-

P
brought to you by .i CORE

View metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

VOLUME 12 WEATHER, CLIMATE, AND SOCIETY JANUARY 2020

Valuing Seasonal Climate Forecasts in the Northern
Australia Beef Industry?

D. H. COBON,? R. DARBYSHIRE, J. CREAN,® S. KODUR,* M. SIMPSON,®
AND C. JARVIS?

? Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba,
Queensland, Australia
® Climate Unit, Department of Primary Industries, Queanbeyan, New South Wales, Australia
€ Climate Unit, Department of Primary Industries, Orange, New South Wales, Australia

(Manuscript received 29 January 2019, in final form 29 August 2019)

ABSTRACT

Seasonal climate forecasts (SCFs) provide opportunities for pastoralists to align production decisions to
climatic conditions, as SCFs offer economic value by increasing certainty about future climatic states at
decision-making time. Insufficient evidence about the economic value of SCFs was identified as a major factor
limiting adoption of SCFs in Australia and abroad. This study examines the value of SCFs to beef production
system management in northern Australia by adopting a theoretical probabilistic climate forecast system.
Stocking rate decisions in October, before the onset of the wet season, were identified by industry as a key
climate sensitive decision. The analysis considered SCF value across economic drivers (steer price in October)
and environmental drivers (October pasture availability). A range in forecast value was found ($0-$14 per
head) dependent on pasture availability, beef price, and SCF skill. Skillful forecasts of future climate con-
ditions offered little value with medium or high pasture availability, as in these circumstances pastures were
rarely overutilized. In contrast, low pasture availability provided conditions for alternative optimal stocking
rates and for SCFs to be valuable. Optimal stocking rates under low pasture availability varied the most with
climate state (i.e., wet or dry), indicating that producers have more to gain from a skillful SCF at these times.
Although the level of pasture availability in October was the major determinant of stocking rate decisions,
beef price settings were also found to be important. This analysis provides insights into the potential value of
SCFs to extensive beef enterprises and can be used by pastoralists to evaluate the cost benefit of using a SCF in
annual management.

1. Introduction 2006), and low stocking rates. These enterprises are
based on native pasture systems where producers aim
to match the feed requirements of the herd to the
availability of pasture to optimize beef production
(O’Reagain et al. 2014). Management of these enter-
prises in many pastoral regions is occurring against a
background of increasing variability in annual precipi-
tation and pasture growth (Cobon et al. 2019).

The production system is seasonal with producers
relying predominately on summer rainfall (November—

The northern Australian beef industry contributes
substantially to total Australian production ($12 billion;
ABS 2018) with Queensland accounting for 48 % of beef
and veal production in 2017-18 (MLA 2018). These
extensive beef enterprises utilize the rangelands across
Queensland, Northern Territory, and Western Australia
featuring large paddock sizes, up to 16000ha (Oxley
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April) to drive productivity through the dry season
(May-November). Matching stocking rates through
variable wet and dry seasons is an ongoing challenge
with supplementary feeding of protein and carbohy-
drate being impractical due to the vast size of properties
and cattle herds.

Stocking rate decisions have a major impact on land
resource condition, pasture yield and composition, soil
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loss, pasture burning opportunities, and growth of woody
weeds (Johnston et al. 2000), and hence enterprise prof-
itability (McKeon et al. 2000; Ash et al. 2000; Stafford
Smith et al. 2000). Seasonal climate forecasts (SCFs)
may help to inform adjustments of stocking rates to
match expected seasonal outcomes through minimizing
losses in poor years and maximizing profits in good years
(Cobon et al. 2017; Crean et al. 2015; Hayman et al.
2007; Mclntosh et al. 2005).

In reviewing the value of SCFs in Australian agricul-
ture Parton et al. (2019) found a wide range of values but
the majority were positive. Since the early 1980s, when
the role of SCFs in agriculture was first recognized,
Parton et al. (2019) reviewed a total of 86 studies (8 from
the beef industry that realized a mean farm-level value
of $5.10ha ' yr ') and found that 1) value was associ-
ated with the type of forecast (operational, hypothetical,
experimental), method of estimating value, farm versus
field scale, level of forecast skill, and approaches taken
in defining “with” and “‘without” forecast scenarios;
2) most of the studies have been on wheat production
(53%) and the level of nitrogen fertilizer to apply,
and that other industries are worthy of further study
incorporating a wider variety of farm decisions; 3) it is
important to develop ways to include risk in analysis of
the value of SCF; and 4) descriptive studies with pro-
ducers should provide more confidence about the ac-
tual, rather than potential, value of SCFs and highlight
some of the issues that are limiting their application in
Australian agriculture.

