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Abstract 

 
The Orphan Basin, offshore Newfoundland, Canada, is approximately conjugate to the 

rifted margin basins on the Irish Atlantic margin. At the onset of seafloor spreading, plate 

reconstructions, based solely on oceanic magnetic anomalies, show the Rockall Basin, west of 

Ireland, forming a continuous Mesozoic basin with the West Orphan Basin. Here, the nature of 

this potentially continuous basin is examined through the development of a Newfoundland-

Ireland conjugate basins model.  

2D and 3D reconstructions of the West Orphan and Rockall basins yielded the thickness 

of the post-rift and syn-rift sedimentary packages, as well as the pre-rift crust. A discrepancy 

inspired additional analysis of the East Orphan Basin to aid in the reconstruction of the 

continuous Mesozoic basins. Based on the results of the reconstruction of the East Orphan 

Basin, it is possible that the Rockall Basin was originally conjugate to, and continuous with, the 

East Orphan Basin. 
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Chapter 1: Introduction 
 

Several petroleum rich sedimentary basins (e.g., the Orphan Basin, the Flemish Pass Basin and 

the Jeanne D’Arc Basin) are located offshore Newfoundland and Labrador (Fig. 1.1a). These 

basins were formed during the opening of the North Atlantic Ocean (Chian et al., 2001; 

Enachescu et al., 2004; Lau et al., 2015). On the conjugate Irish Atlantic margin, numerous 

basins were formed at approximately the same time (e.g., the Rockall Basin and the Porcupine 

Basin; Shannon 1991; O’Reilly et al., 1996; Hopper et al., 2006)(Fig. 1.1b). Whereas the 

Newfoundland-Iberia conjugate margin pair involves the world’s most thoroughly studied rifted 

continental margins, less research has been conducted on the Newfoundland-Ireland conjugate 

basins immediately to the north. The aim of this M.Sc. project is to look specifically at the 

relationship between the West Orphan Basin, on the Newfoundland margin, and the Rockall 

Basin on the Irish margin. Using both modern and vintage geophysical data (Figs. 1.4 and 1.6), 

predominantly seismic reflection profiles, these rifted margins have been interpreted and restored 

back to their pre-rift state in order to determine if these basins formed a single large Mesozoic rift 

system prior to the opening of the modern North Atlantic Ocean.  
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Figure 1.1: (A) North Atlantic margins. (B) Enlarged view of the Orphan Basin, offshore Newfoundland, Canada. (C) Enlarged view 

of the Rockall Basin, offshore Ireland.  

 

 
1.1 Classification of Rifted Margins 

 
Rifted margins are categorized into three “archetype” or “end member” groups: 

volcanic/magma rich, non-volcanic/magma poor, and sediment rich (Péron-Pinvidic et al., 

2013). These end-member margins are differentiated according to their overall basin geometry, 

sedimentary records, and magmatic history. Despite the differences observed over all three 

margin types, they appear to have a similar first-order geometry, with continental crust that 

thins toward the ocean from approximately 30 km to 0-5 km. All the margin types also exhibit a 

Moho that either rises rapidly over a short distance or gradually over a larger distance, while the 

top of the basement steadily deepens (Péron-Pinvidic et al., 2013). 

The Newfoundland-Ireland conjugate basins exhibit all of the common characteristics of a 
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typical non-volcanic/magma poor rifted margin (Reston, 2007a). These characteristics include: 

low to moderate sedimentary rock accumulation rates, extreme crustal thinning (increasing 

towards the ocean), rotated fault blocks, the presence of detachment faults, little evidence of syn-

rift magmatism, and a broad region of partially serpentinized and exhumed mantle (Reston, 

2007a). 

Buck et al. (1999) linked the formation of rifted margins to both localizing and delocalizing 

processes. Localization processes are ones where deformation is concentrated on the original 

points of weakness in the lithosphere, whereas delocalization processes are ones that disperse the 

deformation. The important, localizing processes exhibited in a rifted margin include: thinning of 

the lithosphere resulting in weakening, which then propagates as faults, and rift-related melt 

generating dike intrusions that weaken the lithosphere mechanically and thermally (Buck, 2007). 

Conversely, the delocalizing processes include isostatic/gravitational forces working against 

lithospheric thinning by equilibrating lateral variations in layer thicknesses of different densities 

(Fleitout & Froidevaux, 1982). Finally, interactions between these processes are affected by the 

extension rate and far-field stresses, which ultimately result in wide or narrow (Buck et al., 1999), 

symmetric or asymmetric (Buiter et al., 2008), and failed or successful rifts (Brune et al., 2017). 

Reston (2007a) proposed a model of progressive extension leading to continental 

breakup at a cool, non-volcanic/magma poor rifted margin pair (Fig. 1.2). The evolution of the 

breakup allows for discrete differences between continental rifts, which generally undergo less 

extension, and continental rifted margins. The first stage of the proposed model shows extension 

of the lithosphere with faulting occurring in the upper crust, and boudinage of both the 

uppermost mantle and the lower crust. Depth-dependent stretching is likely to begin at this stage 

with the amount of symmetric stretching being controlled by the strain rate (Reston, 2007a).  As 
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extension continues, the original normal faults stop propagating and new faults begin to form 

(Fig. 1.2a). During this time, the lower crust becomes coupled with the upper crust and lower 

crustal boudinage is replaced by faulting. Extension is focused towards the site of eventual break 

up, as the crust thins to approximately one-quarter of its original thickness (Fig. 1.2b) (Reston, 

2007a). Simultaneously, the second generation of faults lock-up and a third phase of faults begin 

to propagate. Complete crustal embrittlement occurs during this time allowing faults to 

propagate through the entire crust, leading to serpentinization of the mantle (Fig. 1.2c). The 

serpentinization weakens the strong mantle lid and can lead to complete crustal separation 

(Pérez-Gussinyé & Reston 2001). Melt generation is typically expected at this stage, but is 

suppressed by a combination of mantle depth-dependent stretching and/or the presence of a cool 

subcontinental mantle (Reston, 2007a). Reston (2007a) goes on to postulate that sea-floor 

spreading is most likely controlled by the influx of warm asthenosphere and usually occurs after 

crustal separation, as indicated by the presence of a broad zone of unroofed mantle within the 

ocean-continent transition. This is in agreement with the findings of Davis and Kusznir (2004) 

who conclude that the lack of basaltic material within exhumed mantle may be consistent with 

mantle exhumation occurring during early seafloor spreading such that the basaltic melt was 

focused into the ridge axis by the matrix pressure field associated with the divergent flow in the 

lithosphere and asthenosphere at the young ocean ridge (Spiegelman & Reynolds 1999). 
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Figure 1.2: Schematic illustration showing the important steps in the progressive extension of the lithosphere leading to 
continental break-up. (a) Early rift conditions up to the initiation of the second generation of faults (dashed lines). 
Initial decoupling zones at the base of the upper and mid crust (grey lines), and upper crust become increasingly 

coupled to the lower crust in the center of the rift. (b) The entire crust is now brittle mantle serpentinization (dark grey) 
has begun. A third generation of faults propagates down to the detachment surface (bold). (c) Crustal separation is 

imminent. (d) Post -crustal separation and continued unroofing of the lithospheric mantle may require displacement. 
Image from Reston (2007a).  

 
 
 
 

The above model (Fig. 1.2) captures the evolution of a symmetric non-volcanic/magma 

poor margin pair. However, as previously stated, the Newfoundland-Ireland conjugate margin 

system is asymmetric (Reston 2007a). Reston (2007a) also proposed a simplified model for 

asymmetric rift margin evolution. It is important to note that if extension occurred as a result of 

simple shear, along a low angle detachment fault, the failure to recognize this detachment could 

potentially result in a significant underestimation of the amount of extension accommodated by 

faulting (Fig. 1.3). To avoid this problem, it is important to accurately identify pre-rift units on 

both sides of the conjugate margin pair to differentiate between pre-faulting units deposited prior 

to development of the visible faults (Reston, 2007a). Eddy et al. (2017) suggest that large-scale 

detachment faulting continued until lithospheric breakup near the Aptian-Albian boundary. They 

go on to state that magmatism appears to have been focused at the point of mantle exhumation on 
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large-scale detachment faults and may have played a role in determining the location of breakup 

by weakening the overlying lithosphere (Eddy et al., 2017).  

When analyzing Reston’s proposed asymmetric model with regards to the 

Newfoundland-Ireland conjugate margin pair, the lower plate is the Irish-Atlantic margin and the 

upper plate is the Newfoundland margin (Reston, 2007a). As a result of more extreme crustal 

thinning, the serpentinization and possible exhumation of the mantle is only observed on the 

Irish-Atlantic margin. Conversely, no serpentinization has been observed on the Newfoundland 

margin.  

 
 

 

Figure 1.3: Simplified schematic illustration of how movement along a crustal-scale shear zone can result in asymmetric 
conjugate margins (Reston, 2007a). 

The major detachment surface modelled at the crust-mantle boundary, commonly 

referred to as an “S” reflector on seismic data, is used to identify large scale asymmetry of entire 

rift systems (Davis & Kusznir 2004; Reston et al., 1996). Hopper et al., (2006) used seismic data 

to observe the asymmetries between the Newfoundland-Iberia conjugate margins. On the 

Newfoundland margin, notably beneath Flemish Cap, they observed that the crust thins from 30 

to 3 km, where the Moho is well defined and dips locally by as much as 30 degrees. However, 
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on the Iberia margin, beneath Galicia Bank, extremely thin continental crust is observed only in 

a very narrow zone and evidence of the conjugate counterpart to the “S” reflector is lacking. 

Based on their interpretation of the geophysical data, it was concluded that beneath Galicia 

Bank, on the Iberia margin, thin continental crust either immediately bounds thin oceanic crust 

or is separated by less than 10 km of exhumed mantle. On the Newfoundland margin, off 

Flemish Cap, no broad zone of exhumed mantle is observed (Hopper et al., 2006). However, 

Welford et al. (2010) interpreted a 25 km wide of zone of transitional crust along the 

northeastern margin of Flemish Cap, as exhumed serpentinized mantle. These observations are 

indicative of major asymmetry in the final development of continental rifting that led to seafloor 

spreading between the Flemish Cap-Goban Spur conjugate margins. The goal of this M.Sc. 

project is to determine whether similar structures are present on the Newfoundland-Ireland 

conjugate margins, which are located just north of the Flemish Cap-Goban spur conjugate 

margins. 

 

1.2 The Newfoundland-Ireland Conjugate Margins 

1.2.1 Introduction to the Rockall Basin 

 
A number of deep-water sedimentary basins are located on the Atlantic continental margin 

west of Ireland. The two largest Irish basins are the Rockall and the Porcupine basins (Fig. 1.4), 

which have been the focus of intermittent exploration since the late 1970s (Shannon 1991; 

O’Reilly et al., 1996; Mackenzie et al., 2002; Morewood et al., 2005). The Porcupine Basin is a 

large, deep-water sedimentary basin that lies within the continental shelf and is oriented parallel 

to the continental margin. The Rockall Basin is located to the north of the Porcupine Basin, and 

underlies a deep bathymetric depression, called the Rockall Trough. It is the largest sedimentary 
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basin on the Irish Atlantic continental margin measuring approximately 250 km by 1100 km 

(Morewood et al., 2005). The Rockall Basin trends in a NE-SW direction with water depths 

ranging from 200 m on the margins to over 3000 m in the center. Shannon et al. (1999) were one 

of the first to suggest that both the Porcupine and the Rockall basins developed in response to 

three rift episodes in the Triassic, Late Jurassic and Early Cretaceous with periods of intermittent 

thermal subsidence. 

 
 

Figure 1.4: (Top) Location of the Rockall Basin in the North Atlantic Ocean, offshore Ireland. The location of the Rockall 
Bank, Porcupine Bank and Porcupine Basin are also shown. Background shows bathymetry. (Bottom) Localized view of the 
Rockall Basin, showing the seismic lines used in this M.Sc. thesis. Black lines indicate the data provided to this project, the 

green line depicts the location of the seismic line from England & Hobbs (1997), the orange line shows the location of seismic 

line 2A and the pink line shows the location of seismic line 2B from Shannon et al. (1999). The blue line indicates the 
location of the seismic line from Kimbell et al. (2010). Background shows bathymetry. 
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Figure 1.5: Free air gravity anomaly map of the Rockall Basin, offshore Ireland. Source of data was the Technical University 

of Denmark, National Space Institute website, 
http://www.space.dtu.dk/english/Research/Scientific_data_and_models/Global_Marine_Gravity_Field. 

http://www.space.dtu.dk/english/Research/Scientific_data_and_models/Global_Marine_Gravity_Field
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1.2.2 Introduction to the Orphan Basin 

 
The Orphan Basin lies at the eastern limit of the North American continent, approximately 

300 km seaward of the island of Newfoundland (Fig. 1.6). The Orphan Basin lies between the 

Orphan Knoll continental fragment and the continental shelf (Keen & Barrett, 1981). Rifting 

began around the Late Triassic to Early Jurassic based on age constraints from deep-water wells 

and seismic interpretation of Triassic strata (Chian et al., 2001; Enachescu et al., 2004; Welford 

et al., 2012; Gouiza et al., 2017). A system of NE–SW trending ridges and the White Sail Fault 

divide the Orphan Basin into a generally shallower eastern sub-basin and a deeper western sub-

basin (Lau et al., 2015). A plate reconstruction at the time of magnetic anomaly M0 (Srivastava 

& Verhoef 1992) shows that the East and the West Orphan basins and the Orphan Knoll, form a 

multi-basin rift system that is likely conjugate to the rift structures associated with the Porcupine 

Basin and the Rockall Basin on the Irish side of the Atlantic (Tucholke et al., 1989; Hopper et 

al., 2006; Lau et al., 2015). Based on this plate reconstruction, it has been suggested that early 

rifting and basin development prior to crustal breakup were likely part of a complex, multi-stage 

process. 
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Figure 1.6: (Top) Location of the Orphan Basin in the North Atlantic Ocean, offshore Newfoundland and Labrador. The location 
of Orphan Knoll and Flemish Cap are also shown. Background shows bathymetry. (Bottom) Localized view of the Orphan Basin 

and the locations of the seismic lines provided for this M.Sc. thesis (black lines). The pink line indicates the location of the 

seismic line from Chian et al. (2001) and the green line indicates the location of the seismic line from Lau et al. (2015). 
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Figure 1.7: Free air gravity anomaly map of the Orphan Basin, offshore Newfoundland and Labrador. Source of data was the 
Technical University of Denmark, National Space Institute website, 

http://www.space.dtu.dk/english/Research/Scientific_data_and_models/Global_Marine_Gravity_Field. 

http://www.space.dtu.dk/english/Research/Scientific_data_and_models/Global_Marine_Gravity_Field
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1.3 Basin Evolution 

1.3.1 Rockall Basin 

The distribution of basement domains, established during the Caledonian orogeny 

(Shannon et al., 1997), had considerable influence on the development of the entire Irish 

Atlantic margin (Naylor & Shannon 2005). Remnants of this orogeny are recorded in northern 

parts of Ireland, Britain, and parts of Scandinavia, encompassing events that occurred during the 

Ordovician to Devonian, 490–390 million years ago (O’Reilly et al., 1996). By the late 

Carboniferous, an east-west trending oriented fabric was superimposed on the basement of the 

Irish continental margin due to northward migration of deformation from the Variscan orogeny 

to the south (Landes et al., 2005). The Variscan orogeny was caused by the late Paleozoic 

continental collision between Euramerica and Gondwana, which formed the supercontinent of 

Pangaea (Schulmann et al., 2014). Further deformation within the basin during the late 

Paleozoic was also controlled by Variscan tectonics. During the Permian, only local basin 

development occurred with minimal uplift due to late Variscan north-south compression in the 

Celtic Sea (Shannon 1991). Due to the reactivation of basement lineaments and the east-west 

extension from early Pangaea instability, the Rockall Basin began to develop (Shannon 1991). 

 

On the Irish Atlantic margin, Mesozoic basin development took place due to the rifting of 

the Pangaea supercontinent (Shannon 1991). Triassic basin formation continued in a broadly 

similar setting as it did during the Permian. Along the margin of the Rockall Basin are a series of 

`perched’ basins, which are suggested by Corfield et al. (1999) to be of Late-Triassic age and are 

bounded by numerous faults. During the Early Jurassic, there was a period of inactivity 

following the cessation of the Triassic rifting. Lower Jurassic strata are only known in the 

northern part of the Porcupine Basin and are thought to represent a series of deep marine shales 

https://en.wikipedia.org/wiki/Ireland
https://en.wikipedia.org/wiki/Ireland
https://en.wikipedia.org/wiki/Ordovician
https://en.wikipedia.org/wiki/Devonian
https://en.wikipedia.org/wiki/Continental_collision
https://en.wikipedia.org/wiki/Euramerica
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and limestones (Crocker & Shannon 1987). These Lower Jurassic strata are also assumed to be 

present in the Rockall Basin, however there is no geological evidence to confirm their presence. 

In the Mid- Jurassic, a period of major rifting occurred (Shannon 1991). Shannon (1991) states 

that the uppermost Jurassic strata show evidence of a rift phase, however it was locally 

developed and movement only took place along basin edges. The Upper-Jurassic strata reflect 

deposition of basin-edge sandy to conglomerate alluvial fans and deep-marine sandy fans in a 

series of syn-rift sub-basins (Crocker & Shannon 1987). 

Thermal subsidence, marked by a regional unconformity, took place in the Cretaceous as 

basin rifting gave way to a phase of drift (Shannon 1991). This was followed by a minor rift 

episode that resulted in localized uplifting on the Rockall Basin margins producing a variety of 

deltaic fans (Shannon 1991). The Barra Volcanic Ridge System, located in the south of the 

Rockall Basin, has been interpreted as the product of extensive volcanism during this period 

(Shannon et al., 2006).  

Cenozoic tectonic activity is reflected in the interplay of post-rift thermal subsidence and 

compression from the formation of the Alpine Mountains (Shannon 1991). In the Rockall Basin, 

thermal subsidence continued through this period until it was interrupted by a major 

unconformity (Shannon 1991). This unconformity is likely due to sea-floor spreading in the 

North Atlantic, causing crustal heating and uplift from decompression melting (Shannon 1991). 

This era is marked by a period of intense igneous activity, which was interpreted by Naylor & 

Shannon (2005) to be associated with the British-Irish Thulean Province, a large igneous 

province in the North Atlantic. Accompanying this activity were large swarms of sills and flows, 

which were intruded into the Rockall region. The intrusion of these sills reactivated the volcanic 

systems in the basin (Shannon et al., 2006). 
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1.3.2 Orphan Basin 

 
While the Iapetus Ocean was closing during the Caledonian-Appalachian orogeny, the 

basement structures that ran NE-SW along the strike of the orogeny were established (Williams 

1984, 1995). The formation of the Orphan Basin was largely controlled by these pre-existing 

basement structures (Shannon 1991). The initial phase of rifting affected mainly the East Orphan 

Basin and is thought to have occurred as early as the Triassic (Welford et al., 2012; Enachescu et 

al., 2004) or Early Jurassic (Gouiza et al., 2017). Eastward dipping fault blocks and thick Jurassic 

sediment preserved in the hanging wall of half grabens provide proof that this initial rifting phase 

primarily affected the East Orphan Basin (Gouiza et al., 2017). Rifting began in the East Orphan 

Basin and progressed westward, as evidenced by the change in orientation of faults and basement 

ridges from NE-SW to N-S. (Enachescu et al., 2004). During the Late Triassic to Early Jurassic, 

continental break-up between Newfoundland and Western Iberia was initiated and the Orphan 

Basin began to develop. 

The second phase of rifting occurred during the Late-Jurassic to Early Cretaceous 

(Enachescu et al., 2004; Welford et al., 2012), resulting in enlargement of the Orphan Basin. 

During this time, the Orphan Basin was divided into a younger West Orphan Basin and an older 

East Orphan Basin (Enachescu et al., 2004). The West Orphan Basin is inferred to have only 

begun opening in the Late Jurassic (Enachescu et al., 2004), but this conclusion may simply 

reflect a lack of deep well control (Welford et al., 2012). The westward spread of deformation 

resulted in the formation of half grabens bounded by westward-dipping normal faults. The Late 

Jurassic-Early Cretaceous rift event also resulted in the formation of several conjugate 

Mesozoic rift basins, such as the Porcupine and Rockall basins in the Irish North Atlantic 

(Mackenzie et al., 2002; Lau et al., 2015). 
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The third phase of rifting occurred in the Aptian-Albian and was oriented NE-SW, 

overprinting the two previous rift phases (Welford et al., 2012; Enachescu et al., 2004). As a 

result of the change in extension direction, the faults in the East Orphan Basin were reactivated 

and widened. The faults in the West Orphan Basin were also reactivated during this phase of 

rifting. This fault reactivation of the West Orphan Basin was likely related to the northward 

propagation of extension and the opening of the Labrador Sea between Labrador and western 

Greenland (Chian et al., 1995). 

The mid-Late Cretaceous extension also separated the Newfoundland margin from the 

conjugate Irish margin (Welford et al., 2012). Doré et al. (1997) interpreted this event as a 

reopening of the Caledonian-Appalachian basement structures. The East and West Orphan basins 

experienced extension and minor transtension from this Late Cretaceous rift episode (Enachescu 

et al., 2004). During the Paleocene, the Orphan Basin evolved in a post-rift setting, with a long 

period of thermal subsidence resulting in the deposition of a thick Cenozoic succession (Gouiza 

et al., 2017). 
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1.4 Past Work 

 1.4.1 Rockall Basin 

The Rockall Basin is 250 km wide by 1100 km long, making it the largest basin located 

in the Irish offshore (England & Hobbs 1997, Kimbell et al., 2010). Water depths range from 

200 m on the eastern and western margins to over 3000 m in the center of the basin (Corfield et 

al., 1999). Roberts et al. (1988) were the first to suggest that the Rockall Basin was floored by 

highly thinned continental crust. However, there was significant geological debate during the 

1970s to 1990s (summarized by Smythe 1989) concerning the thickness of the underlying crust 

(Morewood et al., 2004). Most recent work in this area indicates that the Rockall Basin contains 

up to 5 km of presumed late Paleozoic to recent sediments above thinned continental crust 

(Shannon et al., 1999). Several smaller and older basins are present along the margins of the 

Rockall Basin, indicating a period of early lithospheric extension in the area (Shannon et al. 

1999). There is a lack of deep well data for the entire Rockall Basin, which means that its 

underlying geology remains poorly constrained. Therefore the deep stratigraphy in the Irish 

Rockall Basin is principally constrained by regional correlation and jump-correlation to wells in 

the Porcupine Basin, which lies to the south (Crocker & Shannon 1987). Sills, intruded into the 

Cretaceous and Paleocene sediments, obscure the deep structure over large areas of the northern 

and southern parts of the basin (Corfield et al., 1999). However, deep structures can still be seen 

where lateral gaps in the distribution of sills allow for improved deep seismic imaging. Several 

normal incidence reflection surveys in part of the southern Rockall Basin (e.g., England & 

Hobbs 1997 and Shannon et al., 1999) provide good quality data, primarily above the complex 

of extensive sills. 

The British Institutions Reflection Profiling Syndicate (BIRPS) presented the first 
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publicly available deep near-normal-incidence reflection profiles, shot across the entire width of 

the Rockall Basin (England & Hobbs 1997). The northwest slope of the Rockall Basin has an 

unreflective basement that is cut by a number of normal faults bounding a series of half-grabens 

(England & Hobbs 1997). Within the grabens, England & Hobbs (1997) observed fans of 

reflections that they interpreted as syn- or early post-rift sedimentary deposits (Fig. 1.8). 

 

 

Figure 1.8: Two way travel time profile of the Rockall slope and basin (England & Hobbs 1997). Location shown in Fig. 1.2. 
 

 
The joint Birmingham/Cambridge Universities experiment in the Rockall Basin acquired 

two expanding spread profiles (ESP) that provide a 1D velocity function at the mid-point of the 

profiles (England & Hobbs 1997). Since these data provide information about particular layers, 

they are useful for interpreting the reflection data. The ESP data confirmed that the observed 

high amplitude reflections were sills due to their coincidence with a sharp increase in velocity 

(England & Hobbs 1997). England & Hobbs (1997) also state that the top of the basement 

coincides with an increase in velocity and they suggest that the sediments described as syn-rift 

rest directly on basement rocks. Overall, England & Hobbs (1997) proved that there is no 

evidence of oceanic crust or a “reflective Moho” within the basin. They also conclude that the 

bulk of the sediment observed in the Rockall Basin accumulated during and following a major 

rifting event in the Early to mid-Cretaceous. 
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Shannon et al. (1999) present the results of a multi-disciplinary study using wide-angle 

and normal incidence seismic reflection data together with gravity information. As part of the 

Rockall and Porcupine Irish Deep Seismic (RAPIDS) project in 1988 and 1990, two wide-angle 

seismic profiles, with a combined length of 1600 km, were recorded in the Rockall Basin 

(Shannon et al., 1999). Normal incidence seismic reflection data provided Shannon et al. (1999) 

with more information on the structure and sedimentary succession within the basin. The seismic 

model that Shannon et al. (1999) generated was constrained by the available gravity data (Fig. 

