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Despite several independent clues indicating new physics at the TeV scale, a lack

of conclusive evidence for new physics so far suggests that future discoveries may

only come from small numbers of new signal events. Therefore, it is crucial to find

optimal methods with which to accurately measure the properties of new physics

despite low statistics. In this scenario, the traditional kinematics variables such as

edges and endpoints, which are merely one dimensional projections of the kinematic

boundaries of a higher dimensional phase space, may not be the most efficient way

to utilize limited information, especially in events consisting of cascade decays with

large Standard Model backgrounds.

In this dissertation, adopting a benchmark decay topology with one invisible par-

ticle in four-body final states proceeding through a sequence of two-body decays via

intermediate resonances, I will focus on techniques which utilize the boundary of the

allowed four-body phase space as well as the symmetric Gram determinant of the mo-

menta of final state particles ∆4, which is essential for parametrizing the phase space

in a manifestly Lorentz-invariant way, to improve mass measurements and discovery

sensitivity significantly over more conventional variable choices and techniques.
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Chapter One: Introduction

1.1 The Standard Model

To this day, the Standard Model of particle physics has been the best description

of particles and interactions between them, which constitute our universe. All com-

ponents of the Standard Model have been observed including the discovery of the

Higgs Boson, and their properties have been measured to be consistent with Stan-

dard Model predictions, with only one exception in the neutrino sector, where at least

two flavors of neutrinos have non-zero masses.

The dynamics of the Standard Model is described by quantum field theory, which

is a quantum mechanical theory invariant under the Poincaré spacetime symmetry.

The Standard Model is composed of three type of fields:

• Gauge fields, which are vector fields and the connections of local internal (i.e.,

non-spacetime) symmetries. The gauge structure of the Standard Model is the

symmetry group SU(3)c × SU(2)L × U(1)Y , with with corresponding charges

called color, weak isospin and hypercharge.

• Matter fields, which are spinor fields and defined by their transformation proper-

ties under both the internal (global as well as local) and spacetime symmetries.

They can be further divided into subgroups called quarks and leptons according

to whether they carry color or not.

• Higgs field, which is a scalar field with nonzero vacuum expectation value

(VEV), and this VEV breaks the SU(2)L × U(1)Y into U(1)em at low energy.

The Standard Model particles are summarized in 1.1. The Standard Model contains

19 parameters whose numerical values are taken as inputs rather than explained.

There are 3 masses for leptons, 6 masses for quarks, 3 CKM mixing angles, 1 CKM

CP-violation phase, 3 gauge couplings, 1 Higgs mass, 1 Higgs VEV, and 1 QCD

vacuum angle.
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Category Symbol Name SU(3)c SU(2)L U(1)C B L

Gauge
Fields

G Gluon 8 1 0 0 0
W W Boson 1 3 0 0 0
B B Boson 1 1 0 0 0

Fermion
Fields

qL Left-handed Quark 3 2 1
3

1
3

0
uC Left-handed Anti-u-Quark 3̄ 1 −4

3
−1

3
0

dC Left-handed Anti-d-Quark 3̄ 1 2
3

−1
3

0
`L Left-handed Lepton 1 2 −1 0 1
`CL Left-handed Anti-Lepton 1 1 2 0 −1

Higgs Field H Higgs 1 2 1 0 0

Table 1.1: Standard Model Fields Summary

1.2 The limitations of the Standard Model and

TeV scale Supersymmetry

Despite the fact that Standard Model has achieved tremendous success in predicting

experimental results, there are still a number of phenomena not yet fully understood,

including, but not limited to: gravity, neutrino masses, dark matter, the hierarchy

problem, the flavor problem, and so on. Among those deficits, the puzzles that seemed

promising to be solved at the TeV scale are:

• Hierarchy Problem. The Standard Model contains only one dimensional

parameter, the Higgs mass, which is of order 100 GeV at the EW energy scale.

In the language of effective field theory, Standard Model is the IR theory of

some UV theory at a higher scale, which is usually taken to be the (1019 GeV).

However, in the framework of Quantum Field Theory, the Higgs mass is UV

sensitive without any protection unlike the fermion case. Therefore, given the

Planck scale at 1019 GeV, why the Higgs mass is only 100 GeV is a fine tuning

problem. Some very popular theories, including Supersymmetry, aim to solve

this problem by introducing some TeV scale particle to balance the running of

Higgs mass contributed from Standard Model Particles.

• Dark Matter. Many independent astronomical observations indicate the ex-

istence of dark matter and it is well acknowledged that dark matter composes

80− 85% of matter in the universe and rarely interacts with baryonic particles.
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However, there is no such particle in the Standard Model which could provide

the corresponding relic abundance that is required by studies of cosmological

models. The easiest way for obtaining the correct abundance of dark matter

today via thermal production predicts a new particle a new particle in the 100

GeV mass range that interacts via some force of electroweak strength, and this

phenomenon is called ” the WIMP miracle” accordingly. Partners to neutral

Standard Model particles provided by supersymmetry have long been prime

WIMP candidates.

1.3 Purpose and Outline of this Thesis

Despite the study of Supersymmetry and other theories aimed to extend the Stan-

dard Model to solve its deficits in the TeV scale, the lack of conclusive evidence for

new physics so far suggests that future discoveries may only possess small numbers of

signal events. Therefore, it is crucial to find optimal methods with which we can ac-

curately measure the properties of new physics despite low statistics. In this scenario,

the traditional kinematics variables such as edges and endpoints, which are merely

the one dimensional projection of the kinematic boundaries of a higher dimensional

phase space, may not be the most efficient way to utilize limited information.

In previous research[1], it has been demonstrated that mass measurements for

new particles appearing in decay chains can be improved by determining the bound-

ary of the available phase space in its full dimensionality rather than by using one-

dimensional kinematic features for each stage of the cascade decay. However, this

result assumed an ideal situation where only signal events were present, no combi-

natorics showed up, all detectors possessed perfect resolution, and all particles in

the decay chain decayed isotropically. This thesis focuses on how to implement a

viable mass measurement methodology for kinematic boundaries in a more realistic

experimental environment, and highlights the advantages of using ∆4, which will be

explained latter, as a discovery variable. The Chapter 2 will be a self-contained math-

ematical description to Phase Space, and the following chapters will be the application

of it.
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Chapter Two: Phase Space

2.1 Introduction

To study a decay process from an initial state of single particle to a final state of n

particles, it is necessary to describe the initial as well as the final states, and also the

transition rate from an given initial state to a final state.

To describe a physical system, it is common to use the momentum-space of a

state with n particles in three dimensional space, which is the the set of all possible

momenta, pf , which is a 3n space defined by the n momenta.

Now consider a system of a decay process which is composed of n particles with

energy Ef and momenta pr as the decay products of a single particle with energy E0

and momentum p0. The physical allowed region is not the unconstrained 3n space

anymore: One has to impose the condition of momentum conservation

E0 = E1 + E2 + · · ·+ En =
n∑
i=1

Ei

p0 = p1 + p2 + · · ·+ pn =
n∑
i=1

pi

(2.1)

where (according to dispersion relation)

E2
i = p2

i +m2
i

on the final state momentum vectors. As a result, the n momentum vectors pf cannot

vary arbitrarily for a fixed initial state, but have to satisfy the four conditions 2.1.

The conditions 2.1 define a 3n− 4 dimensional surface called the phase-space inside

the momentum-space.

Now for the transition rate. According to the quantum mechanics, the transition

rate from an initial state i to a final state f is described by Fermi’s golden rule, which

utilizes the matrix element :

〈f | S | i〉 ≡ 〈f | (1 + iT ) | i〉 (2.2)
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Particularly, in the case of particle decay, one then has:

〈p1 · · ·pn | S | p0〉 = 〈p1 · · ·pn | (iT ) | p0〉
≡ (2π)4δ(4)(p0 −

∑
pf ) · iM(p0 → {pf})

(2.3)

and then the Fermi’s golden rule states that the differential decay rate is

dΓ =
1

2m0

| M(p0 → {pf}) |2 dΠn(p0; pf ) (2.4)

where dΠn(p0; pf ) is the element of phase space, and is determined by

dΠn(p0; pf ) = (2π)4δ(4)(p0 −
∑

pf )
n∏
f=1

d3pf
(2π)3

1

2Ef
(2.5)

and one may integrate over the phase space to obtain the total decay rate.

More generally, one can change pf into a set of variables Φ[2]. Then 2.4 will have

the form:

dΓ =
1

2m0

dΦ ρn(Φ) | M(Φ) |2 (2.6)

where dΦ is a volume element in the 3n− 4 dimensional phase space and the phase

space density ρn(Φ) contains all factors arising from transforming from the pi to the

variables Φ. When p1, · · · , pn vary over the whole phase space, the set Φ varies over

a 3n− 4 dimensional region which is the physical region of Φ. As we will see shortly,

it is very convenient to choose a set of variables Φ that is Lorentz invariant.

2.1.1 Phase Space Integral and Two Body Final State

Phase Space

If the matrix square, | M |2 is identically 1, then the decay rate:

Γ =
1

2m0

Πn (2.7)

is said to be given by phase space. Moreover, the probability density function 1
Γ
dΓ
dφ

are called phase space distributions [2].

In the case of two body phase space, this integration is extremely easy [3]. The

phase space integral is:

Π2 =

∫
(2π)4δ(4)(p0 − p1 − p2)

d3p1

(2π)3

1

2E1

d3p2

(2π)3

1

2E2

= (4π)−2

∫
δ(3)(p0 − p1 − p2)δ(E0 − E1 − E2)

d3p1

E1

d3p2

E2

(2.8)
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In the rest frame of the initial particle, p0 = (m0, 0, 0), therefore,

Π2 = (4π)−2

∫
δ(3)(p1 + p2)δ(m0 −

√
p2

1 +m2
1 −

√
p2

2 +m2
2)

d3p1√
p2

1 +m2
1

d3p2√
p2

2 +m2
2

= (4π)−2

∫
δ(m0 −

√
p2

1 +m2
1 −

√
p2

2 +m2
2)√

p2
1 +m2

1

√
p2

1 +m2
2

d3p1

= (4π)−2

∫
δ(m0 −

√
p2

1 +m2
1 −

√
p2

2 +m2
2)√

p2
1 +m2

1

√
p2

1 +m2
2

p2
1dp1dΩ

= (4π)−1

∫
δ(m0 −

√
p2

1 +m2
1 −

√
p2

2 +m2
2)√

p2
1 +m2

1

√
p2

1 +m2
2

p2
1dp1

(2.9)

It can be shown that the final integral gives

Π2 =
1

8π

λ1/2(m2
0,m

2
1,m

2
2)

m2
0

(2.10)

where λ(x, y, z) ≡ x2 + y2 + z2− 2xy− 2yz− 2zx is the basic three-particle kinematic

function[2]. Therefore, the phase space decay rate of two final state is:

Γ2 =
1

16π

λ1/2(m2
0,m

2
1,m

2
2)

m3
0

(2.11)

2.2 General Multi-body Phase Space

2.2.1 Three Body Phase Space

In the case of more-than-two body final states, one can further reduce the number

of final state variables by mapping them to the rest frame of the mother particle.

Therefore, three variables are trivial and there remains 3n − 7 essential final state

variables.

In the case of three body final state, the number of essential final state variables

is two. It is both conventional and convenient to choose two invariant masses m2
12 ≡

(p1 + p2)2 and m2
23 ≡ (p2 + p2)3 as the variables.

A strict mathematical description of the three body final state decay can be found

at [2]. Here we only extract important results:
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Figure 2.1: Configurations of momentum vectors in the center of mass of the mother
particle on the boundary of the Dalitz plot.[4]

• The physical region of m2
12 and m2

23 for three body final state decays can be

described as

G(m2
12,m

2
23,m

2
0,m

2
2,m

2
1,m

2
3) ≤ 0 (2.12)

where G(x, y, z, u, v, w) is the basic four-particle kinematic function, and can be

expressed as a Cayley determinant:

G(x, y, z, u, v, w) = −1

2

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 v x z

1 v 0 u y

1 x u 0 w

1 z y w 0

∣∣∣∣∣∣∣∣∣∣∣∣
(2.13)

One notable result is that the final state momenta p1, p2, and p3 are collinear

on the boundary of the Dalitz plot (Fig.2.1).

• Within the physical region, the phase space distribution is:

d2Π3

dm2
12dm

2
23

=
1

16m2
0

(2.14)
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Figure 2.2: An example for the application of the Dalitz plot. The non-uniform
distribution is due to the interference between the intermediate resonances[5].

That is, the phase space distribution density within the physical region is flat.

2.2.1.1 Dalitz Plot

The Dalitz Plot is defined as the physical region of p0 → p1 + p2 + p3 in the m2
12m

2
23

plane. The boundary and the phase space density is given by 2.12 and 2.14, respec-

tively. Since the decay rate is

dΓ =
1

(2π)3

1

8m3
0

dm2
12dm

2
23 | M(m2

12,m
2
23) |2 (2.15)

within the physics region, Dalitz Plot is occasionally used to identify the matrix

element, especially for resonant processes, in which the particle decays into two decay

products, with one of those decay products immediately decaying into two additional

decay products. In this case, the Dalitz plot will show a non-uniform distribution,

with a peak around the mass of the resonant decay (see Fig.2.2 for an example.).
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2.2.2 Four and More Body Phase Space

Again, as in the case of three body final states, invariant masses m2
ij ≡ (pi + pj)

2

are a very natural and convenient choice for parametrizing phase space. However,

unlike the case of three body final states, which has a flat distribution within the

physical region, the phase space boundary and distribution of more-than-three body

phase space is not as trivial as the three body case. Here we will summarize the

corresponding results from [6], which has a very detailed discussion for n-body final

states in an m-dimensional space.

For n-body final states, first define the matrix

Z = {zij} with zij = pi · pj , (2.16)

where the {pi} are the four momenta of the final state particles. The variables ∆i

can then be defined as

det [λIn×n −Z] ≡ λn −
(

n∑
i=1

∆iλ
n−i
)
. (2.17)

Among these variables, ∆4 will play a special role in the four dimensional spacetime.

• Boundary

As described in ref. [6], the kinematically allowed region is given by ∆1,2,3,4 ≥ 0

(and ∆i, i > 4 will be zero automatically in four dimensions), with the boundary

located at

∆4 = 0, ∆1,2,3 ≥ 0 . (2.18)

• Distribution

The phase space distribution in the region of ∆4 ≥ 0 is

dΠn = (Const.)× (m0)−2
(∏
i<j

dmij

)
∆

(n−5)/2
4 Θ(∆4)δ(∆5) · · · δ(∆n)δ

(∑
i<j

mij −K
)

(2.19)

where K = m2
0 + 2

∑n
i=1m

2
i .
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In the rest of this dissertation, we will focus on the case of four body final states.

From 2.19, the general four-body phase space distribution density element is given

by

dΠ4 =

(∏
i<j

dm2
ij

)
8

(4π)10m2
0∆

1/2
4

δ

(∑
i<j

m2
ij −

(
m2

0 + 2
4∑
i=1

m2
i

))
, (2.20)

where m2
ij = (pi + pj)

2 = 2zij + m2
i + m2

j . One has to keep in mind that the m2
ij are

not all independent variables: the δ-function in 2.20 eliminates one degree of freedom

from the six mij
2, therefore, only five degrees of freedom remain. This matches the

formula of 3n− 7 for n = 4 case.

As we can see, this phase space density is not flat as in the case of the three-body

phase space, but instead depends on the phase space coordinates through the factor of

∆4 which is a function of the m2
ij . Since the boundary of the kinematically allowed

region is defined by ∆4 = 0, this means that the phase space density is enhanced

near the boundary of the physical region. The apparent singularity is an integrable

one, and it is not canceled by the presence of the δ-function enforcing momentum

conservation, as its argument is linear in the m2
ij and does not lead to any nontrivial

Jacobian factors.

For the purpose of application, we assume the following final state particles:

• One massive but missed particle, which represents a dark matter candidate.

• Three visible but effectively massless particles, since visible jets or leptons are

far less massive than dark matter candidates.

Note that there are only a few possibilities for how a cascade decay to four final

state particles may proceed in stages. Denoting the initial particle by X1, any inter-

mediate resonances by X2, X3 etc., the visible final state particles as v1, v2, and v3,

and particle χ always being the invisible one, the possibilities are (Fig 2.3)

• X1 → v1 +X2, X2 → v2 +X3, X3 → v3 + χ

This is a three stage cascade decay, each stage being a two-body decay. We will

refer to this possibility as the “2+2+2” topology.

• X1 → v1 +X2, X2 → v2 +X3 + χ

10



v1 v2 v3

X1 X2 X3
χ

(a) “2+2+2” topology

v3

v1 v2

χ

X1 X2

(b) “2+3” topology

χ

v1

v2

v3

X1 X2

(c) “3+2” topology

v1

v2

v3

χ

X1

(d) genuine four-body decay

Figure 2.3: Topologies of four final state decay

This is a two stage cascade decay, with a two-body decay followed by a three-

body decay, and is referred to as the “2+3” decay topology.

• X1 → v1 + v2 +X2, X2 → X3 + χ

This is a two stage cascade decay, with a three-body decay followed by a two-

body decay, and is referred to as the “3+2” decay topology.

• X1 → v1 + v2 + v3 + χ

A genuine four-body decay with no intermediate resonances.

In the remainder of this chapter, we will focus on our benchmark decay topology

(Fig.2.3a), which is composed of three steps of sequential two-body decays. Each

intermediate state will eliminate one degree of freedoms and therefore the number of

essential final state variables remains 5− 2 = 3.
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2.3 Phase Space of “2+2+2” decay with one

missing final state

2.3.1 Boundary of the Phase Space: ∆4 = 0

Now we focus on our benchmark decay topology, which is composed of three steps of

sequential two-body decays (Fig 2.3a).

2.3.1.1 Mathematical Description

Before any formal derivation, we can already get some qualitative result:

• Each intermediate resonance will eliminate one degree of freedom. therefore the

number of essential final state variables remains 5− 2 = 3, which matches the

number of observable m2
ij (that is, m2

12, m2
13, and m2

23 since pχ is not visible.)

• Since m2
12, m2

13, and m2
23 are a good set of final state variables, we can use

the well-known edges/endpoints of them to get the approximate location of the

phase space:

(m2
12)(max) =

(m2
X1
−m2

X2
)(m2

X2
−m2

X3
)

m2
X2

(m2
13)(max) =

(m2
X1
−m2

X3
)(m2

X3
−m2

χ)

m2
X3

(m2
23)(max) =

(m2
X2
−m2

X3
)(m2

X3
−m2

χ)

m2
X3

(2.21)

As a result, we can see that the the physical allowed region is actually contained in a

rectangular cuboid in the first octant with three edges of length (m2
12)(max), (m2

13)(max),

and (m2
23)(max).

For a quantitative derivation: First, it can be shown that the physical region for

the 2 + 2 + 2 topology is bounded by ∆4 = 0 in the first octant. Therefore, we

would like to get an analytic form of ∆4. For 2 + 2 + 2 topology, we have two more

conditions:

(m2
23 +m2

24 +m2
34)− (m2

X2
+m2

2 +m2
3 +m2

χ) = 0

m2
34 −m2

X3
= 0

(2.22)
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Since we have assumed m1 = m2 = m3 = 0, we have

m2
12 +m2

13 +m2
14 +m2

23 +m2
24 +m2

34 − (m2
X1

+ 2m2
χ) = 0

m2
23 +m2

24 +m2
34 − (m2

X2
+m2

χ) = 0

m2
34 −m2

X3
= 0

(2.23)

Or

m2
14 = (m2

X1
−m2

X2
+m2

χ)− (m2
12 +m2

13)

m2
24 = (m2

X2
−m2

X3
+m2

χ)−m2
23

m2
34 = m2

X3

(2.24)

Use those three equations, we can eliminate unwanted m2
14, m2

24, and m2
34. Further-

more, we define ξij = m2
ij/(m

2
ij)

max (i.e., scale m2
ij to be between 0 and 1). It can be

shown that

∆4 = ∆max
4

[
16ξ12(1− ξ12)ξ23(1− ξ23)−4

(mX2

mX3

(ξ13− ξ23 + ξ12ξ23)−mX3

mX2

ξ12(1− ξ23)
)2
]

(2.25)

with

∆
(max)
4 =

1

64

(m2
X1
−m2

X2
)2(m2

X2
−m2

X3
)2(m2

X3
−m2

X4
)2

m2
X2
m2
X3

(2.26)

From this equation, we can see some properties of the physical region of m2
12, m2

13,

and m2
23:

• After the scaling, the shape of the physical region only depends on the ratio

mX3/mX2

• The physical region has a samosa-like shape inside the box in the first octant

(See Fig.2.4).