Previous research into the potential use of SCFs in
northern beef systems has largely focused on stocking
rate decisions (Ash et al. 2000; McKeon et al. 2000;
O’Reagain et al. 2011; Stafford Smith et al. 2000). Other
research attention has been directed to understanding
the management decisions that may be sensitive to SCFs
(Buxton and Smith 1996), how forecasts are related to
production variables such as live weight gain (McKeon
et al. 2000), and the attributes of the forecasts that are
required for decision-making, such as forecast type and
timing (Ash et al. 2000; Keogh et al. 2006).

Quantifying the economic value of the use of SCFs in
stocking rate decisions provides useful information to
drive management change. Studies investigating value
utilize many different methodological strategies. These
include various forecast types (e.g., theoretical, opera-
tional), forecast characteristics (e.g., lead time, length),
and forecast variables (e.g., rainfall, growth days). All
these factors introduce considerable variability between
reported forecast values.

For example, McIntosh et al. (2005) investigated cash
flow implications of using forecast information for a
northern beef production system in Dalrymple shire in
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Queensland and found that forecast use increased an-
nual cash flow from the “without forecast” strategy by
$12,785-$29,608. Using a different approach, O’Reagain
et al. (2011) examined five strategies to adjust stocking
rates over a 12-yr field trial. One strategy used the
Southern Oscillation index (SOI) phase forecast to vary
stocking rates in November. The greatest annual accu-
mulated gross margin (AGM) found was $28,490 per
100 ha, which was for a strategy that did not use SOI
forecast information but adjusted stocking rates in
May based on current available pasture. The strategy
that used the SOI forecast recorded a lower AGM
[$26,595 (100ha) 'yr~!] than the strategies that did
not use a forecast to inform decisions. Using another
approach, Stafford Smith et al. (2000) used simulation
modeling to consider the impact of using various fore-
casts on annual cash flow of a cattle station in northeast
Queensland. Their primary finding was that production
benefits of a forecast did not readily translate to eco-
nomic benefit at the whole of enterprise scale.

In this study forecast value was explored over a range
of both environmental and market conditions. This
provides a wider picture of potential value depending on
prevailing conditions. The method uses a theoretical
forecast framework. The main benefit of introducing a
hypothetical forecast rather than relying on operational
forecasts is that key aspects of forecast quality, like skill,
can be systematically valued. The results of the analysis
are then more readily applicable to decisions around
the value of using SCF in annual decision making based
on known forecast skill. The analyses were conducted
using state-contingent theory applied through discrete
stochastic programming (Crean et al. 2013; Crean et al.
2015). The approach explicitly represents activities and
returns in each climate state, captures the trade-offs
between climate states, and reflects the probabilistic
outputs of operational forecast systems which convey
information about the likelihood of each climate state.
The optimal with and without forecast decisions were
estimated using the same optimization process removing
potential bias in the results.

To conduct this analysis a case study was designed for an
extensive beef production enterprise in northern Australia.

2. Methods
a. Production system and key decision point

Consultation with industry was undertaken following
the approach of Cashen and Darbyshire (2017) to cap-
ture important features of the northern beef production
system and identify key decision points. A small group
of industry experts and practitioners were invited to
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participate based on industry reputation and experience.
The group defined the production system that best re-
flected local conditions in the area and described key
decision points. Subsequently, each of the decision
points within the system were explored in terms of
sensitivity to various decision drivers including seasonal
climate forecasts. A single key decision point was then
selected for analyses.

The system described by the practitioners focused on a
self-replacing Bos indicus herd based in Charters Towers,
Queensland (20°05'S, 146°16'E) with herd and site char-
acteristics shown in Table 1. Stocking rates were set be-
tween 8 and 20 steers per 100 ha, which represents typical
limits applied in this production system but does not fully
represent the limits possible in extreme wet and dry years.

The hypothetical production system described in-
cluded calving (birthing of calves) from October to
January with two rounds of mustering (rounding up the
cattle into one central location): round 1 in April-July
and round 2 in August-October (Fig. 1). Destocking
decisions are made during these mustering periods.

The key decision identified was “What stocking rate
should be set prior to the wet season?”” where “‘stocking
rate” is the number of cattle per land unit. This decision
occurred in October at the end of round 2 mustering.
Cattle could be sold at this time. A secondary selling
time for cattle was seven months later in April.