1.9). The results indicated the presence of continental crust beneath all the basins in the Rockall 

region (Shannon et al., 1999). For reference, the unstretched continental crust onshore in Ireland 

is approximately 30 km thick and consists of three distinct layers, underlain by a thin Moho 

transition (Lowe & Jacob 1989). Offshore, thinned continental crust extends along the entire 

length of the Rockall Basin (Shannon et al., 1999). Shannon et al. (1999) suggest that the upper 

and middle crust within the basin experienced a stretching factor of 8-10, whereas the lower 

crust was stretched by a factor of 2-3. Overall, the bulk crustal stretching factor for the crust, as a 

whole is likely to range from 4-6 (Shannon et al., 1999). Crustal rupture did not occur in the 

center of the Rockall Basin, likely due to the strength provided by the lower crust and the slightly 

thinned mantle lithosphere (Shannon et al., 1999). 
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Figure 1.9: (A) Model based on the RAPIDS wide-angle seismic transverse profile from Ireland to the Iceland Basin, 2A, from 
Shannon et al. 1999 (see Fig. 1.4 for location). Solid interfaces are regions where the model is well constrained by the seismic 

data. Numbers are seismic P-wave velocities (km/s). The location of magnetic anomaly 24 (C24R) of Early Eocene age is 
indicated. (B) Model based on RAPIDS wide-angle axial profile through the Rockall Trough, 2B (see Fig. 1.4 for location). The 

location of the Charlie Gibbs Fracture Zone (CGFZ) is indicated. 
 
 

 
 

The upper mantle low velocity zone beneath the Rockall Basin is interpreted to be the 

result of partial serpentinization of the upper mantle, with the underlying layer interpreted as 

normal mantle peridotite (Fig. 1.9; O’Reilly et al., 1996). During the late Mesozoic, 

propagation of faults into the brittle mantle likely created conduits for the seawater circulation 

necessary to serpentinize the upper mantle (Shannon et al., 1999). Overall, Shannon et al. 

(1999) suggested that the stretching factor of the entire basin was 4-6 and that the best fit of 

possible models suggests that the basin developed in response to rift episodes in the Triassic, 
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Late Jurassic and Early Cretaceous. 

Morewood et al. (2005) present, review and discuss the results of their wide-angle 

seismic reflection/refraction experiments in the Irish sector of the northern Atlantic margin. They 

determined that the continental crust thins from 25 km to about 6 km in the center of the basin 

and has an overall stretching factor of approximately 4-6, in agreement with Shannon et al. 

(2006). The maximum thinning of the continental crust occurs at the margins of the Rockall 

Basin, resulting in an asymmetric Moho profile with a steeper gradient beneath the eastern 

margin. This asymmetry could reflect the presence of a deep-seated basement structural fabric 

that served as a focus for reactivation; however, no such fabric has ever been identified with 

confidence (Morewood et al., 2005). 

Using 3D gravity modelling of the lithospheric structure, Kimbell et al. (2010) defined 

the regional patterns of crustal thickness variations along the margin and geometries of the main 

sedimentary basins, including the Rockall Basin. A regional gravity map of the Rockall Basin is 

shown in Fig. 1.5. There are very few exploration wells in the Rockall region, but the constraints 

for the presented gravity model were sourced from previously acquired velocity data derived 

from wide-angle seismic experiments (e.g., Mackenzie et al., 2002 and Shannon et al., 1999). At 

a broad scale, the model confirms the well-known structural configuration of the continental part 

of the region, with highly stretched crystalline crust and shallow Moho beneath the Rockall 

Basin (Kimbell et al., 2010). Across the Rockall Basin, there is asymmetrical crustal thinning, 

with steeper necking zones to the southeast than to the northwest (Fig. 1.10; Kimbell et al., 

2010). 
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Figure 1.10: Deep structure beneath a RAPIDS 3 seismic profile (location shown in Fig. 1.4), comparing a section through the 
3D model (top two panels) with the seismic interpretation of Mackenzie et al. (2002) (bottom panel). 3D model interfaces are 
superimposed as heavy black lines on the seismic model. Numbers in the bottom panel are P -wave velocities in km/s (Kimbell 

et al., 2010). 
 
 
 
 

The agreement between the modelled Moho depths beneath the Rockall Basin is 

surprising, given the evidence for relatively low seismic velocities in the upper mantle beneath 

the basin, which has been interpreted as being a result of serpentinization (O’Reilly et al., 1996 

and Morewood et al., 2005). The modelled average thickness of the crystalline crust beneath the 

Rockall Basin is 5-6 km, but there is a distinct increase in the north with values around 10 km 

(Kimbell et al., 2010). This is in agreement with the previously acquired gravity and seismic data 

(e.g., Roberts et al., 1988 and Kimbell et al., 2005), suggesting that the crust beneath the 

northern part of the Rockall Basin is also somewhat thicker towards its flanks (Kimbell et al., 
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2010). In the southern part of the Rockall Basin, Kimbell et al. (2010) observed that the 

magnetic field is dominated by the effects of the Barra Volcanic Ridge System. The Barra 

Volcanic Ridge System is comprised of a series of arcuate ridges that are considered to be 

extrusive volcanic edifices that were later draped by sedimentary rock (Kimbell et al., 2010). 

Overall, Kimbell et al. (2010) conclude that the observed broad magnetic anomaly pattern can be 

explained in terms of variations in the thickness of the magnetic crystalline crust. It was also 

proposed that beneath the Rockall Basin is highly extended continental crust, which agrees with 

numerous other papers (e.g., O’Reilly et al., 1996, Shannon et al., 2001 and Morewood et al., 

2005). 

 

1.4.2 Orphan Basin 

 
Offshore Newfoundland has been broadly surveyed over several decades using 

geophysical methods including seismic profiling, gravity, and magnetic surveys (Keen & Barrett 

1981, Keen & Dehler 1993, Chian et al., 2001 and Welford et al., 2012). Haworth (1977) 

presented the results of gravity and magnetic surveying across numerous offshore Newfoundland 

basins using magnetic trends. He suggested that the Orphan Basin is underlain by continental 

crust that has experienced significant subsidence. 

 
 

Keen & Barrett (1981) carried out a seismic refraction survey using a series of ocean 

bottom seismometers (OBS) located at each end and in the centre of a N-S trending seismic line 

in the Orphan Basin. Their results suggest that the continental crust beneath the Orphan Basin 

underwent extensive stretching and they interpret the current overall crustal thickness to be 15-17 

km, which is approximately 50% of its original thickness. A large positive gravity anomaly is 
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observed over the continental shelf and is interpreted to be the result of thinned continental crust 

beneath the outer shelf. Finally, Keen & Barrett (1981) proposed that the temperature 

distribution across the Orphan Basin reflects that rheology of the lithosphere may vary laterally 

across the basin and that it may also vary with time. 

Keen & Dehler (1993) used high-quality maps of sedimentary thicknesses to obtain 

estimates of subsidence and therefore allow for estimates of stretching factors of the crust and 

mantle lithosphere to be computed across the Orphan Basin. They found that lithospheric 

deformation occurred by pure shear, whereas crustal deformation occurred by either pure or 

simple shear; a detachment between the upper and lower lithosphere may be present to explain 

the differences. Keen & Dehler (1993) also showed that crustal stretching was asymmetric across 

the basin and localized along the edges of the rift zone. 

Chian et al. (2001) acquired a wide-angle seismic refraction profile and coupled it with 

previously acquired deep seismic reflection profiles as well as data from two local wells (Fig. 

1.11). They found that the continental crust extends seaward for 410 km to the Orphan Knoll, 

where the ocean-continent transition begins. No high velocity lower crustal layer was presented 

in their model, indicating a non-volcanic rifting scenario (Fig. 1.11). This result was in contrast 

to work by Keen & Barrett (1981) who proposed a high velocity layer and interpreted it as a 

magmatic underplate. Chian et al. (2001) also observe a gravity high that is 110 km wide and 

accompanied by a shallow Moho boundary (approximately 17 km), which they attribute to a 

failed rift center. 
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Figure 1.11: Final velocity model from Chian et al. (2001), across the entire stretched continental crust, overlain with the 
multichannel seismic (MCS) interpretation. Observed (crosses) and computed (shaded line) gravity anomalies are shown on 

top along with the observed magnetic profile. OCT, ocean-continent transition zone. Location shown in Fig. 1.4. 
 

 
Welford et al. (2012) aimed to investigate early rifting history, crustal structure and 

geological evolution of the Orphan Basin-Flemish Pass and the Irish Atlantic conjugate margin. 

This was accomplished by using regionally constrained 3D gravity inversion. A regional free air 

gravity anomaly map of the Orphan Basin is shown in Fig. 1.7. From the observed data, they 

produced insightful images along and across these conjugate, continuous basins. When 

comparing the Irish margin to the Newfoundland margin, they found that the Irish margin 

experienced non-uniform rifting and localized extreme crustal thinning. In contrast, the 

Newfoundland margin underwent a more uniform thinning process. Serpentinization (and 

possible exhumation) of the mantle lithosphere has been proposed in the southern portion of the 
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Porcupine Basin and in select pockets within the Rockall Basin. However, no serpentinization of 

the mantle lithosphere has been observed beneath the Orphan Basin on the Newfoundland 

margin. Welford et al. (2012) suggest these differences may be due to a more rheologically 

strong crust-mantle lithosphere on the Irish margin and a weak crustal layer beneath the Orphan 

Basin. They also present several reconstruction maps of the Newfoundland and Irish Atlantic 

conjugate basins at the initiation of sea-floor spreading. These reconstruction maps show some of 

the inversion constraints and the results from both margins, including: bathymetry, depth to 

basement (Fig. 1.12), residual total magnetic anomaly, observed free air gravity anomaly, 

predicted free air gravity anomaly, Moho depth, and crustal thickness. 

 

 
 

Figure 1.12: Depth to basement reconstruction across both the Newfoundland and Irish Atlantic conjugate basins. The 
contours correspond to present-day bathymetry (1000 m contour interval). The red outlines define the limits of the regions 

used in the inversions (Welford et al., 2012). 
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Lau et al. (2015) present a 2D P-wave velocity model, constructed using seismic 

refraction and wide-angle reflection data (Fig. 1.13). The model was constrained using gravity 

results and borehole logs from three local wells. From their model, they interpreted syn-rift 

Jurassic sedimentary rocks across the entire Orphan Basin, extending from the eastern sub-

basin to the western sub-basin. Contrary to previous results, this new interpretation implies an 

earlier (Jurassic or earlier) rifting age. 

 

 
Figure 1.13: Geological interpretation of depth section Or0–122 (Location in Fig. 1.4) from incorporating both the 
Multichannel Seismic (MCS) reflectivity and the wide -angle velocity model. Dashed blue lines are interpreted faults 

responsible for upper crustal thinning. Figure from Lau et al. (2015) 
 

 
Based on a reconstruction created by Lau et al. (2015), there is a complex connection 

between the West Orphan Basin and the Rockall Basin, the East Orphan Basin and the 

Porcupine Basin, and the Central Orphan High and the Porcupine Bank (Fig. 1.14). To further 

support this connection, there are similarities in the crustal structure between them. Beneath the 

East Orphan Basin, no serpentinization of the mantle is observed. This is contrary to what is 

observed in the Rockall and Porcupine basins, which agrees with the interpretation provided by 

Welford et al. (2012). However, Lau et al. (2015) suggest that the reasoning behind the lack of 
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serpentinization on the Newfoundland margin is due to a narrow zone (approximately 30 km 

wide) of potentially brittle crust being buried by syn-rift sedimentary rocks, which inhibited 

the flow of water down crustal-scale faults and therefore prevented serpentinization of the 

mantle. 

 

 

 
Figure 1.14: Structural comparison between the Orphan Basin and its Irish counterparts from Lau et al. (2015). 

Structures are constrained by dense wide-angle data, except for the western end of Orphan Basin which is determined by 
gravity modelling (Lau et al., 2015). Zones with crustal thicknesses <10 km are marked as hyperextended crust. (a) 

Rockall Trough (Morewood et al., 2005). (b) Porcupine Basin (O’Reilly et al., 2006). (c) Orphan Basin (Lau et al., 2015). 
Question mark represents potential existence of serpentinized mantle. 

 
 
 

1.5 Purpose 

 
The overall goal of this M.Sc. project is to create a Newfoundland-Ireland conjugate margin 

basin model from a single seismic megatransect that can be restored to a pre-rift state. This 

model will provide a more thorough understanding of the mechanisms involved in the rifting 

phases of the Newfoundland and Irish margins. One of the main scientific impacts of this 

research will be related to the petroleum exploration industry. The province of Newfoundland 
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and Labrador has significant petroleum deposits within its offshore basins and therefore this 

research will be locally relevant. This research will provide large-scale constraints that are 

necessary for explaining how a targeted basin developed, therefore aiding in major companies’ 

knowledge of lesser explored basins. Due to the relatively high cost of exploration, these 

additional constraints will aid in mitigating inherent risks in targets of interest and hopefully 

attract new companies that can bring economic growth to the province of Newfoundland and 

Labrador. 

 

1.6 Thesis Outline 

 
In Chapter 2, seismic reflection lines and well data provided for this M.Sc. thesis in both 

the Rockall Basin and the Orphan Basin will be presented. The location of the wells and their 

proximity to the seismic lines in both basins will also be discussed, along with the research 

methodology for this thesis. In Chapter 3, the results of the seismic interpretations, carried out in 

Schlumberger’s Petrel© software program, will be discussed in detail. Six seismic units will also 

be identified and described. In Chapter 4, the results of the Paleozoic basement reconstruction, 

along the primary and secondary seismic lines will be presented. The restoration process was 

carried out with Move© software and numerous 2D and 3D reconstructed figures are included to 

aid in the interpretation of the results. A discussion of the findings of this thesis will be 

presented in Chapter 5. Finally, the conclusions, based on the various reconstructions in the 

Rockall and Orphan basins, will be presented in Chapter 6, along with recommendations for 

future work. 
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Chapter 2: Data and Methods 

 

2.1 Data 

 
The geophysical data used in this M.Sc. project were primarily seismic reflection data. 

 

The data for the Rockall Basin, offshore Ireland, were provided by the Petroleum Affairs 

Division of the Department of Communications, Climate Action and Environment, of the Irish 

government. The data for the Orphan Basin, offshore Newfoundland, were provided by TGS, a 

company specializing in geoscientific data acquisition. 

The data were first imported into Schlumberger’s Petrel© 2017 software program. Petrel© 

is primarily used in the exploration and production sectors of the petroleum industry, to interpret 

seismic data, create well correlations and build reservoir models. Regional scale seismic 

interpretation, in Petrel© along a primary and a secondary seismic line in each basin was 

performed. The seismic lines for each basin (for the Rockall Basin, IR1 and IR2, and for the 

Orphan Basin, NL1 and NL2) were subsequently used for depth analysis in Move©. An 

additional line on the Newfoundland margin, NL3, was used later in the thesis to compare the 

Rockall Basin with the East Orphan Basin and was reconstructed following the same 

methodology as NL1 and NL2 (detailed interpretations and reconstructions of NL3 not shown). 

Move©, a Midland Valley software product, is one of the most up to date structural modelling 

and analysis toolkits available. This software allows for fully integrated 2D and 3D model 

building, which forms a vital component to this M.Sc. project and will be discussed in detail in 

chapter 4. 
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2.1.1 Rockall Basin 

 
The Rockall Basin seismic reflection data, acquired in 2013 and 2014, have been provided 

by the Petroleum Affairs Division of the Department of Communications, Climate Action and 

Environment, of the Irish government to Memorial University of Newfoundland. The Irish 

government also provided geological and geophysical well logs to accompany the seismic 

reflection data. Unfortunately, very few wells have been drilled in the center of the Rockall Basin, 

principally due to limited petroleum exploration and the depth of the water column. 

 

 

 

Figure 2.1: All Irish Atlantic seismic and well data provided by the Irish Government. Well locations are marked by cross 
filled circles and labeled with letters. The primary seismic line for this M.Sc. project, IR1, is marked by the yellow line and 

the cross- sectional seismic line, IR2, is marked by the red line. The remainder of the seismic lines provided by the Irish 

Government are marked by black lines. 
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The small number of wells drilled by various petroleum exploration companies are 

primarily located in a chain of Paleozoic-Early Mesozoic basins that are perched along the 

margins of and above the younger, Late Triassic, Rockall Basin (Figs. 2.1 and 2.2). The chain of 

perched basins extends from the Donegal Basin in the North to the South Brona Basin in the 

South (Fig. 2.3). These basins are thought to provide evidence of early lithospheric extension in 

the North Atlantic (Moorewood et al. 2004). Since these perched basins are of Paleozoic-Early 

Mesozoic age, much older than the Late Triassic Rockall Basin, and are approximately 50-100 

km away from the nearest seismic line, the wells drilled in these basins provided minimal 

correlation to the seismic data within the center of the Rockall Basin. 

 
 

Figure 2.2: A cross-section of the younger Rockall Basin and the older perched basins, the Erris Basin and the Donegal 
Basin. Well 12/13-1A, the dotted black line, was drilled into the Erris Basin, location shown here. The location of this 
figure is the green line in the inset box, the black lines represent the seismic lines in the Rockall Basin. This figure was 

adapted from Corfield et al. (1999). 
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Figure 2.3: Polygons showing the age of basins in the Irish North Atlantic. Pink polygons indicate Paleozoic Basement, blue polygons indicate Triassic basins, green 

polygons indicate Jurassic basins and yellow polygons indicate Cretaceous – Early Paleocene basins. Basin identifications are as follows: DB = Donegal Basin, EB 
= Erris Basin, SB = Slyne Basin, FB=Fursa Basin, MB = Macdara Basin, PB = Padraig Basin, NBB = North Brona Basin, SBB= South Brona Basin.  The yellow 

line is the primary seismic line (IR1) in the Rockall Basin. The red line represents the secondary seismic line in the Rockall Basin (IR2). The cross-filled circles mark 
the well locations and are labeled with alphabetical letters. This image was adapted from: Ersi Delorme, NOAA NGDC and the Department of Communications, 

Climate Action and Environment of the Irish Government. 
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2.1.2 Orphan Basin 

 
The Orphan Basin seismic reflection data, acquired in 2001, have been provided by 

TGS© to Memorial University of Newfoundland. The C-NLOPB provided additional geological 

and geophysical well logs for numerous wells within the Orphan Basin (Fig. 2.4). Of these logs, 

only well H intersected seismic line NL1, which is the primary seismic line of focus for this 

thesis in the Orphan Basin. Unfortunately, well H was drilled into a basement high, 

characterized as an area of crustal uplift generated by faulting during episodes of rifting. 

Sediment accumulation was limited in these areas due to erosional events. As a result, all the 

sedimentary units that extend over these highs are much thinner and cannot be used as a direct 

representation of the sedimentary units as a whole in this location. This local basement high 

provides little constraint to the deeper seismic data where the units are much thicker, as 

interpreted from changes in the seismic character at depth. Well B was drilled into a basement 

high along seismic line NL2 (location shown in Fig. 2.4), an intersecting line with the primary 

seismic line NL1. This well was also drilled into a topographic basement high. As a result of the 

interpreted, limited sediment accumulation and erosional events over these highs, the 

sedimentary units only moderately aid in correlating the deeper, thicker seismic units within the 

West Orphan Basin. 
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Figure 2.4: Location of all the seismic lines provided by TGS. Location of some of the wells drilled in the Orphan Basin. 
Well logs were provided by the C-NLOPB. Yellow line indicates the location of NL1, the primary line of focus for the 

Orphan Basin. The red line indicates seismic line NL2, the cross-sectional line of focus for the Orphan Basin. 
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2.2 Methods 

 
2.2.1 Petrel© Seismic Analysis 

 
Petrel© was the software package of choice for this thesis, allowing for detailed analysis 

and interpretation of all the seismic reflection data in the Rockall and West Orphan basins. 

Available well data, provided by the Irish Government and the C-NLOPB, were used to 

constrain key horizons within both the Rockall Basin and the West Orphan Basin. 

Following the procedure of Gouiza et al. (2015), seismic units in both basins were 

defined and delineated based on syn-rift and post-rift characteristics. Syn-rift units are an 

accumulation of sediments that were deposited during rifting, consequently these units are 

generally heavily faulted and deformed. Post-rift units are sediments that accumulated after 

rifting had ceased, generally these sedimentary layers are laterally continuous. 

 

 

2.2.2 Move© Model Restoration 

 
2.2.2.1 2D Depth Conversion 

 
The 2D modelling algorithms in Move© for restoring basins remove the effect of 

deformation so that the un-deformed sections can be reassembled. The restoration preserves the 

line length and area balancing structural geology principles, taking into account the importance 

of geologic time and its impact on structure. Kinematic modelling in Move© requires each 

seismic line to be in the depth domain because the equations used to calculate the restorations 

have parameters that require the data to be in metres or kilometres. All four seismic lines, NL1, 

NL2, IR1 and IR2, were interpreted in Petrel© in the time domain (more commonly known as 

Two Way Travel Time (TWT)). Therefore each seismic line had to be converted from the time 
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domain into the depth domain before the restoration processes could begin. 

The 2D Depth Conversion module in Move© provides a number of ways to carry out time 

to depth conversions. In this project, the Database method was used. This allows the velocity and 

rate of change of velocity values to be specified for each horizon in the model using the 

Stratigraphy and Rock Properties table (found in Appendix A). In Move©, the depth conversion 

is carried out using the equation: 

𝑍 =  𝑉0

(𝑒𝑘𝑡 − 1)

𝑘
 

 

where Z represents the thickness of the layer in metres, 𝑉0 represents the velocity at the top of 

the layer in metres per second, k represents the rate of change in velocity with increasing depth 

and t signifies the one way travel time for layer thickness, in seconds. The Horizon Velocity 

method was also used within the depth conversion. This velocity method assumes the velocity in 

the Rock Properties table is the velocity at the top of the horizon and k is the rate of change 

within the layer. 

Parameters for the depth conversion within Move© were extracted for both the Rockall 

Basin and the Orphan Basin from previously published studies. The velocities for each 

sedimentary unit for seismic lines NL1 and NL2 in the Orphan Basin were interpreted from Lau 

et al. (2015) and Gouiza et al. (2017) (Table 2.1). The densities and thickness for each unit were 

taken from Gouiza et al. (2017) (Table 2.1). Gouiza et al. (2017) used well logs from the Orphan 

Basin to estimate thicknesses of units and gravity models to determine densities. The velocities 

for each sedimentary unit for seismic lines IR1 and IR2, in the Rockall Basin, were extracted 

from Morewood et al. (2005) and Mackenzie et al. (2002) (Table
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2.1). Density and thickness values for each unit in the Rockall Basin were adapted from the 

values for the Orphan Basin from Gouiza et al. (2017), for consistency across the conjugate 

margins(Table 2.1). All the supplementary parameters used to calculate the 2D Depth 

Conversion in both the Rockall Basin and Orphan Basin can be found in Appendix A. 

 

 Density 

(kg/m
3
) 

Velocity for 

the Orphan 

Basin 

(m/s) 

Velocity for 

the Rockall 

Basin 

(m/s) 

Thickness of 

layers in the 

Orphan Basin 

(m) 

Thickness of 

layers in the 

Rockall Basin 

(m) 

Water Column 1030 1450 1450 2000 3000 

Cenozoic 2500 2500 2500 5000 2000 

Upper 

Cretaceous 

2500 4000 4500 750 1000 

Lower 

Cretaceous 

2700 4500 5100 1200 1500 

Jurassic 2700 5000 N/A 2000 N/A 

Basement/ 

Continental 

Crust 

2870 6700 6700 7000 7000 

 

Table 2.1: Density parameters for each layer for both the Orphan and Rockall basins interpreted from Gouiza et al. (2017). 
Velocity parameters for each layer for the Orphan Basin interpreted from Lau et al. (2015) and Gouiza et al. (2017). Velocity 

parameters for each layer from the Rockall Basin interpreted from Mackenzie et al. (2002) and Morewood et al. (2005). 

 
 
 

The Mohorovicic Discontinuity or the “Moho”, corresponds to an abrupt velocity 

increase at depth and is generally defined as the boundary between the Earth’s crust and upper 

mantle (Prodehl & Mooney, 2012). This abrupt velocity increase generates wide-angle 

reflections on seismic refraction data, from which the depth to the Moho can be derived. Given 

that the abrupt velocity increase likely corresponds to an equivalent density increase, a proxy for 

the depth of the crust-mantle boundary can be defined based on this inferred density contrast. 

Welford et al. (2012) generated a Moho surface by running 3D gravity inversions on both the 
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Newfoundland and Irish margins using identical methodologies. Since the Moho is defined as a 

seismic discontinuity and is not normally defined in terms of a specific density contrast (as 

Welford et al. (2012) defined it), the generated surface represents more of a Moho proxy. To 

gauge the reliability of the 2D Depth Conversion performed by Move©, the Moho proxy was 

introduced to each model from Welford et al. (2012). The Moho proxy was created in the depth 

domain, therefore once it was imported into Move©, it provided a reasonable constraint on the 

depth-converted models.  