• The value of ∆4 will be the maximal at (ξ12, ξ13, ξ23) = (1
2
, 1

4
(1 + (

mX3

mX2
)2), 1

2
),

which we will call the ’center’ of the phase space.

• The region ∆4 > 0 has four ‘horns’ outside the first octant (of course, these are

unphysical) connected to the samosa at points (0, 0, 0), (1, (
mX3

mX2
)2, 0), (1, 0, 1)

and (0, 1, 1)

13



(a) view from first octant (b) ξ12-ξ13 projection

(c) ξ13-ξ23 projection (d) ξ23-ξ12 projection

Figure 2.4: The ∆4 ≥ 0 region with different view point. The red “samosa” is the
physical region, and the green “horns” are the regions with ∆4 ≥ 0 but not physical
(that is, with ∆3 < 0). The transparent blue is the boundary of the first octant.

2.3.1.2 Boundaries of the Phase Space with different mass spectrum

For an ideal case where only signal events are present, the boundary of the phase space

is a good tool to determine the mass spectrum: for any mass spectrum hypothesis,

14



if any signal events fall outside the phase space boundary, then the mass hypothesis

must be wrong. However, the reverse is not quite true: If for a mass spectrum

hypothesis, there is not any events fall outside the boundary, the hypothesis is not

necessarily true. However, we can still draw some conditions on the mass hypothesis.

Now consider a true spectrummX1 , mX2 , mX3 , andmX4 , which has the edges/endpoints

(m2
12)(max), (m2

13)(max), and (m2
23)(max), and the hypothetical mass spectrum m̃X1 , m̃X2 ,

m̃X3 , m̃X4 with edges/endpoints (m̃2
12)(max), (m̃2

13)(max), and (m̃2
23)(max). Furthermore,

define y = mX3/mX2 , ỹ = m̃X3/m̃X2 . Now the ∆4 for the hypothetical mass spectrum

is:

∆̃4 = (∆̃4)(max)
[
16ξ̃12(1− ξ̃12)ξ̃23(1− ξ̃23)− 4

(
ỹ−1(ξ̃13 − ξ̃23 + ξ̃12ξ̃23)− ỹξ̃12(1− ξ̃23)

)2
]

= (∆̃4)(max)
[
16R12ξ12(1−R12ξ12)R23ξ23(1−R23ξ23)

− 4
(
ỹ−1(R13ξ13 −R23ξ23 +R12ξ12R23ξ23)− ỹR12ξ12(1−R23ξ23)

)2
]
(2.27)

With ξ̃ij ≡ m2
ij/(m̃

2
ij)

(max) = Rijξij and Rij ≡ (m2
ij)

(max)/(m̃2
ij)

(max).

If the signal events are contained inside the hypothetical phase space, ∆̃4 must be

positive for all events. Therefore, as special cases, all four special points we mentioned

about should also carry positive ∆̃4:

• (0, 0, 0):

∆̃4(0, 0, 0) = 0 (2.28)

• (1, y2, 0):

∆̃4(1, y2, 0) = −4(∆̃4)(max)
(
ỹ−1R13y

2 − ỹR12

)2 ≥ 0 (2.29)

• (1, 0, 1):

∆̃4(1, 0, 1) = (∆̃4)(max)
[
16R12(1−R12)R23(1−R23)

− 4
(
ỹ−1(−R23 +R12R23)− ỹR12(1−R23)

)2
]

= −4(∆̃4)(max)y−2(R23(1−R12)− ỹ2R12(1−R23))2 ≥ 0

(2.30)

• (0, 1, 1):

∆̃4(0, 1, 1) = −4(∆̃4)(max)
(
ỹ−1(R13 −R23)

)2 ≥ 0 (2.31)
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To satisfy 2.29 and 2.31, the only possibility is R12(ỹ/y)2 = R13 = R23. Now to

satisfy 2.30, we must have:

R12 = 0 or R12 =
1− y2

1− ỹ2
(2.32)

The first simply says the true spectrum is totally degenerate. For the second option,

from the definition of R23:

R12 =
(m2

X1
−m2

X2
)(m2

X2
−m2

X3
)/m2

X2

(m̃2
X1
− m̃2

X2
)(m̃2

X2
− m̃2

X3
)/m̃2

X2

=
(m2

X2
−m2

X3
)/m2

X2

(m̃2
X2
− m̃2

X3
)/m̃2

X2

(2.33)

or equivalently, m2
X1
−m2

X2
= m̃2

X1
− m̃2

X2
. Combine this with the condition we have

before, we will have:

m2
X1
−m2

X2
= m̃2

X1
− m̃2

X2

m2
X2
−m2

X3
= m̃2

X2
− m̃2

X3

m2
X3
−m2

X4
= m̃2

X3
− m̃2

X4

(2.34)

In other words, the mass square gap between the true spectrum and hypothetical

spectrum is the same (or the hypothetical one is just an overall shift of the true

one.).

The condition above is merely for the four vertices to stay inside (actually, on)

the boundary of the phase space of a hypothetical spectrum. Now we consider the

boundary of the true spectrum (on which signal events lays) on which ∆4 = 0. Then

we can solve:

ξ±13 = (
√
ξ23(1− ξ12)± y

√
ξ12(1− ξ23))2 (2.35)

Setting m2
X2
− m̃2

X2
= m2

X3
− m̃2

X3
= ∆m2 since 2.34, it can be shown that:

∆̃4 = ∆m2 16(∆̃4)(max)

m4
X2
m4
X3

(m2
X2
−∆m2)(m2

X3
−∆m2)(mX2

√
ξ23(1− ξ12)±mX3

√
ξ12(1− ξ23))2

(2.36)

Therefore, as long as ∆m2 is positive, the boundary of the true spectrum will be

located entirely inside the hypothetical one.

In summary, for the physical phase space of a hypothetical mass spectrum to

contain all the signal events of a true spectrum, we must have:

m2
X1
− m̃2

X1
= m2

X2
− m̃2

X2
= m2

X3
− m̃2

X3
= m2

X4
− m̃2

X4
= ∆m2 ≥ 0 (2.37)
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2.3.1.3 Phase Space density distribution

For a quantitative derivation, note that in this particular case, it is equivalent to set

the matrix element square in 2.7 as:

| M |2= µ2
X1X21

µ2
X2X32

| m2
X2
− (p2 + p3 + pX4)

2 + imX2ΓX2 |2
µ2
X3X43

| m2
X3
− (p3 + pX4)

2 + imX3ΓX3 |2
(2.38)

With narrow width approximation, we have

1

| m2
X2
− (p2 + p3 + pX4)

2 + imX2ΓX2 |2
≈δ(m2

23 +m2
24 +m2

34 −K)
π

mX2ΓX2

(2.39)

1

| m2
X3
− (p3 + pX4)

2 + imX3ΓX3 |2
≈δ(m2

34 −mX3)
π

mX3ΓX3

(2.40)

where K = m2
X2

+m2
2 +m2

3 +m2
4. Therefore, applying 2.11, we get

ΓX1 =
µ2
X1X21

16π

λ1/2(mX1 ,mX2 , 0)

m2
X1

=
µ2
X1X21

16π

m2
X1
−m2

X2

m3
X1

(2.41)

and

ΓX2 =
µ2
X2X32

16π

λ1/2(mX2 ,mX3 , 0)

m2
X2

=
µ2
X2X32

16π

m2
X2
−m2

X3

m3
X2

(2.42)

and

ΓX3 =
µ2
X3X43

16π

λ1/2(mX3 ,mX4 , 0)

m2
X3

=
µ2
X3X43

16π

m3
X3
−m2

X4

m3
X3

(2.43)

Therefore

| M |2≈ ΓX1(4π)6(1−m2
X2
/m2

X1
)−1(1−m2

X3
/m2

X2
)−1(1−m2

X4
/m2

X3
)−1 (2.44)

Combining everything together, and integrating out m2
14, m2

24, and m2
34, we get:

dΓX1

ΓX1

=
1

4πm2
X1

(1−m2
X2
/m2

X1
)−1(1−m2

X3
/m2

X2
)−1(1−m2

X4
/m2

X3
)−1 Θ(∆4)√

∆4

dm2
12dm

2
13dm

2
23

(2.45)

Plugging back into 2.45, and applying the definition of phase space distribution,

we get

dPDF(2+2+2) =
mX2mX3

4π

√
∆

(max)
4

Θ(∆4)√
∆4

dm2
12dm

2
13dm

2
23 (2.46)
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2.3.2 ∆4 and its properties

Recall that the boundary of the phase space is determined by ∆4 = 0

2.3.2.1 ∆4 distribution of signal

Now we will derive the ∆4 distribution of the signal events. Starting from 2.46:

dPDF(2+2+2)(m
2
12,m

2
13,m

2
23) =

mX2mX3

32π

√
∆

(max)
4

Θ(∆4)√
∆4

dm2
12dm

2
13dm

2
23 (2.46)

With

∆4 = ∆max
4

[
16ξ12(1− ξ12)ξ23(1− ξ23)−4

(mX2

mX3

(ξ13− ξ23 + ξ12ξ23)−mX3

mX2

ξ12(1− ξ23)
)2
]

(2.25)

Defining q ≡ ∆4/∆
max
4 and changing m2

ij into ξ2
ij, we can substitute dξ2

13 with d∆4:

dPDF(2+2+2)(ξ12, ξ23, q) =
mX2mX3(m

2
12)(max)(m2

13)(max)(m2
23)(max)

32π∆
(max)
4

Θ(q)√
q
J dξ12dξ23dq

(2.47)

where the prefactor is:

mX2mX3(m
2
12)(max)(m2

13)(max)(m2
23)(max)

32π∆
(max)
4

(2.48)

=
mX2mX3(m

2
X1
−m2

X2
)2(m2

X2
−mX3)

2(m2
X3
−mX4)

2/m2
X2
m4
X3

32π(m2
X1
−m2

X2
)2(m2

X2
−mX3)

2(m2
X3
−mX4)

2/64m2
X2
m2
X3

(2.49)

=
2mX2

πmX3

(2.50)

with J the Jacobian:

mX3

mX2

1

2
√

16ξ12(1− ξ12)ξ23(1− ξ23)− q
(2.51)

where we have combined two solutions and sum them up. Note that only J depends

on ξ12 and ξ23, which are going to be integrated out. Therefore, it is sufficient to

consider the integral of J only.
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Now do the integration over ξ12. To stay inside the samosa, we must have 16ξ12(1−
ξ12)ξ23(1− ξ23)− q ≥ 0 the upper limit and lower limit are

1

2

[
1±

√
1− q

4ξ23(1− ξ23)

]
(2.52)

and the result is
πmX3

8mX2

√
ξ23(1− ξ23)

(2.53)

Now do the integral for ξ23. Still, we have to let 4ξ23(1− ξ23)− q ≥ 0. So the limits

are
1

2

[
1±

√
1− q

]
(2.54)

and the result is
πmX3 cos−1(

√
q)

4mX2

(2.55)

Putting other factors together, we get:

dPDF2+2+2(q) =
cos−1(

√
q)

2
√
q

(2.56)

2.3.2.2 ∆4 contours

From the previous section, it is easy to get the volume enclosed by fixed ∆4 > 0:

V =

∫
dm2

12dm
2
13dm

2
23

=

∫
(m2

12)(max)(m2
13)(max)(m2

23)(max)dξ12dξ13dξ23

=
(m2

X1
−m2

X2
)2(m2

X2
−m2

X3
)2(m2

X3
−m2

X4
)2

m3
X2
m4
X3

∫
J dξ12dξ23dq

=
(m2

X1
−m2

X2
)2(m2

X2
−m2

X3
)2(m2

X3
−m2

X4
)2

m3
X2
m4
X3

∫
πmX3 cos−1√q

4mX2

dq

=

∫
π(m2

X1
−m2

X2
)2(m2

X2
−m2

X3
)2(m2

X3
−m2

X4
)2

4m3
X2
m3
X3

cos−1(
√
q)dq

=
16π∆max

4

mX2mX3

∫
cos−1√q dq

(2.57)

Therefore, for the volume inside the contour q, we have

V =
16π∆max

4

mX2mX3

1

2

[√
q − q2 + (1− 2q) cos−1√q

]
(2.58)
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Chapter Three: Identifying Phase Space

Boundaries with Voronoi Tessellations1

3.1 Introduction

Voronoi tessellations [7] are useful in a wide variety of fields, from biology [8] to

astronomy [9, 10] to condensed matter physics [11]. In high energy physics, they

have been used rather sporadically, e.g., as an optional approach to QCD jet-finding

and area determination in FastJet [12] and in the model-independent definition of

search regions in SLEUTH [13, 14, 15, 16]. In Ref. [17], some of us pointed out that

Voronoi methods can be applied directly to the analysis of data from high energy

physics experiments, e.g., when trying to detect the presence of a new physics signal

in the data or to perform parameter measurements.

In most Voronoi-based approaches, the goal is to use Voronoi tessellations to

identify “neighbors” of data points. The tessellation then automatically provides a

number of cell-based attributes for each data point. Ref. [17] argued that using the

geometric properties of Voronoi cells, and, in particular, functions of the geometric

properties of Voronoi cells and their neighbors, gives valuable additional information

and can allow for relatively model-independent searches for targeted “features” in the

data. As briefly discussed in Ref. [17], a particularly useful application is the study

of kinematic edges when investigating cascade decays in new physics models such as

supersymmetry (SUSY) [18].

To understand the importance of edge-finding in multidimensional spaces for

SUSY mass measurement, we first note that many extensions of the standard model

(SM) are characterized by a Z2 symmetry under which new physics particles (NPPs)

are charged but the SM particles are uncharged. Such a symmetry ensures that the

lightest NPP will be stable and hence may constitute the dark matter. With the

assumption of such a symmetry, a typical collider event involving NPPs proceeds as

1Previously published as D. Debnath, J. S. Gainer, C. Kilic, D. Kim, K. T. Matchev, Y.-P.
Yang,”Identifying Phase Space Boundaries with Voronoi Tessellations” on The European Physical
Journal C76 645. Y.-P. Yang analyzed the variable strength analysis and derived the analytic
distribution of ∆4/∆4,max.
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follows:

1. NPPs are pair produced.

2. Each NPP goes through a series of (generally two and three-body) decays called

a “decay chain”. In each decay, an NPP decays to another, lighter, NPP, and

one or more SM particles. The NPPs generally have a small intrinsic width

compared with their mass. Hence it is generally a good approximation to view

the decay chain as consisting of a series of on-shell decays of NPPs.

3. Eventually the lightest particle charged under the Z2 is reached. It is stable,

and, if a dark matter candidate, uncharged and uncolored. Hence it will escape

the detector without being detected.

Popular new physics models within this paradigm include SUSY, where the Z2 sym-

metry is called “R-parity”; Universal Extra Dimensions (UED) [19], in which the Z2

symmetry is called “KK-parity”; and Little Higgs models, in which the Z2 symmetry

is called “T -parity” [20].

As the lightest NPP escapes detection, we are not able to determine directly the

masses of the initial new physics particles produced in the collision, nor the masses of

any intermediate particles in the decay, as we would if we were studying a resonance

decaying to visible particles. However, we can determine the masses of the NPPs by

studying the distributions of (functions of) the momenta of observed particles [21].

Much effort has gone into determining the best way to actually perform this mass

measurement. The simplest methods involve finding an edge or an endpoint in the

one-dimensional distribution of the invariant mass of two (or more) reconstructed

objects2 [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. If one is able to measure

enough of these kinematic endpoints, it is then possible to solve for the unknown

masses, possibly up to discrete ambiguities [35, 36, 37]. This approach naturally

evolved into the so-called “polynomial method” [38, 39, 40, 41, 42, 43, 44, 45, 46,

47, 48, 49, 50, 51, 52], where one attempts to solve explicitly for the momenta of the

invisible particles in a given event, possibly using additional information from prior

measurements of kinematic invariant mass endpoints. Since at hadron colliders the

longitudinal momenta of the initial state partons are unknown, much effort went into

2From a theorist’s point of view, those represent Standard Model (SM) particles visible in the
detector.
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Figure 3.1: Decay process of a heavy resonance X1 into three visible particles, v1, v2

and v3, along with an invisible particle, X4, via two on-shell intermediate states, X2

and X3. The NPPs, Xi, are denoted by red dashed lines while visible SM particles
are denoted by black solid lines.

the development of suitable “transverse variables” [171, 53, 54, 55, 56, 57, 58, 59, 60,

61, 62, 63, 64, 65, 66, 67], which are Lorentz-invariant under longitudinal boosts3.

In principle, the optimal approach to mass measurement is provided by the so-called

“Matrix Element Method” (MEM), [72, 73, 74, 75, 76, 77, 78, 79]. However, its

use is often computationally prohibitive, especially when dealing with complicated

final states and/or large reducible backgrounds. Many of the approaches described

above have been extended in various ways, e.g., the MT2 kink method allows the

measurement of the mass of the lightest NPP [80, 81, 82, 83, 84, 85, 86, 87], and

useful 3 + 1-dimensional analogues of the “transverse” invariant mass variables have

been suggested [88, 89, 90, 91, 92, 93, 94, 95, 96, 97].

The approach to mass measurement taken here seeks to improve on those described

in the existing literature in the following ways:

1. Instead of finding edges or endpoints in the one-dimensional distribution of a

single variable, we will attempt to determine the boundary of the signal region in

a higher-dimensional phase space. This improves on one-dimensional methods,

in increasing greatly the amount of information that can be extracted from

the data [1].4 To be specific, we shall consider the classic SUSY decay chain

of three successive two-body decays as shown in Fig. 3.1. From the measured

four-momenta, pi (i = 1, 2, 3), of the three visible particles, vi, in the decay, one

can form three two-body invariant mass combinations, mij =
√

(pi + pj)2, for

3For an alternative approach, see Refs. [68, 69, 70, 71].
4At the same time, this approach avoids the drawbacks of some of the more model-dependent,

process-specific, and computationally intensive methods, of which the MEM is perhaps the paradig-
matic example.
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i < j. Signal events will then populate the interior of a compact region, V3,

in the three-dimensional phase space, (m12,m23,m13), of invariant masses [98,

99]. The size and the shape of the two-dimensional surface boundary of V3,

which we term S2, contains the complete information about the underlying

mass spectrum, mXi(i = 1, 2, 3, 4), of the NPPs in Fig. 3.1. Therefore, we shall

focus on methods for detecting S2 directly.5 One can imagine doing this in two

ways:

• By defining a kinematic variable which takes the same (constant) value

(e.g., zero) everywhere along the phase space boundary.6 This approach

will be discussed below in section 3.3, where we review the relevant vari-

able, ∆4, introduced in Ref. [1].

• By analyzing the measured density of events in phase space and locating

the boundary, S2, directly using techniques inspired by spatial analyses

performed in other fields of science. This will be the main subject of this

paper, and will be discussed in sections 3.2.2, 3.3.2, 3.3.3, and 3.4.

2. We build on the idea of Ref. [17] that Voronoi tessellations provide a powerful

and model-independent tool for identifying edges (for a brief introduction to

Voronoi tessellations, see section 3.2.1 below). While the analysis of Ref. [17]

was limited to data in two dimensions, here we extend the procedure to the

three-dimensional case and try to delineate the region, V3, in the phase space of

the three variables, (m12,m23,m13). Before tackling a SUSY physics example in

section 3.4, we consider several analogous toy examples of increasing complexity

in sections 3.2 and 3.3. This helps develop the reader’s intuition and motivates

some of our analysis choices. Following Ref. [17], in order to select “edge”

cells in the Voronoi tessellation of the data, we consider the relative standard

deviation7 (RSD), σ̄i, of the volumes of neighboring cells, which is defined as

5One can also project the allowed three-dimensional phase space V3 onto the subspace of two
variables, say (m12,m13), and obtain a corresponding two-dimensional allowed phase space V2 whose
one-dimensional boundary S1 can be similarly used for mass measurements and disambiguation [98,
36, 37, 63]. With regards to utilizing the full amount of information contained in the data, this
approach stands midway between the traditional method of using one-dimensional distributions of
single variables and the three-dimensional approach considered here.