For the stocking rate decision in October, three key
decision drivers were identified by the practitioners:

1) Current cattle prices: High prices encourage destock-
ing; low prices discourage destocking.

2) Pasture availability: Low availability encourages
destocking; high feed availability discourages
destocking.

3) SCF of rainfall for October—April: Dry (i.e., poor
pasture growth) encourages destocking; wet (i.e.,
good pasture growth) discourages destocking.

The potential value of SCFs was evaluated through
selecting the optimal stocking rate that maximized
returns. This was repeated under each setting of the
decision drivers (steer prices and pasture availability).
An overview of the methodology is outlined in Fig. 2.
Three key components are provided to the economic
model to evaluate the potential value of SCFs: forecast
probabilities, biophysical production, and economic
settings (costs and prices).

b. Biophysical model

The link between stocking rates, climatic conditions,
pasture, and beef production was captured through using
the Grass Production (GRASP) model (Littleboy and
McKeon 1997; Day et al. 1997). GRASP is a dynamic,
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TABLE 1. Key characteristics of the beef cattle production sys-
tem. Values sourced from industry and supported by other industry
relevant case studies, e.g., Holmes (2011), McGowan et al. (2014),
and Ash et al. (2015)

Location Charters Towers

Climate Semi-arid tropics
Mean annual rainfall (mm) 650
Property size (ha) 30000
Pasture type Native pastures with an open
savanna canopy of trees
6000
Store steers and cull heifers

Herd size (animal equivalent)
Main target market

Weaning rate (%) 60
Weaning weight (kg) 180
Growth rate (kg head ' yr™1) 127

pasture-animal growth model that has been applied to
evaluate the effects of various grazing management prac-
tices in Australia (McKeon et al. 2009) and has been val-
idated for conditions at Charters Towers (Ash et al. 2015).
GRASP was run from 1900 to 2015 to simulate the dif-
ferent stocking rates and pasture levels. Climate data
(1900-2015) were sourced from the Scientific Information
for Land Owners (SILO) patched point dataset (Jeffrey
et al. 2001) for station 34084 (Charters Towers). Three
discrete climate states were identified based on the lower,
middle, and upper tercile of rainfall (October-April) re-
ceived at Charters Towers (1900-2015). Each year was
then classified as belonging to one of these climate states.
A dry state was categorized by rainfall less than 435 mm,
average as rainfall between 435 and 630 mm, and wet as
rainfall in excess of 630mm (Fig. 3). The output from
GRASP was classified as dry, average, or wet and then
averaged for each state for input into the economic model.
The animal production system modeled was based
on young steers (castrated males) assuming an adult
equivalent weight of 401 kg in October, the beginning of
the simulation period. Animal performance and average
pasture utilization were assessed in April, seven months
after the start of the simulation. Three levels of initial
pasture growing conditions (low, medium, and high)
were tested. To represent these three levels, five key
parameters were reset annually on 1 October (Table 2)
with the remaining modeling parameters kept consistent
with those of Ash et al. (2015). Thirteen stocking rates
(from 8 to 20 steers per 100 ha at an increment of 1) were
assessed. In total, 39 scenarios were simulated.

c. Seasonal climate forecasts

A probabilistic climate forecast system was used.
Eleven different levels of probabilistic forecast skill
consisting of 10% increments from 0% to 100% based
on a hypothetical forecast system were created for each
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Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
Joining
Reproductive cycle’ Calving
Wean Wean

- Calf =

Animal classes? Weaner
Steer -

Pasture quantity

High

Animal management |Round 1 muster
Sell steers
Cull cows/heifers

Sell steers®
Cull cows/heifers®

Round 2 muster
Sell steers
Cull cows/heifers

FIG. 1. Timing of the annual reproductive cycle, pasture quantity, and management of the beef production system.
Superscript numbers are 1: weaning will occur at one of two times depending on pasture availability; 2: assuming
calves are weaned at the first weaning opportunity; and 3: additional selling or holding of animals may occur in
October, in particular greater selling across animal classes if conditions are poor.