 

 

2.2.2.2 2D Decompaction 

 
After all of the seismic lines (NL1, NL2, IR1, IR2, and later NL3) were converted from 

the time domain to the depth domain, kinematic modelling of each seismic line began in Move© 

with the end goal of restoring the two margins back to their pre-rift state. The first step in 

kinematic modelling is to account for sedimentary rock compaction over time. As sediment is 

accumulated within a basin, the weight of the overlying sedimentary rock compacts the 

underlying sedimentary rock through time. Therefore, to accurately restore the Rockall and 

Orphan basins through time, each layer must be decompacted as the overlying sedimentary rock 

is removed. This can be accomplished using the 2D Decompaction module in Move©. This 

module removes the top layer and adjusts the underlying layers by accounting for the 

compaction and porosity loss with burial. The 2D Decompaction module in Move© uses the 

following function: 

𝑓 = 𝑓0(𝑒−𝑐𝑦) 

where f represents the present-day porosity at depth,  𝑓0 represents the initial porosity at the 

surface, c represents the porosity-depth coefficient (𝑘𝑚−1), and y represents the depth in metres. 
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The default compaction curve that Move© utilizes is based on the work by Sclater & Christie 

(1980), who used North Sea Basin data and assumed an exponential porosity decrease with 

increasing depth. Multiple iterations of the models were run to determine the impact of altering 

the decompaction parameters associated with each interval. These iterations revealed that by 

altering the porosity by ~10% and the decompaction coefficient by up to ~50%, the average 

resulting decompaction is only altered by ~50 m. 

Isostasy is another important principle that must be accounted for during the kinematic 

modelling process. Isostasy describes vertical motion of the lithosphere due to buoyancy forces 

related to lateral variations in density (Watts 2001). These variations in density can be related to 

thermal effects or material compositions (Watts, 2001). It is important to account for isostasy as 

it affects the restored shapes of horizons and faults, paleo-topographies of restored seafloor 

surfaces, and the absolute height of the models during restoration.  

Pratt’s isostasy theory assumes that there are lateral changes in rock densities across the 

lithosphere (Lane, 1932; Lamb & Watts, 2010). The Pratt theory also assumes that the mantle is 

uniformly dense, with lower density crustal blocks floating higher to become mountains, and 

higher density blocks sinking to form basins and lowlands (Lane, 1932; Lamb & Watts, 2010). 

Airy isostasy theory assumes that across the lithosphere the rock density is approximately the 

same, but the crustal blocks have different thicknesses (Lane, 1932; Lamb & Watts, 2010). 

Therefore, mountains that have higher peaks also have roots that extend into the denser mantle 

below (Lane, 1932; Lamb & Watts, 2010). 

The Pratt and the Airy theories both predict a relative deficiency of mass under high 

mountains, however Airy’s theory is now known to provide a better and more plausible 

explanation of mountains within continental regions (Lamb & Watts, 2010). Additionally, 

Move© Help states that Airy isostasy modelling is more sensitive to massive thickness 
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variations. The sedimentary layers within the models generated for the Rockall Basin and the 

West Orphan Basin both have a variety of sedimentary layer thicknesses due to multiple phases 

of rifting. Therefore, local Airy isostasy is used in this thesis to account for the isostatic 

response to sedimentary unloading during decompaction. 

 

2.2.2.3 2D Thermal Subsidence 

 
Thinning of the lithosphere during rift events results in large changes in elevation, mainly 

due to thermal subsidence. Sedimentary basins are produced by the stretching of continental 

lithosphere and the resulting thinning allows the hot asthenosphere to well up from below and 

elevate the thinned lithosphere. As the margin cools following rifting, the temperature decreases 

within the thinned lithosphere causing subsidence. Therefore, for each post-rift layer, thermal 

subsidence must be accounted for prior to decompaction, to accurately restore each basin. The 2D 

Thermal Subsidence module in Move© uses a thermal subsidence model generated by McKenzie 

(1978) to restore the shape and paleo-depth of the seafloor. This model produces a sedimentary 

basin by sudden stretching, followed by slow cooling of the lower part of the lithosphere, a process 

commonly observed at rifted margins (McKenzie, 1978). 

The 2D Thermal Subsidence module in Move© requires numerous parameters for the 

calculation; these values were extracted from Shannon (1991) and Naylor & Shannon (2005). 

The parameters used in the Rockall Basin for age and syn-rift duration for seismic lines IR1 and 

IR2 were approximated from Shannon (1991) and Naylor & Shannon (2005) (Table 2.2). 

Shannon (1991) and Naylor & Shannon (2005) both identified three rift phases during the 

formation of the Rockall Basin, a Late-Triassic rift phase (228 Ma), a Mid-Late Jurassic rift 

phase (164 Ma), and a Mid Cretaceous rift phase (113 Ma). Since no Triassic or Jurassic 

sedimentary rocks were interpreted within the Rockall Basin (due to obscuring sills, discussed 
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in the next chapter), only the Mid Cretaceous rift phase was used for the thermal subsidence 

calculation. The syn-rift duration, the amount of time that the Rockall Basin experienced 

extension during the Mid Cretaceous rift episode, was set to 13 Ma (Shannon, 1991 and Naylor 

& Shannon, 2005). The thermal subsidence calculations in Move© require density and velocity 

values to be specified. The same parameters that were used in the 2D Depth Conversion (Table 

2.1) were also used for the 2D Thermal Subsidence calculations (additional parameters provided 

in Table 3 of the Appendix). 

The stretching factor (Beta) represents the ratio of final crustal thickness to the original 

crustal thickness and is a required parameter to calculate thermal subsidence.  An original 

crustal thickness prior to rifting of 30 km was used (Lowe & Jacob 1989; Hauser et al., 2008). 

The initial lithosphere thickness is also an important parameter when calculating thermal 

subsidence. A value of 125 km was used for the Rockall Basin (O‘Reilly et al., 1996). A 

uniform Beta value of 2.0 was used for the Rockall Basin (Gouiza et al., 2017). 

The thermal subsidence parameters used in the West Orphan Basin for the age and 

syn- rift duration for seismic lines NL1, NL2, and later NL3, were interpreted from Enachescu 

et al. (2004), Welford et al. (2012), and Gouiza et al. (2017), and are listed in Table 2.2. 

Enachescu et al. (2004) and Welford et al. (2012) identified three rift phases in the Orphan 

Basin, a Late Triassic rift event (228 Ma), a Late Jurassic rifting event (164 Ma), and a Mid 

Cretaceous rift event (113 Ma). Due to the fact that no Triassic sedimentary rocks were 

interpreted in the West Orphan Basin, only the Late Jurassic and Mid Cretaceous rift events 

were used to calculate the thermal subsidence. The syn- rift duration of the Late Jurassic rift 

event was set to19 Ma, and the syn-rift duration of the Mid Cretaceous rift event was 13 Ma 

(Shannon, 1991 and Naylor & Shannon, 2005). The density and velocity values (from Gouiza 

et al., 2017) that were used in the 2D Depth Conversion (Table 2.1) for the Orphan Basin 
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were also used for the 2D Thermal Subsidence calculations. 

An original crustal thickness prior to rifting of 30 km was used for the West Orphan 

Basin (Gouiza et al., 2017), to be consistent with the conjugate margin. The initial lithosphere 

thickness is also an important parameter when calculating thermal subsidence. A value of 125 

km was used for the West Orphan Basin (Gouiza et al., 2017). A uniform Beta value of 2.0 was 

used for the West Orphan Basin (Gouiza et al., 2017). All of the additional parameters used to 

calculate the thermal subsidence for both the Rockall Basin and the Orphan Basin can be found 

in Appendix A. 

 

 Age of Rifting Syn-rift Duration 

Late Jurassic Rift Event 164.0 Ma 19.0 Ma 

Mid Cretaceous Rift Event 113.0 Ma 13.0 Ma 

Table 2.2: Rifting time-table for the West Orphan Basin used for 2D Thermal Subsidence calculations. Only the Mid 

Cretaceous rift event was used to calculate 2D Thermal Subsidence for the Rockall Basin. 

 
 
 

 

2.2.2.4 2D Fault Restoration 

 
After the 2D Decompaction and the 2D Thermal Subsidence calculations have restored 

each seismic line down to a horizon that has been heavily faulted due to rifting, fault modelling 

can begin. Move© offers several fault restoration modules, primarily the 2D Move-on-Fault and 

the 2D Block Restoration modules. 

The 2D Move-on-Fault module can be used to create forward models and test new 

structural ideas, which allow different pre-rift and syn-rift tectonic successions and various 

displacements to be modelled. Based on fault geometries, different algorithms can be applied to 

the model: Simple Shear, Parallel Flow, or Trishear. The Simple Shear algorithm in Move© is 
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most applicable to extensional tectonic regimes with non-planar normal faults, because it 

maintains the area between beds. Furthermore, this algorithm can be applied to forward basin 

modelling where thicknesses of beds may vary. Since the Rockall Basin and the West Orphan 

Basin are both extensional tectonic regimes with normal faults, the Simple Shear algorithm was 

used. The “join beds” movement tool was used in the 2D Move-on-Fault module. The “join 

beds” movement tool allows for movement along the fault by realigning an interpreted hanging 

wall and footwall, thus restoring the horizon. A shear angle of ±60° was used depending on the 

dip direction of the fault (Fossen, 2016). 

The 2D Block Restoration module in Move© is useful for quickly validating 

interpretations by piecing fault blocks back together. However, the 2D Block Restoration module 

can result in areas where the fault blocks overlap; this can be inferred to represent an excess rock 

volume. The 2D Block Restoration module can also result in gaps between the translated fault 

blocks; this represents deficiencies in the interpreted rock volume. According to Move© Help, 

these overlaps and gaps may be the result of using the wrong restoration algorithm. When the 2D 

Block Restoration module was applied to the models for this thesis, numerous gaps and overlaps 

were generated. Therefore, it was assumed that the 2D Block Restoration module was not the 

correct algorithm to be used, thus the 2D Move-on–Fault module was used to restore all of the 

models in the Rockall Basin and West Orphan Basin. 

After the restorations of these faults were completed, all of the seismic lines were 

assumed to represent a pre-rift state and 3D model analysis could begin. Using the 3D viewer in 

Move©, the coordinates of the West Orphan Basin data, seismic lines NL1, NL2, and later NL3, 

were altered to create a seismic megatransect with the Irish margin lines within the same 

coordinate system. Finally, the results were compared to determine if the West Orphan Basin 

and the Rockall Basin formed a large continuous Mesozoic rift system prior to the opening of 
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the North Atlantic. These results will be presented in Chapter 4 and discussed in Chapter 5. 
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Chapter 3: Seismic Interpretation 

 

3.1 Introduction 

 
Digital seismic data provided by the Petroleum Affairs Division of the Department of 

Communications, Climate Action and Environment, of the Irish government, and TGS, were 

uploaded into Schlumberger’s Petrel software for seismic interpretation. Geophysical seismic 

interpretation is the science and the art of inferring geology, and associated geologic features and 

structures, from a processed seismic section. The two primary, conjugate lines that were chosen for 

this thesis are: seismic line IR1 (across the Rockall Basin, SW to NE) and seismic line NL1 (across 

the West Orphan Basin, SW to NE). A secondary line, which intersects the primary seismic line, 

was also chosen for each basin: seismic line IR2 in the Rockall Basin (intersecting IR1) and 

seismic line NL2 in the Orphan Basin (intersecting NL1). Within the Rockall and the West Orphan 

basins, five seismic units have been identified and interpreted. These units are: the acoustic 

basement, Jurassic sedimentary rocks, Lower Cretaceous sedimentary rocks, Upper Cretaceous 

sedimentary rocks, and Cenozoic sedimentary rocks. Each unit was identified and mapped in two-

way travel time (TWT) along the interpreted seismic lines. This chapter contains a detailed 

analysis of each of these seismic units in both the Rockall and the Orphan basins. 

 

3.2 Rockall Basin 

 
The seismic reflection data, acquired in 2013 and 2014 within the Rockall Basin, are of 

very high quality, limited only in the resolution of the deep seismic data. Seismic interpretation 

of deep strata in the Rockall Basin was hindered by the presence of large Paleogene sills, 

intruded at approximately the top of the Cretaceous succession (Morewood et al., 2005). For 

this study, seismic interpretations were focused on intermittent localized zones, where these 
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igneous intrusions were less prevalent. Fig. 3.1 depicts the units and geologic structures 

interpreted along IR1, the primary seismic line within the Rockall Basin. 
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Figure 3.1: (A) Map of offshore Ireland, showing the location of seismic lines IR1 and IR2 in the Rockall Basin. Blue polygons show the location of the igneous 

intrusions within the basin. (B) Uninterpreted seismic line IR1 in the Rockall Basin. (C) Interpreted seismic line IR1. Seismic horizons are: Basement, yellow; top of 
Lower Cretaceous, green; top of Upper Cretaceous, pink; top of Cenozoic, light blue. The black lines indicate primary faults, red lines indicate secondary faults. The 

location of seismic line IR1 is shown in the top image as the red line. IR2, the cross-sectional line to IR1, is shown in (A) as the thin black line. 
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3.2.1 Seismic Stratigraphy 

 
3.2.1.1 Cenozoic Stratigraphic Unit  

 
The Cenozoic unit along IR1 in the Rockall Basin is bounded at depth by an 

unconformity resulting from deposition of post-rift sedimentary rocks during a phase of thermal 

subsidence. The top of the Cenozoic unit maps the boundary between the water column and the 

seafloor along IR1. The thickness of the Cenozoic unit along IR1 is laterally continuous until the 

transition from continental to oceanic crust, located towards the southwestern end of the seismic 

line, where the package thins dramatically. The overall bathymetry of the basin is featureless 

with no obvious seamounts or volcanic structures on the seafloor, indicating that if there was 

volcanic activity in the immediate area, it occurred before the Cenozoic. 

The top of the Cenozoic unit is the first positive, high amplitude event observed and 

therefore allows for excellent seismic correlation and a high level of confidence in the pick. 

Since the focus of this study is on the Paleozoic basement continental crust and the associated 

syn-rift and post-rift depositional sedimentary rocks, the Cenozoic unit was not subdivided into 

multiple sub-units. Without this further division, there are numerous seismic characteristics 

observed within this unit. In Fig. 3.3, the top of the Cenozoic unit is marked in the figure by the 

light blue horizon. 

IR1 runs from the SW to the NE along the Rockall Basin, parallel to a Caledonian 

orogenic trend, rather than a Variscan trend (Shannon, 1991). IR1 directly intersects two of the 

large sill complexes in the basin (Fig. 3.1a). IR1 also appears to include a zone of transitional 

crust, from continental to oceanic, at the southwestern end of the line. The transition from 

continental to oceanic crust is interpreted on the seismic data as a change in the character of the 

basement horizon and a general thinning of all overriding sedimentary rocks. The primary focus 
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of this study is on restoring the continental crust across the Newfoundland-Ireland conjugate 

margins and therefore the transitional crustal zone was not interpreted in detail. 

Magnetic anomaly A34, as interpreted by Srivastava et al. (1988), was used to position 

the boundary between the transitional zone and the continental crust. It was necessary to 

extrapolate the A34 anomaly northward to intersect with IR1. This was in part due to more 

prominent magnetic anomalies in the area (likely from the Barra Volcanic Ridge System; Keen 

et al., 2014) that may have interfered with the original structure. The extent of anomaly A34, as 

well as the change in the character of basement and overlying strata, are depicted in Fig. 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: The inset image depicts magnetic anomaly A34 from Srivastava et al. (1988), shown as the blue line. The 

dashed black line depicts the extrapolation of anomaly A34 to intersect IR1 (highlighted in red). The dashed black line 
on the main image depicts the intersection of anomaly A34 with seismic line IR1. Black lines indicate primary faults 

and red lines indicate secondary faults.  
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Figure 3.3: A large central section of seismic line IR1 in the Rockall Basin. The Cenozoic (light blue) horizon is shown 
here to be smooth with no large bathymetric features. The unit can also be seen thinning toward the SW (left hand 

portion of the line) as the transitional zone is approached. The basement (yellow), top of the Lower Cretaceous (green) 
and the top of the Upper  Cretaceous (pink) horizons are also observed, as well as numerous faults (black lines). The 

location of the section is shown in the inset map as the red highlighted line. Black lines indicate primary faults and red 
lines indicate secondary faults. 

 
 
 
 

3.2.1.2 Upper Cretaceous Stratigraphic Unit 

 
The large igneous sill complexes that are observed in the Rockall Basin were intruded 

into the Upper and Lower Cretaceous units during the Paleogene (O’Reilly et al., 1996; Naylor 

& Shannon 2005). The Lower Cretaceous and basal structures of the Upper Cretaceous units are 

comprised of mechanically strong rocks (Magee et al., 2014). Consequently, the regional 

tectonic stresses (continental rifting) and compression events due to basin subsidence, have 

rendered the lower units susceptible to lateral/planar brittle fractures (Magee et al., 2014). As a 

result of a rheological change, from a brittle to a non-brittle state towards the top of the Upper 

Cretaceous, the intrusion of the sills did not progress upward (Magee et al., 2014). This change 

in the host rock behavior is likely due to a reduction in porosity and pore fluid volume, whereby 

the mechanically stronger rocks at depth could sustain brittle fracture (Magee et al., 2014). The 

top of the Lower Cretaceous boundary marks the change from syn-rift sedimentation to post-rift 

sedimentation, therefore the Upper Cretaceous unit is a post-rift unit. 
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The Upper Cretaceous unit thins toward the SW and thickens toward the NE. This post-

rift unit is not heavily faulted. The lack of observed faulting is likely due to the fact that the 

majority of the faulting within the Rockall Basin occurred during pre-rift and syn-rift episodes. 

Due to the post-rift nature of this unit, the horizon is continuous across the top of the structural 

features and maintains a relatively constant thickness. The secondary faults observed in this 

unit (shown in Fig. 3.4 in red) are most likely associated with volume accommodations required 

by the non-coaxial component of strain and likely do not account for very much of the 

extension observed in the region. 

The continuously high amplitude reflection associated with the top of the Upper 

Cretaceous horizon allowed it to be picked with a high degree of confidence. The Upper 

Cretaceous unit contains numerous parallel, laterally continuous reflectors across line IR1. These 

high amplitude events are only observed in the shallower portions of this unit. The reflections 

exhibit lower amplitudes in the localized basins along IR1. Lateral continuity is maintained 

within these faint reflections, indicating that signal attenuation is likely the cause of the perceived 

amplitude changes (Fig. 3.4). On the interpreted seismic line IR1, in the Rockall Basin, the top of 

the Upper Cretaceous unit is highlighted on the figure by the pink horizon. 
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Figure 3.4: A NE section of seismic line IR1 showing that the top of the Upper Cretaceous (pink) horizon lies above the 
majority of the Paleogene sills. The basement (yellow) horizon and the top of the Lower Cretaceous (green) horizon are 

also observed in this section, as well as numerous faults (black lines). The location of the section is shown in the inset 
image as the highlighted red line. Black lines indicate primary faults and red lines indicate secondary faults.  

 

3.2.1.3 Lower Cretaceous Stratigraphic Unit 

  
Due to the prevalence of the large igneous sills within the Rockall Basin and lack of deep 

distinct reflections in the seismic data, no Jurassic or Triassic strata were interpreted. The lack of 

reflections observed deep in the seismic section is likely the result of signal attenuation; the 

reduction of signal strength during transmission that is experienced during most seismic surveys, 

caused by numerous energy loss mechanisms, such as geometric spreading (Bugeja, 2011). 

Therefore, it is likely that Triassic and/or Jurassic strata are present in the basin, but have not 

been adequately imaged or interpreted on the seismic sections due to the presence of the sills. 

The uninterpreted Triassic and Jurassic strata are nonetheless included in the results of this study 

because they are assumed to make up part of the Lower Cretaceous unit.  

Above the basement, the next distinct seismic reflection unit corresponds to the Lower 

Cretaceous unit. The Lower Cretaceous unit contains syn-rift sedimentary rocks that were 
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deposited into depocenters during rifting. This unit is continuous across the entirety of IR1 and is 

only interrupted by the intrusion of the younger Paleogene sills. These sills drastically decrease 

the amplitude of the reflections recorded from the deeper strata and therefore the top of the 

Lower Cretaceous boundary was laterally interpolated and inferred (Fig. 3.5). The top of the 

Lower Cretaceous boundary does not display typical syn-rift characteristics, as the sedimentary 

rocks are not solely deposited into local depressions of the basement and do not pinch-out along 

faults or horizons. Instead the Lower Cretaceous unit maintains a relatively constant thickness 

across numerous faults.  
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Figure 3.5: (A) An uninterpreted section of IR1 in the northeastern portion of the Rockall Basin that depicts how the sills 
obscure the deeper strata. (B) The interpretation of the same section observed above, showing how the top of the Lower 

Cretaceous (green) horizon was laterally extended under the sills. The top of the Upper Cretaceous unit is shown in pink. 
The black lines represent primary faults and the red lines indicate secondary faults. The red highlighted section on the 
inset image indicates the location of the seismic section. The orange arrow indicates an example of the saucer shaped 

sills on the seismic section. The purple arrow indicates a gap in the sills where deeper structures are visible.  
 

 
 
 

The Lower Cretaceous unit is characterized by relatively high amplitude continuous to 

discontinuous reflections. The amplitudes of the reflections decrease as the unit thickens in large 

depocenters. On the interpreted seismic line, IR1, the top of the Lower Cretaceous syn-rift 

sedimentary unit is defined in the image by the green horizon (Fig. 3.6).
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Figure 3.6: A central section of seismic line IR1 in the Rockall Basin. The top of the Lower Cretaceous horizon (green) is 

shown here with a relatively uniform thickness, thickening slightly over large fault blocks/depocenters. The basement 
horizon (yellow) and the top of the Upper Cretaceous horizon (pink) are also shown here, as well as numerous faults 

(black lines: primary faults; red lines: secondary faults). The location of the seismic section is shown in the inset image as 
the red highlighted line. 

 
 
 
 

3.2.1.4 Acoustic Basement 

 
For this project, the top of the Paleozoic acoustic basement structure was interpreted as 

the base of laterally coherent seismic energy. The basement horizon is interpreted across the 

entirety of the Rockall Basin and is dissected by numerous listric faults and multiple horst and 

graben structures. This horizon separates the pre-rift sedimentary rocks and the Paleozoic 

basement from the syn-rift sedimentary rocks that were deposited during the time of rifting (100-

200 Ma) (Shannon, 1991; O’Reilly et al., 1996). 

Due to the lack of additional constraints, such as wells or prominent crustal features, the 

interpretation of the basement horizon is poorly constrained in the Rockall Basin. To increase the 

overall confidence in the location of the horizons, constraints at numerous line intersections 

within the Rockall Basin were utilized. Jump-correlation of seismic line analysis from the 

 

2
0

0
0

 m
s 



56  

Porcupine Basin, to the south, also provided additional point controls for the overall basement 

horizon model. In Fig. 3.7, the top of the basement in the Rockall Basin, along line IR1, is 

denoted by the yellow horizon. 

 
Figure 3.7: A central section of seismic line IR1 depicting the interpreted listric faulting of the basement horizon 

(yellow). The top of the Lower Cretaceous (green) and the top of the upper Cretaceous (pink) horizons are also 

present, as well as numerous faults (black lines: primary faults; red lines: secondary faults). Location of this section is 
shown in the inset image as the red highlighted section.
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3.3 Orphan Basin 

 
3.3.1 Seismic Stratigraphy 

 
Within the Orphan Basin, multiple wells have been drilled by various petroleum 

exploration companies, however the western-most sections of the West Orphan Basin have 

remained relatively un-drilled. Well H intersects seismic line NL1, which is the primary focus 

line for this thesis, within the Orphan Basin. Unfortunately, well H was drilled into a basement 

high, characterized as an area of crustal uplift generated by faulting during episodes of rifting 

(location shown in Figs. 3.8 and 3.9). Sediment accumulations are limited in these areas due to 

erosional events. As a result, all the sedimentary units that extend over these highs are much 

thinner and do not provide an accurate representation of the units as a whole. This local basement 

high provides minimal constraints for the deeper seismic section where the units are much 

thicker. Well B was drilled in the northwestern section of the West Orphan Basin along seismic 

line NL2, an intersecting line with NL1. This well was drilled into a separate basement high 

within the continental shelf and as a result it offers minimal help in correlating the seismic data 

within the West Orphan Basin. 

Due to the lack of deep well data in proximity to the primary seismic line, NL1, other 

methods of seismic correlation were utilized. NL2, the intersecting line to NL1, was provided to 

this project by TGS and has been previously interpreted in a published paper by Gouiza et al. 