6Compare to the “singularity coordinate” defined in Ref. [100].
7In statistics, the RSD is also known as the coefficient of variation (CV).
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follows. Let Ni be the set of neighbors of the i-th Voronoi cell, with volumes,

{vj}, for j ∈ Ni. The RSD, σ̄i, is now defined by

σ̄i ≡
1

〈v(Ni)〉

√√√√∑
j∈Ni

(vj − 〈v(Ni)〉)2

|Ni| − 1
, (3.1)

where we have normalized by the average volume of the set of neighbors, Ni, of

the i-th cell

〈v(Ni)〉 ≡
1

|Ni|
∑
j∈Ni

vj. (3.2)

The variable defined in eq. (3.1) is a straightforward extension to three dimen-

sions of the “scaled standard deviation” of neighbor areas found to be helpful

in Ref. [17].

3. We make crucial use of the recent observation of Ref. [1] that for sufficiently

many-body final states there is an enhancement (in fact a singularity) in the

phase space density near the boundary, S2, of the allowed phase space, V3. Due

to the enhancement in the density of signal events near the boundary of phase

space, we can alternatively target the boundary points of V3 as being points in

a densely populated region. This motivates us to consider, in addition to σ̄i, a

second variable related to volume. We choose

v̄i =
vi

〈v(Ni)〉
, (3.3)

where again we normalize by the average volume (3.2) of the set of neighbors,

Ni.

In what follows, we will therefore focus on the two Voronoi-based dimensionless

variables (3.1) and (3.3). The former is motivated by the discontinuity in the density

of events at the boundary [17], while the latter is motivated by the enhancement in

the density of signal events at the boundary [1]. We will find that the judicious com-

bination of these two variables yields a significant increase in sensitivity as compared

with either variable in isolation. As a result we find that we are able to identify the

boundary, S2, of the allowed signal phase space, V3, with a high degree of accuracy,

even when the ratio of signal to background events, S/B, is relatively small.
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To support these conclusions, as well as to explain in detail to the reader the

methods employed, we proceed as follows. In section 3.2 we will provide a brief,

but sufficient, review of Voronoi tessellation methods and the use of the geometric

properties of Voronoi cells for identifying features in high energy physics data. Sec-

tion 3.3.1 will review the consideration of events in multi-dimensional phase space,

and, especially the observation that, for sufficiently many dimensions, the differen-

tial phase space volume is highly peaked near the boundary. Then in sections 3.3.2

and 3.3.3 we study the efficacy of Voronoi methods for finding a densely populated

spherical boundary in a generalized “phase space”, while section 3.4 will examine the

application of these methods to an actual benchmark point. We present our conclu-

sions in section 3.5. Throughout our studies, we will use ROC curves to quantify the

sensitivity of the variables we define; we briefly review and discuss this approach in

Appendix A.

3.2 Voronoi Methods for Finding Boundaries

Voronoi tessellation [101] refers to the procedure, previously proposed by Dirich-

let [102] and hinted at by Descartes [103], through which an n-volume containing a

set of Nd data points, {di}, is divided into Nd non-overlapping regions, {Ri}, such

that di ∈ Ri, ∀i. The boundaries of Ri are chosen such that, for every point in some

region Rj, the corresponding data point, dj, is the nearest data point.

For applications in high energy physics, we consider the data points to be events

in a suitably chosen phase space8. It is important to make a judicious choice of phase

space — on the one hand, it should be of low enough dimensionality to keep the

problem tractable in practice, yet the dimensional reduction should not result in the

loss of any useful information, e.g., the washing out of interesting features in the

underlying phase space distributions. Consider, as an example, the decay chain of

Fig. 3.1. In general, the inclusive production of the X1 resonance will be described

by a 9-dimensional phase space, consisting, e.g., of the nine momentum components

of the visible particles, vi. However, three of those degrees of freedom correspond

8Here we are following a slightly confusing (but standard) usage and using the term “phase
space” to refer to the space of n-tuple values of n observables used to categorize events. This set
of observables may not be sufficient to totally specify the kinematics of the event. In section 3.3,
“phase space” will have a more precise meaning.
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Figure 3.2: Nevents = 280 events distributed according to (3.4) with ρ = 6 and the
respective Voronoi tessellation. The shaded cells are those crossed by the boundary
(vertical yellow line) and are defined to be the “edge cells”.

to uninteresting Lorentz boosts of X1, another three degrees of freedom are angular

variables which are sensitive to spins but not the Xi mass spectrum, leaving only

the three degrees of freedom relevant to a mass measurement. As already mentioned

in the introduction, we can take these three degrees of freedom to be the invariant

mass quantities (m12,m23,m13). We shall present the results from our analysis of this

physics example in section 3.4, but we first begin with a few toy studies.

3.2.1 Voronoi tessellations in two dimensions

In order to make contact with Ref. [17] and to introduce our notation, we begin by

studying several simplified scenarios in two dimensions. In the next section, (3.2.2),

we will generalize the approaches taken and the lessons learned here to the case of

three dimensions.

3.2.1.1 A linear boundary in two dimensions

In Fig. 3.2, we consider the unit square in the first quadrant (x ≥ 0, y ≥ 0) and

simulate Nevents = 280 events (data points) according to the probability distribution

f(x, y) =
2

1 + ρ
[ρH(0.5− x) +H(x− 0.5)] , (3.4)
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Figure 3.3: The Voronoi tessellation shown in Fig. 3.2, with cells color-coded accord-
ing to the number of neighboring polygons (upper left), normalized area (3.7) (upper
right), isoperimetric quotient (3.8) (lower left), and RSD (3.9) (lower right).

where H(x) is the Heaviside step function and ρ is a constant density ratio, taken

in Fig. 3.2 to be ρ = 6. The meaning of the distribution (3.4) is very simple: the

unit square is divided into two equal halves by the vertical boundary at x = 0.5 (the

yellow line in Fig. 3.2). Within each half, the density is constant (on average), but

the left region is denser by a factor of ρ. This setup produces an edge at x = 0.5,

where the density changes by a factor of ρ. Our goal will be to detect this edge by

tagging the Voronoi cells that are crossed by the boundary line — such cells from

now on will be referred to as “edge cells” and in Fig. 3.2 they are shaded in brown.

The remaining Voronoi cells away from the edge will be referred to as “bulk” cells,

and in Fig. 3.2 they are left white.

The basic idea put forth in Ref. [17] was to study the resulting Voronoi tessellation

and identify edge cells from their geometric properties (as well as from the geometric
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Figure 3.4: Unit-normalized distributions of the four Voronoi cell properties depicted
in Fig. 3.3. Blue dotted (red solid) histograms refer to bulk (edge) cells. In order to
increase the statistics, we show results from Nexp = 1000 pseudo-experiments with
Nevents = 280 each.

properties of neighboring cells within the immediate vicinity). The Voronoi cells in

two dimensions are planar polygons, for which one can investigate the usual geometric

properties like number of sides, area, perimeter, etc. Fig. 3.3 shows four possibilities,

where the Voronoi cells are color-coded according to the value of the corresponding

geometric quantity. Then, in Fig. 3.4, we plot the probability distributions for these

geometric quantities separately for the edge cells (red solid lines) and the bulk cells

(blue dotted lines). As can be seen in Fig. 3.2, the edge cells, by construction,

represent a very small fraction of the total number of Voronoi cells in the tessellation.

Thus, in order to increase the statistical precision of the distributions in Fig. 3.4, we

generated Nexp = 1000 pseudo-experiments analogous to the one shown in Fig. 3.2.

In the upper left panels of Figs. 3.3 and 3.4, we study the number of elements,

|Ni|, in the set of neighbors, Ni. This is equivalent to the number of sides of the i-th
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Voronoi polygon. This variable has been studied in the literature [104]: for example,

it is known that the Voronoi polygons most commonly have 5 or 6 sides, which is

confirmed in Figs. 3.3 and 3.4. There is also a long tail of polygons with many sides,

which is conjectured to behave asymptotically as |Ni|−2|Ni| [105]. Indeed, Fig. 3.2

contains an example of a polygon with as many as 12 sides! The upper left panel of

Fig. 3.4 demonstrates that, as expected, the |Ni| distributions for bulk and edge cells

are rather similar, and are thus not suitable for tagging edge cells [17].

The upper right panels of Figs. 3.3 and 3.4 illustrate a different geometric quantity

related to the areas, ai (i = 1, 2, . . . , Nevents), of the Voronoi cells. The areas of the

Voronoi polygons are meaningful because they provide an estimate of the value of the

underlying distribution f(x, y) (3.4) at the corresponding data point (xi, yi):

f(xi, yi) ≈
1

Nevents × ai
, (3.5)

so that f(x, y) is still unit-normalized:

Nevents∑
i=1

f(xi, yi)× ai =
1

Nevents

Nevents∑
i=1

ai
ai

= 1. (3.6)

In Figs. 3.3 and 3.4 we choose to normalize the cell areas not locally as in (3.3), but

by the expected average area in the dense region. Thus, a typical bulk cell to the left

of the vertical boundary has normalized area of approximately 1, while a typical bulk

cell to the right of the boundary has a normalized area of approximately ρ = 6. Note

that while we fix the total number of events, Nevents, the fraction which ends up on one

side of the boundary varies — for example, in the single pseudo-experiment depicted

in Figs. 3.2 and 3.3, there happen to be 243 events on the left side and 37 events on

the right side (to be compared with the expectation of ρNevents/(ρ+ 1) = 240 events

on the left side and Nevents/(ρ + 1) = 40 events on the right side). If the total area

is A =
∑

i ai, the expected average size of a bulk cell in the dense region on the left

is given by A(ρ+ 1)/(2ρNevents), hence in the upper right panels of Figs. 3.3 and 3.4

we plot the cell areas, ai, normalized as

āi =
2ρNevents

ρ+ 1

ai
A
. (3.7)

The distribution of the Voronoi cell areas when the points have been randomly se-

lected (in a “Poisson process”) is not known analytically, and is typically approxi-

mated with a three-parameter generalized gamma function, where the parameters are
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fitted to results from Monte Carlo simulations [106]. For our purposes, we are not

interested in the form of the actual distributions but in the question of whether the

distributions for bulk and edge cells show any appreciable differences. As seen in the

upper right panel of Fig. 3.4, the area distribution for bulk cells is nearly bimodal;

with the normalization (3.7) two peaks are expected near āi ∼ 1 and āi ∼ ρ = 69.

The area distribution for edge cells, on the other hand, is unimodal, peaking relatively

close to āi ∼ 1. After all, we expect a larger fraction, namely ρ/(ρ + 1) of the edge

cells, to have their centers on the “dense” side of the boundary and only 1/(ρ + 1)

of the edge cells to have their centers on the “sparse” side of the boundary. A close

inspection of Fig. 3.2 confirms this expectation: out of the 21 edge cells, 18 (3) have

their centers to the left (to the right) of the vertical boundary, which is consistent

with our expectations for ρ = 6. In conclusion, it is clear that in this case, the

Voronoi cell area by itself is not a very good candidate for an edge-tagging variable

[17]. We expect that in the more general situation, where the densities on each side

of the boundary are not uniform, this variable will be even more unsuitable.

Having investigated a variable describing the size of the Voronoi polygon, we now

examine a variable characterizing the shape of the polygon, e.g., the isoperimetric

quotient

qi ≡
4πai
p2
i

, (3.8)

where ai is the area and pi is the perimeter of the i-th Voronoi polygon. The variable

(3.8) is a measure of “roundedness” — it is equal to zero for infinitely thin (pencil-

like) polygons, and is equal to 1 in the limit of a perfectly symmetric polygon with

infinitely many sides (i.e., a circle). The corresponding results for the isoperimetric

quotient are shown in the lower left panels of Figs. 3.3 and 3.4. We observe that the

edge cells tend to be slightly more “squashed”, but the difference is very minor and

not useful in practice.

In a similar vein, one could continue to study other geometric characteristics of

a single Voronoi cell, e.g., perimeter, average side length, etc. [107], but, similarly,

this is unlikely to lead to any success in identifying edge cells. The reason is that

we are trying to detect a discontinuity and therefore we need to study the relative

properties of cells on both sides of the boundary. One possibility is to compute a

9As there are ρ times fewer cells in the low density region, the corresponding peak is ρ times
smaller and hence appears to be more of a shoulder than a true peak in the upper right panel of
Fig. 3.4. The same considerations hold for the analogous plot in Fig. 3.7.
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derivative quantity, e.g., the gradient at each cell location [17]. Another option is to

compare the spread in the areas of the neighboring cells, e.g., by computing the RSD,

σ̄i, of the areas of the cells in Ni (the set of neighbors of the i-th Voronoi polygon)

in analogy to (3.1) [17]:

σ̄i ≡
1

〈a(Ni)〉

√√√√∑
j∈Ni

(aj − 〈a(Ni)〉)2

|Ni| − 1
, (3.9)

where the normalization now is done by the average area of the neighbors

〈a(Ni)〉 ≡
1

|Ni|
∑
j∈Ni

aj. (3.10)

The idea is very simple — the neighbors of edge cells are typically quite diverse —

some happen to be on the dense side and are therefore relatively small, while others

are on the sparse side and are relatively large. As a result, the RSD of neighbor

areas for edge cells is expected to be enhanced. On the other hand, for bulk cells,

all neighbors are roughly similar, and the RSD of their areas should be small. These

expectations are confirmed in the lower right panels of Figs. 3.3 and 3.4. In the

temperature plot of Fig. 3.3, the edge cells are clearly distinguished by the different

color, and the σ̄i distributions for bulk and edge cells in Fig. 3.4 are visibly displaced

from each other. We see that, in agreement with the conclusions from Ref. [17], the

RSD, σ̄i, is a promising variable for edge detection10.

3.2.1.2 A circular boundary in two dimensions

Before concluding our discussion in two dimensions, we perform one more toy exercise.

In the example of the previous section 3.2.1.1, the boundary was a straight line; in

a more realistic situation we will encounter a boundary which is an arbitrary curved

line. In anticipation of the physics example discussed in section 3.4, we now consider

a two-dimensional example with a curved boundary in the shape of a circle. Instead of

the rectangular pattern given by (3.4), we consider the radially symmetric distribution

f(~r) ∼ ρH(1− r) +H(r − 1)H(
√

2− r), (3.11)
10Ref. [17] also considered a few other variables related to derivatives — the magnitude of the

gradient at each data point, the correlation between the directions of the gradients computed at two
neighboring cells, the scalar product of the gradients at two neighboring cells, etc. The conclusion,
drawn on the basis of ROC curves (see below appendix A) was that the RSD variable, σ̄i, was
optimal among all those choices.
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Figure 3.5: The analogue of Fig. 3.2 (left panel) and the analogue of the lower right
panel in Fig. 3.3 (right panel), for the radially symmetric distribution (3.11). In order
to keep the statistics the same as in Figs. 3.2 and 3.3 we place Nevents = 280 events
inside the dashed circle with radius r =

√
2.

where ~r = (x, y) is the position vector in 2 dimensions and r ≡ |~r| is its magnitude. As

in (3.4), the distribution (3.11) describes two regions, the inner region is a unit circle,

while the outer region is a hollow disk extending up to r =
√

2 (the circular dashed

line in Fig. 3.5). The regions are separated by a circular boundary at r = 1, marked

with the solid yellow curve in Fig. 3.5. Similarly to the example from section 3.2.1.1,

the two regions have equal areas, each region has a constant density, and one region

is ρ times denser than the other, see Fig. 3.5. Just as in section 3.2.1.1, we choose

ρ = 6 and generate Nevents = 280 events according to (3.11); they are distributed so

that the ratio of the bulk events on the two sides of the boundary is equal to ρ. Thus,

out of the Nevents = 280 events inside the dashed circle with r =
√

2, on average we

will have ρNevents/(ρ + 1) = 240 events in the dense interior region (the unit circle)

and Nevents/(ρ+ 1) = 40 events within the sparse exterior hollow disk.11

In the left panel of Fig. 3.5, the brown-shaded polygons are by definition the edge

cells (those crossed by the yellow circular boundary). The right panel in Fig. 3.5

demonstrates that, once again, the edge cells can be effectively selected by the RSD,

σ̄i, of the areas of the neighboring cells.

11Since our plots are rectangular, in Fig. 3.5 we have extended the exterior region beyond r =
√

2,
populating the additional real estate with the same density as the hollow disk. This was done to
avoid spurious, but visually distracting empty areas on the plots.
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3.2.2 Voronoi tessellations in three dimensions

Since the relevant physics example we treat in section 3.4 is in a three-dimensional

phase space, (m12,m23,m13), we shall now generalize our previous discussion to three

dimensions. For this purpose, we consider the three-dimensional analogue of (3.11):

f(~R) ∼ ρH(1−R) +H(R− 1)H(
3
√

2−R), (3.12)

where now ~R = (x, y, z) is the position vector in three dimensions and R ≡ |~R|. The

distribution, (3.12), again describes two regions of constant density, except now the

dense region is a three-dimensional spherical core of radius 1. Again, we choose ρ = 6

and generate Nevents = 4200 events according to (3.12). The events populate a ball

of radius R = 3
√

2 centered at the origin, (x, y, z) = (0, 0, 0). On average, we expect

to have ρNevents/(ρ + 1) = 3600 events in the core and Nevents/(ρ + 1) = 600 events

in the outer hollow spherical shell (1 ≤ R ≤ 3
√

2).12

Figs. 3.6 and 3.7 illustrate this three-dimensional simplified scenario in analogy

to Figs. 3.3 and 3.4. Since the Voronoi cells in three dimensions are polyhedra, it

is difficult to visualize them on a planar plot. Thus, Fig. 3.6 shows only a slice

at a fixed z = 0, i.e., an equatorial plane view. The cell boundaries seen in the

figure are the intersections of the equatorial plane with the walls of the Voronoi

polyhedra. The interiors of those cells are color-coded according to the value of

the geometric property (number of faces, volume, etc.) of the corresponding three-

dimensional polyhedron13. For example, the upper left panel in Fig. 3.6 shows that the

Voronoi polyhedra typically have a relatively large number of faces (or equivalently,

neighbors); the corresponding distribution for bulk cells, shown in the upper left

panel in Fig. 3.7, is known to peak at 15 [108]. We also observe that the edge cells

are very similar in that regard, i.e., there is no appreciable difference in the number

of neighbors as we move across the boundary.

In the upper right panels of Figs. 3.6 and 3.7 we show the corresponding result

for the normalized volumes, v̄i, of the Voronoi polyhedra, where, in analogy to (3.7),

we scale each volume, vi, by the expected average volume in the dense core, 4
3
π(ρ +

12Once again, to avoid misleading voids on the plots, we extend the exterior region beyond
R = 3

√
2, populating this outer region with points having the same density as the hollow sphere.

13We caution the reader that the color bars in Fig. 3.6 refer to the three-dimensional Voronoi
polyhedra and not the polygons seen in the plots — the latter result from the intersection with the
equatorial plane, and, in general, have different properties.
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Figure 3.6: Two-dimensional slices at z = 0 through phase space for the three-
dimensional toy example studied in section 3.2.2. We distribute Nevents = 4200 points
according to the three-dimensional probability distribution (3.12) within a sphere of
radius 3

√
2 centered at the origin (x, y, z) = (0, 0, 0). The Voronoi tessellation is done

before taking the two-dimensional slice, i.e., the cell boundaries seen on these four
plots are obtained by intersecting the three-dimensional Voronoi cell boundaries with
the plane at z = 0. The yellow circle marks the boundary of the dense core. The
resulting cells in the two-dimensional slice are color coded by a certain attribute of
the corresponding three-dimensional Voronoi cell: number of neighbors (upper left);
normalized volume (upper right); isoperimetric ratio (3.13) (lower left), and RSD of
the neighboring volumes (3.1) (lower right).

1)/(ρNevents). As expected, the distribution for bulk cells is bimodal, while edge

cells behave somewhat similarly to the interior bulk cells (as we already saw in the

two-dimensional example of section 3.2.1.1).