of the three climate states (dry, average, wet). These
probabilistic forecasts were incorporated into the dis-
crete stochastic programming economic model by
assigning a probability to the occurrence of each climate
state based on forecast skill. The definition for forecast
skill with reference to without forecast and with forecast
probabilities are defined in Eq. (1):
T T
ST, M
where ) is the posterior probability of state s given
forecast f (i.e., with forecast) and ; is the prior proba-
bility (i.e., without forecast) of state s. Note that y was
set to of 0.33 for each tercile, representing the historical
probability of the occurrence of state s.
Forecast skill o was set to predetermined levels and
was rearranged to provide posterior probabilities ac-
cording to each skill level [Eq. (2)]:

Seasonal rainfall forecasts * Probability of season
(dry, average, wet) being dry, average or
Forecast skill (0, 10%, wet

20%, ..., 100%)

GRASP model captures
links between pasture
growth and animal

BIOPHYSICAL Pproduction

« Number of stock
* Weight of stock (kg)

Wi

* Health & vet costs
Beef production costs Interest costs
and key output & input * Pasture degradation
prices penalty ($/ha)

» Beef prices Oct ($/kg)

ECONOMIC * Beef prices Apr ($/kg)

Ty =0o(l0—m)+m. 2)

Using this definition of forecast skill, 0% skill equates
to climatology where each state has a 33% chance of
occurring. An example, applying this equation to a fore-
cast of a dry state with an assumed skill of 20%, results in
posterior probabilities assigned to dry, average, and wet
states of 47%, 27%, and 27%, respectively [Eq. (3)]:

Dry = Taeylf = o(1.00 — 'n'dry) F Ty
=0.20(1.00 — 0.33) + 0.33 =0.47,

1.00— 7 -
( i arylr) _ (1.00 . 047) _ 157

©)

Table 3 provides the weighting between the climate
states for the 11 skill levels for a dry forecast state.

Avg=Wet =

BEEF ECONOMIC
MODEL

ECONOMIC VALUE OF
CLIMATE FORECASTS

Value by forecast skill and
influence of non-forecast
factors

Determines optimal
stocking rate
8,9, ..., 20 steers/
00 ha)

FIG. 2. Methodological overview. Generation of biophysical data, beef production costs, beef prices, and climate state classifi-
cation of historical data and probabilistic forecasts are used in the economic model to select optimal stocking rate based on

maximizing returns.
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F1G. 3. Total rainfall for October—April at Charters Towers for 1900-2015 sourced from SILO (Jeffrey et al. 2001). Each year is classified
into one of three terciles (dry, average, and wet).

d. Economic model

The economic model evaluated the profitability of
different stocking rate strategies for different price and
pasture settings. This was achieved by applying a consis-
tent set of prices and costs to the biophysical outputs. The
model was used to investigate the optimum decision and
hence profitability for the three forecast states (dry, av-
erage, wet) and for 10 levels of forecast skill (10%,
20%, ..., 100%). The same optimization process was
used to evaluate the ‘“without forecast” decision (0%
skill), which assumed climatology with a 33% chance of
each climate state occurring. Value was then determined,
for each forecast state and each forecast skill level, as the
marginal benefit between the farm returns of the optimal
decisions made with and without a forecast. This valua-
tion process was repeated across three market (steer
prices) and three environmental (starting pasture) levels.

1) BEEF PRODUCTION COSTS

The production costs of the system including beef
herd health and selling and feeding costs for the model
were based on values in Martin (2016) with gross

margin details in the online supplemental material
(see Table S1). An annual interest rate of 10% was
applied to production costs.

2) KEY INPUT COSTS

Sensitivity analyses to steer price in October were
conducted to evaluate the value of SCFs under different
price scenarios. Medium and heavy steer prices in October
and April for 2006-15 (MLA 2017) were used and ad-
justed to real prices (ABARES 2015). Sensitivity to the
October price was tested for three possible prices (low,
medium, and high). These were calculated as the 10th,
50th, and 90th percentiles of the price data (Table 4).

Steer prices in April were fixed to the 50th percentile
of April steer prices (196 medium steers, 208 heavy
steers centskg ™! live weight). This was implemented
as prices in April are unknown when the stocking
rate decision in October is made.

3) PASTURE OVERUTILIZATION COST

Within the GRASP model under fixed stocking rate
strategies animals are able to heavily graze pastures.

TABLE 2. Pasture composition attributes used in the GRASP modeling.

Pasture  Initial total standing dry Average daily Transpiration efficiency =~ Maximum nitrogen Initial plant density
scenario matter (kgha 1) regrowth (kgha 1) (kgha 'mm™1) uptake (kgha™1) (% basal area)
Low 385 3 10 10 1

Medium 1448 6 12 12 2.5

High 2153 15 18 25 5
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TABLE 3. Example calculation of weightings of each climate state for a dry forecast state for skill levels 0%—-100% that were applied to
the economic model.