(2017) (Fig. 3.8). Interpretations of NL2 from Gouiza et al. (2017) were utilized in this thesis to 

aid in the correlations of the seismic horizons from the cross-sectional seismic line, NL2 to the 

primary seismic line, NL1. 
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Figure 3.8: (A) Interpreted seismic line NL2 adapted from Gouiza et al. (2017). Seismic horizons: mantle, yellow; 

basement, red; top of the Jurassic, blue; top of the Lower Cretaceous, dark green; top of the Upper Cretaceous, light 

green; top of the Cenozoic, light orange. Black lines indicate faults. The location of well B is shown here as the thin, 
black dashed line. (B) The interpretation of seismic line NL2 for this thesis. Seismic horizons: basement, yellow; top of 

the Jurassic, dark blue; top of the Lower Cretaceous, green; top of the Upper Cretaceous, pink; top of the Cenozoic, light 
blue. Solid black lines indicate faults and multi-coloured X’s mark cross-sectional ties with other interpreted seismic 

lines in the Orphan Basin. The thick black dashed line indicates the location of intersection of NL2 with the primary line 
NL1. The location of NL2 is shown in the inset image as the highlighted red line, the black line is the primary seismic 

line, NL1. 
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Figure 3.9: (A) Uninterpreted seismic line NL1 in the Orphan Basin. (B) Interpreted seismic line NL1. Seismic horizons: basement, yellow; top of the Jurassic, dark blue; 
top of the Lower Cretaceous, green; top of the Upper Cretaceous, pink; top of the Cenozoic, light blue. Black lines indicate faults. The location of NL1 is shown in the 

inset image as the highlighted yellow line, the red line indicates the location of NL2. Location of well H is shown by black dashed line in (B). 
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3.3.1.1 Cenozoic Stratigraphic Unit 

 
The top of the Cenozoic unit in the Orphan Basin along NL1 is bounded at depth by an 

unconformity resulting from deposition of post-rift sedimentary rocks during a phase of thermal 

subsidence (Gouiza et al., 2017). The top of the Cenozoic unit maps the boundary between the 

water column and the seafloor along line NL1. This horizon is the shallowest positive reflection 

observed along the line and therefore allows for a high degree of seismic correlation, as well as a 

high level of confidence in the interpretation. The regional focus of this study precluded the 

necessity of further subdividing the Cenozoic unit. The seismic character of the Cenozoic unit is 

highly variable due to this lack of further division. 

The Cenozoic unit is thickest to the SW, over the continental slope, and thins gradually 

towards the NE. The bathymetry along seismic line NL1 captures the entire continental slope, 

however the transition zone from continental to oceanic crust is not observed. On the interpreted 

seismic line NL1, in the West Orphan Basin, in Fig. 3.10, the top of the Cenozoic unit is denoted 

by the light blue horizon. 
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Figure 3.10: Line NL1 in the West Orphan Basin. This image shows the extent of the continental slope, as well as the lack 

of seamounts and volcanic features. Seismic horizons present: Basement, yellow; the top of the Jurassic, dark blue; the 
top of the Lower Cretaceous, green; the top of the Upper Cretaceous, pink; top of the Cenozoic, light blue. The location of 

this section is shown in the inset image, denoted by the red highlighted line. 
 
 
 
 

3.3.1.2 Upper Cretaceous Stratigraphic Unit 

 
The Upper Cretaceous unit marks a change from syn-rift sedimentation to post-rift 

sedimentation, as the Orphan Basin transitioned from a period of rifting to a period of thermal 

subsidence (Gouiza et al., 2017). The confidence in the interpretation of the Upper Cretaceous 

unit is adequate, due to consistent reflections from the horizon and constraints provided by 

intersecting seismic lines within the West Orphan Basin. 

This post-rift unit is continuous across all of line NL1 and does not extend down into 

depocenters, but is laterally continuous across all the structural features. The Upper Cretaceous 

unit is thickest over local depressions of the basement and thins slightly over local basement 

highs, a typical post-rift characteristic. Towards the SW, over the continental shelf, this unit 

thins marginally. The thinning of the southwestern portion of the Upper Cretaceous unit is 

likely due to the thickening of the continental crust along the continental slope. Most of the 

faulting in the West Orphan Basin occurred during the time of rifting, therefore this post-rift 
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unit is only moderately faulted. 

The top of the Upper Cretaceous unit is marked by a high amplitude positive reflection 

that can be traced throughout the entirety of seismic line NL1. Numerous parallel, high 

amplitude reflectors are observed throughout the entire unit. Due to the post-rift depositional 

environment of this unit, the sedimentary rock was deposited in laterally continuous layers with 

little to no disruption, thus generating the parallel, high amplitude reflectors. In Fig. 3.11, the top 

of the Upper Cretaceous unit is denoted by the pink horizon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: A central section of seismic line NL1 in the West Orphan Basin depicting the post-rift characteristics of the 

top of the Upper Cretaceous (pink) horizon. This unit is relative uniform in thickness, but thins over local basement 
highs. Other seismic horizons present: Basement, yellow; the top of the Jurassic, dark blue and the top of the Lower 
Cretaceous, green. Faults are indicated by the black lines. The location of this section is shown in the inset image, 

denoted by the red highlighted section. 
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3.3.1.3 Lower Cretaceous Stratigraphic Unit 

 
The Lower Cretaceous unit is a syn-rift sedimentary unit within the Orphan Basin. This 

unit is laterally continuous across the entirety of NL1 with a variable thickness. Due to its syn-

rift depositional environment, the Lower Cretaceous unit is thicker in localized basins and 

depocenters and thinner over local basement highs. The thickest portion of the Lower Cretaceous 

unit is observed along the southwestern half of NL1, approaching the continental shelf. A syn-

rift unit would typically be moderately faulted because the sedimentary rock is being deposited 

while rifting is occurring. However, in the West Orphan Basin, along NL1, the Lower 

Cretaceous unit displays a post-rift characteristic, in that the unit is not heavily faulted. 

The top of the Lower Cretaceous unit is marked by a high amplitude reflector that can be 

traced across the entire seismic line. The seismic character of the unit is chaotic with minimal 

internal coherency. In Fig. 3.12, the top of the Lower Cretaceous unit within the West Orphan 

Basin is marked by the green horizon. 
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Figure 3.12: A northeastern section of seismic line NL1 in the West Orphan Basin showing the abnormal syn-rift 
characteristics of the top of the Lower Cretaceous (green) horizon. The horizon does not abut or pinch out along faults 

or the basement horizon in the depocenters, as would be expected by a syn-rift unit. Other seismic horizons present: 
Basement, yellow; the top of the Jurassic, dark blue and the top of the Upper Cretaceous, pink. The location of this 

section is shown in the inset image, denoted by the red highlighted line. 
 

 
 
 

 

3.3.1.4 Jurassic Stratigraphic Unit 

 
The Jurassic unit directly overlies the Paleozoic basement and is moderately continuous 

across the basement, absent only over local basement highs. The Jurassic unit is the first syn-rift 

unit indicating that it was deposited during a rifting event. The confidence in choosing the top of 

the Jurassic unit is low, due to the lack of well control and the poorly defined reflectors likely 

caused by the attenuation of signal at depth and the lower resolution of the data. 

The thickness of the unit of Jurassic sedimentary rocks is moderately laterally continuous 

(approximately 1.3 km), with some depocenters exhibiting thicker amounts of deposition (up to 

approximately 5 km). The amount and location of Jurassic sedimentary formations in the West 
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Orphan Basin has recently been debated (Lau et al., 2015; Gouiza et al., 2017). McCallum 

(personal communication, Nalcor Energy Ltd., 2018) and the prospect team at Nalcor Energy 

Ltd. have interpreted NL1 to have units of Jurassic sedimentary rocks across the entire extent of 

the seismic line, absent only over the basement high where well H was drilled (location shown in 

Fig. 3.9). The interpretation of Jurassic sedimentary rocks for this thesis is in relative agreement 

with the interpretation performed by the team at Nalcor. However, no wells have been drilled 

that capture the units of Jurassic sedimentary rocks in the deepest extents of the West Orphan 

Basin. 

The seismic character of this unit is highly variable. A package of high amplitude, 

chaotic reflectors are typically associated with this sedimentary unit. These reflectors are not 

parallel and have minimal lateral continuity. Furthermore, this syn-rift unit, which was deposited 

during the time of rifting, is heavily faulted due to the fact that the majority of faulting occurred 

during this time (Enachescu et al., 2004; Gouiza et al., 2017). Each deposit of Jurassic 

sedimentary features abuts and/or pinches out along a listric fault or the basement horizon. This 

is due to the syn-rift environment that the unit was deposited throughout. On the interpreted 

seismic line NL1, in the West Orphan Basin (Fig. 3.13), the top of the Jurassic unit is denoted by 

the dark blue horizon. 
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Figure 3.13: A northeastern section of seismic line NL1 in the West Orphan Basin depicting the pinch -out characteristic 

of the Jurassic (dark blue) horizon, along faults (black lines) and the basement (yellow) horizon. Other seismic horizons 
present: the top of the Lower Cretaceous, green and the top of the Upper Cretaceous, pink. The location of this section is 

shown in the inset image, denoted by the red highlighted line. 
 
 
 
 

3.3.1.5 Acoustic Basement 

 
The top of the Paleozoic basement structure was interpreted beneath the last laterally 

coherent seismic event observed. This horizon separates the pre-rift sedimentary rocks and 

basement from the syn-rift sedimentary rocks that were deposited during rift episodes (100-200 

Ma; Shannon, 1991; O’Reilly et al., 1996). In the Orphan Basin, NL1 is the primary focus of 

this study. Cross- sectional ties from the published work of Gouiza et al. (2017) along NL2 were 

used to aid in correlating the location of the basement horizon. 

NL1 runs SW to NE across the West Orphan Basin and the entire seismic line includes 

only continental crust. The line does not extend past the Orphan Knoll, beyond which the crust is 

thought to be oceanic (Srivastava et al., 1990). The structure of the basement shows multiple 
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tilted fault blocks, primarily dipping NE. These tilted fault blocks are characteristic of an 

extended rifted margin, which align with the known evolution of the Orphan Basin (Shannon 

1991, Enachescu et al., 2004, Welford et al., 2012, Gouiza et al., 2017). 

Confidence in the basement horizon was achieved by verifying the horizon at 

intersections with other lines and by comparing its character across the conjugate pair. On the 

interpreted seismic line NL1, in the West Orphan Basin, (Fig. 3.14), the top of the basement is 

denoted by the yellow horizon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: A northeastern section of seismic line NL1 in the West Orphan Basin showing the tilted fault blocks of the 

Paleozoic basement (yellow). Faults are indicated by black lines. Other seismic horizons: top of the Jurassic, dark blue; top 
of the Lower Cretaceous, green and top of the Upper Cretaceous, pink. The location of this section is shown in the inset 

image as the red highlighted line. 
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3.4 From Seismic Interpretation to Modelling 

 
Following the seismic interpretations in Petrel©, all of the seismic lines, NL1, NL2, 

IR1, IR2, and later NL3, and their associated faults and horizons were loaded into Move© for 

2D and 3D reconstructions and analysis. The process and results of these reconstructions across 

the Newfoundland-Ireland conjugate, continuous basins will be discussed in Chapter 4. 
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Chapter 4: Basin Modelling in Move©
 

 

4.1 Introduction 

 
Move© was created by Midland Valley and it is the most up to date structural modelling 

and analysis toolkit available. This software allows for fully integrated 2D and 3D model 

building, which is an integral portion of this M.Sc. project. Following the interpretation of all of 

the seismic lines. The primary and secondary seismic lines in the Rockall Basin, IR1 and IR2, 

and the primary and secondary lines in the West Orphan Basin, NL1 and NL2, were then 

transferred into Move© along with their corresponding interpreted features. 

Move© is used to decompact underlying strata and restore thermal subsidence while back 

stripping/removing successive layers of strata. When the back stripping process has generated a 

model with an uppermost unit that exhibits faulting due to rifting, the fault restoration process 

can begin. The process of decompacting, restoring thermal subsidence, and restoring the faults 

continues until the upper and lower continental crust are fully restored along all of the seismic 

lines. 

 

 

4.2 2D Modelling 

 
4.2.1 Time to Depth Conversion 

 
The 2D modelling algorithms for restoring basins in Move© remove deformation in order 

to reassemble them back to their un-deformed state, adhering to the line length and area 

balancing structural geology principles, as well as taking into account the importance of geologic 

time and its impact on the structure. Kinematic modelling in Move© requires that each seismic 

line is in the depth domain, as the equations used to calculate the restorations have parameters 
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that require the data to be in metres or kilometres. All four seismic lines, NL1, NL2, IR1, and 

IR2, were interpreted in Petrel© in the time domain (more commonly known as Two Way 

Travel-time (TWT)). Thus, each seismic line had to be converted from the time domain into the 

depth domain before the restoration process could begin. The 2D Depth Conversion module, in 

Move©, provides different possible methodologies to carry out time to depth conversions. The 

Database method was used, as it allows the velocity and rate of change of velocity values to be 

specified for each horizon in the model using the Stratigraphy and Rock Properties table 

(properties found in Appendix A). 

To assess the results of the 2D Depth Conversion, a Moho proxy was introduced to each 

model as derived by Welford et al. (2012using 3D gravity inversion. The Moho proxy was 

created in depth, and once it was imported into Move© it provided an additional boundary within 

the depth converted models. 

The conversion from the time domain (Figs. 4.2a and 4.3a) to the depth domain (Figs. 

4.2b and 4.3b) does not significantly change the geometry of the faults or the relative thickness 

of the sedimentary units. Additionally, there were no significant irregularities related to the 

Moho proxy or any irregular fault geometries involving faults crossing the Moho proxy. As such, 

the Moho proxy, as provided by Welford et al. (2012), helped to show that the depth calculation 

performed by Move© was reasonable. 

For the purpose of this thesis, each seismic stratigraphic unit was assigned a coloured 

polygon; light pink represents the water column, light blue represents the Cenozoic unit, dark 

pink represents the Upper Cretaceous unit, green represents the Lower Cretaceous unit, dark blue 

represents the Jurassic unit, and yellow represents the basement/crust. Based on the Moho proxy 

provided by Welford et al. (2012), a purple mantle polygon was also generated (seen in Figs. 
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4.2b and 4.3b). However, this polygon is not included in the Move© restorations for the 

remainder of this M.Sc. project. The lower extent of the mantle polygon represents the depth of 

the seismic data collected, and not a geological boundary. Additionally, the influence of the 

mantle does not contribute to the restoration of the continental crust across the conjugate 

margins, in Move©. Therefore, the mantle horizon (or Moho) is only used as a surface 

throughout the remainder of this project. 

The magnetic anomaly A34, as interpreted by Srivastava et al. (1988), was used to 

position the boundary between transitional crust and continental crust. On the Irish margin, it 

was necessary to extrapolate the A34 anomaly northward to intersect with IR1 (Fig. 4.1). This 

extrapolation was necessary due to the interpreted termination of the A34 magnetic anomaly 

from Srivastava et al. (1988), likely due to more prominent magnetic anomalies in the area 

(likely from the Barra Volcanic Ridge System) that may have interfered with the original 

interpretation of the anomaly. 

As the focus of this study is on the Paleozoic basement continental crust and the 

associated syn-rift and post-rift depositional sedimentary rocks, the transition zone from 

continental to oceanic crust is beyond the scope of this thesis. Thus, the seismic units and 

faults that are located on the oceanward side of anomaly A34 along IR1 are henceforth 

excluded. The extent of anomaly A34, as well as the change in the character of basement and 

overlying strata, are depicted in Figs. 4.1 and 4.2. 
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Figure 4.1: The extent of magnetic anomaly A34 from Srivastava et al. (1988), shown as the blue line. The dashed blue line 
depicts the extrapolation of anomaly A34 to intersect IR1 (highlighted in red). IR2 is shown as the solid black line. The 

turquoise bodies represent the extent of the igneous intrusions within the Rockall Basin. 
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Figure 4.2: (A) The entirety of line IR1 in the time domain (TWT). The solid black lines depict major faults and solid red lines depict minor faults. The black dashed line indicates the 

location of magnetic anomaly A34. All data to the left of this line are excluded for the remainder of this thesis.  (B) The entirety of line IR1 converted to the depth domain. The purple 

line represents the Moho proxy from Welford et al. (2012). 

Figure 4.3: (A) The entirety of line NL1 in the time domain (TWT). The solid black lines depict major faults. (B) The entirety of line NL1 converted to the depth domain. 

The purple line represents the Moho proxy from Welford et al. (2012). 
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4.2.2 Cenozoic Sedimentary Rock Decompaction 

 
The next step in the restoration process, after converting all of the seismic lines (IR1, 

IR2, NL1, NL2, and later NL3) from the time domain to the depth domain is to systematically 

decompact each unit. As sediment accumulates within a basin, the weight of the overlying 

sedimentary rock compresses the underlying sedimentary rock through time. This process is 

known as compaction. In order to accurately restore the Rockall and West Orphan basins to a 

pre-rift state, each unit must be decompacted by removing the overlying sedimentary rock. This 

is accomplished using the 2D Decompaction module in Move©.  

The first unit to be decompacted in Move© is the Cenozoic unit. This decompaction is 

accomplished by removing the overlying water column. This step is necessary to restore the 

conjugate basins because, during the Mesozoic, when these basins are hypothesized to have been 

connected, there was no water column present. The results of removing the water column and the 

corresponding decompaction of the Cenozoic sedimentary unit can be seen in Fig. 4.4. The 

decompacted seismic line IR1, has been restored to a time before the Cenozoic unit was 

compressed by the water column and therefore the Cenozoic unit has increased in thickness 

slightly. The decompaction process also appears to have moderately flattened topographic 

changes that were previously observed along the Cenozoic horizon. The decompacted seismic 

line, NL1, appears to have been most affected by the decompaction in the southwest-central 

portion of the seismic line compared to the NE. The Cenozoic strata eventually thin toward the 

SW along NL1, toward the continental shelf, where decompaction has a minor effect. Where the 

sediment layer thins towards the NE, where the crust transitions from continental to oceanic, the 

decompaction process only moderately increased the thickness of the Cenozoic unit. 
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Figure 4.4: (A) Cenozoic decompaction of seismic line IRI, offshore Ireland, only showing continental crust. (B) Cenozoic 

decompaction of seismic line NL1, offshore Newfoundland and Labrador. The black lines represent the primary faults and the red 
lines indicate the secondary faults. The purple line represents the Moho proxy from Welford et al. (2012). 

 
 
 
 

4.2.3 Cenozoic Thermal Subsidence Restoration 

 
Thinning of the lithosphere during rift events results in large changes in elevation, mainly 

due to thermal subsidence (Keen & Dehler 1993). As a sedimentary basin is created, by the 

stretching of continental lithosphere, the thinning of the lithosphere allows the asthenosphere to 

well up beneath it. The resulting increase in temperature, generated by the upwelling 

asthenosphere, eventually decreases, causing subsidence. Therefore, thermal subsidence must be 

accounted for at each post-rift layer, prior to decompaction, to accurately restore each basin. The 

2D Thermal Subsidence module in Move© uses a thermal subsidence model generated by 

McKenzie (1978) to restore the shape and paleo-depth of the seafloor. 

The 2D Thermal Subsidence module in Move© requires numerous prescribed parameters 
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for the calculation: the number of rifting events, age of the rifting events, the duration of syn-rift, 

the upper and lower stratigraphic limits of the unit that is to be restored, the beta/stretching 

value, the thickness of the lithosphere, the thickness of the continental crust, and the densities of 

the mantle, the continental crust, the sedimentary rock, and the seawater. Although three rift 

events have been identified in the Rockall Basin, a Late-Triassic rift phase, a Mid-Late Jurassic 

rift phase and a Late Cretaceous rift phase, only the Late Cretaceous event was used in the 

thermal subsidence calculation for this thesis. This is in part due to no Triassic or Jurassic 

sedimentary rocks being interpreted within the Rockall Basin (see section 3.2.1.2). The 

parameters used in the Rockall Basin for the Late Cretaceous rift age, 113 Ma, and syn-rift 

duration, 13 Ma, for seismic lines IR1 and IR2, were approximated from Shannon (1991) and 

Naylor & Shannon (2005) (Table 1.2). The upper and lower stratigraphic limits of the Cenozoic 

unit are 0 and 66 Ma respectively. The stretching factor (β) represents the ratio of final crustal 

thickness to the original crustal thickness and is a required parameter to calculate thermal 

subsidence. A β value map of the North Atlantic, provided by Welford et al. (2012), was used to 

determine that a uniform β value of 2.0 was appropriate for the Rockall Basin. 

The thermal subsidence parameters used in the West Orphan Basin for seismic lines NL1, 

NL2, and later NL3, were interpreted from Enachescu et al. (2004), Welford et al. (2012), and 

Gouiza et al. (2017) and are listed in Table 1.2. Three rift events have also been identified in the 

Orphan Basin, a Late Triassic rift event, a Late Jurassic rifting event and a Late Cretaceous rift 

event. As in the Rockall Basin, there are no Triassic sedimentary rocks interpreted in the West 

Orphan Basin, so only the Late Jurassic rift event (164 Ma) and the Late Cretaceous rift event 

(113 Ma) were used to calculate the thermal subsidence. The Late Jurassic rift event had a syn-

rift duration of 19 Ma and the Late Cretaceous rift event had a syn-rift duration of 13 Ma 

(Shannon, 1991 and Naylor & Shannon, 2005). The upper and lower stratigraphic limits of the 



76  

Cenozoic unit are 0 and 66 Ma, respectively. The β value map of the North Atlantic, provided by 

Welford et al. (2012), was used to determine that a uniform β value of 2.0 was appropriate for 

the West Orphan Basin. All of the additional parameters used to calculate the thermal subsidence 

for both the Rockall Basin and the Orphan Basin can be found in Appendix A. 

Based on the assigned parameters, the continental crust subsided uniformly by 

approximately 770 m in both the Rockall Basin and the West Orphan Basin during the Cenozoic 

period. Move© uses the equation from Mckenzie (1978) to calculate thermal subsidence. This 

equation uses only crustal and lithospheric properties, as well as the age and duration of rifting 

and does not take into account individual thicknesses of sedimentary layers. It is important to 

note that the same crustal, lithospheric and rifting properties were used across the 

Newfoundland-Ireland conjugate basins for the purpose of consistency for this M.Sc. project. 

Therefore, it is not surprising that both basins required the same amount of crustal rebound even 

though the thermal subsidence in the Rockall Basin is only accounting for one rift event, 

whereas in the Orphan Basin it is accounting for two rift events. The results of the Cenozoic 2D 

Thermal Subsidence calculations for both the Rockall Basin and the West Orphan Basin are 

shown in Fig. 4.5. 
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Figure 4.5: (A) Seismic line IR1 corrected for Cenozoic thermal subsidence, offshore Ireland. (B) Seismic line NL1 corrected 
for Cenozoic thermal subsidence, offshore Newfoundland and Labrador. The black lines represent the primary faults and the 

red lines indicate the secondary faults. The purple line represents the Moho proxy from Welford et al. (2012). 

 
 
 
 

4.2.4 Upper Cretaceous Sedimentary Rock Decompaction 

 
Following the correction for the Cenozoic thermal subsidence, the post-rift Upper 

Cretaceous sedimentary unit was decompacted via the removal of the Cenozoic unit. Using the 

2D decompaction tool in Move©, the Cenozoic unit was removed and the underlying units were 

adjusted according to the compaction curve and the porosity loss with burial as defined by 

Sclater & Christie (1980). Additionally, the isostatic response to unloading during the 

decompaction process was also accounted for at this stage. 

The decompaction process did not significantly alter fault geometries in either basin. In 

the Rockall Basin, along seismic line IR1, the decompaction process had a stronger effect 

towards the NE, where more Upper Cretaceous sedimentary rocks were interpreted. This is 

likely because the 2D Decompaction module in Move© uses porosity loss with increased burial 

depth to model the rock volume change. An area of thicker sedimentary cover implies that the 
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area has a greater overall porosity and could therefore become more compacted over time, than 

an area with a lesser amount of sedimentary cover. 

Towards the SW, where only a thin veneer of sedimentary rocks were interpreted, the 

decompaction process had a more minimal effect. In the West Orphan Basin, the 

decompaction process resulted in a relatively uniform lateral decompaction. The 

decompaction process also smoothed any topographic features of the unrestored Upper 

Cretaceous horizon. The results of the decompaction process of the Upper Cretaceous 

sedimentary unit in both the Rockall Basin and the West Orphan Basin can be seen in Fig. 4.6. 

 

Figure 4.6: (A) Upper Cretaceous decompaction of seismic line IRI, offshore Ireland. (B) Upper Cretaceous decompaction of 
seismic line NL1, offshore Newfoundland and Labrador. The black lines represent the primary faults and the red lines 

indicate the secondary faults. The purple line represents the Moho proxy from Welford et al. (2012). 
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4.2.5 Upper Cretaceous Thermal Subsidence Restoration 

 
The Upper Cretaceous unit is a post-rift sedimentary layer, therefore, thermal subsidence 

must be accounted for at this stage in order to accurately restore the Rockall Basin and the West 

Orphan Basin. The 2D Thermal Subsidence module in Move© uses a thermal subsidence model 

generated by McKenzie (1978) to restore the shape and paleo-depth of the seafloor. As stated, 

the parameters necessary to calculate and restore thermal subsidence include: the number of 

rifting events, age of the rifting events, the duration of syn-rift, the upper and lower stratigraphic 

limits of the unit that is to be restored, the beta/stretching value, the thickness of the lithosphere, 

the thickness of the continental crust and the densities of the mantle, the continental crust, the 

sedimentary rocks and the seawater. The same parameters used to restore the thermal subsidence 

of the Cenozoic unit were used to restore the thermal subsidence of the Upper Cretaceous unit. 

The only difference in parameters between the restoration of the thermal subsidence of the 

Cenozoic unit and the Upper Cretaceous unit is the change in the upper and lower stratigraphic 

limits. The Upper Cretaceous sedimentary unit has upper and lower stratigraphic limits of 66 Ma 

and 100 Ma, respectively, compared to the upper and lower stratigraphic limits of the Cenozoic 

unit, 0 and 66 Ma, respectively. 

