P. Papanikolopoulos, "Tracking All Traffic:

Computer Vision Algorithms for Monitoring Vehicles, Individuals, and Crowds,"

IEEE Robotics & Automation Magazine, pp. 29-36, March 2005.

[43] A. Cesetti, E. Frontoni, A. Mancini, P. Zingaretti and S. Longhi, "A Vision-Based

Guidance System for UAV Navigation and Safe Landing using Natural

Landmarks," Journal of Intelligent and Robotic Systems, vol. 57, no. 1-4, 2010.

[44] D. Comaniciu, V. Ramesh and P. Meer, "Kernel-Based Object Tracking,"

[Online]. Available: http://comaniciu.net/Papers/KernelTracking.pdf.

[45] E. Karami, M. Shehata and A. Smith, "Segmentation and Tracking of Inferior

Vena Cava in Ultrasound Images using a Novel Polar Active Contour Algorithm,"

in IEEE Global Conference on Signal and Information Processing (GlobalSIP),

Montreal, QC, Canada, 2017.

[46] S. Baker and I. Matthews, "Lucas-Kanade 20 Years On: A Unifying Framework,"

International Journal of Computer Vision, vol. 56, no. 3, pp. 221-255, 2004.

123

[47] D. Comaniciu, V. Ramesh and P. Meer, "Real-Time Tracking of Non-Rigid

Objects using Mean Shift," Proceedings IEEE Conference on Computer Vision

and Pattern Recognition, 2000.

[48] M. Shah, "Lecture 11: Mean Shift," UCF Center for Research in Computer Vision,

2012.

[49] R. Collins, "Mean Shift Tracking CSE598G Spring 2006," [Online]. Available:

http://www.cse.psu.edu/~rtc12/CSE598G/introMeanShift.pdf.

[50] A. Bhattacharyya, "On a Measure of Divergence between Two Multinomial

Populations," The Indian Journal of Statistics, vol. 7, no. 4, pp. 401-406, 1946.

[51] N. Duinker, "Tutorial - Learn How To Juggle 3 Balls," 2013. [Online]. Available:

https://www.youtube.com/watch?v=x2_j6kMg1co.

[52] M. Barczyk and A. F. Lynch, "Invariant Observer Design for a Helicopter UAV

Aided Inertial Navigation System," IEEE Transactions on Control Systems

Technology, vol. 21, no. 3, pp. 791-806, 2013.

[53] J. Solà, "Quaternion kinematics for the error-state Kalman filter," 2017. [Online].

Available:

http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf.

[54] M. T. Mason, "Lecture 8. Quaternions," 2013. [Online]. Available:

http://www.cs.cmu.edu/afs/cs/academic/class/16741-

s07/www/lectures/Lecture8.pdf.

[55] Solutions, Oxford Technical, RTv2 GNSS-Aided Inertial Measurement Systems

User Manual, 2015.

124

[56] N. Trawny, X. S. Zhou, K. Zhou and S. I. Roumeliotis, "Inter-robot

Transformations in 3D," IEEE Transactions on Robotics, vol. 26, no. 2, pp. 226-

243, 2010.

[57] R. Hermann and A. Krener, "Nonlinear Controllability and Observability," IEEE

Transactions on Automatic Control, Vols. AC-22, no. 5, pp. 728-740, 1977.

[58] Google, "Google Maps," 2017. [Online]. Available:

https://www.google.ca/maps/@49.0534004,8.3962994,245m/data=!3m1!1e3.

[59] J. Pentzer and S. Brennan, "Model-based Prediction of Skid-steer Robot

Kinematics Using Online Estimation of Track Instantaneous Centers of Rotation,"

Journal of Field Robotics, pp. 455-476, 2014.

[60] T. Wang, Y. Wu, J. Liang, C. Han, J. Chen and Q. Zhao, "Analysis and

Experimental Kinematics of a Skid-Steering Wheeled Robot Based on a Laser

Scanner Sensor," Sensors, vol. 15, pp. 9681-9702, 2015.

[61] W. Yu, O. Y. Chuy, E. G. Collins Jr. and P. Hollis, "Analysis and Experimental

Verification for Dynamic Modeling of A Skid-Steered Wheeled Vehicle," IEEE

Transactions on Robotics, vol. 26, no. 2, pp. 340-353, 2010.

[62] Omron Adept Mobile Robots, Seekur Jr Technical Drawings, Omron Adept

Mobile Robots.

[63] Trimble, "All About GPS: Error Correction," [Online]. Available:

https://www.trimble.com/gps_tutorial/howgps-error.aspx. [Accessed 2019].

[64] NovAtel, "An Introduction to GNSS Chapter 4 GNSS Error Sources," [Online].

Available: https://www.novatel.com/an-introduction-to-gnss/chapter-4-gnss-error-

sources/error-sources/. [Accessed 2019].

125

[65] Emlid, "How RTK Works," [Online]. Available:

https://docs.emlid.com/reach/common/tutorials/rtk-introduction/. [Accessed 2018].

[66] T. Takasu, RTKLIB ver. 2.4.2 Manual, RTKLIB, 2013.

[67] Emlid, "Reach RTK docs: Mechanical specs," [Online]. Available:

https://docs.emlid.com/reach/img/reach/specs/reach-dimensions.png. [Accessed

2019].

[68] Emlid, "Reach RTK docs: Introduction," [Online]. Available:

https://docs.emlid.com/reach/common/reachview/img/reachview/introduction/reac

hview.gif. [Accessed 2019].

[69] Open Robotics, "About ROS," [Online]. Available: https://www.ros.org/about-

ros/. [Accessed 2019].

[70] Scan, "Intel Dual Core 8th Gen i3 Tall NUC Barebone Mini PC Kit," [Online].

Available: https://www.scan.co.uk/images/products/super/2972672-l-a.jpg.

[71] 3D Robotics, 3DR Radio V2 Quick Start Guide.

[72] Emlid, "Reach RTK docs: Hardware Integration," [Online]. Available:

https://docs.emlid.com/reach/hardware-integration/. [Accessed 2019].

[73] Emlid, "Reach RTK docs: Quick Start," [Online]. Available:

https://docs.emlid.com/reach/quickstart/. [Accessed 2018].

[74] J. E. Lenz, "A Review of Magnetic Sensors," Proceedings of the IEEE, vol. 78, no.

6, pp. 973-989, 1990.

126

[75] K. Winer, "Simple and Effective Magnetometer Calibration," [Online]. Available:

https://github.com/kriswiner/MPU6050/wiki/Simple-and-Effective-Magnetometer-

Calibration.

[76] Google, "Google Maps," 2019. [Online]. Available:

https://www.google.ca/maps/@47.5747935,-52.7366979,272m/data=!3m1!1e3.

[77] InvenSense, "MPU-9250 Product Specification Revision 1.1," 20 June 2016.

[Online]. Available: http://www.invensense.com/wp-content/uploads/2015/02/PS-

MPU-9250A-01-v1.1.pdf. [Accessed 2019].