Forecast skill

Climate state 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Weighting (%) Dry 33 40 47 53 60 67 73 80 87 93 100
Average 33 30 27 23 20 17 13 10 7 3 0
Wet 33 30 27 23 20 17 13 10 7 3 0

This would, over time, lead to pasture degradation and
an unsustainable and less profitable system. The analysis
conducted here only considered the implications of
production decisions over seven months, to account for
seasonal decisions, and as such the potential costs of
long-term degradation needed to be captured.

Thus, an overutilization financial penalty was applied.
For each simulation year and scenario, pastures were
assessed for overutilization. Pastures were considered
overutilized if the average pasture utilization from
October to April, the simulation period, exceeded 25%.
Results from O’Reagain et al. (2011) were used to set
the value of the penalty. Using their results, a cost of
$639 per 100 ha was applied if pastures were classified as
overutilized (the financial implication between setting a
moderate and high stocking rate).

e. Analyses

Agricultural production levels representing dry,
average, and wet climate states were obtained by
classifying yearly (1900-2015) production outputs
(pasture production, animal weight, pasture over
utilization) according to one of these three climate
states. The years classified each of the three states
were averaged to represent each climate state in the
economic model.

The economic model maximized returns by choosing
the stocking rate that had the highest return weighted
for each three climate states according to the prescribed
forecast skill for each pasture and price setting. The
economic model takes the form of a discrete stochastic
programming problem, as outlined by Crean et al. (2013),
which can be solved through adapting a conventional
linear programming model [Eq. (4)]. The model is subject
to normal constraints on the use of land and capital so
that input usage can never exceed availability.

Max E[Y] = i Ty, 4)

where E[Y] is the expected return, 7 is the probability
of state s, and y,; farm income in state s.

The weighted or expected return (E[Y]) is simply the
sum of economic returns in each state (Vary, Yaver Ywet)

multiplied by the probability of each state occurring
(Tdry» Tave> Twer)- The optimal stocking rate without a
climate forecast is the one which provided the highest
expected return with the probability of each state
occurring set to 33%.

The introduction of a climate forecast with skill
greater than 0% leads to a revision of the probabilities
to reflect the forecast skill (Table 3) and the expected
return is re-evaluated. The change to a climate state
weighting due to different levels of forecast skill may
lead to a change in the stocking rate decision compared
to the without forecast decision (e.g., sell a greater/fewer
number of steers in October) and this creates economic
value from forecast use. The potential value ($ per steer) of
SCFs was calculated as the marginal difference between
returns with and without the forecast [Eq. (5)]. This is
simply a statement that the value of forecast fis equal to the
difference in expected net return with and without the
forecast. The forecast will have no value in the event that
the optimal decision with (y¥) and without the forecast

* ) is the same:

3 3
Vf = 2 775|fy;‘} - 2 Wsy;ko > (5)
s=1 s=1

where Vyis the value of forecast f, 7y is the probability
of state s given forecast f, while y¥; is the net return in
state s resulting from implementing the optimal stocking
rate based on forecast f, 7, is the probability of state s
(without a forecast), and y* is the net return in state s
resulting from implementing the optimum stocking rate
without a forecast.

The potential value of SCFs was assessed for all the
decision settings (pasture levels, steer prices) and for 11
levels of forecast skill for each of the three climate
forecasts (dry, average, wet). A total of 297 results were

TABLE 4. Stock prices in October sourced from MLA (2017).

Low Medium High

Medium steer 400-500kg (centskg ™" 168 192 220
live weight)
Heavy steer 500-600 kg (cents kg ™! 183 196 226

live weight)
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TABLE 5. Variables and value levels assessed to evaluate
forecast value.

Variable Values tested

October pasture
availability
Steer price
Forecast state
Forecast skill (%)

Low, medium, high

Low, medium, high
Dry, average, wet
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

produced representing various decision environment
settings, forecasts, and forecast skill levels (Table 5).

The value of the forecast system was calculated for
a 100% skill. This was achieved by multiplying the fore-
cast value for each forecast state by 33%, the likelihood of
each forecast state eventuating [Eq. (6)].