For the Upper Cretaceous period, the continental crust was restored uniformly by 

approximately 806 m in both the Rockall Basin and the West Orphan Basin. The results of the 

Upper Cretaceous thermal subsidence calculations on both the Rockall Basin and the West 

Orphan Basin are shown in Fig. 4.7. 
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Figure 4.7: (A) Seismic line IR1 corrected for Upper Cretaceous thermal subsidence, offshore Ireland. (B) Seismic line NL1 
corrected for Upper Cretaceous thermal subsidence, offshore Newfoundland and Labrador. The black lines represent the 

primary faults and the red lines indicate the secondary faults. The purple line represents the Moho proxy from Welford et al. 
(2012). 

 
 
 
 

4.2.6 Lower Cretaceous Sedimentary Rock Decompaction 

 
After restoring the effects of the Upper Cretaceous thermal subsidence, the unit was then 

removed, thus decompacting the underlying syn-rift, Lower Cretaceous sedimentary unit. Using 

the 2D Decompaction tool in Move©, the Upper Cretaceous unit was removed and the 

underlying units were adjusted according to the compaction curve and the porosity loss with 

burial (Sclater & Christie 1980). The isostatic response to unloading during the decompaction 

process was also accounted for again at this stage. 

During the interpretation process in Petrel©, numerous primary and secondary faults were 

interpreted. The primary faults are those that are directly related to rifting, whereas the secondary 

faults likely do not account for much of the extension observed in the region. In the Rockall 

Basin, along seismic line IR1, the secondary faults that were associated with the Upper 
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Cretaceous unit (shown in red in Fig. 4.7) have been removed along with the Upper Cretaceous 

sedimentary rocks in order to decompact the Lower Cretaceous unit. It was appropriate to 

eliminate the secondary faults from the model because they have no restoration potential due to 

their minimal size and the lack of throw related to extension.  

As previously observed in earlier decompactions, where thicker sedimentary cover was 

initially interpreted, a greater amount of decompaction was required (for reasons previously 

stated). Additionally, the topographic changes of the Lower Cretaceous horizon have been 

smoothed as a result of the decompaction process. The results from the decompaction of the 

Lower Cretaceous unit along seismic lines IR1 and NL1 are illustrated in Fig. 4.8. 

 

 

 
Figure 4.8: (A) Lower Cretaceous decompaction of seismic line IRI, offshore Ireland. (B) Lower Cretaceous 

decompaction of seismic line NL1, offshore Newfoundland and Labrador. The black lines represent the primary faults 
and the red lines indicate the secondary faults. The purple line represents the Moho proxy from Welford et al. (2012). 

 

 
 

 

4.2.7 Jurassic Sedimentary Rock Decompaction 

 
Due to thermal subsidence creating large changes in elevation as the lithosphere thins 

during rifting, thermal subsidence must be accounted for in the restoration process of post-rift 
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units. The Lower Cretaceous unit is a syn-rift unit, which is an accumulation of sedimentary 

rocks that were deposited during rifting. Therefore, no thermal subsidence calculation was 

required to restore the Lower Cretaceous sedimentary unit. This unit was removed and the 

underlying Jurassic sedimentary rocks were decompacted. Due to the fact that Jurassic 

sedimentary rocks were only interpreted in the Orphan Basin, only seismic lines NL1 and NL2 

(and later NL3) required decompaction of the Jurassic sedimentary unit. The resultant effects of 

this decompaction on the Jurassic sedimentary rocks are minimal. The unit has thickened slightly 

and the horizon has been smoothed. 

The principles of lithospheric strength depth curves are well known (e.g., Brace & 

Kohlstedt, 1980). At the temperatures and pressures within the uppermost crust, the yield stress 

for brittle failure is less than that for failure by ductile deformation mechanisms (Pérez-Gussinyé 

& Reston 2001). However, with increasing pressure (at depth), brittle strength increases, 

whereas with increasing temperature, the ductile yield stress for a given strain rate and rheology 

will decrease (Pérez-Gussinyé & Reston 2001). The point at which the ductile and brittle yield 

stresses are equal is the brittle-ductile transition. Above this transition, deformation occurs by 

brittle failure; below it, plastic deformation is the favoured mechanism (Pérez-Gussinyé & 

Reston 2001). 

Following the interpretations of Gouiza et al. (2017) and the definition of the brittle- 

ductile transition zone (Pérez-Gussinyé & Reston 2001), a crustal boundary between the upper 

and lower crust was interpreted along all of the seismic lines in both the Rockall Basin and the 

West Orphan Basin. The results of the decompaction of the Jurassic sedimentary rocks and the 

addition of the mid-crustal boundary along NL1 are shown in Fig. 4.9. 
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Figure 4.9: Jurassic decompaction of seismic line NL1, offshore Newfoundland and Labrador. The mid-crustal boundary was 

also introduced at this stage. The yellow polygon represents the upper crust and the orange polygon represents the lower crust. 
The black lines represent the primary faults. Cross-sections from Gouiza e t al. (2017) helped determine the depth extent of the 

brittle-ductile transition used in this thesis. The purple line represents the Moho proxy from Welford et al. (2012). 
 
 

4.2.8 Jurassic Fault Restoration and Unfolding 

 
Following the decompaction and the thermal subsidence restorations of seismic lines 

NL1 and NL2 (and later NL3), fault modelling began in the West Orphan Basin. No Jurassic 

sedimentary rocks were interpreted along the Irish margin, therefore seismic lines IR1 and IR2 

did not require Jurassic fault restoration. Fault modelling in the West Orphan Basin was carried 

out in Move©. The 2D Move-on-Fault module, within Move©, was used in this thesis to restore 

the faults (refer to section 2.2.2.4).  

Along seismic line NL1, the Jurassic faults were restored using the 2D Move-on-Fault 

module in Move©. Along each Jurassic fault, individual hanging walls and footwalls of the 

Jurassic horizon were selected and realigned in order to accurately restore the model to the 

beginning of the Jurassic period. 

After the restoration of all of the Jurassic faults, the entire Jurassic unit was unfolded to 

the zero datum, thus flattening the unit. The process of unfolding a unit in Move© requires that 

the unit is present across the entire model. Due to the fact that the Jurassic sedimentary rocks 

were not interpreted across the basement highs of seismic line NL1, a thin veneer of Jurassic 
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sedimentary rocks were added to generate a continuous horizon. Additionally, the fault 

restoration process generated non-geological artifacts along the mid-crustal boundary and the 

Moho horizon. These artifacts were likely the result of the movement of the horizons that is 

necessary during the restoration process. The movement necessary to accurately restore the top 

horizon along the fault was mirrored in the underlying horizons, creating non-geological 

gaps/jumps in the horizons. To compensate, a smoothing process was used to ensure that the 

final model was geologically reasonable. The results of the restored, unfolded and smoothed 

section, with the Jurassic sedimentary unit, is shown in Fig. 4.10. 

 

 
 

Figure 4.10: Jurassic restoration of faults, unfolded, along seismic line NL1, offshore Newfoundland and Labrador. The black 
lines represent the primary faults. The purple line represents the Moho proxy from Welford et al. (2012). 

 
 
 
 

4.2.9 Upper Crustal Decompaction 

 
Move© calculates the compaction that occurred, over time, of the underlying sedimentary 

rocks and decompacts them. Therefore, in the Rockall Basin, the lower Cretaceous unit was 

removed, and in the West Orphan Basin, the Jurassic unit was removed. Once the Jurassic 

sedimentary unit was restored along seismic lines NL1 and NL2 in the West Orphan Basin, the 

upper crust was decompacted across the Newfoundland-Ireland conjugate basins. The 

decompaction of the upper crust is justified by the assumption that metasedimentary rocks are 
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present in the interpreted upper crustal unit. No pre-rift sedimentary rocks were interpreted in 

either basin, therefore, to account for the potential decompaction of these sedimentary rocks a 

small porosity was assigned to the upper crustal unit to allow for minimal decompaction.  

Along seismic lines NL1 and IR1, the decompaction process yielded a larger amount of 

restoration in areas where thicker overlying sedimentary rocks were interpreted and smaller 

amounts where less overlying sedimentary rock was interpreted. This is likely due to the 2D 

Decompaction module in Move©, as it uses porosity loss with increased burial depth to model the 

rock volume change. An area of thicker sedimentary cover implies that the area has a greater 

overall porosity and could, therefore, become more compacted over time, than an area with a 

lesser amount of sedimentary cover. This lateral change in decompaction can be observed along 

seismic line NL1 in Fig. 4.11. 

As a result of the decompaction process, only the primary faults remain present in both 

the Rockall Basin and the West Orphan Basin. These faults are used to restore the basement to a 

pre-rift state. The primary faults are used to reconstruct the basin, as these faults were generated 

as rifting began in the basin. After restoring the faults, the model represents a pre-rift state of 

the basin, a primary goal of this M.Sc. thesis. As mentioned above, due to artifacts generated 

during the Jurassic fault restoration in Move©, a smoothing technique was applied after every 

step until the restoration was complete. The results of the decompaction process along seismic 

lines IR1 and NL1 are shown in Fig. 4.11. 
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Figure 4.11: (A) Basement decompaction along seismic line IRI, offshore Ireland, only showing continental crust. (B) 

Basement decompaction along seismic line NL1, offshore Newfoundland and Labrador. The black lines represent primary 

faults. The purple line represents the Moho proxy from Welford et al. (2012). 
 
 
 
 

 

4.2.10 Crustal Fault Restoration and Unfolding 

 
Following the decompaction of the upper and lower crust along seismic lines NL1, NL2, 

IR1, IR2, and later NL3, basement fault restoration began in both the West Orphan Basin and the 

Rockall Basin. Using the 2D Move-on-Fault module, in Move©, each individual hanging wall 

and footwall adjacent to a fault were selected and restored. This process was repeated until all the 

primary faults, along all four seismic lines, were restored and the basins represented a pre-rift 

state. 

After this restoration the upper crust was unfolded to the zero datum. To compensate for 

the artifacts generated from the fault restoration, in Move©, a smoothing technique was applied. 

The results of the restoration, unfolding and smoothing along the primary seismic lines IR1 and 

NL1, can be seen in Fig. 4.12. 
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Figure 4.12: (A) Basement fault restoration and unfolding along seismic line IRI, offshore Ireland, only showing continental 
crust. (B) Basement fault restoration and unfolding along seismic line NL1, offshore Newfoundland and Labrador. The black 

lines represent primary faults. The purple line represents the Moho proxy from Welford et al. (2012). 
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4.3 3D Modelling 

 
EarthByte’s GPlates© software was utilized to visualize the pre-rift reconstruction of the 

Newfoundland-Ireland conjugate basins. GPlates© is an open-source application software that 

offers a wide variety of interactive visualizations of plate-tectonic reconstructions, geographic 

information system (GIS) functionality, and raster data visualizations. GPlates© enables both the 

visualization and the manipulation of plate-tectonic reconstructions and associated data through 

geological time. The GPlates models used in this thesis were generated by Matthews et al. 

(2016) and Müller et al. (2016). The main assumption made during the 3D reconstruction across 

the margins is that the Rockall Basin has always been conjugate to, and continuous with, the 

West Orphan Basin and that these restorations capture a single continuous Mesozoic basin. 

Using the 3D map view in Move©, the primary and secondary seismic lines in both the 

Rockall Basin and the West Orphan Basin, can be zoomed, rotated and repositioned to allow for 

in depth analysis of the data. The location of seismic lines NL1, NL2, IR1 and IR2 were first 

imported into GPlates©. Seismic lines NL1 and NL2 in the Orphan Basin were attached to the 

nearest plate, the North American plate. As the North American plate moves through time, the 

seismic lines move with it, following the same pole of rotation (Kneller et al., 2012 and Müller 

et al., 1999). Seismic lines IR1 and IR2 were attached to the Eurasian plate, implying that as the 

Eurasian plate moves through time, the seismic lines move with it, following the same pole of 

rotation (Barnett-Moore et al., 2016). However, it is important to note that GPlates© does not 

account for any internal deformation within the tectonic plates, therefore this reconstruction, 

across the Newfoundland-Ireland conjugate margins, is only an approximation. 

At each key time period (present day, 66 Ma, 100 Ma, 145 Ma and 201 Ma), the distances 

between the two primary seismic lines, NL1 and IR1 were calculated. These distances were then 
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used in Move© to manipulate the Newfoundland margin with respect to the Irish margin 

throughout time, in order to geographically restore the basins to their pre-rift location. 

 

 

4.3.1 Present Day 

 
Using GPlates©, all of the seismic lines in both the Rockall Basin and the Orphan Basin 

were overlain on a modern day bathymetry map to aid in the visualization of the reconstruction. 

However, this bathymetry map is stationary and does not move back in time with the restoration, 

therefore it was only used as a reference tool for the present day models. Using the measuring 

tool in GPlates©, a distance of approximately 1900 km was calculated from the northeastern limit 

of seismic line NL1 in the West Orphan Basin to the continental crust of seismic line IR1 in the 

Rockall Basin (the limit of continental crust of seismic line IR1 is shown in Fig. 3.2). 

In the 3D map view in Move©, seismic lines NL1 and NL2 were moved together, to a point 

where the northeastern extent of seismic line NL1 was 1900 km away from the southwestern 

extent of the continental crust of seismic line IR1. The GPlates© model and the Move© results of 

the movement of the seismic lines for present day are shown in Fig. 4.13. 
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Figure 4.13: (Top) GPlates© model of the Newfoundland-Ireland conjugate basins, present day. Background image shows bathymetry. (Bottom) 3D models of seismic 
lines NL1 and NL2 (left) in the Orphan Basin and 3D models of seismic lines IR1 and IR2 (right) in the Rockall Basin , present day. Black lines represent primary 

faults and red lines represent secondary faults. The light pink represents seawater. The light blue represents the Cenozoic unit. The dark pink represents the Upper 
Cretaceous unit. The green represents the Lower Cretaceous unit. The dark blue represents the Jurassic unit. The yellow represents the basement/crust. The purple 

line represents the Moho proxy from Welford et al. (2012). 
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4.3.2 Cenozoic Decompaction and Thermal Subsidence Reconstruction 

 
The focus of this thesis is on a regional and structural scale, therefore the water column 

was removed in a single step and the time period associated with this step remained at 0 Ma. If 

the focus of this thesis had been on the evolution of the petroleum systems in the basins, then the 

water column would have been removed in several steps, following the evolution of the paleo- 

water depth through time. During the removal of the water column, at 0 Ma, the Cenozoic 

sedimentary unit was decompacted and the thermal subsidence was restored. As previously 

stated, the distance between IR1 and NL1 at 0 Ma was 1900 km. 

In the 3D map view in Move©, the decompacted and thermally restored Cenozoic 

sedimentary unit models of seismic lines NL1 and NL2 were moved together, to a point 

where the northeastern extent of seismic line NL1 was 1900 km away from the southwestern 

extent of the continental crust of seismic line IR1. The GPlates© modern day bathymetry map 

and the movement of seismic lines IR1, IR2, NL1 and NL2 are shown in Fig. 4.14. 
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Figure 4.14: (Top) GPlates© model of the Newfoundland-Ireland conjugate basins, present day. Background image shows modern bathymetry. (Bottom) 3D model of 
seismic lines NL1 and NL2 (left) in the Orphan Basin with the Cenozoic sedimentary unit decompacted. 3D model of seismic lines IR1 and IR2 (right) in the Rockall 

Basin with the Cenozoic sedimentary unit decompacted. Black lines represent primary faults and red lines represent secondary faults. The light blue represents the 
Cenozoic unit. The dark pink represents the Upper Cretaceous unit. The green represents the Lower Cretaceous unit. The dark blue represents the Jurassic unit. The 

yellow represents the basement/crust. The purple line represents the Moho proxy from Welford et al. (2012). 
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4.3.3 Upper Cretaceous Decompaction and Thermal Subsidence Reconstruction 

 
The bathymetry map previously used to aid in the visualization of the reconstruction of 

the Newfoundland-Ireland conjugate basins was replaced by a simple modern day coastlines 

shapefile. This change was necessary because the bathymetry map in GPlates© was a simple 

overlay and could not be reconstructed through time. However, each section of coastline could 

be tied to separate tectonic plates with individual poles of rotation, thus allowing the coastlines to 

be restored through geological time. As a result of restoring the tectonic plates, the coastlines and 

the seismic lines back to 66 Ma, it can be observed that the Rockall Basin and the West Orphan 

Basin were significantly closer together 66 Ma than they are today. During the Upper Cretaceous 

time period (66 Ma), it was calculated in GPlates© that seismic lines NL1 and the continental 

crust of IR1 were approximately 300 km apart. 

Following the decompaction and thermal subsidence restoration of the Upper Cretaceous 

unit, the 3D map view in Move© was used to move seismic lines NL1 and NL2 to a location 

where NL1 was 300 km away from the continental crust of IR1. The results of the 

reconstructions in Move© and GPlates© can be seen together in Fig. 4.15. 
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Figure 4.15: (Top) GPlates© model of the Newfoundland-Ireland conjugate basins. Background image shows modern coastlines 66 Ma (blue polygons). (Bottom) 3D 
model of seismic lines NL1 and NL2 (left) in the Orphan Basin with the Upper Cretaceous sedimentary unit decompacted and thermal subsidence restored. 3D model of 
seismic lines IR1 and IR2 (right) in the Rockall Basin with the Upper Cretaceous sedimentary unit decompacted and thermal subsidence restored. Black lines represent 

primary faults and red lines represent secondary faults. The dark pink represents the Upper Cretaceous unit. The green represents the Lower Cretaceous unit. The 
dark blue represents the Jurassic unit. The yellow represents the basement/crust. The purple line represents the Moho proxy from Welford et al. (2012). 
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4.3.4 Lower Cretaceous Decompaction Reconstruction 

 
The GPlates© Lower Cretaceous reconstruction, at 100 Ma, shows that the Rockall Basin 

and the West Orphan Basin continue to move closer together as the North Atlantic Ocean closes. 

The NE extent of seismic line NL1 is approximately 60 km to the east of the southwestern extent 

of seismic line IR1. The seismic lines do not match up perfectly, but this margin of error can be 

accounted for by the fact that GPlates© does not account for any internal deformation of the 

plates. It is hypothesized that Flemish Cap, offshore Newfoundland and Labrador (location 

shown in Fig. 1.3), to the SE of the Orphan Basin, rotated approximately 43 degrees in a 

clockwise direction relative to Galicia Bank and Iberia during the Late Triassic to Early 

Cretaceous (Srivastava & Verhoef 1992, Enachescu , 2006 and Sibuet et al., 2007). As a result of 

the rotation of Flemish Cap, there is one possible instance of internal rotation within the North 

American plate that is not accounted for in GPlates©. Therefore, the fact that seismic lines NL1 

and IR1 are off by a margin of approximately 60 km may simply be the result of GPlates© lack of 

knowledge of internal deformation of the plates. Another possible explanation for the lack of 

cohesion between the locations of the seismic lines across the margins is that the Rockall Basin 

and the West Orphan Basin may not have been connected conjugate basins. 

In the 3D map view in Move©, seismic lines NL1 and NL2 have been manipulated to 

close the distance between the Rockall Basin and the West Orphan Basin. This manipulation 

was done to better visualize the relationship between the thicknesses of the sedimentary rocks 

and the pre-rift crust across the potentially continuous basin. Assuming the margins are 

conjugate, following the decompaction of the Lower Cretaceous sedimentary rocks, the primary 

seismic lines in the Rockall Basin and the West Orphan Basin were merged together in Move©. 

The point of intersection of the two lines is denoted by the northeastern extent of seismic line 
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NL1 and the southwestern extent of the continental crust of seismic line IR1 (location shown in 

Fig. 3.2). The results of the reconstruction in GPlates© and the movement of the seismic lines 

IR1, IR2, NL1 and NL2 in Move©, can be seen in Fig. 4.16. 
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Figure 4.16: (Top) GPlates© model of the Newfoundland-Ireland conjugate basins. Background image shows modern coastlines 100 Ma (blue polygons). (Bottom) 

3D model of seismic lines NL1 and NL2 (left) in the Orphan Basin with the Lower Cretaceous sedimentary unit decompacted and thermal subsidence restored. 3D 
model of seismic lines IR1 and IR2 (right) in the Rockall Basin with the Lower Cretaceous sedimentary unit decompacted and thermal subsidence restored. Black 

lines represent primary faults and red lines represent secondary faults. The green represents the Lower Cretaceous unit. The dark blue represents the Jurassic unit. 
The yellow represents the basement/crust. The purple line represents the Moho proxy from Welford et al. (2012). 
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4.3.5 Jurassic Decompaction and Fault Restoration Reconstruction 

 
Jurassic sedimentary rocks were only interpreted in the Orphan Basin, therefore when 

restoring the Newfoundland-Ireland conjugate margins at 145 Ma, the decompacted upper 

crustal unit was used in the Rockall Basin. The mismatched distance between seismic line NL1 

and seismic line IR1 has increased from the previous step. Seismic line NL1 now lies 

approximately 160 km to the east of IR1. As previously stated, the increasing margin of error 

could potentially be accounted for by the fact that GPlates© does not account for any internal 

deformation of the plates. Another possible explanation for the growing discord between the 

two primary seismic lines is that the Rockall Basin and the West Orphan Basin may not have 

been conjugate or continuous basins at this time. 

Using the 3D map view in Move©, seismic lines NL1 and NL2, in the West Orphan 

Basin, remain in the merged position with seismic lines IR1 and IR2 in the Rockall Basin. After 

the Jurassic sedimentary unit was restored on the Newfoundland margin, seismic line NL1 was 

aligned with the continental crust of seismic line IR1. The point of intersection of the two lines is 

denoted by the northeastern extent of seismic line NL1 and the southwestern extent of the 

continental crust of seismic line IR1 (location shown in Fig. 3.2). The results of the 

reconstruction in GPlates© and the movement of the seismic lines IR1, IR2, NL1 and NL2, in 

Move© can be seen in Fig. 4.17. 
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Figure 4.17: (Top) GPlates© model of the Newfoundland-Ireland conjugate basins. Background image shows modern coastlines 145 Ma (blue polygons). (Bottom) 3D 
model of seismic lines NL1 and NL2 (left) in the Orphan Basin with the Jurassic sedimentary unit decompacted, restored and unfolded. 3D model of seismic lines IR1 

and IR2 (right) in the Rockall Basin with the upper and lower crustal unit decompacted. Black lines represent primary faults. The dark blue represents the Jurassic unit. 
The yellow represents the basement. The orange represents the lower crust, bounded by the mid-crustal boundary. The purple line represents the Moho proxy from 

Welford et al. (2012). 
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4.3.6 Upper Crust Decompaction and Fault Restoration Reconstruction 

 
Observing the crustal reconstruction in GPlates©, at 201 Ma, the seismic lines in the West 

Orphan Basin intersect with those in the Rockall Basin. The primary line in the Rockall Basin, 

IR1, now intersects the secondary line in the West Orphan Basin, NL2. Multiple supplementary 

seismic lines from the Rockall Basin also intersect supplementary lines in the Orphan Basin at 

this time. The northeastern extent of seismic line NL1 now lies 280 km to the NE of the 

southwestern extent of the continental crust of seismic line IR1. 

Following the decompaction, restoration and unfolding of the upper crustal unit in both 

basins, the 3D map view in Move© was used and seismic lines NL1 and NL2, in the West 

Orphan Basin, remain in the merged position with seismic lines IR1 and IR2 in the Rockall 

Basin. The four seismic lines now, at 201 Ma, depict the possible extent of a continuous 

Mesozoic pre-rift basin, assuming the Rockall Basin and the West Orphan Basin are conjugate 

basins. The 3D view of the potentially continuous pre-rift Mesozoic basin can be seen in Fig. 

4.18. 

 

 

4.4 From Modelling to Broader Understanding 

 
Following generation of the 2D and 3D reconstructions in Move©, a thorough discussion 

will be presented in Chapter 5. The results and variable parameters used throughout the 2D and 

3D reconstructions will be discussed in detail. Additionally, comparisons of syn-rift, post-rift and 

pre-rift crustal thicknesses will be analyzed across the conjugate basins in Chapter 5. Finally a 

possible evolutionary history of the Orphan Basin and Rockall Basin will be presented. 
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Figure 4.18: (Top) GPlates© model of the Newfoundland-Ireland conjugate basins. Background image shows modern coastlines 201 Ma (blue polygons). (Bottom) 3D 

model of seismic lines NL1 and NL2 (left) in the Orphan Basin with the Basement unit decompacted, restored and unfolded. 3D model of seismic lines IR1 and IR2 
(right) in the Rockall Basin with the Basement unit decompacted, restored and unfolded. Black lines represent primary faults. The yellow represents the basement. The 

orange represents the lower crust, bounded by the mid-crustal boundary. The purple line represents the Moho proxy from Welford et al. (2012). 
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Chapter 5: Discussion 

5.1 Introduction 

 

In this chapter, the techniques used during the 2D and 3D reconstructions in Move©, and the 

results from the Newfoundland-Ireland conjugate margins will be discussed and compared. This 

chapter tackles features that vary in scale and temporal evolution and will be presented in order 

from features that are generally localized to more regional in scale. A flowchart outlining the 

order of the sections in this chapter is shown in Fig. 5.1. 