In the lower left panels of Figs. 3.6 and 3.7 we plot the analogous “isoperimetric
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Figure 3.7: The same as Fig. 3.4, but for the three-dimensional toy example depicted
in Fig. 3.6. Edge cells are defined to be those Voronoi cells which are crossed by the
boundary of the unit sphere (r = 1).

quotient” for the three-dimensional case,

Qi ≡
6
√
π vi

s
3/2
i

, (3.13)

where vi (si) is the volume (surface area) of the Voronoi polyhedron and the normal-

ization is chosen so that Qi = 1 for a perfect sphere. Figs. 3.6 and 3.7 show that the

shapes of the Voronoi polyhedra, as measured by (3.13), are very similar in the two

bulk regions and not much different near the boundary either.

This leaves us with the RSD, σ̄i, of the volumes for the set of neighbors, Ni.

This quantity was already defined in (3.1) and our results are shown in the lower

right panels of Figs. 3.6 and 3.7. We see that σ̄i can efficiently identify edge cells; the

circular boundary is clearly seen in the lower right plot of Fig. 3.6. The σ̄i distributions

for bulk and edge cells are quite distinct, as shown in Fig. 3.7. Thus we verify that σ̄i
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remains a promising variable for edge detection beyond the two-dimensional examples

studied in Ref. [17].

3.3 Phase Space Considerations

While two and three-body phase space is discussed at length in most standard lec-

tures and textbooks on quantum field theory, a Lorentz-invariant formulation of the

general case with an arbitrary number of final state particles is often omitted. This

is in part because processes with more than three final state particles can, in almost

all circumstances, be analyzed as a sequence of on-shell production and decay stages

and in part because the level of formalism required to describe the general case is

significantly more involved. Nevertheless, as was shown in Ref. [1], even when a cas-

cade decay proceeds through multiple on-shell stages, treating the phase space in its

fully-differential form captures important correlations that cannot be inferred from

more traditional one-dimensional observables such as kinematic edges and endpoints.

In this context, we briefly review the geometry of four-body phase space,14 concen-

trating on the equation describing the boundary of the kinematically available region

and on the differential volume element. In section 3.3.2, we shall apply kinematic

features obtained from the phase space considerations in section 3.3.1 to our uniform

sphere example from section 3.2.2 and use the resulting toy example to study our

Voronoi methods for three-dimensional data.

3.3.1 Review of the four-body phase space of a cascade

decay

Let us consider the process where a heavy resonance, X, decays into four particles.

We first focus on presenting the form of four-body phase space in full generality

and will further specialize to the case where the decay proceeds via three-step two-

body cascade decays as in Fig. 3.1. Following the argument in Ref. [6], we begin by

introducing a 4× 4 matrix defined as

Z = {zij} with zij = pi · pj , (3.14)

14The description of more than four-body phase space can be given in a very similar fashion
although there are additional subtleties due to non-linear constraints. We refer the interested reader
to Ref. [6].
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where the {pi} denote four momenta of final state particles, including the NPP X4.15

We then define the characteristic polynomial of Z as

det [λI4×4 −Z] ≡ λ4 −
(

4∑
i=1

∆iλ
4−i
)

= 0, (3.15)

where λ represents the relevant eigenvalues and the ∆i identify the coefficients of

the above polynomial. Specifically, one finds that ∆1 = Tr[Z] =
∑4

i=1m
2
i and ∆4 =

− det [Z]. It turns out that the kinematically allowed region is given by ∆1,2,3,4 > 0 [6];

the boundary of this region is formed by

∆4 = 0, ∆1,2,3 > 0 . (3.16)

What makes four-body (and higher) phase space particularly interesting is the

form of the volume element. In terms of m2
ij = (pi + pj)

2 = 2zij + m2
i + m2

j , the

four-body phase space, Π4, can be written as

dΠ4 =

(∏
i<j

dm2
ij

)
8

(4π)10M2
X∆

1/2
4

δ

(∑
i<j

m2
ij −

(
M2

X + 2
4∑
i=1

m2
i

))
, (3.17)

where the normalization has been chosen to reproduce the PDG convention [109] for

the well-known expression with non-Lorentz invariant quantities

dΠ4 = δ

(
pX −

4∑
i=1

pi

)
4∏
i=1

d3pi
(2π)32Ei

. (3.18)

We remark that dΠ4 is inversely proportional to ∆4, and, given the fact that ∆4 = 0

defines the kinematic boundary, as in (3.16), the phase space has a singular structure

near ∆4 = 0. While being an integrable singularity, this implies that events are

more likely to be populated close to the boundary rather than far away from it. This

observation is ideal for mass measurements which ultimately rely on the determination

of this phase space boundary.

Given the generic formalism for the phase space with four particles in the final

state, we now specialize to the case where the decay proceeds through the three

consecutive two-body decays shown in Fig. 3.1. The Xi’s are NPPs represented by

red dashed lines, while the vi’s are SM particles represented by black solid lines. For

15Note that in this section, Latin indices refer to the final state particles and not data points
(Voronoi cells).
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simplicity, we assume that all SM particles are mass less unless specified otherwise.

X1,2,3 are assumed to be narrow resonances, while X4 is collider-stable and invisible.

We point out that the presence of the intermediate particles does not affect the

enhancement near the boundary of phase space discussed above. Within the narrow

width approximation, each internal propagator squared can be replaced by a delta

function, whose argument is linear in the zij or, equivalently, in the m2
ij variables.

Therefore, integrating over those delta functions does not introduce any non-trivial

Jacobian factors which would ruin the enhancement.

To quantify the enhancement near the boundary for this event topology, we derive

the analytic form of the ∆4 probability distribution and show that it is completely

independent of mXi for the massless limit, i.e., mvi = 0. We start by writing ∆4

in terms of the experimental observables m2
vivj

which are denoted by m2
12, m2

13, and

m2
23. These dimensionful variables can be traded for dimensionless, unit-normalized

variables ξij as

m2
ij ≡ ξijm

2
ij,max, (3.19)

where 0 ≤ ξij ≤ 1 and the maximal values, m2
ij,max, are given by the well-known

kinematic endpoint formulae (see, e.g., [24]):

m2
12,max =

(m2
X1
−m2

X2
)(m2

X2
−m2

X3
)

m2
X2

, (3.20)

m2
13,max =

(m2
X1
−m2

X2
)(m2

X3
−m2

X4
)

m2
X3

, (3.21)

m2
23,max =

(m2
X2
−m2

X3
)(m2

X3
−m2

X4
)

m2
X3

. (3.22)

We also trade the dimension-8 quantity ∆4 for a dimensionless and unit-normalized

quantity q defined as

∆4 ≡ q∆4,max, 0 ≤ q ≤ 1. (3.23)

Here the maximum value of ∆4 is given by

∆4,max =

(
(m2

X1
−m2

X2
)(m2

X2
−m2

X3
)(m2

X3
−m2

X4
)

8mX2mX3

)2

. (3.24)

As shown in Ref. [1], for any given set of masses, {mXi}, in this topology, the proba-
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bility of obtaining any given event near the point,
{
m2
ij

}
, is expressed as

dP =
1

4πm2
X1

(
1− m2

X2

m2
X1

)−1(
1− m2

X3

m2
X2

)−1(
1− m2

X4

m2
X3

)−1
H (∆4)√

∆4

dm2
12 dm

2
13 dm

2
23,

(3.25)

or equivalently, in terms of the dimensionless quantities, ξij and q, defined in (3.19)

and (3.23), this can be rewritten as

dP =
2

π

mX3

mX2

H (q)√
q
dξ12 dξ13 dξ23. (3.26)

Here H(x) is the usual Heaviside step function.

Obviously, the expression in eq. (3.26) diverges for q → 0, as expected from the

general discussion earlier, and has a non-zero finite value at qmax = 1. In order to

visualize the enhancement near q ∼ 0, it is useful to partition the probability density

in (3.26) into two components: a flat piece, proportional to 1, and an enhanced piece,

containing the q−1/2 singularity:

dP

dVξ
∼ 1√

qmax

+

(
1√
q
− 1√

qmax

)
= 1 +

(
1√
q
− 1

)
, (3.27)

where dVξ ≡ dξ12 dξ23 dξ13 is a shorthand notation. If events were uniformly dis-

tributed over the entire phase space in ξij, their probability density would simply

be proportional to the first (constant) term in eq. (3.27). Hence, all non-trivial ef-

fects in the phase space density distribution are due to the second term (inside the

parentheses) in (3.27).

Fig. 3.8 helps us develop some useful intuition about the probability distribu-

tion (3.27). The upper left panel shows a scatter plot of physical events in the

dimensionless ξij-space, generated according to (3.27). We used a mass spectrum

of (mX1 ,mX2 ,mX3 ,mX4) = (500, 350, 200, 100) GeV. The events populate a compact

region whose shape has been likened to that of a “samosa” [99]. Since it is difficult to

visualize the enhancement near the phase space boundary in this three-dimensional

view, in the next three panels of Fig. 3.8 we take a few slices at fixed ξ13: ξ13 = 0.25

(upper right), ξ13 = 0.5 (lower left), and ξ13 = 0.75 (lower right). For each slice at a

fixed ξ13, we show all data points whose m2
13 values fall within 0.5 GeV2 of the nominal

value for that slice, i.e., within ξ13m
2
13,max ± 0.5 GeV2. Then we project those points

onto the plane of ξ12 vs. ξ23 and divide them into two (color-coded) groups. The
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Figure 3.8: The phase space structure implied by eq. (3.25). The data points are gen-
erated with the event topology in Fig. 3.1, using a constant matrix element. The mass
spectrum is (mX1 ,mX2 ,mX3 ,mX4) = (500, 350, 200, 100) GeV. A three-dimensional
scatter plot (upper left) and three phase space slices at fixed ξ13: ξ13 = 0.25 (upper
right), ξ13 = 0.5 (lower left), and ξ13 = 0.75 (lower right). The red dot-dashed (out-
ermost) curve is the contour for ∆4 = 0, while the black dashed curves correspond
to ∆4 contours for 10%, 30%, 50%, 70%, and 90% of ∆4,max. The data points which
would have emerged via the flat component in eq. (3.27) are represented by blue “×”
symbols, whereas the data points from the remaining enhanced component ∼ 1√

q
− 1

are represented by red “+” symbols.

data points which would have emerged from the flat piece in (3.27) are denoted with

blue “×” symbols, whereas the points arising from the enhanced piece in (3.27) are
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identified by red “+” symbols. In addition, we also show several theoretical contours

of constant ∆4 values, starting with the outermost red dot-dashed curve at ∆4 = 0

(i.e., q = 0) representing the phase space boundary. The internal, black dashed

curves mark the contours for ∆4 = 0.1 ∆4,max, ∆4 = 0.3 ∆4,max, ∆4 = 0.5 ∆4,max,

∆4 = 0.7 ∆4,max, and ∆4 = 0.9 ∆4,max, respectively. Note that some of these contours

are absent from the bottom panels because the relevant hyper-surfaces, corresponding

to large ∆4 values do not intersect those slices.

Comparing the densities of red and blue data points, we get an idea about the

effect of the enhancement in the vicinity of the phase space boundary. The blue

points are more or less uniformly distributed, which is by design. In contrast, the

distribution of red points is highly irregular, and their density peaks at the phase space

boundary. For a more quantitative understanding, we derive the analytic expression

for the probability density function in q and obtain [110]

dP

dq
=

arcsin(
√

1− q)
2
√
q

. (3.28)

As previously advertised, this probability density function is completely independent

of all {mXi} and is enhanced near q ≈ 0. In other words, the fraction of events that

lie in a fixed q-interval is universal, and it is enhanced near the boundary of the phase

space region. For example, roughly 5% of events have q ≤ 10−3, i.e., less than 0.1%

of ∆4,max.

In Fig. 3.9, we plot the distribution of the q variable from (3.23), taking 20,000

events out of the same event sample as the one used for Fig. 3.8. If we define any

phase space point whose q value is less than 5% of qmax as a boundary point, we

find that ∼ 33% of the events are then categorized as boundary points. The red

histogram represents the q distribution with respect to the full data set; the black

dashed, vertical line denotes the location of 0.05 qmax. The black solid curve shows

the theoretical prediction from eq. (3.28). One can easily see that the q distribution

(red histogram) is fully consistent with the theory expectation. Indeed, the value of

q (or equivalently, ∆4) is not an experimental observable, since it requires a model

assumption (the input of a mass spectrum for Xi). What is needed then is a practical

way of tagging the boundary data points with such low values of q by some other

means; we employ Voronoi tessellations as an available tool. We Voronoi tessellate

our phase space using the full data set. If a given Voronoi cell has vertices on both
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Figure 3.9: Probability density distribution in the q variable (3.23) using the same
event sample as in Fig. 3.8. The blue shaded histogram is contributed by the boundary
data points which are tagged by the Voronoi tessellation. The black solid curve is the
theory prediction for dP/dq in eq. (3.28).

sides of the “samosa” surface defined by q = 0 (or equivalently, ∆4 = 0), then the

associated data point is tagged as a boundary point (recall the definition of “edge”

cells in Fig. 3.2). The contribution from the boundary points extracted with the

above algorithm is shown by the blue shaded histogram in Fig. 3.9, which we find

represents ∼ 38% of the events in the sample. As Fig. 3.9 demonstrates, the set of

boundary cells which can be tagged by placing a cut on q is essentially the same as

the set of boundary cells identified with the Voronoi tessellation. In what follows,

therefore, instead of using the variable q, which is experimentally inaccessible, we

shall focus on the Voronoi cells belonging to the blue-shaded histogram in Fig. 3.9

and try to develop a tagging method based on their geometric properties, since they

are experimentally observable.

3.3.2 Density-enhanced sphere boundaries

Inspired by the behavior of the phase space density near the boundary, we deform the

density of data points from the sphere example considered previously in section 3.2.2.

Performing Voronoi tessellations and studying the properties of the resulting Voronoi

cells, we can develop our insight on what is expected from physical examples. Note

that ∆4 vanishes on the phase space boundary and takes its maximum somewhere in
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Figure 3.10: The same as Fig. 3.6, but for a toy example in which the dense core
has a non-uniform distribution given by (3.30).

the bulk. In other words, the ∆4 value increases as the distance between the data

point of interest and the boundary surface increases (see also contours in Fig. 3.8).

Although specifying the value of distance does not determine the ∆4 value, it turns

out that there exists a positive correlation between the two quantities [110]. To

proceed, we make the simplifying Ansatz that the distribution of the data points

inside a unit sphere depends only on the radius, R, with an enhancement at R = 1.

Motivated by the form of the probability density in (3.26), we introduce the following

volume density function for the data points inside the unit sphere

dP

dV
∼ 1√

1−R . (3.29)

Now in analogy to (3.12), we consider the three-dimensional distribution

f(~R) ∼ ρ√
1−RH(1−R) +H(R− 1)H(

3
√

2−R). (3.30)
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Figure 3.11: The same as Fig. 3.7, but for the example shown in Fig. 3.10.

Following the example from section 3.2.2, we again take the density ratio ρ = 6

and generate Nevents = 4200 events according to (3.30). Our results are shown in

Figs. 3.10 and 3.11, which are the analogues of Figs. 3.6 and 3.7, respectively.

We see that, in principle, all four variables plotted in Fig. 3.10 show some potential

for discriminating edge cells. For example, a careful inspection of the lower left panel

of Fig. 3.10 reveals that the edge cells appear somewhat elongated, which results in a

lower isoperimetric quotient, as confirmed by the lower left panel in Fig. 3.11. On the

other hand, due to the density enhancement near the boundary, we would also expect

the edge cells to have smaller normalized volumes. This expectation is also confirmed

— in the upper right panels of Figs. 3.10 and 3.11. Finally, the lower right panels

of Figs. 3.10 and 3.11 again demonstrate that the RSD of the neighboring areas is a

good discriminator, in agreement with our observations from the earlier toy examples.

In order to compare the performance of the four variables investigated in Figs. 3.10

and 3.11, we use the concept of a ROC curve, which is reviewed in Appendix A.
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Figure 3.12: ROC curves for the toy example depicted in Fig. 3.10. Left: The four
different ROC curves resulting from each of the four variables shown in Fig. 3.11.
Right: Improved ROC curves with optimal two-dimensional cuts in the (v̄, σ̄) plane
as illustrated in Fig. 3.13: with 20×20 binning (green dot-dashed) or 100×100 binning
(dotted blue). The blue dashed line is the ROC curve based on the σ̄ variable alone
and is identical to the solid red line in the left panel.

3.3.3 Finding density-enhanced sphere boundaries with

Voronoi tessellations

We now analyze the example of a sphere with an enhanced density near the boundary

considered in section 3.3.2, in terms of ROC curves. In the left panel of Fig. 3.12, we

show the ROC curve for each of the four variables depicted in Figs. 3.10 and 3.11:

number of neighbors (magenta dotted line), normalized volume (green dashed line),

isoperimetric quotient (blue dot-dashed line) and RSD of neighbor areas (red solid

line). We observe that the RSD outperforms the other three variables, in agreement

with the conclusions from [17] for the two-dimensional case. However, the other three

variables also have a certain degree of discriminating power, as seen in Fig. 3.11. The

natural question then is how much additional sensitivity can be gained by considering

not just one, but two variables simultaneously. We studied the correlations between

the RSD, σ̄, and each of the other three variables, and generally find that they are not

perfectly correlated. (This makes sense intuitively because the RSD is computed from

the neighbor set, Ni, while the other three variables are properties of the individual

cell.) We concluded that, among the three options, the normalized volume, v̄, is the

most promising, since it appears least correlated with σ̄. Therefore, we expect that

the sensitivity will improve once we incorporate the normalized volume, v̄, in the
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Figure 3.13: Two-dimensional histograms of the expected signal to background ratio
in the (v̄, σ̄) plane: for 20× 20 bin (left) and 100× 100 bins (right). The ROC curves
in the right panel of Fig. 3.12 were built by successively cutting away the bin with
the lowest signal-to-background ratio among all remaining bins. (Alternatively, one
could start from zero and successively keep adding the bin with the highest signal-
to-background ratio among all remaining bins.)

analysis. This expectation is confirmed in the right panel of Fig. 3.12, where we show

“improved” ROC curves based on binning in both v̄ and σ̄. The procedure, illustrated

in Fig. 3.13, is as follows. We consider the (v̄, σ̄) plane divided into 20× 20 bins (left

panel of Fig. 3.13) or 100× 100 bins (right panel of Fig. 3.13). We expect the signal,

i.e., the boundary Voronoi cells, to populate the bins with small volume and relatively

large RSD, while the background, i.e., the bulk cells, are distributed more uniformly

throughout the (v̄, σ̄) plane. In order to build the optimal ROC curve, we need to

determine the signal to background ratio, S/B, in each bin, and design the cuts so

that we remove successively the bins with the smallest S/B. The bins in Fig. 3.13

are color-coded according to the corresponding value of log(S/B)16. Given the finite

statistics, there are bins which have no events (neither signal nor background); they

are left uncolored. For definiteness, the bins which have some signal events, but

no background events, are assigned the same value as the maximal log(S/B) value

among the bins containing both signal and background events. Similarly, the bins

which had some background events, but no signal events, were assigned the same

value as the minimal log(S/B) value among the bins containing both signal and

background events.

16“log” refers to the natural logarithm throughout this work.
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Fig. 3.13 shows that, as expected, the bins with the largest S/B (colored in black)

are located in the upper left corner of the plot, corresponding to small v̄ and large σ̄.

The spread in the cluster of black-colored bins is indicative of the gain in sensitivity

due to simultaneous consideration of the two variables, v̄ and σ̄. According to the

right panel of Fig. 3.12, the bulk of the gain is already obtained with a 20 × 20

grid; increasing the number of bins 25 times to a 100 × 100 grid does not lead to

substantial improvement. Therefore, in practice, one might want to consider grids

of even smaller size, especially since the true ranking of the bins in terms of S/B

depends on the parameter values, e.g., the density enhancement on the boundary

and the value of ρ, which are not known a priori. This is why when we consider the

physics example in the next section, we shall utilize a smaller grid of 15× 15 bins in

the (v̄, σ̄) plane (see Fig. 3.16).