The value of a forecast system is obtained by
weighting the value of each forecast within the system
by the frequency with which each forecast occurs. If F
denotes a forecast system and g, is the frequency
with which each forecast occurs, then the value of a
forecast system with three possible forecasts can be
defined as

3
V,=X4aV,. (6)
&4

where Vi is the value of the forecast system, f is the
forecast state (dry, average, wet), and Vis the optimal
value for forecast state f.
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3. Results and discussion
a. Biophysical modeling

Data from the GRASP model showed marked
differences between animal weight and pasture
availability, particularly when comparing low pas-
ture availability with medium and high (Fig. 4). This
indicates that it is difficult to reverse a poor start
in October. April steer weights progressively de-
creased as October stocking rates increased as too
did the instances of pasture overutilization, again
this was particularly evident for low initial pasture
conditions (Fig. 4).

b. Economic modeling—Optimal stocking rates

The optimal stocking rate decision was evaluated for
100% skillful forecasts and without a forecast (0%
skillful) for each combination of the decision drivers
(Fig. 5). High pasture availability lead to the same
decision to stock steers at the highest stocking rate
(20 steers per 100 ha) regardless of steer price or fore-
cast state. For medium initial pasture availability, the
stocking rate decision remained the same with and a
without forecast except under a dry forecast state with
high steer prices, where greater destocking was the op-
timal decision (9 steers per 100 ha). The greatest change
in stocking rate from the without forecast decision was
with low pasture availability and this differed between
steer prices.

Pasture Over-Utilisation
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-
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= Low ,_k—J/P
o | il
@ i
,""
-
o /‘/.
_
g 8 =3
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o |
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FIG. 4. (left) Mean steer weight in April and (right) percentage of years that recorded pasture overutilization (1900-2015) for low,
medium, and high pasture availability for each of the 13 October stocking rates.
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Low Pasture

Medium Pasture

VOLUME 12

High Pasture
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Steer Price
Medum
Steer Price
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T
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Stocking rate
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FIG. 5. Optimal stocking rate decision (steers per 100 ha) without (gray) and with a 100% skillful forecast. Steer price is for October.

¢. Economic modeling—Forecast value

The value of a 100% skillful forecast system and each
forecast state was calculated for each decision environ-
ment setting (Fig. 6). The importance of the decision
driver settings to deliver financial returns is evident with
many settings recording $0 per head value (Fig. 6). No
value was found when pasture availability was high and
all but one result when pasture availability was medium.
The greatest value was found for low pasture availability
with the highest value ($13.90 per head) found for a wet
forecast with medium steer prices.

The overall forecast system value for a 100% skillful
forecast, calculated by multiplying the forecast value by
the probability of that forecast occurring (33%), ranged
between $0 and $6.70 per head, depending on the de-
cision environment settings (Fig. 7). Analyses of forecast
system value with varying levels of skill illustrated that
as skill decreased so too did value (Fig. 7).

The key production decision evaluated to estimate
forecast value was what stocking rate to set for the wet
season. This decision was a trade-off between selling

Low Pasture

= Wel
= Average
§ = Dy §
System
o @
2 Q
T4 <3
s = $ =
[ ]

ow
Low

Medium Pasture

smaller animals earlier with a lower risk of pasture
overutilization or selling animals later at higher weights
but potentially risk incurring costs associated with pas-
ture overutilization. The degree of the trade-off varied
with different decision environment settings (pasture
availability and steer price). SCF value ranged from $0
to 13.90 per head dependent on decision environment
settings, forecast climate state, and forecast skill. The
value of the overall forecast system operating with 100%
skill ranged between $0 and 6.70 per head (Fig. 7).
Contextualizing for a herd size of 6000, this maximum
value for the farm was $40,200 for one particular set-
ting of the decision environment (low initial pasture
and medium steer prices).

Results found here were similar to previous studies for
northern Australian beef production systems. O’Reagain
et al. (2011) evaluated several strategies to set stocking
rates over a 12-yr field experiment. They found that
the best strategy was to set stocking rates based on
available forage, mirroring the importance of pas-
ture availability found here (Fig. 7). However, the
results here did find forecast value with low pasture

High Pasture
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FIG. 6. A 100% skillful forecast system and forecast state value ($ per head). Steer price is for October.
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FIG. 7. Imperfect forecast system value ($ per head). Three levels of current pasture availability (low, medium, high) are in the three rows
and three steer prices (low, medium, high) in the columns.

availability. Similar to this study, Stafford Smith
et al. (2000) used the GRASP model to evaluate
forecast value in terms of whole farm economics
using a different economic model (Herd-Econ). They
found only modest improvements in cash flow through
incorporating a forecast over their “without forecast”
management strategies. In addition they also found that
decisions were sensitive to market settings. The results
found here support their conclusions with modest fore-
cast value found, and steer prices at the time of the

decision found to be important, dependent on pasture
availability.