 

 

 

 
Figure 5.1: Flowchart outlining the order of the sections in Chapter 5, from localized features to regional features. 
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5.2 Orientation of the Restored Seismic lines with Respect to Orientation of Rifting 

 
Due to the orientation of the seismic lines used to reconstruct the Rockall Basin and the 

West Orphan Basin to a pre-rift state, the basement structures and fault directions vary across the 

conjugate margin pair, complicating fault restoration efforts. Specifically, the main seismic line 

used in the West Orphan Basin, NL1, lies across strike of the rifted margin, whereas the main 

seismic line in the Rockall Basin, IR1, lies along strike of the rifting axis. To compensate for the 

variability of the observed faulting trends and styles across the two basins, additional intersecting 

seismic lines, NL2 and IR2, have been incorporated into the interpretation and analysis of this 

thesis. The addition of these intersecting seismic lines allows for a more direct comparison 

between the basins. For example, when analyzing the fault geometries of seismic line NL1, in the 

West Orphan Basin, a better comparison can be made in the Rockall Basin using seismic line 

IR2, compared to the original line, IR1. This is due to the fact that both lines NL1 and IR2 lie 

across strike of the rift axes, thus allowing for a more direct and accurate comparison of the fault 

geometries. 

 

 

5.3 Variable vs. Uniform Stretching Factor, Beta, Values in the West Orphan Basin 

 
The stretching factor (β) represents the ratio of final crustal thickness to the original crustal 

thickness and is a required parameter for the calculation of thermal subsidence. Using β value 

maps derived by Welford et al. (2012), a uniform β value of 2.0 was used across the 

Newfoundland-Ireland conjugate margin pair. The Rockall Basin β value map (Fig. 5.2), 

indicates that most of seismic line IR1 experienced a β value of 2.0, however portions of this 

seismic line may have experienced a higher β value, around 3.0 or 4.0. Due to the suboptimal 

orientation of the seismic lines used in the Rockall Basin, a lower uniform beta value was 
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selected. The primary seismic line in the Rockall Basin, IR1, is oriented along the strike of the 

rift axis, whereas the primary seismic line in the West Orphan Basin, NL1, lies across strike of 

the rifted margin. Thus, the lateral changes in the β value for the seismic lines of the Irish margin 

for this project do not provide meaningful constraints. Nonetheless, the effect of using lateral 

changes in the β values across the West Orphan Basin for the restoration were investigated to 

assess their potential significance. 

Along line NL1 in the West Orphan Basin, a reconstruction with laterally variable β values 

was created to compare the results with the reconstruction that utilized a uniform β value of 2.0. 

Using the β value map adapted from Welford et al. (2012; Fig. 5.3), a variable β value graph was 

created (Fig. 5.4). These β value maps were computed based on a uniform original crustal 

thickness of ~30 km that may not accurately represent the pre-rift crust across the entire 

Newfoundland-Ireland conjugate margins. These β values were used in Move© to restore the 

effects of thermal subsidence during the Cenozoic and the Upper Cretaceous periods. Along 

seismic line NL1 in the West Orphan Basin, the lateral change in the β values resulted in a 

Cenozoic thermal subsidence restoration of 962 m, whereas the uniform β value of 2.0 resulted in 

a restoration of 740 m. Using laterally variable β values to restore the effects of thermal 

subsidence in the Upper Cretaceous resulted in an uplift of 1090 m, whereas using the uniform β 

value of 2.0 resulted in an uplift of 800 m. The restoration of seismic line NL1 using the variable 

β values resulted in similar final crustal thicknesses. The variable β values yielded an average 

pre-rift crustal thickness of 12 km, whereas the uniform β value yielded an average crustal 

thickness of 11.5 km. The reconstruction of seismic line NL1 using variable β values also 

generated a similar amount of extension as the uniform β value reconstruction, 61 km and 60 km, 

respectively. Similar fault geometries were also observed for the reconstruction of seismic line 



105  

NL1 using variable β values compared to a uniform β value (Fig. 5.5). Since the effects of the 

lateral change in the β value yielded only minimal changes in the overall reconstruction of the 

margin (at the regional scale), the uniform β value of 2.0 was used for both margins in this thesis. 

This is in agreement with the β value used in Orphan Basin in the previously published study by 

Gouiza et al. (2017). Using the same uniform β value, 2.0, in both the Rockall Basin and the 

West Orphan Basin also generated more consistent restorations across the conjugate margin pair. 

 

 

 

Figure 5.2: Stretching values, β, for the Rockall Basin. The yellow line indicates seismic line IR1 and the red line indicates 

seismic line IR2. This figure was adapted from Welford et al. (2012). 
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Figure 5.3: Stretching values, β, for the Orphan Basin. The yellow line indicates seismic line NL1 and the red line 

indicates seismic line NL2. This figure was adapted from Welford et al. (2012). 

 

 

 

 

 
      

      

      

      

      

      

      

 

 
 
 
 
 

Figure 5.4: Variable β value graph for seismic line NL1 in the West Orphan Basin showing β values versus distance along 
the line. Location of line shown in Fig 5 .3. 
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Figure 5.5: (A) Reconstruction of seismic line NL1 using a uniform beta value of 2.0. (B) Reconstruction of seismic line NL1 
using variable beta values from figure 5.4. The purple line represents the Moho proxy from Welford et al. (2012). 

 
 
 
 

5.4 Interpreted Jurassic Sedimentary Rocks (or lack thereof) 

 
5.4.1 Orphan Basin 

 
The amount and localization of Jurassic sedimentary formations in the West Orphan 

Basin has recently been debated (Lau et al., 2015; Gouiza et al., 2017). McCallum (personal 

communication, Nalcor Energy Ltd., 2018) and their prospect team have interpreted NL1 to have 

units of Jurassic sedimentary rocks across the entire extent of the seismic line, absent only over 

the basement high where the well H was drilled (location shown in Fig. 3.9). The interpretation 

of Jurassic sedimentary rocks in the West Orphan Basin for this thesis generally agrees with the 

interpretation from the team at Nalcor. For this thesis, minimal differences include missing 
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Jurassic sedimentary rocks over two other local basement highs in the center of the West Orphan 

Basin (locations shown in Fig. 3.9). Additionally, it is important to note that no wells have been 

drilled through units of Jurassic sedimentary rocks in the deepest extents of the West Orphan 

Basin, so their presence has never been proven. 

Gouiza et al. (2017) interpreted a lack of Jurassic sedimentary rocks in the West Orphan 

Basin and inferred that an erosional event occurred before the second phase of rifting in the 

Early Cretaceous. The erosion and uplift experienced in this area is argued to be related to a 

failed rift system (Gouiza et al., 2017). Chian et al. (2001) observed a large gravity anomaly high 

(93 mGal compared to an average of 0 mGal seaward) along the western margin of the West 

Orphan Basin, forming a ~100 km wide band along the outer part of the shelf. Subsidence 

analysis (Keen et al., 1987) at well H (location shown in Fig. 3.9) indicates rapid subsidence 

from at least 130 to 110 Ma. This is consistent with the major pulse of extensional tectonics 

beginning in Middle Jurassic (160 Ma) in the Jeanne d'Arc Basin, 100 km south of the Orphan 

Basin. This zone may be a failed rifting center generated by continental stretching beginning in 

the Middle Jurassic and ending when the final Canada-Europe rift occurred in the Late 

Cretaceous (Chian et al., 2001). As a result of the failed rift, higher density mantle material was 

closer to the surface which could have resulted in the erosion of Jurassic sedimentary rocks due 

to the added heat and uplift (Chian et al., 2001). Due to the greater amount of Jurassic 

sedimentary rocks interpreted in this thesis, the failed rift hypothesis is not favoured. 

Enachescu (2006) suggests, based on seismic data, that there is no total separation 

between the Orphan Basin and its southern neighbours, the Jeanne d’Arc Basin and the Flemish 

Pass Basin (Fig. 5.6b). Several Jurassic-aged sediment-filled troughs show communication 

between basins across the Cumberland Belt fault zone (location shown in Fig. 5.6a; Enachescu, 

2006). These passageways have existed since the Jurassic, and possibly Triassic (Enachescu, 
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2006). Therefore, it is possible that the Jurassic sedimentary rocks that are currently interpreted 

in the Orphan Basin were deposited through sediment-filled troughs linking the Jeanne d’Arc 

Basin with the Orphan Basin (Enachescu, 2006). 

 

 
Figure 5.6: (A) Orphan Basin location map and basin boundaries, showing location of the Cumberland Belt Transform Fault 

Zone (CBTZ). Other annotations include: CGTZ = Charlie Gibbs Transform Fault Zone and COB = Continent Ocean 
Boundary. This figure is from Enachescu (2006). (B) Time Structure of Economic Basement map over the Orphan Basin. Red 
and yellow are high areas outside the Orphan Basin; within the basin, green and light blues are local highs and dark blue, 

purple and dark purple are local lows. COH = Continental Orphan High. Arrows indicate depressions where seaway 
communication between the East Orphan and adjacent basins was possible during the Triassic and Jurassic. 
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5.4.2 Rockall Basin 

 
No Jurassic sedimentary rocks have been interpreted in the Rockall Basin in this study, 

due to the widespread extent of Paleogene sills that obscure the deep seismic data. However, 

Morewood et al. (2004) interpret Jurassic sedimentary rocks throughout the entire Rockall 

Basin. Morewood et al. (2004) use the results proposed by numerous authors (Shannon et al., 

1993; Naylor et al., 1999; Stoker et al., 2001; McDonnell & Shannon 2001) to interpret RAPIDS 

(Rockall and Porcupine Irish Deep Seismic) line 33 in the Rockall Basin (location shown in Fig. 

5.7a). They identified eight layers within the seismic section: Layer 1, Late Miocene-Recent; 

Layer 2, Post-Middle Miocene; Layer 3, Oligocene; Layer 4, Early Tertiary; Layer 5, 

Cretaceous; Layer 6, Cretaceous; Layer 7, Jurassic; Layer 8, Basement (Fig. 5.7b). They use 

Deep Sea Drilling Project (DSDP) well 610 and a series of boreholes to place some constraints 

on the Neogene section in the Rockall Basin. Morewood et al. (2004) also use borehole data 

from the eastern margin of the Rockall Basin to confirm the presence of a thin Tertiary 

succession overlying Cretaceous and Jurassic strata (Haughton et al., 2005). 

RAPIDS line 33 lies approximately 100 km to the SW of seismic line IR2. Therefore, 

projecting the location of the potential Jurassic sedimentary rocks from RAPIDS 33 to line IR2 

is only an approximation (location shown in Fig. 5.7a). Layer 1, the top of the Cenozoic unit, 

along RAPIDS line 33, corresponds with the top of the Cenozoic unit interpreted along seismic 

line IR2. Layer 5, the top of the Cretaceous unit, along RAPIDS line 33, corresponds with the 

top of the Upper Cretaceous unit interpreted along seismic line IR2 in the center of the basin. 

Toward the SE along RAPIDS line 33, the Layer 5 horizon is ~1 km deeper than the IR2 Upper 

Cretaceous horizon. Layer 6, representing a Mid-Lower Cretaceous horizon along RAPIDS line 

33, is consistently shallower by approximately 1-1.5 km compared to the Lower Cretaceous 
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horizon along line IR2. Morewood et al. (2004) interpreted the top of Layer 7 as the top of the 

Jurassic unit along RAPIDS line 33. The Layer 7 Jurassic horizon lies consistently within ~ 0.5 

km of the top of the Lower Cretaceous unit along line IR2 (Fig. 5.8). Layer 8, the top of the 

basement along RAPIDS line 33, is shallower by ~0.5-1.5 km throughout the basin, compared to 

the basement interpreted along line IR2. Toward the NW of seismic line IR2, the basement 

interpreted by Morewood et al. (2004) becomes shallower with a steeper gradient, compared to 

the interpretations for this study. This steep shallowing gradient also forces the horizons above 

the basement to pinch out. These discrepancies may result from the different velocity model 

used for the depth conversion in this study compared to the model used by Morewood et al. 

(2004). The fact that RAPIDS line 33 lies 100 km to the SW of line IR2 may also contribute to 

the mismatch in the interpretations for this study compared to the model generated by 

Morewood et al. (2004). 

Confidence in the location of Jurassic sedimentary rocks in the model generated by 

Morewood et al. (2004) is lesser than for shallower horizons, indicated by the dashed horizon 

in their original image. Additionally, no wells have been drilled in the centre of the Rockall 

Basin to confirm or refute the presence of any Jurassic sedimentary rocks. The wells that have 

been drilled along the eastern margin of the Rockall Basin are in perched basins (locations 

shown in Fig. 2.3) and provide minimal aid in the correlation of the deep seismic data. 
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Figure 5.7: (A) Location of RAPIDS line 33 (shown in pink) and seismic line IR2 (shown in yellow) in the Rockall Basin. (B) 
Velocity model of RAPIDS line 33 from Morewood et al. (2004), showing the 8 interpreted horizons and their locations 

in depth. 
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Figure 5.8: Background image represents seismic line IR2 with interpretations and polygons from this study. Thick 
black lines represent interpretations from Morewood et al. (2004) of RAPIDS line 33, with circled numbers 

corresponding to layer numbers from figure 5.7. Inset image shows the location of RAPIDS line 33 (pink) and line IR2 
(yellow) in the Rockall Basin. The purple line on the cross-section represents the Moho proxy from Welford et al. (2012). 

 
 
 
 

5.5 Nature of Faulting Across the Rockall and Orphan Basins 

 
Faulting plays an important role in the formation of sedimentary basins (Lohr et al., 

 

2008). Large scale sub-surface faulting is typically identified through interpretation of 2D or 3D 

seismic data (McLeod et al., 2000). Faults are best imaged on seismic reflection data when the 

seismic line is collected perpendicular to the strike of the fault surfaces (Tearpock & Brischke, 

2010), as this orientation is generally across the rift axis (Ebinger et al., 1999). In theory, 

comparing the nature and style of rifting in both the Rockall and West Orphan basins should 

provide additional information to aid in determining if the basins once formed a singular, 
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continuous Mesozoic basin. 

The style and nature of faulting across the Newfoundland-Ireland conjugate margins is 

difficult to compare due to the orientation of the primary seismic lines with regards to the rift 

axis. As previously stated, seismic line NL1, in the West Orphan Basin, lies across the strike of 

rifting, whereas seismic line IR1, in the Rockall Basin lies along the strike of rifting. Therefore, 

seismic line IR2, in the Rockall Basin, is compared to seismic line NL1, in the West Orphan 

Basin because both lines are perpendicular to the axis of rifting. 

In the West Orphan Basin, approximately four NE dipping fault blocks are observed 

toward the northeastern extent of seismic line NL1 (Fig. 5.9a). Three prominent fault bounded 

basement highs are also observed throughout the section, the largest of which is located on the 

continental shelf, toward the southwestern end of the section (Fig. 5.9b). There are no Jurassic 

sedimentary rocks interpreted over any of these basement highs, likely due to a large scale 

erosional event (Gouiza et al., 2017). A fault-bounded seamount is interpreted in the center of 

seismic line NL1 (discussed later in section 5.10; Fig. 5.9c). To the northeast of the seamount, a 

graben structure is also interpreted along the section (Fig. 5.9c). The large variety in the fault 

characteristics are likely the result of the numerous rift episodes and changes in rift directions that 

the Orphan Basin underwent during its development (Enachescu et al., 2004). 
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Figure 5.9: Interpreted seismic line NL1 in the West Orphan Basin. (A) Orange oval shows the location of the NE dipping 

fault blocks. (B) Purple circles show the location of the prominent basement highs. (C) Pink circle shows the location of 
the fault-bounded seamount. The turquoise circle shows the location of the graben. Location of seismic line shown by 

red line on inset map. 
 

 

In the Rockall Basin, along line IR2, four SE tilted/near vertical fault blocks are observed 

at the NW end of the line (Fig. 5.10). Along the center of the section two vertical faults are 

interpreted (Fig. 5.10). Toward the SE end of the line, four NW dipping faults are interpreted 

(Fig. 5.10). The fault characteristics observed in the Rockall Basin are likely the results of the 
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numerous rift episodes that the basin experienced during its formation (Shannon, 1991). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.10: Interpreted seismic line IR2 in the Rockall Basin, location shown on inset map as the yellow line. Orange 

circle indicates the location of the SE tilted faults blocks. The purple circle indicates the location of the near vertical 
faults. The red circle indicates the location of the NW dipping fault blocks. Location of seismic line shown by yellow line 

on inset map. 
 

 
 
 
 

Overall, few similarities in faulting style are observed perpendicular to the strike of 

rifting across the Newfoundland-Ireland conjugate basins. Seismic lines NL1 and IR2 both 

exhibit tilted fault blocks, to a varying degree. However, no seamounts, basement highs, or 

grabens are observed on the Irish margin. Such structures are likely present in the Rockall Basin 

and have not been captured by the seismic reflection data due to the obscuring sills. It is difficult 

with only one seismic line in the appropriate direction, across a basin that is 1100 km long, to 

accurately sample the nature of the faulting within the entire basin. Therefore, while there are a 

few similarities in faulting style and characteristics observed across the basins, the nature of the 

faulting provides little evidence as to the existence of a possible continuous basin formed from 

the Rockall Basin and the West Orphan Basin during the Mesozoic. 
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5.6 Sedimentary Thickness 

 
The average amount of post-rift sedimentary rock, calculated from the addition of the 

Cenozoic and Upper Cretaceous sedimentary units, was measured in Move©. In the West 

Orphan Basin, an average amount of ~ 3.7 km of post-rift sedimentary rock accumulated after 

rifting. In the Rockall Basin, an average amount of ~ 3.5 km of post-rift sedimentary rock 

accumulated after rifting. Focusing on the large-regional scale, both basins experienced a 

similar amount of post-rift sedimentary rock accumulation, even though the basins were drifting 

apart during this time. However, the average thickness of the post-rift units provides little 

insight into the possible connection between the two basins. 

The average amount of syn-rift sedimentary rock, calculated from the Lower Cretaceous 

and, where applicable, the addition of the Jurassic sedimentary unit, was measured in Move©. In 

the West Orphan Basin, an average of ~2.4 km of syn-rift sedimentary rock accumulated during 

rifting. In the Rockall Basin, an average amount of ~2.4 km of syn-rift sedimentary rock was 

deposited. Both the West Orphan Basin and the Rockall Basin accumulated the same average 

amount of sedimentary rock while rifting was occurring. The similarity in the syn-rift 

sedimentary thicknesses implies that both basins were subjected to similar processes and 

accumulation rates during rifting. It also provides evidence that the Rockall Basin and the West 

Orphan Basin possibly formed a large continuous Mesozoic rift system. 

To check on the validity of these interpreted thicknesses, the post-rift and syn-rift 

thicknesses of sedimentary rock were added together and compared to the known amount of 

sedimentary cover in each basin. Within the West Orphan Basin, according to Gouiza et al. 

(2017), there is approximately ~5-6 km of sedimentary rock. The thickness of the post-rift 

sedimentary rock and the syn-rift sedimentary rock accumulated in the West Orphan Basin, were 
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added together, ~3.7 km and ~2.4 km, respectively. The combined sedimentary thickness in the 

West Orphan Basin is ~ 6.1 km, which is consistent with the value suggested by Gouiza et al. 

(2017). The thickness of the post-rift sedimentary rocks and the syn-rift sedimentary rocks in the 

Rockall Basin were added together, ~3.5 km and ~2.4 km, respectively. The combined 

sedimentary thickness in the Rockall Basin is ~ 5.9 km, which is only slightly lower, than the ~6-

7 km thickness suggested by Hauser et al. (1995) and O’Reilly et al. (2006). The overall 

similarity in the average thickness of the syn-rift sedimentary rock in the Rockall and West 

Orphan basins provides convincing evidence that the two basins were connected during the 

Mesozoic syn-rift phase. 

 

 

5.7 Amount of Extension 

 
The amount of extension observed from faulting, in both the Rockall and West Orphan 

basins, was measured in Move©. The distance from the edge of the fully restored upper crustal 

section to the original extent of the seismic data was measured in Move©. The distance measured 

represents the amount of extension, based solely on faulting, that each basin experienced 

throughout the reconstruction process. In the West Orphan Basin, the amount of extension 

observed along seismic line NL1, lying across the rift axis, was 60 km. However, the West 

Orphan Basin is approximately 100 km wide (Gouiza et al., 2015). Therefore, the model 

generated for the West Orphan Basin, underestimated the amount of extension by approximately 

40%. The primary seismic line in the Rockall Basin, IR1, was not used to calculate the extension 

in the basin because this seismic line lies along the axis of rifting. Since basins open across the 

rift axis and not along the rift axis, seismic line IR1 was excluded and seismic line IR2 was used 

instead. The amount of extension calculated along seismic line IR2 was 7.3 km. O’Reilly et al. 
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(2006) and Pérez-Gussinyé & Reston (2001) estimated that the Rockall Basin extended 

approximately 150-200 km. Therefore, the model generated in the Rockall Basin underestimated 

the amount of extension by approximately 95%. 

Numerous authors have reported similar extensional discrepancies across rifted margins 

(Driscoll & Karner, 1998; Sibuet, 1992; Davis & Kusznir, 2004; Gouiza et al., 2017). 

Explanations for the extension discrepancy fall into two broad categories. One suggests that only 

a fraction of the faulting has been recognized and thus the brittle extension has been massively 

underestimated (Reston, 2005). The other category proposes that the observed faulting is close to 

the total amount of brittle extension and that the lower crust has locally been thinned far more 

than the brittle upper crust (Sibuet, 1992; Driscoll and Karner, 1998; Kusznir et al., 2005), a 

mechanism known as depth-dependent stretching (DDS) (Reston, 2007b). 

The first explanation for the discrepancy in extension is that only a fraction of the 

faulting has been recognized. One possible explanation for the lack of interpreted faults is that 

the youngest faults cut across earlier faults, obscuring them. This is known as polyphase faulting 

(Reston, 2007b). Normal faults form at dips of ~65º–70°, like those seen in both the Rockall and 

West Orphan basins. The faults then rotate during subsequent extension and lock up at dips of 

>30° (Reston, 2007b). These faults correspond to a stretching factor of just below 2 (the value 

assumed for both the Rockall and West Orphan basins) and are then replaced by a second 

generation of faults (Reston, 2007b; Fig. 5.11). However, Gouiza et al. (2017) state that fault 

geometries, syn-rift stratigraphy and basement structures imaged on the seismic data do not 

provide evidence that polyphase faulting occurred in the Orphan Basin. 

An equally effective way of producing an apparent extensional discrepancy would be 

failure to recognize large-offset normal faults that flexurally rotate to sub horizontal (Lavier & 
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Manatschal, 2006) and may form the top of the basement over tens of kilometres (Reston, 

2007b). The dimensions of such faults can easily be overlooked on seismic data. Furthermore, 

both the flexural unloading of the footwall and continuing extension can lead to polyphase 

faulting, cutting the exhumed footwall into smaller blocks (Reston, 2007b). Distributed 

deformation, sometimes described as sub seismic faulting, may lead to the amount of extension 

being underestimated by as much as 50% (Marrett & Allmendinger, 1992). 

 

 
Figure 5.11: Examples of polyphase faulting exposed on land (no vertical exaggeration). (A) Simple polyphase faulting 

produces complex geometries. (B) Radial extension has thinned this section from 20 km to 1 km through 7 phases of 
extensional faulting. Note that earlier faults tend to define lithological contacts and so would not be easily recognizable 

as faults on seismic data (Reston, 2007b). 

 
 
 
 

The second explanation for the extensional discrepancy is a mechanism known as depth- 

dependent stretching (DDS; Reston, 2007b). A degree of crustal DDS is to be expected as it is 

unlikely that the crust would extend perfectly uniformly. However, the problem with invoking 

DDS to explain the extension discrepancy is the extreme amount of DDS required (Reston, 

2007b). Davis & Kusznir (2004) state that an extensional discrepancy may be resolved by the 

presence of a region farther toward the ocean with an extension discrepancy of opposite polarity 
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so that the equality of the horizontal integral of extension is maintained. This would require that 

somewhere oceanward the upper continental crust is strongly stretched and thinned by an 

amount greater than deeper material (Davis & Kusznir 2004). Gouiza et al. (2017) compared 

lower and upper crustal thinning against whole crustal thinning and showed that upper crustal 

thinning factors are higher for the continental shelf and the Flemish Cap (i.e., domains with the 

thickest crust), whereas lower crustal thinning factors are higher in the East and West Orphan 

basins (i.e., domains with the thinnest crust). This is consistent with the findings of Lau et al. 

(2015) and Watremez et al. (2015) who constrained the Orphan Basin crust using wide-angle 

seismic profiling. These observations are clear evidence of DDS within the crust. These 

observations are also indicative of ductile flow within the lower crust, mainly underneath 

domains of localized upper crustal brittle deformation, namely the East and West Orphan basins 

(Gouiza et al., 2017). In the Rockall Basin, during the Eocene, the observed rapid thermal 

subsidence is consistent with an episode of Late Cretaceous-Early Tertiary DDS (Hauser et al., 

1995; Tate et al., 1999). 