3.4 Finding Phase Space Boundaries with

Voronoi Tessellations

We now use Voronoi tessellations to find the phase space boundary for SUSY events

at the 14 TeV LHC. We consider the 2 + 2 + 2 topology from Fig. 3.1, where, as

usual, a (left-handed) squark X1 = q̃ undergoes a cascade decay through a heavy

neutralino, X2 = χ̃0
2; a slepton, X3 = ˜̀; and a light neutralino, X4 = χ̃0

1. As in

Ref. [1], we consider the production of a squark in association with a neutralino LSP

(χ̃0
1). Events were generated with MadGraph5 [111]. The mass spectrum that we

used was mq̃ = 350 GeV, mχ̃0
2

= 300 GeV, m˜̀ = 250 GeV, and mχ̃0
1

= 200 GeV. 17

The particles visible in the detector are: a quark jet v1 = j, a “near” lepton v2 =

`n, and a “far” lepton v3 = `f . The relevant phase space is then (m12,m23,m13) ≡
(mj`n ,m``,mj`f ). For SUSY signal events, each of these three variables exhibits an

17Despite the relatively low squark mass, this study point does not seem to be ruled out by
the current LHC data. Since χ̃0

1 is mostly Bino, the cross-section for squark-neutralino associ-
ated production is suppressed by the left-handed squark hypercharge, and is only ∼ 5 fb at 8 TeV.
Furthermore, there is no dedicated search for such asymmetric event topologies (squark-LSP produc-
tion). If we nevertheless test against a standard SUSY search, e.g. a signature with a same-flavour
opposite-sign lepton pair, jets and large missing transverse momentum [112], we find a rather low
selection efficiency (. 1%) due to the softness of the visible decay products and the tendency of
the two final state neutralinos to be back to back, thus reducing the amount of missing transverses
energy.
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upper kinematic endpoint. The three endpoint values are given by eqs. (3.20-3.22):

m2
j`n,max = 9931 GeV2, (3.31)

m2
``,max = 9900 GeV2, (3.32)

m2
j`f ,max

= 11700 GeV2. (3.33)

From the three-dimensional point of view, the signal events populate the interior

of a compact region in the (mj`n ,m``,mj`f ) space, whose boundary is given by the

constraint [98, 99]

m̂2
j`f

=

[√
m̂2
``

(
1− m̂2

j`n

)
± m˜̀

mχ̃0
2

√
m̂2
j`n

(1− m̂2
``)

]2

, (3.34)

which, for convenience, is written in terms of unit-normalized variables (see also

(3.19))

m̂j`n =
mj`n

mj`n,max

, (3.35)

m̂`` =
m``

m``,max

, (3.36)

m̂j`f =
mj`f

mj`f ,max

. (3.37)

Our main goal in this section will be to test the algorithms from the previous sec-

tions for tagging the Voronoi cells in the vicinity of the boundary surface (3.34). In

addition to the signal events from squark-neutralino associated production with the

squark decaying as in Fig. 3.1, we shall also consider a representative number of back-

ground events. In order to make contact with the results from the previous sections,

in section 3.4.1 we first take the background events to be uniformly distributed in

mass-squared phase-space, and we ignore the combinatorial background. Then in

section 3.4.2 we study a more realistic case, where the SM background is comprised

of dilepton tt̄ events and we also account for the combinatorial problem with the two

leptons.
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Figure 3.14: Two-dimensional slices of the relevant three-dimensional phase space of
the SUSY-like cascade decay in Fig. 3.1. Each slice is in the (m2

``,m
2
j`n

) plane at a

fixed value of m2
j`f

= 2000 GeV2 (upper left panel); m2
j`f

= 4000 GeV2 (upper middle

panel); m2
j`f

= 6000 GeV2 (upper right panel); m2
j`f

= 8000 GeV2 (lower left panel);

m2
j`f

= 10000 GeV2 (lower middle panel); and m2
j`f

= 11000 GeV2 (lower right panel).
As in Figs. 3.6 and 3.10, the two-dimensional cells seen in the plots result from the
intersection of the projective plane with the three-dimensional Voronoi cells, and are
color-coded by the value of σ̄i for the corresponding three-dimensional Voronoi cell.

3.4.1 An example with uniform background and no

combinatorics

As in the other two three-dimensional examples considered in sections 3.2.2 and

3.3.3, in this section we include “SM physics background” events, which we take

to be uniformly distributed everywhere throughout the mass-squared phase-space

(m2
j`n
,m2

``,m
2
j`f

) and normalized so that the density contrast across the boundary

(3.34) is equal to ρ = 4. Note that in this scenario the interior “bulk” events and

the “edge” cells on the surface boundary (3.34) consist of both SUSY signal and SM

background events.

As before, we visualize the resulting Voronoi tessellation by presenting two-dimensional
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Figure 3.15: The same as Fig. 3.14, but color-coding the cells according to the
normalized volume, v̄i, defined in (3.3).

slices of the relevant three-dimensional phase space, in this case18 (m2
j`n
,m2

``,m
2
j`f

).

In Figs. 3.14 and 3.15 we show six slices in the (m2
``,m

2
j`n

) plane at a fixed value of

m2
j`f

as follows: m2
j`f

= 2000 GeV2 (upper left panel); m2
j`f

= 4000 GeV2 (upper

middle panel); m2
j`f

= 6000 GeV2 (upper right panel); m2
j`f

= 8000 GeV2 (lower left

panel); m2
j`f

= 10000 GeV2 (lower middle panel); m2
j`f

= 11000 GeV2 (lower right

panel). As in Figs. 3.6 and 3.10, the two-dimensional cells seen in the plots result

from the intersection of the projective plane with the three-dimensional Voronoi cells

and are color-coded by the value of the RSD, σ̄i, defined in (3.1) (in Fig. 3.14) or

the normalized volume v̄i defined in (3.3) (in Fig. 3.15) of the corresponding three-

dimensional Voronoi cell. Just as in the case of the density-enhanced sphere consid-

ered in section 3.3.3, Figs. 3.14 and 3.15 suggest that the edge cells near the phase

space boundary (3.34) are characterized both by a large value of σ̄i and a small value

of v̄i. Therefore, in designing a selection cut to pick up edge cells, it makes sense to

consider both of these two variables at the same time. This is illustrated in the left

panel of Fig. 3.16, which is the analogue of Fig. 3.13 for this case. We consider a

18It is known that working in terms of the squared masses is more convenient and intuitive [98, 99].
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Figure 3.16: The integer ranking of the 15× 15 bins in the (v̄, σ̄) plane according to
their signal-to-background ratio. Left: The ranking for the case of ρ = 4. Right: the
average ranking for the cases of ρ = 1.2, ρ = 1.5, ρ = 2.0, ρ = 3.0, and ρ = 4.0.

moderately large 15× 15 grid in the (v̄, σ̄) plane and rank the resulting bins accord-

ing to their signal-to-background ratio19 as follows. The bin with the highest S/B is

assigned rank 1, while the bin with the lowest S/B is assigned rank 15×15 = 225. In

case of a tie between several bins, each bin is assigned the same average rank. Finally,

bins with no events at all are ranked at the very bottom.20 We observe that, similarly

to Fig. 3.13, the highest ranked bins in terms of S/B appear at large values of σ̄ and

small values of v̄. Using the obtained bin ranking, we can build the corresponding

ROC curve, shown with the red solid line in the left panel of Fig. 3.17, which in

some sense is the “ideal” ROC curve that could be achieved, if σ̄ and v̄ were the only

discriminating variables under consideration.

One can now repeat the same procedure for different values of ρ. We show four

more examples in the left panel of Fig. 3.17, with increasingly pessimistic values for

the density contrast ρ: 3, 2, 1.5 and 1.2. As expected, the ROC curves become

progressively worse, as quantified in the figure. With regards to the bin ranking in

each case, we notice the following trend — the highest ranked bins remain at the

lowest possible values of v̄, but slide down the σ̄ axis to slightly lower values of the

19We remind the reader that for the purpose of the boundary detection analysis performed here,
“signal” refers to edge cells, while “background” refers to bulk cells. The interior bulk cells and the
edge cells arise from both SUSY signal and SM background events, while the exterior bulk cells are
only due to SM background events.

20This scheme is analogous to a college football ranking poll among 225 universities, some of
which do not have a football program.
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Figure 3.17: The same as the ROC curves shown in the right panel of Fig. 3.12, but
for a 15× 15 grid. Left: the ranking of the bins in constructing the ROC curve was
done with the correct value of ρ (shown on each curve) used in generating the “data”.
Right: the ranking of the bins was always done according to the “average” ranking
shown in the right panel of Fig. 3.16.

RSD, near, or even below σ̄ ∼ 1. This is easy to understand intuitively — as ρ

is decreased, the number densities on both sides of the surface boundary become

more similar, and there is less variation between the sizes of bulk cells on the inside

and on the outside. The fact that the bin ranking derived from our Monte Carlo

simulations depends on the value of ρ poses an important conceptual problem with

this procedure — when the analysis is performed on real data, we will not know the

actual value of ρ, and, hence, we will not be certain which particular ordering of bins

to use. Nevertheless, the fact that the highest ranked bins are clustered, more or

less, in the same location, suggests a possible resolution: we can simply average our

results obtained for several different values of ρ and use the resulting average rank

for each bin, which is shown in the right panel of Fig. 3.16. The corresponding ROC

curves derived with the help of this “average” bin ranking procedure are shown in

the right panel of Fig. 3.17. Comparing the two panels of Fig. 3.17, we see that the

ROC curves based on the average ranking are only slightly degraded compared to the

“ideal” case.

We are now ready to start designing selection cuts for the edge cells. One pos-

sibility is to select the cells which fall into the a predetermined number, Ntop bins,

of the highest ranked bins in the (v̄, σ̄) plane. If we “cheat”, i.e., use the correct

value of ρ for the ranking (as in the left panel of Fig. 3.16), we obtain the result
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Figure 3.18: The Voronoi cells which pass the two-dimensional selection cut requiring
the cell to belong to one of the top 5 bins in terms of signal-to-background ratio for
the correct choice of ρ = 4 (see the left panel in Fig. 3.16).

shown in Fig. 3.18, where we have chosen Ntop bins = 5. In general, the tagged cells

are distributed throughout the volume of the three dimensional phase space, so for

illustration purposes we again use the same six two-dimensional slices as in Figs. 3.14

and 3.15. We observe that the procedure is pretty efficient in tagging edge cells, and

occasionally we tag an isolated bulk cell. Of course, for such a low value of Ntop bins,

not all edge cells will pass the cut, which will cause the boundary contours (marked

with black dashed lines) to appear segmented and incomplete. By increasing the

value of Ntop bins, we can obviously tag more edge cells and eventually “close” those

contours, but at the cost of more mistagged bulk cells.

Since the true value of ρ will be unknown, the plots in Fig. 3.18 are for academic

purposes only. The more realistic situation is depicted in the analogous Fig. 3.19,

where we again choose Ntop bins = 5, only this time we use the average bin ranking

from the right panel of Fig. 3.16. The result in Fig. 3.19 is slightly worse than Fig. 3.18

— while we do find a higher rate for mistagging bulk cells (typically in the interior),
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Figure 3.19: The same as Fig. 3.18, but using the average ranking of the bins shown
in the right panel of Fig. 3.16.

the majority of the tagged cells are very close to the surface boundary, suggesting

that this is a promising technique for identifying edge cells.

3.4.2 A realistic example with tt̄ background and

combinatorics

We now repeat the exercise from the previous section 3.4.1 with two improvements.

First, we have to address the combinatorial problem of distinguishing the “near” and

“far” lepton. The standard approach in the literature is to trade the original variables

mj`n and mj`f for the ordered pair [24, 26, 37]

mj`(high) ≡ max
{
mj`n ,mj`f

}
, (3.38a)

mj`(low) ≡ min
{
mj`n ,mj`f

}
. (3.38b)

This reordering procedure is pictorially illustrated with the first two rows of plots

in Fig. 3.20, where we show scatter plots of signal events for different ranges of the
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third invariant mass variable (the dilepton mass): 1, 000 GeV2 ≤ m2
`` ≤ 3, 000 GeV2

(first column); 3, 000 GeV2 ≤ m2
`` ≤ 5, 000 GeV2 (second column); 5, 000 GeV2 ≤

m2
`` ≤ 7, 000 GeV2 (third column); and 7, 000 GeV2 ≤ m2

`` ≤ 9, 000 GeV2 (fourth

column). In the first row, the signal events are plotted in the original plane of

(m2
j`n
,m2

j`f
), and the points are color-coded as follows. The points below the diagonal

45◦ line, which have m2
j`n
≥ m2

j`f
, are colored in red, while the remaining points above

the diagonal 45◦ line with m2
j`n
≤ m2

j`f
, are colored in black. The same data is then

plotted in the second row of Fig. 3.20 in the plane of (m2
j`(low),m

2
j`(high)). Notice that

the effect of the reordering procedure (3.38) is to leave all the black points in place,

while interchanging the x and y coordinates of the red points21. After the reordering

(3.38), half of the plane on each plot is left blank. In order to avoid such voids, in the

third row of Fig. 3.20 we replot the data in the plane of (m2
j`(low),m

2
j`(high)−m2

j`(low)),

which is fully accessible.

As expected, the scatter plots in the third row of Fig. 3.20 exhibit boundary lines,

which we can target with our edge-detecting method. In fact, each plot has two such

boundaries where the signal number density sharply changes — one for the red points

and another for the black points. At low values of m`` the “red” (“black”) boundary

line is an external (internal) boundary, while for high values of m`` it is the other

way around. At intermediate values of m`` the two boundaries are very close to each

other and that is where we expect the edge detection method to perform best.

Having thus taken care of the combinatorial problem, we now also improve our

treatment of the background — instead of uniformly distributed background events as

in section 3.4.1, we consider dilepton events from tt̄ production. The corresponding

scatter plots are shown in the fourth (last) row of Fig. 3.20. Since there are 2 b-

jets, each background event contributes two entries to the scatter plot. We see that

within the relevant range of the plotted variables m2
j`(low) and m2

j`(high) − m2
j`(low),

the distribution of the background events is somewhat uniform, with some noticeable

clustering near the origin.

We are now in position to apply our Voronoi boundary detection algorithm. The

result is shown in Fig. 3.21, where we present nine slices at fixed values of m2
`` as

indicated at the top of each panel. The red (black) dashed line in each plot cor-

responds to the expected theoretical boundary implied by eq. (3.34) for the set of

21One can think of this operation as “origami folding” the scatter plot along the diagonal 45◦

line [36].
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Figure 3.20: Scatter plots of signal events (black and red points, top three rows)
and dilepton tt̄ events (blue points, bottom row), for different ranges of the dilep-
ton invariant mass squared: 1, 000 GeV2 ≤ m2

`` ≤ 3, 000 GeV2 (first column);
3, 000 GeV2 ≤ m2

`` ≤ 5, 000 GeV2 (second column); 5, 000 GeV2 ≤ m2
`` ≤ 7, 000 GeV2

(third column); and 7, 000 GeV2 ≤ m2
`` ≤ 9, 000 GeV2 (fourth column). In the

first row, the signal events are plotted in the plane of (m2
j`n
,m2

j`f
) and colored

red (black) if m2
j`n
≥ m2

j`f
(m2

j`n
≤ m2

j`f
). The same points are then plotted

in the planes of (m2
j`(low),m

2
j`(high)) (second row) and (m2

j`(low),m
2
j`(high) − m2

j`(low))

(third row). The background events in the fourth row are plotted in the plane of
(m2

j`(low),m
2
j`(high) −m2

j`(low)).

points with m2
j`n
≥ m2

j`f
(m2

j`n
≤ m2

j`f
) (see also the third row in Fig. 3.20). As

before, the signal and background events were normalized so that ρ = 4. Fig. 3.21
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Figure 3.21: The analogue of Fig. 3.14 for the physics example considered in sec-
tion 3.4.2. We show nine slices at fixed values of m2

`` as indicated at the top of
each panel. The red (black) dashed line in each plot corresponds to the expected
theoretical boundary implied by eq. (3.34) for the set of points with m2

j`n
≥ m2

j`f

(m2
j`n
≤ m2

j`f
) (see also the third row in Fig. 3.20).

demonstrates that the Voronoi cells with the highest values of RSD σ̄i (colored in

red or orange) are indeed found near the theoretical boundaries (the red or black

dashed lines). As anticipated, the method performs well for intermediate values of

m2
`` ∼ (4, 000−5, 000) GeV2, where the two boundaries resulting from the reordering

(3.38) tend to overlap. We also observe that the boundary closer to the origin also

seems to be singled out, especially at high values of m2
``.
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3.5 Conclusions

In this paper, we took the first steps towards developing a general method for identi-

fying surface boundaries in 3D phase space distributions from Voronoi tessellations.

In the case of a sequential cascade decay like the one exhibited in Fig. 3.1, the surface

boundary in the relevant (m12,m23,m13) space is characterized by two properties: 1)

it is the location of points where the number density is enhanced, due to the ∆
−1/2
4

factor in the phase space distribution (3.25) [1]; 2) it is the location of points where

the number density suddenly changes due to the lack of signal events outside the

kinematically allowed boundary. These two properties motivate the use of the geo-

metric variables, σ̄i and v̄i, derived from the Voronoi tessellation of the data. (For

other options, see [17].) We showed that the edge cells tend to have large values of

σ̄i and small values of v̄i, thus we advocated empirically selected cuts in terms of v̄i

and σ̄i for tagging edge cell candidates. We considered several examples of increasing

complexity and quantified the efficiency of those selection cuts using the language of

ROC curves.

There are several directions in which this line of research can proceed from here.

• Statistical significance of a set of tagged edge cells. As we have seen in

Figs. 3.18 and 3.19, the method is not perfect, in the sense that it occasionally

tags a few bulk cells. Therefore, we need to develop a statistical procedure for

determining the statistical significance of a given observed set of tagged edge

cell candidates. Such a procedure should involve not just the relative number

of tagged cells, but also their correlations, e.g., proximity to each other, con-

nectedness, etc. This is an interesting subject on its own and will be addressed

in a future publication [110].

• Parameter measurements from fitting to a set of tagged edge cells.

Having selected a set of edge cell candidates, one could imagine fitting to the

theoretical prediction for the shape of the boundary surface (3.34), obtaining a

measurement of the mass spectrum of the new particles X1, X2, X3, X4. The ac-

tual fitting can be done in several different ways, which will also be investigated

in [110].

• Experimental effects. In order to keep the discussion simple and to the point,

in this paper we have ignored the experimental complications arising from finite
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particle widths, detector resolution, ISR jet combinatorics, fakes, etc. Our goal

was to present the method as a proof of principle, since the Voronoi approach to

data analysis is still in its infancy. Once Voronoi-based methods have become

more established and mature, it will become worthwhile to perform detailed and

more realistic studies beyond parton level and with full detector simulation.

Here we have focused on cases where the number of signal events on the bound-

ary is significant, leading to a “step” function discontinuity in the total density of

events as one moves across the boundary. However, there are interesting examples

of distributions where the number density is continuous, but exhibits a “kink”, i.e.,

a discontinuity in its derivative (gradient) [113, 114, 115]. In such cases, our meth-

ods can still be applied — not directly on the initial data itself, but on a secondary

data sample created by taking suitable derivatives. Indeed, while we have identi-

fied and studied a promising use of Voronoi tessellations in the analysis of particle

physics data, there are many exciting applications yet to be developed. We look

forward with anticipation to the future development and adoption of these novel and

powerful methods.
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Chapter Four: Detecting kinematic boundary

surfaces in phase space: particle mass

measurements in SUSY-like events1

4.1 Introduction

The dark matter problem is currently our best experimental evidence for the existence

of new particles and interactions beyond the Standard Model (BSM). A great number

of ongoing experiments are trying to discover dark matter particles through direct

[118] or indirect detection [119]. In principle, dark matter particles could also be

produced in high energy collisions at the Large Hadron Collider (LHC) at CERN,

providing a complementary discovery probe in a controlled experimental environment

[120].