Mclntosh et al. (2005) found more forecast value
in their assessment of a northern beef enterprise also
utilizing the GRASP model. They found that all the
forecast systems assessed improved annual cash flow. A
14%-33% improvement in cash flow above the “without
forecast” scenario was found. The decision point as-
sessed was stocking rate in July and the forecast pe-
riod July-March, which differed from that used here.
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Furthermore, increases to stocking rates were allowable
in their assessment, again an aspect not included in
this study.

Allowable stocking rates were restricted to between 8
and 20 steers per 100 ha, which represents typical limits
applied in this production system. This resulted in a hard
boundary for further changes to reduce or increase
stocking rates based on climate forecast state. For ex-
ample, the without forecast stocking rate decision for
low pasture availability at high steer prices was 8 steers
per 100ha, the lowest possible stocking rate option.
Thus, under a dry forecast scenario further destocking
could not be selected to respond to deteriorating con-
ditions. It should be appreciated that drastic reduction
in stock numbers (e.g., to 0) was not considered as
producers retain base herd numbers for future breeding.
A similar circumstance was reflected for increasing
stocking rates. A fixed upper boundary is a reasonable
assumption as producers do not typically buy stock as a
result of a SCF in this system.

This study explored a range of decision environment
settings and forecast states to provide a landscape of
forecast value. A key finding was that pasture avail-
ability followed by steer price were important influences
on whether forecast value was found. Only 4 of 12 de-
cision environment combinations resulted in forecast
value (Fig. 7). With high and medium pasture avail-
ability, the decision was to stock at the highest allowable
stocking rate, regardless of price settings. These results
reflect that with medium or high pasture availability it is
likely that sufficient feed will be available through the
wet season to avoid pasture overutilization regardless
of the climate state (dry, average, wet). Thus, the
forecasting of these conditions was not valuable. This
highlights that using a subset of the environmental and
economic conditions to assess forecast value will likely
misrepresent overall forecast value, either inflating or
deflating value.

Forecast value was mostly found for dry and wet
forecasts (Fig. 6). Two examples will be used to explore
the different circumstances for which dry and wet fore-
casts had value. With medium pasture availability and
high steer prices, the without forecast optimal decision
was to stock at the maximum of 20 steers per 100 ha.
With a perfect dry forecast the optimal decision changed
to destocking to 9 steers per 100 ha, driven by increased
revenue from selling steers at high prices in October
and a reduction of the costs of pasture overutilization,
which was exacerbated due to dry conditions. A perfect
forecast of a dry state resulted in an improvement in
returns of $11.80 per head under this scenario.

A scenario of low pasture availability and medium
steer prices provides an example of the benefit of a wet
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forecast. The without forecast decision was to destock to
14 steers per 100 ha (Fig. 6), largely due to poor initial
pasture conditions. With a perfect wet forecast the op-
timal decision changed to keeping stock at the maximum
20 steers per 100ha. In this example, a wet forecast
provided greater surety about the occurrence of addi-
tional pasture growth that occurs in a wet state, reducing
the likelihood of pasture overutilization and this in as-
sociation with medium steer prices made holding stock
more profitable. A 100% skillful forecast of a wet state
resulted in an improvement in returns of $13.90 per head
under this scenario.

A climate forecast state of average conditions was
found to be of limited economic value under all settings.
The single instance of value was $1.70 per head for a
100% skillful average forecast. The low value of an av-
erage forecast state is a reflection of the limited change
in conditions compared to the without forecast de-
cision (i.e., based on average conditions). Nil or a small
value with an average forecast state (middle tercile of
climate data) when compared with average conditions
is unsurprising.

The above examples highlight the maximum forecast
value by assuming the forecast was 100% skillful.
However, in reality operational forecasts are imperfect
and different levels of skill were analyzed to assess
forecast value for different levels of skill (Fig. 7). The
use of theoretical rather than operational forecasts was
preferred in this case so that the value of forecast im-
provements could be determined. However, the results
can be used to provide a broad estimate of operational
forecast value once their skill level is determined.