 

5.8 Continental Crustal Thickness 

 
The initial crustal thickness of the Newfoundland-Ireland conjugate margins was 

assumed to be 30 km (Welford et al., 2012; Gouiza et al., 2017). The average pre-rift crustal 

thickness, based on the Move© models generated in this study, for the West Orphan Basin, was 

12.3 km and was 8.5 km in the Rockall Basin. This discrepancy between the assumed and 

observed pre-rift crustal thickness is possibly the result of missing deformation that was not 

accounted for (i.e., polyphase faulting and DDS, as previously discussed). Over time, younger 

faults imprint over older faults, therefore erasing the rifting history that was preserved in them 

(Reston, 2007a). The reconstructions done in this study can only restore the faults that are visible 
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on the seismic data. As a result, older faults and sub-parallel faults, generated by large-scale 

folding, are not interpreted and therefore, cannot aid in the restoration process. 

Alternatively, the original assumption that the pre-rift continental crust was initially 30 

km thick across the Newfoundland-Ireland conjugate margins may be inaccurate. The 

unstretched crust beneath mainland Ireland is approximately 30 km thick (Lowe & Jacob 1989; 

Hauser et al., 2008). Similarly, the crust beneath the Porcupine Bank (O’Reilly et al., 2006) and 

the Rockall Bank (Vogt et al., 1998) is suggested to be 30 km thick. Since there is no evidence 

for significant crustal extension in these areas, Welford et al. (2012) regarded 30 km as the 

thickness of the unstretched crust for the Irish margin. On the Newfoundland margin, the areas 

of unstretched crust are variable (30 km beneath Flemish Cap (Funck et al., 2003); 36 km 

beneath the Grand Banks (Lau et al., 2006); 40 km for the onshore Avalon zone, 45 km for the 

Proterozoic Grenville province of Western Newfoundland (Hall et al., 1998; Welford et al., 

2012)). Welford et al. (2012) used the thickness of the crust under Flemish Cap to assume that 

the initial crustal thickness in the Orphan Basin was approximately 30 km. However, it is 

possible that the initial thickness of the continental crust was different than previously thought. 

  

5.9 Effects of Inherited Crustal Structures 

 
Another source of uncertainty in quantifying the characteristics of the pre-rift crust is 

inheritance. Manatschal et al. (2015) state that for hyperextended rift systems that developed 

over the Variscan lithosphere, like the Newfoundland-Ireland conjugate margins, inherited 

structures were important in controlling strain on a local scale and very early in the rift system. 

They also conclude that mantle composition and mantle processes occurring before and during 

rifting may control the rheology of the mantle, the mantle budget, the thermal structure and the 

localization of deformation during late stages of continental crust attenuation and lithospheric 
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breakup, while early stages are controlled by upper crustal inherited structures (Manatschal et al., 

2015).  The Mesozoic North Atlantic rift formed on remnants of the Palaeozoic Caledonian– 

Appalachian orogeny, as well as the Variscan orogeny, which resulted in the closure of the 

Iapetus Ocean (Dewey & Kidd, 1974). This closure led to continental collision, crustal and 

probably lithospheric thickening (imbrication of multiple terranes), crustal uplift, and erosion 

(Williams 1984; 1995; McKerrow et al., 2000). The closing of the Iapetus Ocean also stitched 

together the distinct basement terranes that make up the Newfoundland and Irish margins 

considered in this study (Haworth & Keen, 1979; Williams 1984; 1995). Migration of rifting 

suggests that variations in thickness and/or rheology, inherited from the pre-Mesozoic 

Caledonian–Appalachian orogeny, may have played a crucial role in the tectonic evolution of the 

Mesozoic North Atlantic basins (Gouiza et al., 2017) (i.e., the Rockall and West Orphan basins). 

 

5.10 Igneous Intrusions 

 
The Newfoundland margin is widely regarded as a nonvolcanic/magma poor rifted 

margin (Reston, 2009). Magmatic activity appears to have been minimal within the Orphan 

Basin, although some studies suggest the presence of Cretaceous igneous features, such as 

seamounts, along the outer edge of Orphan Knoll and in the West Orphan Basin (Grant & 

McAlpine, 1990; Enachescu et al., 2005; Whittaker et al., 2012; Pe-Piper et al., 2013). The 

Charlie Gibbs Volcanic Province (CGVP) is located to the north of the West Orphan Basin 

(location shown in Fig. 5.17). The CGVP likely formed during the Late Cretaceous, as seafloor 

spreading propagated northward into the region and hot asthenosphere experienced 

decompression melting as it came closer to the surface (Keen et al., 2014). Keen et al. (2014) 

suggest that, since there is no evidence of an anomalously hot mantle below the region, melting 

was focused within the near-vertical fault zone complex created by the Charlie Gibbs Fracture 
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Zone (CGFZ). Large strains near the western termination of the CGFZ may have further 

concentrated melt in that region. 

Seismic lines NL1 and NL2 lie to the south of the CGVP, therefore, minimal seamounts 

were interpreted in the West Orphan Basin. However, Alex Peace (personal communication, 

2018), interpreted multiple seamounts in the area. In this study, in the center of seismic line NL1, 

near the junction with NL2, a large potential seamount was interpreted based on the onlapping 

nature of the shallower horizons toward the seamount. This seamount was bounded to the SW by 

a singular fault (Fig. 5.12). The location of this interpreted seamount agrees with that of the 

Peace interpretation (Fig. 5.12), however that interpretation does not include the bounding fault. 

Toward the northeastern extent of seismic line NL1 (locations shown in Figs. 5.13 and 5.14), 

numerous fault bounded potential seamounts were interpreted in this study, compared to the un- 

faulted seamounts interpreted in the area by Peace. 

Keen et al. (2014) interpreted and mapped numerous seamounts within the CGVP (Fig. 

 

5.15). Their interpretation of the seamounts on the seismic data occasionally included faults 

bounding one side of the seamounts (Fig. 5.16). These fault-bounded seamounts interpreted by 

Keen et al. (2014) are very similar to the seamounts interpreted for this study. 

Interpretation of seismic data is highly subjective and while it is important to recognize 

alternative interpretations of the data, for this project the areas of interest in the NE of the West 

Orphan Basin continue to be interpreted as fault blocks or possibly fault-bounded seamounts. 

Additionally, the results of the reconstruction of the West Orphan Basin would only be mildly 

affected by altering the interpretations. 
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Figure 5.12: (A) Seismic lines NL1 and NL2 in the Orphan Basin (black lines). Red polygons indicate the location of 
interpreted seamounts by Alex Peace (personal communication, 2018). Yellow line indicates the zoomed in location of B. (B) 

Zoomed in view of seismic line NL1 depicting the interpreted seamount. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

Figure 5.13: (A) Seismic lines NL1 and NL2 in the Orphan Basin (black lines). Red polygons indicate the location of 

interpreted seamounts by Alex Peace (personal communication, 2018). Yellow line indicates the zoomed in location of B. (B) 
Zoomed in view of seismic line NL1. Red circle indicates the extent of the interpreted seamount. 
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Figure 5.14: (A) Seismic lines NL1 and NL2 in the Orphan Basin (black lines). Red polygons indicate the location of 
interpreted seamounts by Alex Peace (personal communication, 2018). Yellow line indicates the zoomed in location of B. (B) 

Zoomed in view of seismic line NL1. Red circle indicates the extent of the interpreted seamount. 
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Figure 5.15: Magnetic anomaly map of the Orphan Basin. The numbered white dots represent the apexes of the seamounts 
in the CGVP. The grey lines represent the seismic lines in the area. This figure is from Keen et al. (2014). 

 

 
 

Figure 5.16: Interpreted seismic line 4 from Keen et al. (2014). Zoomed in box shows seamount number 13 (location shown 
in Fig.5.15), of a fault-bounded seamount. 
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A number of episodes of igneous activity have been recorded in the Rockall Basin, 

primarily in the Early Cretaceous and the Paleogene (Shannon et al., 2006). The Barra Volcanic 

Ridge System (BVRS) has been interpreted as one of the main Early Cretaceous volcanic centers 

in the Irish North Atlantic (Shannon et al., 2006). Paleogene igneous activity is represented in 

the Rockall Basin by a series of volcanic cones along the eastern margin of the basin (Haughton 

et al., 2005) and a set of sills, dykes and lava flows in the central part of the basin (Shannon et 

al., 2006). 

 
Keen et al. (2014) suggest that the CGVP on the Newfoundland margin may correspond 

to an equivalent magnetic province in the Rockall Basin region, the BVRS. They go on to 

suggest that these conjugate features are similar in shape and almost coalesce at Chron 34 (Fig. 

5.17). As Srivastava et al. (1988) demonstrated, one of the Barra Volcanic Ridges in the 

southern Rockall Basin is collinear with the eastern end of the CGVP at Chron 34 and these 

spatial correlations of the two conjugate provinces suggest a common origin (Keen et al., 2014). 

Scrutton & Bentley (1988) suggested that the BVRS represents incipient seafloor spreading in 

the southern Rockall Basin, emplaced along faults bounding basement highs (Gernigon et al., 

2004). Similarly, Keen et al. (2014) suggested that the CGVP used older faults as conduits to 

focus magmatism, possibly along reactivated Appalachian/Caledonian trends. 

Keen et al. (2014) propose a history for the development of the Newfoundland-Ireland 

conjugate margins beginning in the Early Cretaceous. During the Early Cretaceous, the Rockall 

and West Orphan basins were actively rifting and represented a linked system (Ady & Whittaker, 

2012). The southern boundary of the CGVP and a branch of the BVRS may represent an 

accommodation zone within the West Orphan/Rockall Basin system that developed through 

reactivation of pre-existing faults (Keen et al., 2014). Rifting ended in Aptian time in the West 
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Orphan and Rockall basins. From Aptian to Santonian time there was a major reorganization of 

plates as seafloor spreading propagated northward from the Newfoundland Basin in the south to 

the CGVP in the north (Keen et al., 2014). By Santonian time, plate motions were 

accommodated by transform motion along the CGFZ (Keen et al., 2014). The fault zone along 

the trend of the southern boundary of the CGVP was no longer active as movements shifted to 

align with the plate motion direction along the CGFZ (Keen et al., 2014). 

Overall, the similar structure and location of both the CGVP and the BVRS are 

suggestive of a possible Mesozoic connection between the Rockall and West Orphan basins (Fig. 

5.17). The tectonic plate reconstruction performed by Skogseid et al. (2010), as well as the 

developmental history of the region provided by Keen et al. (2014), provide further evidence to 

support this possible connection. 

 
Figure 5.17: Location of the Charlie Gibbs Fracture Zone (CGFZ) across the Newfoundland-Ireland conjugate margin 
pair. (Left) the location of the Charlie Gibbs Volcanic Province (CGVP) and its relation to the CGFZ, the West Orphan 
Basin and the seismic lines of this study. (Right) the location of the CGFZ and its relation to the Barra Volcanic Ridge 

System (BVRS), the Rockall Basin and the seismic lines of this study. 
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5.11 Partial Serpentinization of the Mantle 

 
Serpentinization of the mantle occurs along hyper-extended continental margins when 

large amounts of syntectonic cooling during extension lead to the downward migration of the 

brittle/ductile transition zone in the crust and the propagation of faults into the shallow mantle 

lithosphere (O’Reilly et al., 1996). The lowered brittle/ductile transition, as well as the deeper 

faults, facilitate the seawater circulation necessary to serpentinize the shallow mantle (O’Reilly 

et al., 1996). The interaction of the water and the mantle must occur near the end of the syn-rift 

phase of development, when extensional fractures are open and provide permeability (O’Reilly 

et al., 1996). Rheological changes in the lithosphere as rifting progressed likely played a key 

role in the process of fracture growth (O’Reilly et al., 1996). 

O’Reilly et al. (1996) observed a shallow low-velocity layer within the mantle beneath 

the Rockall Basin. They presented a differential stretching model for the development of the 

Rockall Basin that explained the shallow mantle structure as a zone of partially serpentinized 

upper mantle peridotites. O’Reilly et al. (1996) infer that syntectonic heat loss led to the 

rheological coupling between the crust and sub-crustal lithosphere as the primary (pre- 

extensional) intracrustal brittle/ductile transition zone was destroyed. Finally, they conclude that 

this coupling led to vertical fracture propagation through the Moho into the shallow mantle, 

facilitating seawater circulation and hydration of the shallow mantle, thus serpentinizing the 

mantle. 

Welford et al. (2010) generated a 3-D density anomaly model of the Irish Atlantic 

continental margin from a regional inversion of free air gravity data. Along the northeast 

trending axis of the Rockall Basin, Welford et al. (2010) found that the Moho depth from both 

the seismic data and the gravity inversion shows a gradual deepening from 12 km down to 18 km 



                                         132  

in the northeast. The variation may correspond to different amounts of igneous intrusions, 

possibly related to the formation of oceanic crust (Scrutton 1986; Bentley & Scrutton 1988), 

exhumed serpentinized mantle (O’Reilly et al., 1996) or different basement/crustal terranes 

(Welford et al., 2010). 

In contrast, for the Orphan Basin, there is no evidence of a zone of partially serpentinized 

mantle beneath the thinned crust (Chian et al., 2001; Lau et al., 2015). The limited crustal scale 

seismic refraction data in the West Orphan Basin show significant thinning of the crust to 6-8 

km, but typically unaltered mantle velocities are modelled beneath the crust (Chian et al., 2001). 

The resolved serpentinized mantle beneath the Rockall Basin (O’Reilly et al., 1996; 2006; 

Reston et al., 2001) is thought to have required an initially strong lithosphere based on recent 

geodynamic models (Huismans & Beaumount 2011; Welford et al., 2012). The lack of evidence 

for serpentinized mantle beneath the Orphan Basin, based on more limited seismic refraction 

modelling (Chian et al., 2001), would require a weak lower crustal layer and rupture within the 

mantle lithosphere based on the same geodynamic models (Huismans & Beaumount 2011; 

Welford et al., 2012).  

The lack of serpentinized mantle beneath the Orphan Basin does not necessarily mean 

that its crust differs greatly from the crust on the Irish margin, but rather that the Irish crust failed 

more abruptly as the serpentinized mantle beneath it acted as a ductile detachment (Welford et 

al., 2012). Relatively weaker lower crust may exist on both margins, with the main difference 

between rifting styles of the two margins being due to the localization of rifting and the ability of 

the rifting to generate crustal-scale faults that could allow seawater to propagate into the 

uppermost mantle (Welford et al., 2012). The results of the study carried out by Welford et al. 

(2012) suggest a fundamental difference in the rheological properties of the lithosphere between 
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the Orphan Basin and the Rockall Basin. They infer that, although the rheological variations may 

be due to differences in the original crustal compositions of the margins, it is also possible that 

the rheological variations developed because of the manner in which rifting was focused on each 

margin. Ultimately, focused rifting on the Irish margin led to deeper fractures, highly thinned 

crust and serpentinization of the mantle between strong, rheologically more robust, blocks 

(Welford et al., 2012). On the Newfoundland margin, extension was accommodated over a 

broader area, therefore not allowing faults to penetrate as deep, with the weakest crustal layer 

controlling the formation of the massive Orphan Basin without any significant serpentinization 

of the uppermost mantle (Welford et al., 2012). 

 

 

5.12 Crustal Boudinage of the Newfoundland-Ireland Conjugate Margins 

 
If it is assumed that the West Orphan Basin evolved as a linked basin to the Rockall 

Basin, then it is possible that the East Orphan Basin evolved along with the Porcupine Basin. The 

juxtaposition and possible link between the East Orphan Basin and the Porcupine Basin have 

been previously investigated (Srivastava & Verhoef 1992; Knott et al., 1993; Louden et al., 2004, 

Enachescu, 2006). Between both pairs of possible conjugate margin basins lie continental highs. 

The Orphan Knoll, between the East and West Orphan basins, and the Porcupine Bank, between 

the Rockall and Porcupine basins. The juxtaposition of thick continental fragments and thinned 

crust may represent some kind of regional, crustal-scale, boudinage effect, present on both 

margins (Fig. 5.18). 

The Orphan Knoll lies at the eastern edge of the Orphan Basin and is presumed to be a 

continental fragment, beyond which lies the continent-ocean transition (Keen et al. 1987). The 

Deep Sea Drilling Project (DSDP) site 111 drilled the Orphan Knoll to a depth of 250 m below 
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the seabed. The well drilled through coarse sandstones and shales at the base, that were 

determined to be Jurassic with nearby source beds of late Paleozoic age, indicating that the 

Orphan Knoll is a continental fragment (Chian et al., 2001). 

The Porcupine Bank represents an extension of the Irish Mainland Shelf and bounds the 

Rockall Basin to the southeast, separating it from the Porcupine Basin (Hauser et al., 1995). 

The Porcupine Bank is a continental block that has a crustal thickness of approximately 30 km 

(O’Reilly et al., 2006; Welford et al., 2010). 

A rough plate reconstruction, based solely on closing the North Atlantic Ocean at the 

magnetic anomaly M0 time (Srivastava & Verhoef 1992; Skogseid 2010) shows the West 

Orphan Basin, the Orphan Knoll and the East Orphan Basin forming a multibasin rift system that 

is continuous with the Rockall Basin, the Porcupine Bank and the Porcupine Basin, respectively 

(Fig. 5.18). The Orphan Knoll feature could be considered to be a portion of Porcupine Bank, 

detached from it after most of the Orphan Basin had formed and after a rift jump during the 

North Atlantic opening (Enachesu et al., 2005). Therefore, it is possible that East Orphan Basin, 

the Orphan Knoll and the West Orphan Basin are conjugate equivalents to the Porcupine Basin, 

the Porcupine Bank and the Rockall Basin, respectively. 
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Figure 5.18: Plate reconstruction of the North Atlantic at the magnetic anomaly M0 time, showing the juxtaposition of thick 

continental blocks and thinned crust. Background indicates bathymetry. RB, Rockall Basin; PBa, Porcupine Bank; PB, 
Porcupine Basin; EOB, East Orphan Basin; OK, Orphan Knoll; WOB, West Orphan Basin. Image adapted from Srivastava & 

Verhoef (1992). 
 
 

 
 

5.13 Previously Published Plate Reconstructions 

 
Rigid plate paleoreconstructions of the North Atlantic Ocean to a time prior to 

lithospheric break-up and the formation of oceanic crust show that the East and West Orphan 

sub-basins were juxtaposed against the Porcupine and the Rockall basins, respectively 

(Srivastava & Verhoef 1992; Knott et al., 1993; Louden et al., 2004; Enachescu, 2006). 

Separation of the Irish continental margin from its conjugate pair, the northern Flemish 

Cap/Orphan Basin region of Newfoundland, Canada, occurred during the Mid-Late Cretaceous 
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(Tucholke et al.,1989; Hopper et al., 2006; Lundin & Doré, 2011; Lau et al., 2015) and 

comparable stratigraphic, structural, and crustal syn-rift evolution would be expected (Gouiza et 

al., 2017). Keen et al. (2014) suggest that in Early Cretaceous time, there was simultaneous 

rifting in the Labrador Sea and in the Rockall and the Orphan basins. This would have created a 

complex triple point, with movement between the North American, Rockall, and European 

plates (Bull & Masson, 1996). 

Skogseid et al. (2010) utilized a proprietary 4D modelling software package to perform 

kinematic plate reconstructions of the North Atlantic margins. This restoration focused on the 

role of the Orphan Basin, as well as the rotation of the Flemish cap away from the Bonavista 

platform, during the opening of the North Atlantic. The reconstruction generated at 180 Ma by 

Skogseid et al. (2010) suggests that the Rockall Basin and the East Orphan Basin are aligned and 

can be linked into the Jeanne d’Arc Basin (Fig. 5.19a). At 140 Ma, the eastward relative motion 

of the Flemish Cap and the East Orphan Basin with respect to the Eurasian side caused the 

Rockall Basin to abandon its linkage with the East Orphan Basin (Skogseid et al., 2010). At this 

stage, the West Orphan Basin was established from a westward rift axis jump and southward 

propagation, which cut across the East Orphan Basin and Jeanne d’Arc Basin (Fig. 5.19b; 

Skogseid et al., 2010). The Porcupine Basin appears to align with the East Orphan Basin at this 

time. At 120 Ma, the reconstruction performed by Skogseid et al. (2010) shows the final stage in 

the tectonic development of the Orphan Basin (Fig. 5.19c). The shape of the West Orphan Basin 

– Flemish Pass rift and the angle of rotation chosen imply only a moderate N-S shear motion 

approaching the southern tip of the rift (Skogseid et al., 2010). Skogseid et al. (2010) conclude 

that the Rockall Basin developed as the main Mesozoic NE Atlantic rift center and it is 

interpreted to have been directly linked into the two-stage opening of the East and West Orphan 

basins. 
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The results of the kinematic plate reconstruction carried out by Skogseid et al. (2010) 

conflict with the results of the reconstruction performed by the Matthew et al. (2016) and Müller 

et al. (2016) GPlates© model efforts. The results of the reconstruction performed by Matthew et 

al. (2016) and Müller et al. (2016) can be seen in Chapter 4, sections 4.3.1 – 4.3.6.  Based on the 

present-day location of the seismic lines, their model shows that the Rockall Basin was possibly 

never continuous with the Orphan Basin. However, if a possible connection was to be assumed 

from their reconstruction, only the West Orphan Basin would have been connected to the 

Rockall Basin. 



                                         138  

 
 
 

Figure 5.19: Time steps in the plate kinematic modelling linking the Mesozoic N and NE Atlantic rifting from Skogseid et al. (2010). (A) 180 Ma, 
early basin formation. (B) 140 Ma, where Rockall Basin has abandoned the linkage to the East Orphan Basin and the West Orphan Basin is 
established. (C) 120 Ma, showing the final reconstruction of the Orphan Basin development. The total magnitude of extension along rift 
zones is shown by yellow shading. RT: Rockall Trough (or Basin), PB: Porcupine Basin, WOB: West Orphan Basin, EOB: East Orphan 
Basin, NF-Ib: Newfoundland – Iberia, FC: Flemish Cap, GB: Grand Banks, CS: Celtic Sea, JD: Jeanne 

d’Arc Basin, FP:  Flemish Pass 
 
 
 
 

A recent paper published by Nirrengarten et al. (2018) focuses on the southern North 

Atlantic rifted margins. They investigated the partitioning and propagation of deformation in 

hyper-extended rift systems using kinematic modelling in GPlates©. They combined 3D gravity 

inversion results with local structural, stratigraphic and geochronological constraints on the rift 

deformation history. The restoration of the Newfoundland-Ireland conjugate margins was not the 
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primary focus of the paper. However, they generated a GPlates© model that restored the two 

basins and showed a possible evolutionary link where the Rockall Basin was initially conjugate 

to the East Orphan Basin and later the West Orphan Basin (Fig. 5.20). Nirrengarten et al. (2018) 

included continental micro-blocks that enabled the partitioning of the deformation between the 

different rift segments (i.e., the East Orphan Basin, Orphan Knoll, the West Orphan Basin, 

Flemish Cap, the Rockall Basin, the Rockall Bank, the Porcupine Basin and the Porcupine 

Bank). 

While the evolutionary history of the three basins was similar to that proposed by 

Skogseid et al. (2010), the reconstruction generated by Nirrengarten et al. (2018) involved 

different timing than the reconstruction performed by Skogseid et al. (2010). The continental-

block polygons created in the Nirrengarten et al. (2018) reconstruction are rigid and do not 

deform as extension occurs, creating inaccuracies within the model. Also, numerous rift events, 

specifically the extensional events related to the two main rift episodes in the Orphan Basin, the 

Late Jurassic and Early Cretaceous, were excluded from this model. Additionally, the rigid 

polygons do not appear in the reconstruction until after rifting is assumed to have ceased in the 

specific area of the microplate. Therefore, the appearance of the polygon in the model may not 

accurately represent the timing of the possible connection between the conjugate basins. 

The reconstruction generated by Nirrengarten et al. (2018) shows the possible connection 

of the Rockall Basin and the East Orphan Basin at approximately 120 Ma (Fig. 20b). At 

approximately 110 Ma, the Rockall Basin appears to be conjugate to the West Orphan Basin. 

Skogseid et al. (2010) predicted that the Rockall Basin was likely conjugate to the East Orphan 

Basin as early as 180 Ma and that the Rockall Basin became conjugate to the West Orphan Basin 

around 140 Ma. As previously mentioned, the inconsistencies in the timing of the appearance of 
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the polygons in the Nirrengarten et al. (2018) model are likely due to the fact that the polygons 

do not appear until after rifting has ceased and not all relevant rifting events have been 

accounted for. Therefore, the timing of events from Skogseid et al. (2010) is likely more 

accurate than those from the reconstruction performed by Nirrengarten et al. (2018). 