Since the dark matter particles must be stable on cosmological timescales, in

many popular BSM models they carry some conserved quantum number. The sim-

plest choice is a Z2 parity, which is known as R-parity in models with low energy

supersymmetry (SUSY) [18], Kaluza-Klein (KK) parity in models with universal ex-

tra dimensions (UED) [19], T -parity in Little Higgs models [20], etc. As a result,

the dark matter particles are necessarily produced in pairs: either directly, or in the

cascade decays of other, heavier BSM particles [121]. The prototypical such cascade

decay is shown in Fig. 4.1, in which a new particle D undergoes a series of two-body

decays, terminating in the dark matter candidate A, which is neutral and stable,

and thus escapes undetected. Under those circumstances, measuring the set of four

masses

{mD,mC ,mB,mA} (4.1)

is a difficult problem, which has been attracting a lot of attention over the last 20 years

(for a review, see [21]). The main challenge stems from the fact that the momentum of

1Previously published as D. Debnath, J. S. Gainer, C. Kilic, D. Kim, K. T. Matchev, Y.-P.
Yang,”Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-
like events” on Journal of High Energy Physics 06(2017)092. Y.-P. Yang conducted the Monte Carlo
simulation and analysis, as well as the numerical track of ”same edge/endpoint” mass spectrum
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D C B A

RCD =
m2

C

m2
D

RBC =
m2

B

m2
C

RAB =
m2

A

m2
B

j !n !f

Figure 1: The typical cascade decay chain under consideration in this paper. Here D, C, B and
A are new BSM particles, while the corresponding SM decay products are: a QCD jet j, a “near”
lepton !±

n and a “far” lepton !∓
f . This chain is quite common in SUSY, with the identification D = q̃,

C = χ̃0
2, B = !̃ and A = χ̃0

1, where q̃ is a squark, !̃ is a slepton, and χ̃0
1 (χ̃0

2) is the first (second)
lightest neutralino. In what follows we shall quote our results in terms of the D mass mD and the
three dimensionless squared mass ratios RCD, RBC and RAB defined in eq. (1.6).

1. Introduction

SUSY is a primary target of the LHC searches for new physics beyond the Standard Model

(BSM). In SUSY models with conserved R-parity the superpartners are produced in pairs

and each one decays through a cascade decay chain down to the lightest superpartner (LSP).

If the LSP is the lightest neutralino χ̃0
1, it escapes detection, making it rather difficult to

reconstruct directly the preceding superpartners and thus measure their masses and spins.

In recognition of this fact, in recent years there has been an increased interest in developing

new techniques for mass [1–49] and spin [50–76] measurements in such SUSY-like missing

energy events.

Roughly speaking, there are three basic types of mass determination methods in SUSY1.

In this paper we concentrate on the classic method of kinematical endpoints [1]. Following

the previous SUSY studies, for illustration of our results we shall use the generic decay chain

D → jC → j!±
n B → j!±

n !∓
f A shown in Fig. 1. Here D, C, B and A are new BSM particles

with masses mD, mC , mB and mA. Their corresponding SM decay products are: a QCD jet

j, a “near” lepton !±
n and a “far” lepton !∓

f . This decay chain is quite common in SUSY,

with the identification D = q̃, C = χ̃0
2, B = !̃ and A = χ̃0

1, where q̃ is a squark, !̃ is a slepton,

and χ̃0
1 (χ̃0

2) is the first (second) lightest neutralino. However, our analysis is not limited to

SUSY only, since the chain in Fig. 1 also appears in other BSM scenarios, e.g. Universal

Extra Dimensions [77]. For concreteness, we shall assume that all three decays exhibited in

Fig. 1 are two-body, i.e. we shall consider the mass hierarchy

mD > mC > mB > mA > 0. (1.1)

1For a recent study representative of each method, see Refs. [43,47,49].

– 2 –

Figure 4.1: The generic decay chain under consideration in this paper: D → jC →
j`nB → j`n`fA, where A, B, C and D are new BSM particles, while the SM decay
products consist of one jet j and two leptons, labelled “near” `n and “far” `f . In the
SUSY case, D represents a squark q̃, C is a heavier neutralino χ̃0

2, B is a charged
slepton ˜̀ and A is the lightest neutralino χ̃0

1, which escapes undetected. The masses
of the BSM particles are denoted by mD, mC , mB and mA. The corresponding ratios
of squared masses RCD, RBC and RAB are introduced for convenience in writing the
kinematic endpoint formulas (4.21-4.28) and delineating the relevant regions in the
mass parameter space (4.1) (see also eq. (4.20) and Fig. 4.2 below).

particle A is not measured, so that the standard technique of directly reconstructing

the new particles as invariant mass resonances does not apply. Instead, one has to

somehow infer the new masses (4.1) from the measured kinematic distributions of the

visible SM decay products.

In the decay chain of Fig. 4.1, the SM decay products are taken to be a quark jet

j and two leptons, labelled “near” `n and “far” `f . This choice is motivated by the

following arguments:

• At a hadron collider like the LHC, strong production dominates, thus particle

D is very likely to be colored. At the same time, the dark matter candidate A

is neutral, therefore the color must be shed somewhere along the decay chain

in the form of a QCD jet. Here we assume that this “color-shedding” occurs in

the D → C transition2, since one expects the strong decays of particle D to be

the dominant ones.

2We note that in principle one can test this assumption experimentally, e.g. by constructing
suitably defined on-shell constrained M2 variables corresponding to the competing event topologies
[94], or by studying the shapes and the correlations for the invariant mass variables considered below
[34]. Such an exercise is useful, but beyond the scope of this paper.
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• The presence of leptons among the SM decay products in Fig. 4.1 is theo-

retically not guaranteed, but is nevertheless experimentally motivated. First,

leptonic signatures have significantly lower SM backgrounds and thus represent

clean discovery channels. Second, the momentum of a lepton is measured much

better than that of a jet, therefore the masses (4.1) will be measured with a

better precision in a leptonic channel (as opposed to a purely jetty channel).

Finally, if the SM decay products in Fig. 4.1 were all jets, in light of the arising

combinatorial problem [122, 123, 124, 125, 126, 127], we would have to resort

to sorted invariant mass variables [99, 128], whose kinematic endpoints are less

pronounced and thus more difficult to measure over the SM backgrounds.

• From a historical perspective, the best motivation for considering the decay

chain of Fig. 4.1 is that it is ubiquitous in SUSY, where D represents a squark

q̃, C is a heavier neutralino χ̃0
2, B is a charged slepton ˜̀ and A is the lightest

neutralino χ̃0
1, which escapes the detector and leads to missing transverse energy

ET . In the two most popular frameworks of SUSY breaking, gravity-mediated

and gauge-mediated, the combination of (a) specific high scale boundary con-

ditions, and (b) renormalization group evolution of the soft SUSY parameters

down to the weak scale, leads to just the right mass hierarchy for the decay

chain of Fig. 4.1 to occur. In the late 1990’s and early 2000’s, this prompted a

flurry of activity on the topic of mass determination in such “SUSY-like” miss-

ing energy events. Soon afterwards, it was also realized that the decay chain of

Fig. 4.1 is not exclusive to supersymmetry, but the same final state signature

also appears in other models, e.g. minimal UED [129] and littlest Higgs [130].

To date, a large variety of mass measurement techniques for SUSY-like events

have been developed. Roughly speaking, they all can be divided into two categories.

• Exclusive methods. In this case, one takes advantage of the presence of two

decay chains in the event (they are often assumed identical) and the available

ET measurement. Several approaches are then possible. For example, in the so-

called “polynomial methods” one attempts to solve explicitly for the momenta

of the invisible particles in a given event, possibly using additional informa-

tion from prior measurements of kinematic endpoints [38, 39, 40, 41, 42, 43,
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44, 45, 46, 47, 48, 49, 50, 51, 52].3 Alternatively, utilizing information from

both branches, one could introduce suitable transverse4 variables whose distri-

butions exhibit an upper kinematic endpoint indicative of the parent particle

mass [171, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67]. In the

latter case, one still retains a residual dependence on the unknown dark matter

particle mass mA, which must be fixed by some other means, e.g. via the kink

method [80, 81, 82, 83, 84, 85, 86, 87] or by performing a sufficient number

of independent measurements [57, 61]. While they could be potentially quite

sensitive, these exclusive methods are also less robust, since they rely on the

correct identification of all objects in the event, and are thus prone to combina-

torial ambiguities, the effects fromET resolution, initial and final state radiation,

underlying event and pileup, etc.

• Inclusive methods. In this case, one focuses on the decay chain from Fig. 4.1

itself, disregarding what else is going on in the event. Using only the measured

momenta of the visible SM decay products, i.e., the jet and the two leptons, one

could form all possible invariant mass combinations5, namely m``, mj`n , mj`f ,

and mj``, measure their respective upper kinematic endpoints{
mmax
`` ,mmax

j`n ,m
max
j`f

,mmax
j``

}
, (4.2)

and use them to solve for the four input parameters (4.1). As just described,

this approach is too naive, as it overlooks the remaining combinatorial problem

involving the two leptons `n and `f . Since “near” and “far” cannot be distin-

guished on an event by event basis, the variables mj`n and mj`f are ill defined.

This is why it has become customary to redefine the two jet-lepton invariant

3For long enough decay chains, the polynomial methods are able to solve for the invisible mo-
menta, even without additional experimental input and without a second decay chain in the event.
If the decay chain of Fig. 4.1 contained an additional two-body decay to a visible particle, just 5
events are sufficient for solving the event kinematics [39, 44].

4Transversality is not strictly necessary, in fact it may even be beneficial to work with 3 + 1-
dimensional variants of those variables [31, 32, 33, 88, 89, 90, 91, 92, 93, 95, 96, 97].

5In general, one is not limited to Lorentz-invariant variables only, e.g., recently it was suggested
to study the peak of the energy distribution as a measure of the mass scale [68, 69, 70, 71].
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mass combinations as6

mjl(lo) ≡ min
{
mjln ,mjlf

}
, (4.3)

mjl(hi) ≡ max
{
mjln ,mjlf

}
. (4.4)

The distributions of the newly defined quantities (4.3) and (4.4) also exhibit

upper kinematic endpoints, mmax
jl(lo) and mmax

jl(hi), respectively. Then, instead of

(4.2), one can use the new well-defined set of measurements{
mmax
ll ,mmax

jll ,m
max
jl(lo),m

max
jl(hi)

}
(4.5)

to invert and solve for the input mass parameters (4.1). This procedure consti-

tutes the classic kinematic endpoint method for mass measurements, which has

been successfully tested for several SUSY benchmark points [22, 23, 24, 25, 26,

27, 28, 29].

However, despite its robustness and simplicity, the kinematic endpoint method

still has a couple of weaknesses. As we show below, taken together, they essentially

lead to an almost flat direction in the solution space, thus jeopardizing the uniqueness

of the mass determination. The first of these two problems is purely theoretical — it is

well known that in certain regions of the parameter space (4.1) the four measurements

(4.5) are not independent, but obey the relation [26](
mmax
jll

)2
=
(
mmax
jl(hi)

)2
+ (mmax

ll )2 . (4.6)

In practice, this means that the measurements (4.5) fix only three out of the four

mass parameters (4.1), leaving one degree of freedom undetermined. In what follows,

we shall choose to parametrize this “flat direction” with the mass mA of the lightest

among the four new particles D, C, B and A. One can then use, e.g., the first three

of the measurements in (4.5) and solve uniquely for the three heavier masses mD,

mC , and mB, leaving mA as a free parameter. We list the relevant inversion formulas

6A more recent alternative approach is to introduce new invariant mass variables which are
symmetric functions of mj`n and mj`f , thus avoiding the need to distinguish `n from `f on an event
per event basis [37].
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in Appendix B. The obtained one-parameter family of mass spectra
mD = mD(mA;mmax

ll ,mmax
jll ,m

max
jl(lo)),

mC = mC(mA;mmax
ll ,mmax

jll ,m
max
jl(lo)),

mB = mB(mA;mmax
ll ,mmax

jll ,m
max
jl(lo)),

mA

(4.7)

will satisfy the three measured kinematic endpoints mmax
ll , mmax

jll , and mmax
jl(lo) by con-

struction. What is more, in parameter space regions where eq. (4.6) holds, the family

(4.7) will also obey the fourth measurement of mmax
jl(hi), so that the four measurements

(4.5) will be insufficient to lift the mA degeneracy in (4.7).

These considerations beg the following two questions, which will be addressed in

this paper.

1. In the remaining part of the parameter space, where (4.6) does not hold and

mmax
jl(hi) provides an independent fourth measurement, how well is the mA degen-

eracy lifted after all? With the explicit examples of Sections 4.3 and 4.4 below,

we shall show that although in theory the additional measurement of mmax
jl(hi)

determines the value of mA, in practice this may be difficult to achieve, since

the effect is very small and will be swamped by the experimental resolution.

2. In the region of parameter space in which (4.6) holds, what additional mea-

surement should be used, and how well does it lift the degeneracy? In the

existing literature, the standard approach is to consider the constrained7 dis-

tribution mjll(θ>π
2

), which exhibits a useful lower kinematic endpoint mmin
jll(θ>π

2
)

[131, 132]. In what follows, we shall therefore always supplement the original

set of 4 measurements (4.5) with the additional measurement of mmin
jll(θ>π

2
) to

obtain the extended set{
mmax
ll ,mmax

jll ,m
max
jl(lo),m

max
jl(hi),m

min
jll(θ>π

2
)

}
, (4.8)

7The distribution mjll(θ>π
2 ) is nothing but the usual mjll distribution taken over a subset of the

original events, namely those which satisfy the additional dilepton mass constraint

mmax
ll√
2

< mll < mmax
ll .

In the rest frame of particle B, this cut implies the following restriction on the opening angle θ
between the two leptons [132]

θ >
π

2
,

thus justifying the notation for mjll(θ>π
2 ).
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so that in principle there is sufficient information to determine the four un-

known masses. Even then, we shall show that the sensitivity of the additional

experimental input mmin
jll(θ>π

2
) to the previously found flat direction (4.7) is very

low. First of all, it is already well appreciated that the measurement of mmin
jll(θ>π

2
)

is very challenging, since in the vicinity of its lower endpoint, the shape of the

signal distribution is concave downward, which makes it difficult to extract the

endpoint with simple linear fitting, and one has to use the whole shape of the

mjll(θ>π
2

) distribution [30]. Secondly, as we shall show in the examples below,

the variation of the value of mmin
jll(θ>π

2
) along the flat direction (4.7) can be numer-

ically quite small, and therefore the sensitivity of the added fifth measurement

along the flat direction (4.7) is not that great.

Either way, we see that the known methods for lifting the degeneracy of the flat

direction (4.7) will face severe limitations once we take into account the experimental

resolution, finite statistics, backgrounds, etc. [35, 36] Thus the first goal of this

paper will be to illustrate the severity of the problem, i.e. to quantify the “flatness”

of the family of solutions (4.7). For this purpose, we shall reuse the study points

from Ref. [36], which at the time were meant to illustrate discrete ambiguities, i.e.

cases where two distinct points in mass parameter space (4.1) accidentally happen to

give mathematically identical values for all five measurements (4.8). Here we shall

extend those study points to a family of mass spectra (4.7) which give mathematically

identical values for the first three8 of the measurements (4.8), and numerically very

similar values for the remaining measurements.

Having identified the problem, the second goal of the paper is to propose a novel

solution to it and investigate its viability. Our starting point is the observation that

the signal events from the decay chain in Fig. 4.1 populate the interior of a compact

region in the (mj`n ,m``,mj`f ) space, whose boundary is given by the surface S defined

by the constraint [98, 133, 99]

S : m̂2
j`f

=

[√
m̂2
``

(
1− m̂2

j`n

)
± mB

mC

√
m̂2
j`n

(1− m̂2
``)

]2

, (4.9)

which, for convenience, is written in terms of the unit-normalized variables

m̂j`n =
mj`n

mmax
j`n

, m̂`` =
m``

mmax
``

, m̂j`f =
mj`f

mmax
j`f

. (4.10)

8And sometimes four, if we are in parts of parameter space where (4.6) holds.
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We note that both the shape and the size of the surface S depend on the input mass

spectrum (4.1), i.e., S(mA,mB,mC ,mD), and this dependence is precisely what we

will be targeting with our method to be described below.

In its traditional implementation, the kinematic endpoint method is essentially9

using the kinematic endpoints (4.2) of the one-dimensional projections of the signal

population onto each of the three axes mj`n , m`` and mj`f , as well as onto the “radial”

direction mj`` =
√
m2
j`n

+m2
`` +m2

j`f
. This approach is suboptimal because it ignores

correlations and misses endpoint features along the other possible projections. The

only way to guarantee that we are using the full available information in the data

is to fit to the three-dimensional boundary (4.9) itself [1, 134], which will be the

approach advocated here. As previously observed in [1] (and extended to a broader

class of event topologies in [135]), most of the signal events are populated near the

phase space boundary (4.9), on which the signal number density ρs formally becomes

singular. This fact is rather fortuitous, since it implies a relatively sharp change in

the local number density as we move across the phase space boundary, even in the

presence of SM backgrounds (with some number density ρb, which is expected to

be a relatively smooth function). Thus, we need to develop a suitable method for

identifying regions in phase space where the gradient of the total number density

ρ ≡ ρb + ρs is relatively large, and then fit to them the analytical parametrization

(4.9) in order to obtain the best fit values for the four new particle masses (4.1).

The first step of this program was already accomplished in our earlier paper [134],

building on the idea originally proposed in [17] for finding “edges” in two-dimensional

stochastic distributions of point data. Ref. [17] suggested that interesting features in

the data, e.g., edge discontinuities, kinks, and so on, can be identified by analyzing

the geometric properties of the Voronoi tessellation [7] of the data.10 The volume

vi of a given Voronoi cell generated by a data point at some location ~ri provides an

estimate of the functional value of the number density ρ at that location,

ρ(~ri) ∼
1

vi
. (4.11)

9The fact that one has to use mjl(lo) and mjl(hi) in place of mj`n and mj`f does not change the
gist of the argument.

10We note the existence of efficient codes for finding Voronoi tessellations in the form of the qHULL
algorithms [136]. Wrappers that allow the use of these algorithms in many frameworks also exist,
and in this work we use a private Python code to compute the geometric attributes of the Voronoi
cells.

67



Therefore, in order to obtain an estimate of |~∇ρ(~r)|, we can construct variables which

compare the properties of the Voronoi cell and its direct neighbors. Among the

different options investigated in Refs. [17, 107], the relative standard deviation (RSD),

σ̄i, of the volumes of neighboring cells, was identified as the most promising tagger

of edge cells. The RSD was defined as follows. Let Ni be the set of neighbors of the

i-th Voronoi cell Ci, with volumes, {vj}, for j ∈ Ni. The RSD, σ̄i, is now defined by

σ̄i ≡
1

〈v(Ni)〉

√√√√∑
j∈Ni

(vj − 〈v(Ni)〉)2

|Ni| − 1
, (4.12)

where we have normalized by the average volume of the set of neighbors, Ni, of the

i-th cell

〈v(Ni)〉 ≡
1

|Ni|
∑
j∈Ni

vj. (4.13)

Subsequently, in [134] we showed that this procedure for tagging edge cells can be

readily extended to three-dimensional point data, as is the case here. The end result of

the method was a set of Voronoi cells which have been tagged as “edge cell candidates”

since their values of σ̄i were above the chosen threshold [134]. With the thus obtained

set of edge cells in hand, it appears that we are in a perfect position to perform a

mass measurement, simply by finding the set of values for {mA,mB,mC ,mD} which

maximize the overlap between our tagged edge cells and the hypothesized surface S.

We have checked that this approach indeed works and gives a reasonable estimate

of the true mass spectrum. However, here we prefer to suggest a slightly modified

alternative, which accomplishes the same goal, but with somewhat better precision.

The problem with fitting to a subset of the original data set (namely the set of

Voronoi cells which happened to pass the σ̄i cut) is that we are still throwing away

useful information, e.g., the Voronoi cells which barely failed the cut. In spite of

formally failing, those cells are nevertheless still quite likely to be edge cells. Thus,

in order to retain the full amount of information in our data, we prefer to abandon

this “cut and fit” approach, and instead design a global variable which is calculated

over the full data set. The only requirement is that the variable is maximized (or

minimized, as the case may be) for the true values of the masses {mA,mB,mC ,mD}.
In order to motivate such a variable, consider for a moment the case when the

function ρ(~r) is known analytically, then let us investigate the (normalized) surface
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integral ∫
S̃(m̃A,m̃B ,m̃C ,m̃D)

da |~∇ρ(~r)|∫
S̃(m̃A,m̃B ,m̃C ,m̃D)

da
(4.14)

for some arbitrary trial11 values (m̃A, m̃B, m̃C , m̃D) of the unknown masses (4.1). The

meaning of the quantity (4.14) is very simple: it is the average gradient of ρ(~r) over

the chosen surface S̃. We expect the dominant contributions to the integral to come

from regions where the gradient is large, and we know that the gradient is largest

on the true phase space boundary S(mA,mB,mC ,mD), defined in terms of the true

values of the particle masses. However, if our choice for (m̃A, m̃B, m̃C , m̃D) is wrong,

the integration surface S̃ will be far from the true phase space boundary S, and

those large contributions will be missed. The only way to capture all of the large

contributions to the integral is to have S̃ coincide with the true S, and this is only

possible if in turn the trial masses are exactly equal to the true particle masses. This

suggests a method of mass measurement whereby the true mass spectrum is obtained

as the result of an optimization problem involving the quantity (4.14).