For example, the current accuracy of the Australian
Bureau of Meteorology operational forecasts for the
Charters Towers region for October—-December rain-
fall is approximately 70% using percent consistent with
above/below median forecasts (www.bom.gov.au/climate/
ahead/outlooks/skill/). This is equivalent to 40% using the
definition of skill in this study. At this operational skill
level, the forecast system value was $0-$2.00 per head.

The case study presented here used particular pa-
rameter settings within the GRASP production model.
GRASP has been used widely to investigate climate
variability and climate change assessments for northern
beef enterprises (Ash et al. 2000; McIntosh et al. 2005;
McKeon et al. 2000; Stafford Smith et al. 2000) and
limitations outlined (McKeon et al. 2009). The farm
characteristics set in GRASP were developed in con-
sultation with industry to provide a representative
farm. These characteristics will likely be different
from other individual farms. For instance, weaning
and mustering timing may differ. Thus this case study
is simply an example of the potential value of SCF
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not a comprehensive assessment for all possible en-
terprise arrangements.

GRASP uses a steer-only herd in the modeling pro-
cess. In reality a herd will contain males and females in
various age classes. For this application the focus was on
the balance of pasture availability and animal weight
gain not on herd dynamics or breeding strategies (e.g.,
calving time), which operate on time horizons longer
than a season. As such, GRASP was sufficient to capture
the key linkages between pasture production, beef
production, and climate variability, which were the focus
of this study. Nonetheless, a more complex biophysical
model would allow for more nuanced stocking rate de-
cisions. The Northern Australia Beef Systems Analyser
(NABSA) production model (Ash et al. 2015) was in-
vestigated for this purpose; however, the constraints and
assumptions in the model, which was developed for
multiyear assessments of management decisions and
long-term climate, were not amenable for this applica-
tion. Enduring profitability in northern beef enterprises
is generated by multiyear management; however, fore-
cast value was assessed over a single wet season to match
the seasonal scale of climate forecasts. The approach
used here may not capture flow on influences of the
decision through time. This includes impacts on pasture
management and herd structure dynamics. The aim of
this study was to investigate the potential value of
seasonal forecasts and thus a restricted view of prof-
itability based on a single season was used to evaluate
value on decisions at the seasonal scale. A cost penalty
was applied in relation to pasture overutilization to
account for future losses to ensure the model was not
optimized for a single season of production.

The pasture overutilization penalty was an important
cost estimated in the economic model. There were two
methodological steps in determining the penalty. These
were the determination of whether pastures were over-
utilized and the cost penalty associated with overutilization.
Both the steps were derived using findings from O’Reagain
et al. (2011). Different derivation of determining when
pastures were classified as overutilized would influence
the percentage of years classified as overutilized and
might alter forecast value. For example, a 20% threshold
rather than 25% would increase instances of pasture
overutilization, increasing the cost associated with higher
stocking rates, with the forecast likely to have greater
value for more decision environment circumstances.

Similarly, modification to the penalty value would
influence forecast value. For example, a higher cost as-
sociated with pasture overutilization would make lower
stocking rates more profitable. Although the results
were dependent on the determination of these values,
O’Reagain et al. (2011) provided the best available
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evidence to set these values due to the experimental
design and proximity to the case study site (within
70km). However, O’Reagain et al. (2011) did not spe-
cifically design their experiment to determine a cost
penalty associated with pasture overutilization for a
single season. Further research is required to provide
viable alternate options to set these parameter values in
the economic model.

An interesting line of future enquiry would be to set
April prices to be contingent on forecast climate state.
That is, allow April prices to modify in step with dif-
ferent forecast climate conditions. For instance, steer
prices in April in a dry season could be lower due to higher
selloff of animals earlier (i.e., from October to April) due
to the dry conditions. The non-state-contingent design of
this study was required as insufficient historical price
data were available to evaluate state-based relation-
ships. If April steer prices are related to climate condi-
tions it is likely that the value of SCF is underestimated
in this assessment, in particular for dry forecasts. As
more historical data are accumulated, this prospect
should be evaluated.

The analyses presented here outlined an approach to
evaluate the potential value of seasonal climate fore-
casts to northern Australian beef enterprises. The re-
sults highlight that under a few decision settings there
was value in using forecast information in setting
stocking rates prior to the wet season. The results can be
used to inform annual management planning and also
avenues of future research regarding SCF value to pas-
toral industries. Inclusion of other decisions that may
benefit from forecast information, the level of skill re-
quired to generate sufficient value, the use of other
metrics such as soil moisture and pasture growth, and
other users of forecast information should be considered
in such an analysis.
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