 
Figure 5.20: Plate tectonic reconstruction from Nirrengarten et al. (2018).  (A) 130 Ma, depicting the East Orphan 

Basin not conjugate to the Porcupine Basin. The West Orphan Basin and the Rockall Basin polygons have not appeared 

yet. (B) 120 Ma, the Rockall Basin polygon has appeared and is potentially conjugate to the East Orphan Basin. The 
West Orphan Basin polygon has not appeared. (C) 110 Ma, the West Orphan Basin polygon has appeared and is 
potentially continuous with the Rockall Basin. RH:  Rockall High; RB: Rockall Basin; PH: Porcupine High; PB: 
Porcupine Basin; WOB: West Orphan Basin; OK: Orphan Knoll; EOB: East Orphan Basin; FC:  Flemish Cap 
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5.13.1 Previously Published Plate Reconstructions Determined from Magmatic Events 

 
Using seismic and potential field data, Keen et al. (2014) mapped an offshore igneous 

province, termed the Charlie-Gibbs Volcanic Province (CGVP), showing the presence of a 

variety of volcanic features, including sills, lava flows, and volcanic highs occurring north of the 

West Orphan Basin, on the Newfoundland continental margin near the Charlie-Gibbs Fracture 

Zone (CGFZ; Fig. 5.21). The seamounts present in the CGVP are suggested to be Late 

Cretaceous in age (Keen et al., 2014). On the conjugate Irish margin, the Barra Volcanic Ridge 

System (BVRS), located in the southern Rockall Basin, has been estimated to be Early 

Cretaceous in age (Kimbell et al., 2010). The BVRS may represent an accommodation zone 

within the West Orphan/Rockall Basin system that developed through reactivation of pre-

existing faults, with volcanism beginning later in Santonian times (Keen et al., 2014). This 

volcanism occurs within an overall nonvolcanic margin setting and probably represents 

magmatism along an oblique strike-slip fault zone of considerable structural complexity in a 

region where Rockall Basin was once joined to West Orphan Basin until the Mid to Late 

Cretaceous (Keen et al., 2014; Fig. 5.21). 
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Figure 5.21: Plate tectonic reconstruction at chron 34 from Srivastava et al. (1988). The CGVP north of the Orphan 
Basin and the volcanic features that appear conjugate in Rockall Basin are shown and highlighted with yellow dotted 

lines. The Barra Volcanic Ridges are shown, one of which aligns with the Southern Branch of the CGVP, along the trend 
indicated by the red solid line. The dotted red line is the location of the truncation of the deep crustal reflectors in the 

Orphan Basin. This trend is oblique to the trend of the CGFZ, shown as a solid black line. Bathymetric contours are in 
metres. NFLD: Newfoundland, IR: Ireland, JAB: Jeanne d’Arc basin, OK: Orphan Knoll. Image from Keen et al. (2014), 

adapted from Welford et al. (2012) and Kimbell et al. (2 010). 
 

 
Lau et al. (2015) compare crustal sections for the Orphan and Rockall basins, constrained 

by seismic velocity and gravity models (Morewood et al., 2005; O’Reilly et al., 2006). Each of 

the basins is asymmetrical and the two systems across the Atlantic share the same juxtaposition 

of a narrower eastern zone versus a wider western zone of hyperextended crust (<10 km). This 

further supports a connection between the Rockall Basin and West Orphan Basin and between 

the Porcupine Basin and East Orphan Basin during rifting (Lau et al., 2015). The Newfoundland 

margin developed in response to numerous rift episodes in a variety of directions, at least one of 

which likely affected the Irish margin (Lau et al., 2015). The Irish margin also developed as a 

result of numerous episodes of rifting in a variety of directions, at least one of which likely 

affected the Newfoundland margin (Lau et al., 2015). One additional rift episode affected the 
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Irish margin, possibly related to the separation of Greenland from Europe, however this 

extensional event is beyond the scope of this M.Sc. thesis. 

 

5.14 Comparison between the East Orphan Basin and the Rockall Basin 

 
As previously mentioned, Skogseid et al. (2010) used a 4D modelling software package, 

proprietary to Equinor©, to perform kinematic plate reconstructions of the North Atlantic 

margins. This restoration focused on the role that the Orphan Basin played in the opening of the 

North Atlantic. The reconstruction generated at 180 Ma suggests that the Rockall Basin and the 

East Orphan Basin are aligned and can be linked into the Jeanne d’Arc Basin. At 140 Ma, the 

relative eastward motion of the Flemish Cap and the East Orphan Basin with respect to the 

Eurasian side caused the Rockall Basin to abandon the linkage with the East Orphan Basin in 

favour of the West Orphan Basin via a westward rift axis jump and southward propagation of 

extension (Skogseid et al., 2010). Skogseid et al. (2010) conclude that the Rockall Basin 

developed as the main Mesozoic NE Atlantic rift center, directly linked into the two-stage 

opening of the East and West Orphan basins. 

If the plate reconstruction model generated by Skogseid et al. (2010) is correct, then 

similarities between the East Orphan Basin and the Rockall Basin should be present. To 

accurately compare the two basins, a reconstruction of the East Orphan Basin was carried out in 

Move© following the same methodology as the reconstructions performed in the Rockall Basin 

and in the West Orphan Basin. Seismic interpretations for the East Orphan Basin were 

generously provided by Larry Sandoval (personal communication, 2018). The same 

reconstruction workflow was followed for seismic line NL3 in the East Orphan Basin (location 

shown in Fig. 5.22), within Move©. The reconstruction included: converting the seismic horizons 



144  

and associated faults from the time domain to the depth domain, decompacting the Cenozoic 

sedimentary unit and accounting for thermal subsidence, decompacting the Upper Cretaceous 

unit and accounting for thermal subsidence, decompacting the Lower Cretaceous unit, 

decompacting, restoring faults and unfolding the Jurassic unit and decompacting, restoring 

faults and unfolding the Upper Crust. Selected results of these reconstructions, along with the 

reconstruction from the West Orphan Basin and the Rockall Basin are shown in 3D alongside 

the reconstructions generated by Skogseid et al. (2010; Figs. 5.23a, 5.24a and 5.25a). 

The 2D reconstruction of seismic line NL3, in the East Orphan Basin, resulted in the 

calculation of an average pre-rift crustal thickness of ~8.7 km, compared to the ~12.3 km of pre- 

rift crust observed in the West Orphan Basin. The thickness of the pre-rift crust in the East 

Orphan Basin is very similar to the average thickness of pre-rift crust in the Rockall Basin, 8.5 

km (Table 5.1). The similarities observed for the pre-rift crustal thicknesses between the East 

Orphan Basin and the Rockall Basin can be explained if the two basins were connected during 

this time, ~180 Ma. This finding is in agreement with the model presented by Skogseid et al. 

(2010) and the comparison can be seen in Fig. 5.23. 

The 2D reconstruction of seismic line NL3, in the East Orphan Basin, resulted in the 

calculation of an average syn-rift sedimentary thickness of ~3.8 km. This value is significantly 

higher than the syn-rift thicknesses recorded in the West Orphan Basin and the Rockall Basin, 

with both having an average thickness of ~2.4 km (Table 5.1). Therefore, it is likely that during 

the North Atlantic rifting events that occurred at ~160-140 Ma (Shannon, 1991), the Rockall 

Basin abandoned its linkage to the East Orphan Basin and became conjugate to the West Orphan 

Basin. This change in the Rockall Basin’s linkage from the East to the West Orphan Basin could 
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potentially explain the discrepancy in syn-rift sedimentary rock thickness observed between the 

Rockall Basin and the East Orphan Basin and the similarities observed between the West Orphan 

Basin and the Rockall Basin. The exact timing of the linkage switch of the Rockall Basin, from 

the East to the West Orphan Basin, is difficult to quantify due to the lack of Jurassic sedimentary 

rocks interpreted in the Rockall Basin. If any Jurassic sedimentary rocks were interpreted in the 

Rockall Basin, the thicknesses could be compared across the margins and a more complete 

timeline could be generated. However, no Jurassic sedimentary rocks were interpreted in the 

Rockall Basin due to the quality of the deep seismic data. Therefore, it is difficult to state 

whether the linkage switch of the Rockall Basin from the East to the West Orphan Basin 

happened around 160 Ma, during the Late Jurassic, as the West Orphan Basin began to open 

(Enachescu et al., 2004) or around 140 Ma, after Jurassic rifting had ceased across the margins 

(Mackenzie et al., 2002; Lau et al., 2015). Since the age constraints for this study are not 

accurate enough to specify a time period of the linkage switch, the time period used by the 

model generated by Skogseid et al. (2010) was chosen, 140 Ma (Fig. 5.24). 

Skogseid et al. (2010) state that the reason that the Rockall Basin abandoned its linkage 

with the East Orphan Basin was due to the eastward relative motion of the Flemish Cap and the 

East Orphan Basin with respect to the Irish margin. Therefore, it is likely that, as the East Orphan 

Basin rotated further east following the motion of the Flemish Cap, the Rockall Basin remained 

in place, due to the presence of a weaker, more accessible rift zone. As rifting propagated 

westward from the East Orphan Basin during the Late Jurassic, the West Orphan Basin began to 

open (Enachescu et al., 2004). This potentially put the Rockall Basin in a closer proximity to a 

weaker rifting zone, the West Orphan Basin, therefore causing the linkage switch. 
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At 120 Ma, the Rockall Basin and the West Orphan Basin likely remained connected 

based on the similarities in syn-rift thicknesses observed in this study, until the North Atlantic 

began to open around 100 Ma (Shannon 1991; Doré et al., 1997). This finding is in agreement 

with the model presented by Skogseid et al. (2010) and the comparison can be seen in Fig. 5.25. 

Along seismic line NL3 in the East Orphan Basin, an average of ~3.8 km of post-rift 

sedimentary rock is interpreted. This is similar to the thickness of the post-rift sedimentary rock 

observed in the West Orphan Basin, ~3.7 km (Table 5.1). It is expected that the East and West 

Orphan basins experienced similar amounts of post-rift sedimentary rock deposition because the 

two sub-basins were connected. Following rifting, the East and West sub-basins evolved in a 

relatively similar manner (Enachescu et al., 2004). The average post-rift thickness in the 

Rockall Basin is ~3.4 km. This value is similar to that observed across the Orphan Basin as a 

whole, although post-rift thicknesses are expected to be slightly different as the basins evolved 

independently following the opening of the North Atlantic (Shannon 1991; Naylor & Shannon, 

2005). 
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Figure 5.22: Location of the Orphan Basin seismic lines. Seismic line NL3 is shown as the orange line, it is a compilation of 
two seismic lines that have been joined together. Seismic line NL1 is shown as the yellow line and seismic line NL2 is shown 

as the red line. 
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Figure 5.23: (A) 3D reconstruction of the East and West Orphan basins and the Rockall Basin at 180 Ma. Zoomed in view shows seismic line NL3 in the East Orphan Basin 
conjugate to seismic line IR1 in the Rockall Basin. Black lines represent primary faults. The yellow represents the basement/upper crust. The orange represents the lower crust, 

bounded by the mid -crustal boundary. The purple line represents the Moho proxy from Welford et al. (2012). (B) 2D reconstruction from Skogseid et al. (2010), with the 
locations of the main seismic lines shown. IR1 is shown as the red line, IR2 is shown as the yellow line, NL3 is shown as the white line, NL2 is shown as the orange line 

and NL1 is shown as the blue line. Note the locations of these lines are an approximation, as the Skogseid et al. (2010) model is owned by Equinor and not available 
for academic use. EOB: East Orphan Basin; FC: Flemish Cap; Nfl-Ib: Newfoundland-Iberia rift zone; RT: Rockall Trough; PB: Porcupine Basin.
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Figure 5.24: (A) 3D reconstruction of the East and West Orphan basins and the Rockall Basin at 140 Ma. Zoomed in view shows seismic line NL1 in the West Orphan Basin 

is now conjugate to seismic line IR1 in the Rockall Basin. Black lines represent primary faults. The dark blue represents the Jurassic unit. The yellow represents the 
basement/upper crust. The orange represents the lower crust, bounded by the mid-crustal boundary. The purple line represents the Moho proxy from Welford et al. (2012). 

(B) 2D reconstruction from Skogseid et al. (2010), with the locations of the main seismic lines shown. IR1 is shown as the red line, IR2 is shown as the yellow line, NL3 is 

shown as the white line, NL2 is shown as the orange line and NL1 is shown as the blue line. Note the locations of these lines are an approximation, as the Skogseid et al. 
(2010) model is owned by Equinor and not available for academic use. GB: Grand Banks; CS: Celtic Sea; EOB: East Orphan Basin; FC: Flemish Cap; FP: Flemish Pass; JD: 

Jeanne d’Arc Basin; Nfl-Ib: Newfoundland-Iberia rift zone; RT: Rockall Trough; PB: Porcupine Basin; WOB: West Orphan Basin.



150  

 
 

 

 

 
 

 

Figure 5.25: (A) 3D reconstruction of the East and West Orphan basins and the Rockall Basin at 120 Ma. Zoomed in view shows seismic line NL1 in the West Orphan 
Basin conjugate to seismic line IR1 in the Rockall Basin. Black lines represent primary faults and red lines represent secondary faults. The green represents the Lower 
Cretaceous unit. The dark blue represents the Jurassic unit. The yellow represents the basement/crust. The purple line represents the Moho proxy from Welford et al. 

(2012). (B) 2D reconstruction from Skogseid et al. (2010), with the locations of the main seismic lines shown. IR1 is shown as the red line, IR2 is shown as the yellow 
line, NL3 is shown as the white line, NL2 is shown as the orange line and NL1 is shown as the blue line. Note the locations of these lines are an approximation, as the 

Skogseid et al. (2010) model is owned by Equinor and not available for academic use. GB: Grand Banks; CS: Celtic Sea; EOB: East Orphan Basin; FC: Flemish Cap; FP: 
Flemish Pass; JD: Jeanne d’Arc Basin; MF: Morray Firth Basin; Nfl-Ib: Newfoundland-Iberia rift zone; NS: North Sea Basin; RT: Rockall Trough; PB: Porcupine Basin; 

WOB: West Orphan Basin.
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 West Orphan Basin East Orphan Basin Rockall Basin 

Average thickness of 
pre-rift crust 

12.3 km 8.6 km 8.5 km 

Average thickness of 
syn-rift sedimentary 
rock 

2.4 km 3.8 km 2.4 km 

Average thickness of 
post-rift sedimentary 
rock 

3.7 km 3.8 km 3.4 km 

 

Table 5.1: Average thicknesses of the pre-rift crust, the syn-rift sedimentary rock and the post-rift sedimentary rock in the 

West and East Orphan basins and the Rockall Basin. Values measured from 2D reconstructions generated in Move ©. 
 
 
 
 

Overall, the results of the 2D and 3D reconstructions across the Newfoundland-Ireland 

conjugate margins generated for this M.Sc. project are in good agreement with the reconstruction 

model presented by Skogseid et al. (2010), as well as the model generated by Nirrengarten et al. 

(2018). It is possible that the Rockall Basin was originally conjugate to the East Orphan Basin, 

explaining the similarities observed in the average thickness of the pre-rift crust. However, the 

East Orphan Basin began rotating further to the east, while the Rockall Basin remained relatively 

in place. During this time, the West Orphan Basin began to form and offered a weaker, more 

accessible rifting zone in closer proximity to the Rockall Basin and a linkage switch was made. 

The Rockall Basin potentially remained conjugate to the West Orphan Basin during rifting, 

explaining the similarities in the syn-rift thicknesses, until the opening of the North Atlantic. 

However, it is important to note that this is only one possible explanation for the reconstruction 

of the Newfoundland-Ireland conjugate margins. 
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Chapter 6: Conclusion and Future Work 
 

6.1 Conclusion 

 
Three scenarios are envisaged to explain the evolutionary history of the Newfoundland- 

Ireland conjugate margins with respect to the Rockall Basin and the Orphan Basin: 1) the 

Rockall Basin was never conjugate to, or continuous with, the West Orphan Basin; 2) the 

Rockall Basin was always conjugate to, and continuous with, the West Orphan Basin; 3) the 

Rockall Basin was originally conjugate to, and continuous with, the East Orphan Basin, but 

became conjugate to, and continuous with, the West Orphan Basin. 

Based on the results from this thesis, the evidence to support the first scenario is minimal 

given similarities in sedimentary rock and crustal thicknesses. Thus, the remaining uncertainty 

lies in the interplay between the Rockall Basin and both the East and West Orphan basins through 

time. 

While the nature of faulting was difficult to characterize across the West Orphan Basin 

and the Rockall Basin, minimal similarities were observed. This was likely due to the orientation 

of the seismic lines and the lack of seismic coverage within the Rockall Basin. Seismic lines 

NL1 and IR2 both exhibit tilted fault blocks, to a varying degree. However, no seamounts, 

basement highs, or grabens are observed on the Irish margin. These structures are likely present 

in the Rockall Basin but have not been captured by the seismic reflection data due to the 

interference from shallower widespread sills. Therefore, while there are a few similarities in 

faulting styles observed across the two margins, the nature of the faulting cannot be used to 

definitively tie the Rockall Basin to the West Orphan Basin given the currently available data. 

An additional asymmetry across the margins is the fact that the Rockall Basin is known 

to be underlain by serpentinized mantle whereas the Orphan Basin is not (O’Rielly et al., 1996; 
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Chian et al., 2001; Lau et al., 2015). The lack of serpentinized mantle beneath the Orphan Basin 

does not necessarily mean that its crust differed greatly from the crust on the Irish margin, but 

rather that the Irish crust failed more abruptly as the serpentinized mantle beneath it acted as a 

ductile detachment (Welford et al., 2012). 

The GPlates© reconstruction generated by Matthews et al. (2016) and Müller et al. 

(2016) shows the possibility that the West Orphan Basin and the Rockall Basin were never 

conjugate, continuous basins. Their reconstruction places the Rockall Basin further to the north 

than the West Orphan Basin. However, the GPlates© model generated by Matthews et al. (2016) 

and Müller et al. (2016) does not account for any internal deformation of the plates. It is 

possible that by accounting for this deformation, the Rockall and West Orphan basins would 

align. 

The evidence suggesting that the Rockall Basin and the West Orphan Basin are 

conjugate, continuous basins includes the simple closing of the North Atlantic Ocean and fitting 

together of the basins (Srivastava & Verhoef 1992; Knott et al., 1993; Louden et al., 2004; 

Enachescu, 2006; Welford et al., 2012). Closing the North Atlantic Ocean using seafloor 

magnetic anomalies results in the West Orphan Basin lying adjacent to the Rockall Basin, and 

the East Orphan Basin lying adjacent to the Porcupine Basin (Srivastava & Verhoef, 1992; Knott 

et al, 1993; Louden et al., 2004; Enachescu, 2006; Welford et al., 2012). Between both pairs of 

possible conjugate basins lie a continental high, the Orphan Knoll, between the East and West 

Orphan basins and the Porcupine Bank, between the Rockall and Porcupine basins. This along-

margin regional boudinage effect of the juxtaposition of thinner basinal crust against thicker 

crust in a continental high to thinner basinal crust again, is similar on both margins. Therefore, it 

is possible that East Orphan Basin, the Orphan Knoll and the West Orphan Basin are conjugate 

to, and continuous with, the Porcupine Basin, the Porcupine Bank and the Rockall Basin, 
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respectively. 

It has also been determined that to the north of the West Orphan Basin lies the Charlie 

Gibbs Volcanic Province (CGVP), located along the western extent of the Charlie Gibbs 

Fracture Zone (CGFZ) in the North Atlantic (Keen et al., 2014). Within the Rockall Basin lies 

the Barra Volcanic Ridge System (BVRS), the volcanic province lies within proximity to the 

eastern extent of the CGFZ (Shannon et al., 2006). Overall, the similar structure and location to 

the CGFZ of both the CGVP and the BVRS provide evidence of a possible Mesozoic connection 

between the Rockall and West Orphan basins. 

The evidence to support scenarios two and three was generated from the 2D and 3D 

reconstructions in Move©. The primary evidence comes from the calculations of the thicknesses 

of the post-rift and syn-rift sedimentary packages and the pre-rift crust across the East and West 

Orphan basins and the Rockall Basin. The thickness of the post-rift sedimentary rock is similar in 

the East and West Orphan Basins, ~3.7 – 3.8 km, as expected. Within the Rockall Basin the 

thickness of the post-rift sedimentary rock is slightly less, ~3.4 km. However this variance would 

be expected in both the second and third scenarios because the basins evolved independently 

following the opening of the North Atlantic Ocean. The thicknesses of the syn-rift sedimentary 

package in the West Orphan Basin and the Rockall Basin are both ~2.4 km, compared to a 

significantly thicker syn-rift package in the East Orphan Basin of ~3.8 km. The similar syn-rift 

thicknesses imply that the West Orphan Basin and the Rockall Basin were likely connected 

during rifting. This observation agrees with both scenarios two and three. However, the evidence 

for scenario three becomes stronger when analyzing the thickness of the pre-rift crust. In the East 

Orphan Basin, an average crustal thickness of ~8.6 km for the pre-rift crust was calculated. In the 
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Rockall Basin, an average crustal thickness of ~8.5 km for the pre-rift crust was calculated. 

These values are strikingly similar compared to the ~12.3 km of pre-rift crust observed in the 

West Orphan Basin. Therefore it is possible that the East Orphan Basin was connected to the 

Rockall Basin as rifting began. 

Overall, the most plausible scenario, from evidence generated in this thesis, is that the 

Rockall Basin was originally conjugate to, and continuous with, the East Orphan Basin before 

rifting began, explaining the similarities observed in the average thickness of the pre-rift crust. 

However, the East Orphan Basin began rotating further to the east due to the rotation of Flemish 

Cap, while the Rockall Basin remained relatively in place (Skogseid et al., 2010). During this 

time, the West Orphan Basin began to form and offered a more accessible and weaker rifting 

zone in closer proximity to the Rockall Basin such that a linkage switch was made (Skogseid et 

al., 2010). The Rockall Basin potentially remained conjugate to, and continuous with, the West 

Orphan Basin during the remaining rifting episodes, explaining the similarities observed in the 

syn-rift thicknesses. This conclusion is in agreement with the kinematic plate reconstruction 

presented by Skogseid et al. (2010), as well as the model generated by Nirrengarten et al. 

(2018). 

The overall goal of this M.Sc. project was to create a Newfoundland-Ireland conjugate 

margin basin model from a single seismic megatransect that could be restored to a pre-rift state. 

This thesis successfully created the aforementioned basin model and restored multiple 

megatransects to a pre-rift state. This thesis also demonstrated that there were complications 

with the restoration between the West Orphan Basin and the Rockall Basin. These complications 

were successfully mitigated through the additional analysis and comparison between the East 

Orphan Basin and the Rockall Basin. Finally, this thesis successfully presented a scenario for 

the closing of the North Atlantic Ocean and the formation of continuous Mesozoic basins 
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between the East and West Orphan Basins and the Rockall Basin.   

6.2 Future Work 

 
Future work across the Newfoundland-Ireland conjugate margins should include the 

generation of a plate tectonic reconstruction model that accurately depicts the movement of the 

West Orphan Basin, Orphan Knoll, East Orphan Basin, Rockall Basin, Porcupine Bank and 

Porcupine Basin individually. This will allow for a more accurate reconstruction of the 

Newfoundland-Ireland conjugate margins and may provide additional insights into questions 

that were beyond the scope of this thesis, for example where the Orphan Knoll came from. 

Additionally, new seismic refraction data acquisition in both the Orphan Basin and the Rockall 

Basin would greatly improve the confidence in the seismic interpretations in the study area. The 

ability to see beneath the igneous intrusions within the Rockall Basin would likely greatly 

impact the seismic interpretation and therefore the reconstruction of the basin. Although it is not 

economically feasible for purely scientific purposes, drilling wells into the deepest extents of 

both the Rockall and Orphan basins would allow for more well ties to be made. This would 

result in more confidence in the seismic interpretations and therefore more confidence in the 

reconstruction as a whole. 
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Appendix A  
 
 

Rock 

Properties 

table 

Porosity 

Depth 

Coefficient 

(Km-1) 

Compaction 

Curve 

K 

(Hz) 

Poisson 

Ratio 

Water 

Column 
1.0 0.55 

Sclater- 

Christie 
0.5 0.25 

Cenozoic 0.37 0.55 
Sclater- 

Christie 
0.5 0.25 

Upper 

Cretaceous 
0.2 0.55 

Sclater- 

Christie 
0.5 0.25 

Lower 

Cretaceous 
0.37 0.55 

Sclater- 

Christie 
0.5 0.25 

Jurassic 0.37 0.55 
Sclater- 

Christie 
0.5 0.25 

Basement 0.1 0.55 
Sclater- 

Christie 
0.5 0.25 

Table 1: Rock properties and stratigraphy of the Rockall Basin. Parameters used in the reconstruction process in Move©. 

 

 

 

Rock 

Properties 

table 

Porosity 

Depth 

Coefficient 

(Km-1) 

Compaction 

Curve 

K 

(Hz) 

Poisson 

Ratio 

Water 

Column 
1.0 0.55 

Sclater- 

Christie 
0.5 0.25 

Cenozoic 0.37 0.55 
Sclater- 

Christie 
0.5 0.25 

Upper 

Cretaceous 
0.3 0.55 

Sclater- 

Christie 
0.5 0.25 

Lower 

Cretaceous 
0.37 0.55 

Sclater- 

Christie 
0.5 0.25 

Jurassic 0.30 0.55 
Sclater- 

Christie 
0.5 0.25 

Basement 0.1 0.55 
Sclater- 

Christie 
0.5 0.25 

Table 2: Rock properties and stratigraphy of the Orphan Basin. Parameters used in the reconstruction process in Move©. 
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Other Parameters Used in 2D Thermal 
Subsidence for both the Rockall and 

the Orphan Basin 

 

Initial Crustal Thickness 30 km 

Initial Lithosphere Thickness 125 km 

Uniform Beta Value 2.0 

Mantle Density 3340 kg/m3
 

Table 3: Other parameters used in the 2D Thermal Subsidence calculations in Move© for both the Rockall Basin and the 
Orphan Basin 