Of course, in our case the analytical form of the integrand |~∇ρ(~r)| is unknown,

but we can obtain a closely related quantity using the Voronoi tessellation of the

data. Following [17, 134], we shall utilize the RSD σ̄i defined in (4.12), which has

been shown to be a good indicator of edge cells, and replace the integrand in (4.14)

as

|~∇ρ(~r)| −→ g(~r) ≡ σ̄i for ~r ∈ Ci. (4.15)

In other words, the gradient estimator12 function g(~r) is defined so that it is equal to

the RSD σ̄i of the Voronoi cell Ci in which the point ~r happens to be. Eqs. (4.14)

and (4.15) suggest that the variable which we should be maximizing is

Σ̄(m̃A, m̃B, m̃C , m̃D) ≡
∫
S̃(m̃A,m̃B ,m̃C ,m̃D)

da g(~r)∫
S̃(m̃A,m̃B ,m̃C ,m̃D)

da
. (4.16)

It obviously depends on our choice of trial masses (m̃A, m̃B, m̃C , m̃D), and as argued

above, we expect the maximum of Σ̄ to occur for the correct choice (mA,mB,mC ,mD),

11From here on trial values for the masses will carry a tilde to distinguish from the true values of
the masses which will have no tilde. Correspondingly, S̃ stands for a hypothesized “trial” boundary
surface (4.9) obtained with trial values of the mass parameters.

12Note that g(~r) is not supposed to be an approximation for |~∇ρ(~r)|, the crucial property for us
is that the two functions peak in the same location.
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i.e.

max
m̃A,m̃B ,m̃C ,m̃D

Σ̄(m̃A, m̃B, m̃C , m̃D) ' Σ̄(mA,mB,mC ,mD). (4.17)

This hypothesis will be tested and validated with explicit examples below in Sec-

tions 4.3 and 4.4.

The paper is organized as follows. In the next Section 4.2 we shall first review the

well known formulas for the one-dimensional kinematic endpoints (4.8) and introduce

the corresponding relevant partitioning of the mass parameter space into domain

regions. In the next two sections we shall concentrate on the two most troublesome

regions, (3, 2) and (3, 1), where the problematic relationship (4.6) holds. We shall

pick one study point in each region, then study how well our conjecture (4.17) is able

to determine the true mass spectrum. In principle, (4.17) involves optimization over 4

continuous variables, which is very time consuming (additionally, we have to perform

the integration in the numerator of (4.16) by Monte Carlo). This is why for simplicity

we choose to illustrate the power of our method with a one-dimensional toy study

along the problematic flat direction (4.7). In particular, for each of our two study

points we shall assume that the first three kinematic endpoints mmax
ll , mmax

jll , and

mmax
jl(lo) are already measured, leaving us only the task of determining the remaining

degree of freedom mA along the flat direction defined in (4.7). Correspondingly, we

shall consider the whole family of mass spectra (4.7) which passes through a given

study point. This family will eventually take us into the neighboring parameter space

regions, including the third potentially problematic region, namely (2, 3), in which

(4.6) is satisfied. For each family, we shall perform the following investigations

• As a warm up, we shall first illustrate that for each of the three distributions,

mll, mjll, and mjl(lo), the endpoint along the flat direction is the same (as

expected by construction).

• We shall then investigate the variation of the kinematic endpoint of the mjl(hi)

distribution along the flat direction (4.7). The endpoint value mmax
jl(hi) is expected

to be constant in regions (3, 2), (3, 1) and (2, 3), so the main question will be,

how much does it vary in the remaining parameter space regions.

• We shall similarly investigate the variation of the lower kinematic endpoint

mmin
jll(θ>π

2
) along the flat direction (4.7). Together with the previous item, this will
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serve as an illustration of the main weakness of the classic kinematic endpoint

method for mass measurements.

• Then we shall illustrate the distortion of the kinematic boundary surface (4.9)

along the flat direction (4.7). The size of the distortion will be indicative of

the precision with which one can hope to perform the mass measurement (4.17)

using the kinematic boundary surface in phase space.

• Finally, we shall perform the fitting (4.17) along the flat direction parameterized

by m̃A. We shall show results in two cases: (a) when the background events

are distributed uniformly in m2 phase space, and (b) when the background is

coming from dilepton tt̄ events.

We shall summarize and conclude in Section 4.5. Appendix B contains the inversion

formulas needed to define the flat direction (4.7).

4.2 Endpoint formulas and partitioning of

parameter space

4.2.1 Notation and conventions

Following [36], we introduce for convenience some shorthand notation for the mass

squared ratios

Rij ≡
m2
i

m2
j

, (4.18)

where i, j ∈ {A,B,C,D}. Note that in (4.18) there are only three independent

quantities, which can be taken to be the set {RAB, RBC , RCD}. To save writing, we

will also introduce convenient shorthand notation for the five kinematic endpoints as

follows

a = (mmax
ll )2 , b =

(
mmax
jll

)2
, c =

(
mmax
jl(lo)

)2
, d =

(
mmax
jl(hi)

)2
, e =

(
mmin
jll(θ>π

2
)

)2

.

(4.19)

Note that these represent the kinematic endpoints of the mass squared distributions13.

13Contrast to the notation of Ref. [26], which uses a, b, c, d to label the same endpoints, but for
the linear masses.
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In the next two sections we shall use the three endpoint measurements mmax
ll ,

mmax
jll , and mmax

jl(lo) to fix mD, mC and mB, leaving mA as a free parameter. Another

way to think about this procedure is to note that the parameter space (4.1) can be

equivalently parametrized as

{RCD, RBC , RAB,mA} . (4.20)

Then, the endpoint measurements of mmax
ll , mmax

jll , and mmax
jl(lo) can be used to fix

the ratios RCD, RBC and RAB (see Appendix B), leaving the overall mass scale

undetermined and parametrized by mA.

4.2.2 Endpoint formulas

The kinematical endpoints are given by the following formulas:

a ≡ (mmax
ll )2 = m2

D RCD (1−RBC) (1−RAB); (4.21)

b ≡
(
mmax
jll

)2
=



m2
D(1−RCD)(1−RAC), for RCD < RAC , case (1,−),

m2
D(1−RBC)(1−RABRCD), for RBC < RABRCD, case (2,−),

m2
D(1−RAB)(1−RBD), for RAB < RBD, case (3,−),

m2
D

(
1−√RAD

)2
, otherwise, case (4,−);

(4.22)

c ≡
(
mmax
jl(lo)

)2
=



(
mmax
jln

)2
, for (2−RAB)−1 < RBC < 1, case (−, 1),(

mmax
jl(eq)

)2

, for RAB < RBC < (2−RAB)−1, case (−, 2),(
mmax
jl(eq)

)2

, for 0 < RBC < RAB, case (−, 3);

(4.23)

d ≡
(
mmax
jl(hi)

)2
=



(
mmax
jlf

)2

, for (2−RAB)−1 < RBC < 1, case (−, 1),(
mmax
jlf

)2

, for RAB < RBC < (2−RAB)−1, case (−, 2),(
mmax
jln

)2
, for 0 < RBC < RAB, case (−, 3);

(4.24)
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where (
mmax
jln

)2
= m2

D (1−RCD) (1−RBC) , (4.25)(
mmax
jlf

)2

= m2
D (1−RCD) (1−RAB) , (4.26)(

mmax
jl(eq)

)2
= m2

D (1−RCD) (1−RAB) (2−RAB)−1 . (4.27)

Finally, the endpoint mmin
jll(θ>π

2
) introduced earlier in the Introduction, is given by

e ≡
(
mmin
jll(θ>π

2
)

)2

=
1

4
m2
D

{
(1−RAB)(1−RBC)(1 +RCD) (4.28)

+ 2 (1−RAC)(1−RCD)− (1−RCD)
√

(1 +RAB)2(1 +RBC)2 − 16RAC

}
.

4.2.3 Partitioning of the mass parameter space

One can see that the formulas (4.22-4.24) are piecewise-defined: they are given in

terms of different expressions, depending on the parameter range for RCD, RBC and

RAB. This divides the {RCD, RBC , RAB} parameter subspace from (4.20) into sev-

eral distinct regions, illustrated in Fig. 4.2. Following [26], we label those by a pair

of integers (Njll, Njl). As already indicated in eqs. (4.22-4.24), the first integer Njll

identifies the relevant case for mmax
jll , while the second integer Njl identifies the cor-

responding case for (mmax
jl(lo),m

max
jl(hi)). One can show that only 9 out of the 12 pairings

(Njll, Njl) are physical, and they are all exhibited within the unit square of Fig. 4.2.

In what follows, an individual study point within a given region (Njll, Njl) will be

marked with corresponding subscripts as PNjllNjl .

Using (4.21), (4.22) and (4.24), it is easy to check that the “bad” relation (4.6),

which can be equivalently rewritten in the new notation as

b = a+ d, (4.29)

is identically satisfied in regions (3,1), (3,2) and (2,3) of Fig. 4.2. Therefore, as

already discussed, in these regions one would necessarily have to rely on the additional

information provided by the measurement of the e endpoint (4.28).

Before concluding this rather short preliminary section, we direct the reader’s

attention to the color-coding in Fig. 4.2, where we have shaded in color six of the
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Figure 4.2: A slice through the {RCD, RBC , RAB} parameter space at a fixed RCD =
0.3. The (RBC , RAB) plane exhibits the nine definition domains (Njll, Njl) of the set
of equations (4.22-4.24). For the purposes of this paper, only six of those regions will
be in play, and we have color-coded them as follows: region (3, 1) in red, region (4, 1)
in blue, region (3, 2) in cyan, region (4, 2) in yellow, region (4, 3) in magenta, and
region (2, 3) in green.

parameter space regions: region (3, 1) in red, region (4, 1) in blue, region (3, 2) in

cyan, region (4, 2) in yellow, region (4, 3) in magenta, and region (2, 3) in green. It

will turn out that the two families of mass spectra considered in the next two sections

will visit the six color-shaded regions. For the benefit of the reader, in the remainder

of the paper we shall strictly adhere to this color scheme — for example, results

obtained for a study point from a particular region will always be plotted with the

color of the respective region: study points in region (3, 1) are red, study points in

region (4, 1) are blue, etc.

4.3 A case study in region (3, 1)

4.3.1 Kinematical properties along the flat direction

In this section we shall study the flat direction (4.7) in mass parameter space which

is generated by a study point P31 from region (3, 1) (the same study point was used
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true branch auxilliary branch

Region (3, 1) (4, 1) (4, 3) (2, 3)

Study point P31 P41 P43 P23

mA (GeV) 236.64 5000.00 2,000.00 100.00

mB (GeV) 374.16 5126.02 2040.56 124.78

mC (GeV) 418.33 5168.03 2167.36 272.54

mD (GeV) 500.00 5256.90 2256.90 362.23

RAB 0.400 0.951 0.960 0.642

RBC 0.800 0.984 0.886 0.210

RCD 0.700 0.966 0.922 0.566

mmax
ll (GeV)

√
a 144.91

mmax
jll (GeV)

√
b 256.90

mmax
jl(lo) (GeV)

√
c 122.47

mmax
jl(hi) (GeV)

√
d 212.13 212.12 212.13 212.13

mmin
jll(θ>π

2
) (GeV)

√
e 132.10 129.73 130.79 141.78

Table 4.1: Mass spectrum and expected kinematic endpoints for the study point
P31 from region (3, 1) which was discussed in Ref. [36], together with three addi-
tional study points illustrating the different regions from Fig. 4.2 encountered by the
parameter space trajectories from Fig. 4.3. By construction, all study points give
identical values for the kinematic endpoints mmax

ll , mmax
jll and mmax

jl(lo). Furthermore,

in accordance with (4.6), the two study points P31 and P23 from regions (3, 1) and
(2, 3) have identical values of mmax

jl(hi). The remaining two study points P41 and P43,

representing regions (4, 1) and (4, 3), have essentially the same value for mmax
jl(hi) as

well. The last row lists the predicted values for mmin
jll(θ>π

2
), which are slightly different,

and allow discriminating between the four endpoints in theory, but not in practice.

in [36] for a slightly different purpose). Table 4.1 lists some relevant information for

the study point P31: the input mass spectrum (4.1), the corresponding mass squared

ratios (4.18), and the predicted kinematic endpoints (4.8), also reminding the reader of

the alternative shorthand notation (4.19). As discussed in the Introduction, starting

from the point P31, we can follow a one-dimensional trajectory (4.7) through the

parameter space (4.20) so that everywhere along the trajectory the prediction for

the three endpoints a, b and c is unchanged (see Fig. 4.6 below). This trajectory is

illustrated in Fig. 4.3, where we show its projections onto the three planes (RBC , RAB)

(left panel), (RAB, RCD) (middle panel) and (RBC , RCD) (right panel). The lines in
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Figure 4.3: The two trajectories in mass parameter space leading to the same end-
points a, b and c. The lines are colored in accordance with the coloring convention for
the regions depicted in Fig. 4.2. The red square marks the original study point P31

from Table 4.1, while the circles denote the other three study points from Table 4.1:
P41 in region (4, 1) (blue circle), P43 in region (4, 3) (magenta circle), and P23 in region
(2, 3) (green circle).

Figure 4.4: Mass spectra along the flat direction specified by the study point P31.
As a function of m̃A, we plot the mass differences m̃B − m̃A (solid lines), m̃C − m̃A

(dashed lines), and m̃D − m̃A (dotted lines), which would preserve the values for the
three kinematic endpoints a, b and c.

Fig. 4.3 are parametrized by the continuous test mass parameter m̃A. For any given

fixed value of m̃A, the trajectory in Fig. 4.3 predicts the test values for the other

three mass parameters, namely m̃B, m̃C and m̃D. This is shown more explicitly in

Fig. 4.4, where we plot the mass differences m̃B− m̃A (solid lines), m̃C − m̃A (dashed

lines), and m̃D − m̃A (dotted lines), as a function of m̃A.
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Figure 4.5: The equivalent representation of Fig. 4.4 in terms of the mass squared
ratios RAB, RBC and RCD (solid lines). The dotted lines depict various quantities of
interest which are used to delineate the regions in Fig. 4.2. The left panel shows the
true branch passing through regions (3, 1) (red) and (4, 1) (blue), while the right panel
shows the auxiliary branch through regions (2, 3) (green) and (4, 3) (magenta). The
left insert zooms in on the transition between regions (3, 1) and (4, 1) near m̃A = 3600
GeV, while the right insert focuses on the transition between regions (2, 3) and (4, 3)
near m̃A = 1800 GeV.

All lines in Figs. 4.3 and 4.4 are color-coded using the same color conventions as

for the parameter space regions in Fig. 4.2. Initially, as we move away from point P31

(marked with the red square in Fig. 4.3), we are still within the red region (3, 1), and

the trajectory is therefore colored in red and parametrically given by eqs. (B.8-B.10).

As the value of m̃A is reduced from its nominal value (236.6 GeV) at the point P31,

the mass spectrum gets lighter and eventually we reach m̃A = 0, where (the red

portion of) the trajectory terminates at RAB = 0, RBC ' 0.67 and RCD ' 0.58. If,

on the other hand, we start increasing m̃A from its nominal P31 value, the spectrum

gets heavier, and we start approaching the neighboring region (4, 1). Eventually, at

around m̃A ∼ 3600 GeV, the trajectory crosses into region (4, 1) and thus changes its

color to blue. This transition is illustrated in the left panel of Fig. 4.5, where we plot

the mass squared ratios RAB, RBC and RCD (solid lines), together with some other

relevant quantities (dotted lines). In particular, the boundary between regions (3, 1)

and (4, 1) is given by the relation RAB = RBD, see (B.2) and (B.29). We can see that

crossover more clearly in the insert in the left panel of Fig. 4.5, where the line color

changes from red to blue as soon as the RBD (dotted) line crosses the RAB (solid)

line.
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Once we are in region (4, 1), we follow the blue portion of the trajectory in Fig. 4.3,

which is parametrically defined by eqs. (B.36-B.38). We choose a representative study

point for region (4, 1) as well — it is denoted by P41 and listed in the third (blue

shaded) column of Table 4.1. The corresponding mass spectrum is clearly very heavy,

but is nevertheless perfectly consistent with the three measured endpoints a, b and

c, as shown in Fig. 4.6. As seen in Fig. 4.3, the blue portion of the mass trajectory

appears headed for the point (RAB, RBC , RCD) = (1, 1, 1), which is indeed reached in

the limit of m̃A →∞, without ever entering into the neighboring region (1, 1)14.

Fig. 4.3 reveals that the mass family (4.7) through our study point P31 includes a

segment which starts at (RAB, RBC , RCD) = (0, 0.67, 0.58) and ends at (RAB, RBC , RCD) =

(1, 1, 1), visiting regions (3, 1) and (4, 1). Since the actual study point P31 belongs

to this segment, in what follows we shall refer to it as “the true branch”. However,

Fig. 4.3 also shows that there is an additional disconnected segment of the mass

trajectory through the green region (2, 3) and the magenta region (4, 3). In the fol-

lowing, we shall refer to this additional segment as “the auxiliary branch”. Note

that this terminology is introduced only for clarity and should not be taken too lit-

erally — as far as the measured endpoints a, b and c are concerned, all points on the

true and auxiliary branches are on the same footing, since the experimenter would

have no way of knowing a priori which is the true branch and which is the auxiliary

branch. This is why we have to seriously consider points on the auxiliary branch

as well. We choose two representative study points, which are listed in the last two

columns of Table 4.1: point P43 belongs to the magenta region (4, 3), while point

P23 is in the green region (2, 3). As shown in Fig. 4.3, the auxiliary branch starts

at (RAB, RBC , RCD) = (0.5, 0, 0.48) and asymptotically meets the true branch at the

corner point (RAB, RBC , RCD) = (1, 1, 1). The transition between the two regions

(2, 3) and (4, 3) along the auxiliary branch is illustrated in the right panel of Fig. 4.5.

According to (B.21) and (B.54), the boundary between regions (2, 3) and (4, 3) is

defined by the relation RBC = RABRCD. The right panel of Fig. 4.5 confirms this:

the color of the auxiliary branch in Figs. 4.3 and 4.4 changes from green to magenta

as soon as the dotted line representing the product RABRCD crosses the solid line for

RBC .

To summarize our discussion so far, we have imposed the three endpoint measure-

14Note that as the value of RCD increases, the (1, 1) region shrinks and for RCD = 1 it disappears
altogether.
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Figure 4.6: Unit-normalized invariant mass distributions for the four study points
from Table 4.1: the distribution of m`` (left panel), mj`(lo) (middle panel), and mj``

(right panel). The lines are color coded according to our conventions from Fig. 4.2
and Table 4.1: red for P31, blue for P41, magenta for P43 and green for P23.

ments a, b and c on the four-dimensional parameter space (4.1), reducing it to the

one-dimensional parameter curve depicted in Figs. 4.3 and 4.4. The curve consists of

two branches which visit four of the colored regions in Fig. 4.2, and we have chosen

one study point in each region. The four study points are listed in Table 4.1, and

their predicted invariant mass distributions from the ROOT phase space generator

[137] are shown in Fig. 4.6: m`` in the left panel, mj`(lo) in the middle panel and

mj`` in the right panel. By construction, for any points along the mass trajectory

(4.7), and in particular for the four study points from Table 4.1, these distributions

share common kinematic endpoints. Furthermore, as Fig. 4.6 reveals, the shapes of

most distributions are also very similar, which makes it difficult to pinpoint our exact

location along the mass trajectory (4.7). This is why in the remainder of this sec-

tion, we shall focus on the question, what additional measurements may allows us to

discriminate experimentally points along the two branches in Figs. 4.3 and 4.4, and

in particular distinguish between the four study points in Table 4.1.

One obvious possibility is to investigate the remaining kinematic endpoints d and

e, which are analyzed in Figs. 4.7 and 4.8, respectively. The left panels show the

theoretical predictions for the kinematic endpoints
√
d = mmax

j`(hi) and
√
e = mmin

jll(θ>π
2

)

along the flat direction (4.7) as a function of m̃A, while the right panels exhibit the

corresponding invariant mass distributions for each of our four study points from

Table 4.1.

Let us first focus on Fig. 4.7 which illustrates the m̃A dependence of the mj`(hi)
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Figure 4.7: Left: The prediction for the kinematic endpoint
√
d along the flat direction

(4.7) generated by P31, as a function of the trial value of the parameter m̃A. Right:
The same as Fig. 4.6, but for the distribution mj`(hi).

Figure 4.8: The same as Fig. 4.7, but for the endpoint
√
e and the corresponding

distribution mjll(θ>π
2

).

distribution and its kinematic endpoint
√
d. As we have already discussed, in regions

(3, 1) and (2, 3) the additional measurement of
√
d is not useful, since it is not inde-

pendent — the value of d is predicted by the relation (4.29), as confirmed by the left

panel in Fig. 4.7, where the red and green dotted lines representing those two regions

are perfectly flat and insensitive to m̃A. However, this still leaves open the possibil-

ity that in the remaining two regions, namely (4, 1) and (4, 3), the measurement of
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the d endpoint will be able to lift the degeneracy and determine the value of mA,

since, at least in theory, d is a non-trivial function of m̃A, see (B.39b) and (B.63b).

Unfortunately, Fig. 4.7 demonstrates that this is not the case in practice — the m̃A

dependence is extremely weak, and the endpoint value for
√
d only changes by a few

tens of MeV as m̃A is varied over a range of several TeV! This lack of sensitivity is

the reason why we have been referring to the family of mass spectra (4.7) as a “flat

direction” in mass parameter space. Clearly, due to the finite experimental resolu-

tion, an endpoint measurement with a precision of tens of MeV is not feasible, the

anticipated experimental errors at the LHC are significantly higher, on the order of

a few GeV [138].

It is instructive to understand this lack of sensitivity analytically, by studying,

e.g. the mathematical expression (B.39b) for d which is relevant for region (4, 1).

Figs. 4.4 and 4.7 already showed that region (4, 1) occurs at large values of m̃A,

where the spectrum is relatively heavy — on the order of several TeV. At the same

time, the measured parameter inputs into (B.39b), namely the endpoints a, b and c,

are all on the order of several hundred GeV. This suggests an expansion in terms of

1/m̃A as

d(a, b, c, m̃A) ≡ K0 +
K1

m̃A

+O
(

1

m̃2
A

)
. (4.30)

Using (B.39b), we get the expansion coefficients to be

K0 =
ac

(a+ c)2

(√
b+
√
b− a− c

)2

, (4.31)

K1 =
ac
[(√

b+
√
b− a− c

)
(a2 + ac− 2ab+ 2bc) + (a2 − c2)

√
b
]

(a+ c)3
. (4.32)

Interestingly, the numerical value of K0 is extremely close to b− a:

K0 ≡ lim
m̃A→∞

d = (212.047 GeV)2 ↔ b− a = (212.132 GeV)2. (4.33)

Since K0 is the leading order prediction for d, (4.33) implies that even in region (4, 1),

the relation (4.29) will still hold to a very good approximation — any deviations from

it will be 1/m̃A suppressed. We can formalize this observation by introducing the

value m
(b)
A which the parameter m̃A takes when the mass trajectory (4.7) crosses

the boundary between regions (3, 1) and (4, 1). Using the continuity of the function

81



d(a, b, c, m̃A), we can write

b− a = K0 +
K1

m̃
(b)
A

+O

 1(
m̃

(b)
A

)2

 , (4.34)

where the left-hand side is the value of d in region (3, 1) which is given by (B.11),

while the right-hand side is the value of d as predicted by the Taylor expansion (4.30)

in region (4, 1). Eliminating K0 from (4.34), we can rewrite the expansion (4.30) in

the form

d(a, b, c, m̃A) ≡ b− a+
K1

m̃A

− K1

m
(b)
A

+O
(

1

m̃2
A

)
(4.35a)

= b− a−K1
m̃A −m(b)

A

m̃Am
(b)
A

+O
(

1

m̃2
A

)
, (4.35b)

which manifestly shows that the deviations from the relation (4.29) are 1/mA sup-

pressed. One can check that the sign of the K1 coefficient (4.32) is positive, then

(4.35b) explains why d is a decreasing function of m̃A in region (4, 1), as observed in

the left panel of Fig. 4.7.

Starting from (B.63b), one can repeat the same analysis for the magenta portion

of the auxiliary branch which is located in region (4, 3). As the left panel of Fig. 4.7

shows, the conclusions will be the same — the d endpoint is still given approximately

by the “bad” relation (4.29), and the corrections to it are tiny and 1/mA suppressed.

The right panel in Fig. 4.7 explicitly demonstrates that the variation of the d endpoint

along the flat direction is unnoticeable by eye even with perfect resolution, large

statistics and no background. The shapes of the mj`(hi) distributions are also very

similar. As a result, we anticipate that the additional measurement of the d kinematic

endpoint and the analysis of the associated mj`(hi) distribution will not help much in

lifting the degeneracy of the flat direction (4.7).

We now turn to the discussion of the fifth and final kinematic endpoint, e, illus-

trated in Fig. 4.8. The left panel now shows a more promising result — the variation

along the flat direction is much larger than what we saw previously in Fig. 4.7. This

is especially noticeable for the auxiliary branch, where the prediction for
√
e can vary

by as much as 17 GeV, suggesting that one might be able to at least rule out some

portions of it. At the same time, the variation of
√
e along the true branch is only
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4 GeV, once again making it rather difficult to pinpoint an exact location along the

true branch. Unfortunately, these theoretical considerations are dwarfed by the ex-

perimental challenges in measuring the e endpoint, as suggested by the right panel

of Fig. 4.8. Unlike the other four kinematic endpoints, e is a lower endpoint (a.k.a.

“threshold”), which places it in a region where one expects more background. More

importantly, the signal distribution is very poorly populated near its lower endpoint -

the vast majority of signal events appear sufficiently far away from the threshold, and

the measurement will suffer from a large statistical uncertainty. This casts significant

doubts on the feasibility of this measurement — in previous studies, the
√
e endpoint

was either the measurement with the largest experimental error from the fit (on the

order of 10 GeV [24]), or one could not obtain a measurement for it at all [26]. One

could hope to improve on the precision by utilizing shape information [139], but this

introduces additional systematic uncertainty, since the background shape and the

shape distortion due to cuts has to be modeled with Monte Carlo.

Being mindful of the challenges involved with the measurement of the e endpoint,

in this paper we shall look for an alternative method for lifting the degeneracy along

the flat direction. Our proposal is to study the shape of the kinematic boundary (4.9),

which is a two-dimensional surface in the three-dimensional space of observables{
m2
j`(lo),m

2
j`(hi),m

2
``

}
. (4.36)

As a proof of principle, we first illustrate the change in the shape of the surface

(4.9) as we move along the flat direction. Our results are shown in Fig. 4.9 (for the

true branch) and in Fig. 4.10 (for the auxiliary branch). Following [134], we visualize

the surface (4.9) by showing a series of two-dimensional slices in the (m2
j`(lo),m

2
j`(hi)−

m2
j`(lo)) plane, where the slight modification of the “y-axis” was done in order to avoid

wasted space on the plots due to the unphysical areas with mj`(lo) > mj`(hi). Each

slice is taken at a fixed value of m2
``, starting from a very low value (10 GeV2) and

going up all the way until the kinematic endpoint (mmax
`` )2 = 20, 976 GeV2. The red

solid lines in Fig. 4.9 correspond to the nominal case of the study point P31. In each

panel, the signal events will be populating the areas delineated by these red solid

lines. As pointed out in [1], the density of signal events is enhanced near the phase

space boundary, i.e. signal events will cluster close to the solid red lines; this property

can be incorporated into the algorithm for detecting the surface boundary [134]. It is

worth noting that in general, each panel contains two signal populations, which arise
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Figure 4.9: Signal kinematic boundaries in the (m2
j`(lo),m

2
j`(hi) − m2

j`(lo)) plane, at

nine fixed values of m2
``. Results are shown for several points along the true branch in

regions (3, 1) and (4, 1). The red solid line represents the case of the P31 study point
with m̃A = 236.6 GeV, while the dashed lines correspond to other values of m̃A along
the true branch: m̃A = 0 (black), m̃A = 100 GeV (gray), m̃A = 500 GeV (green),
m̃A = 1000 GeV (blue), m̃A = 2000 GeV (yellow) and m̃A = 5000 GeV (magenta).

from the reordering (4.3-4.4) [36]. As we vary the value of m2
``, the shape of the red

solid lines changes in accordance with eq. (4.9), which follows from simple phase space

considerations. However, the main purpose of Figs. 4.9 and 4.10 is to check how much

the shape is modified relative to the nominal case of P31 when we vary the value of
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Figure 4.10: The same as Fig. 4.9, but for the auxiliary branch going through regions
(2, 3) and (4, 3). The dashed lines represent points with m̃A = 100 GeV (black),
m̃A = 500 GeV (green), m̃A = 2000 GeV (blue) and m̃A = 6000 GeV (yellow). For
reference, we also show the case of the true mass spectrum for point P31 (red solid
lines), although P31 does not belong to the auxiliary branch.

m̃A along the flat direction (4.7). The dashed lines in Fig. 4.9 show results for several

representative values of m̃A along the true branch: m̃A = 0 (black), m̃A = 100 GeV

(gray), m̃A = 500 GeV (green), m̃A = 1000 GeV (blue), m̃A = 2000 GeV (yellow)

and m̃A = 5000 GeV (magenta). We observe noticeable shape variations, especially

at low to intermediate values of m2
``, which bodes well for our intended purpose of
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measuring the value of mA. Fig. 4.9 aids in visualizing why sensitivity is lost when

performing one-dimensional projections. Consider, for example the variable mj`(lo).

The top two rows of Fig. 4.9 show that as m̃A is varied along the flat direction,

the boundary contours are being stretched vertically, which does not have any effect

on the mj`(lo) endpoint. Later on, when the events are projected vertically on the

mj`(lo) axis to obtain the mj`(lo) distribution seen in the middle panel of Fig. 4.6, the

effects from this vertical stretching tend to be washed out and the resulting mj`(lo)

distributions have very similar shapes.

Fig. 4.10 shows the analogous results for the auxiliary branch. Once again, the

red solid lines represent the study point P31, while the dashed lines correspond to

four values of m̃A: m̃A = 100 GeV (black), m̃A = 500 GeV (green), m̃A = 2000

GeV (blue) and m̃A = 6000 GeV (yellow). This time the shape variation along the

flat direction is much more significant compared to what we saw in Fig. 4.9. This

observation agrees with our expectation based on Fig. 4.8 that points on the auxiliary

branch behave quite differently from our nominal study point P31, especially at low

m̃A.

4.3.2 A toy study with uniformly distributed background

In the remainder of this section we shall illustrate our proposed method for mass

measurement with two exercises. In each case, we shall assume that the standard

set of one-dimensional kinematic endpoints (4.2) has already been well measured and

used to reduce the relevant mass parameter space (4.1) to the flat direction (4.7)

parametrized by the test mass m̃A for the lightest new particle A. This is done

only for simplicity — in principle, our method would also work without any prior

information from endpoint measurements, but by using those, we are reducing the

4-dimensional optimization problem in (4.17) to the much simpler one-dimensional

optimization problem

max
m̃A

Σ̄ (m̃A, m̃B(m̃A), m̃C(m̃A), m̃D(m̃A)) ' Σ̄(mA,mB,mC ,mD), (4.37)

where m̃B(m̃A), m̃C(m̃A), and m̃D(m̃A) are the masses of particles B, C and D along

the flat direction. Our main emphasis here is on demonstrating the advantages of our

method relative to the method of kinematic endpoints. In Section 4.3.1 we already

showed that while the method of kinematic endpoints does a good job in reducing the
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unknown mass parameter space (4.1) to the flat direction (4.7), it does a poor job of

lifting the degeneracy along the flat direction. Thus, if we can show that our method

can perform the remaining mass measurement along the flat direction, we will have

accomplished our goal.

In order to make contact with our previous studies in [134], we begin with a simple

toy exercise where in addition to the signal events from the cascade decay in Fig. 4.1,

we also consider a certain number of background events, which we take to be uniformly

distributed in the mass squared space of observables (4.36). While the assumption

of uniform background density is unrealistic, such an exercise is nevertheless worth

studying for several reasons. First, our method is completely general and applies in

any situation where we have a decay of the type shown in Fig. 4.1, while to correctly

identify the relevant backgrounds, we must be a lot more specific — we need to fix the

signature, the type of production mechanism (which determines what else is in the

event), the cuts, etc. In order to retain generality, we choose to avoid specifying those

details and instead we generate background events by pure Monte Carlo according

to a flat hypothesis. Second, as shown in [134], a uniform background distribution

is actually a pretty good approximation to more realistic backgrounds resulting, e.g.,

from dilepton tt̄ events (compare to the results in Section 4.3.3 below). Finally, our

method is attempting to detect a discontinuity in the measured event density caused

by a signal kinematic boundary, so the exact shape of the background distribution is

not that important, as long as it is smooth and without any sharp kinematic features.

In order to detect the exact location of the kinematic boundary, we shall be

computing the quantity Σ̄ defined in (4.16) along the flat direction (4.7), i.e.

Σ̄(m̃A) ≡ Σ̄ (m̃A, m̃B(m̃A), m̃C(m̃A), m̃D(m̃A)) . (4.38)

We shall perform several versions of the exercise, with varying levels of signal-to-

background. For this purpose, we vary the ratio of signal to background events inside

the true “samosa” surface S(mA,mB,mC ,mD):

S/B ≡
∫
VS
ρs dV∫

VS
ρb dV

, (4.39)

where VS is the volume inside the samosa S(mA,mB,mC ,mD), while ρs and ρb are

the signal and background event densities from Section 4.1, respectively. In this

exercise, we shall fix the overall normalization by choosing NB = 1000 background

events inside S.
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Figure 4.11: The quantity Σ̄(m̃A) defined in (4.38) as a function of m̃A for different
values of the signal to background ratio S/B defined in (4.39): S/B = 3 (upper left
panel), S/B = 1 (upper right panel), S/B = 0.5 (lower left panel) and S/B = 0.2
(lower right panel). The colored symbols correspond to the true branch with the color
conventions from Fig. 4.2, while the black crosses indicate points on the auxiliary
branch. The insert on each panel zooms in on the region near the peak value for
Σ̄(m̃A).

Our main result is shown in Fig. 4.11, which plots the quantity Σ̄(m̃A) along

the flat direction, for several different choices of S/B: S/B = 3 (upper left panel),

S/B = 1 (upper right panel), S/B = 0.5 (lower left panel) and S/B = 0.2 (lower

right panel). Each panel contains two sets of points: the colored symbols represent

points on the true branch, while the black crosses indicate points on the auxiliary

branch15.

There are several important lessons from Fig. 4.11:

• Viability of the method. We see that in each panel, the maximum of Σ̄ is

15Recall from Fig. 4.4 that for any given choice of m̃A, there is one point on the true branch and
a corresponding point on the auxiliary branch.
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obtained for a value of m̃A which is close to the true value mA = 236.6 GeV. This

validates our conjecture16, eq. (4.17), and proves the viability of our method.

• Precision of the method. Of course, we did not recover exactly the input value

for mA, but in each case, came relatively close. Each panel of Fig. 4.11 contains

an insert which zooms in on the region near the peak, which is sampled more

finely. For the different values of S/B = {3.0, 1.0, 0.5, 0.2}, the Σ̄ maxima

are obtained at m̃A = {280, 290, 250, 230} GeV, correspondingly. Since the

measurement is not perfect, it may be instructive to compare the theoretical

boundary for the input study point P31 to the boundary surface found by the

fit. This is illustrated in Fig. 4.12, where in analogy to Figs. 4.9 and 4.10 we

show two-dimensional slices at fixed m2
`` of the Voronoi tessellation of the data

for the case of S/B = 3. The Voronoi cells are color coded by their value of

σ̄i defined in (4.12). As in Figs. 4.9 and 4.10, the red solid line in each panel

is the expected signal boundary for the nominal case of point P31. We notice

that the cells with the highest values of σ̄i are indeed clustered near the nominal

boundary, in agreement with the results from Refs. [134, 17]. On the other hand,

the boundary delineated by the black dashed lines in Fig. 4.12 corresponds to

the best fit value of m̃A = 280 GeV, which was found in the upper left panel

in Fig. 4.11. The difference between the solid red and black dashed contours in

Fig. 4.12 is essentially a measure of the resolution of our method.

• Elimination of the auxiliary branch and the large m̃A tail of the true branch.

One very positive piece of news from Fig. 4.11 is that the whole auxiliary branch

has very low values for Σ̄ which makes it easy to rule it out — one can see that

no point on the auxiliary branch was ever in contention for the top spot. Similar

comments, albeit to a lesser extent, also apply to the long tail along the true

branch at large m̃A. In particular, region (4, 1) seems to be ruled out, as well

as the large m̃A portion of region (3, 1). In effect, the range of possible values

for m̃A along the flat direction has been significantly narrowed down to a small

interval within a few tens of GeV of the true value mA.

• The adverse effect of the background. Comparing the different panels in Fig. 4.11,

we see that as we make S/B smaller, the difference between the true and aux-

16Strictly speaking, Fig. 4.11 tests only the one-dimensional version (4.37).
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Figure 4.12: Two-dimensional views at fixed m2
`` of the Voronoi tessellation of the

data for the case of S/B = 3. The red solid line is the expected signal boundary for
the nominal case of point P31, i.e., with the true value m̃A = mA = 236.6 GeV. The
black dashed line corresponds to the mass spectrum with m̃A = 280 GeV, which was
found to maximize the quantity Σ̄ in the top left panel of Fig. 4.11.

iliary branch is reduced, but the auxiliary branch is still disfavored. As for the

true branch, the peak near mA still persists, even in the case when the data is

dominated by background events. This is not surprising, since the background
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distribution is relatively smooth, so that in the background-dominated regions

of phase space there aren’t too many Voronoi cells with large values of σ̄i, which

could adversely affect the fit.

4.3.3 A study with tt̄ dilepton background events

We are now in position to repeat the exercise from Section 4.3.2, with signal events

from D + A associated production and background taken from dilepton tt̄ events,

which represent the main background to the signature from Fig. 4.1 of a jet plus two

opposite sign, same flavor leptons (the electroweak backgrounds involving leptonic

Z decays can be suppressed with a Z mass veto). Events were generated at parton

level for LHC at 14 TeV with MadGraph5 [140] version 2.1.1 with the default PDF

set cteq6l1. For signal we used the SUSY version of the cascade decay in Fig. 4.1,

and considered the associate production of a squark q̃ with the lightest neutralino

χ̃0
1, namely pp → q̃χ̃0

1 [141, 142]. Since each tt̄ background event contains two jets,

there is a two-fold ambiguity in the jet selection. We will use both possible pairings,

so that each background event will contribute two entries to our data. Of course,

we do not know a priori how many of those entries will end up inside the nominal

boundary surface S(mA,mB,mC ,mD), which is why we have to use a slightly different

normalization from Sec 4.3.2. We shall fix the number of signal events to NS = 3000,

and then we shall consider several values17 for the number of dilepton tt̄ events:

NB = {3000, 4000, 5000, 6000}. From Monte Carlo we then find that these choices

correspond to S/B = {1.52, 1.14, 0.91, 0.76} inside the S boundary, see (4.39).

Our main result is shown in Fig. 4.13, which is the analogue of Fig. 4.11 for this

case. Once again, we find that the function Σ̄(m̃A) is maximized in the vicinity of

m̃A = mA = 236.6 GeV. The fitting procedure is illustrated in Fig. 4.14, which is

the analogue of Fig. 4.12. The red solid lines show the boundary contours for the

nominal value of mA = 236.6 GeV, while the black dashed lines are for the best fit

value of m̃A = 280.0 GeV, which was found in the top left panel of Fig. 4.13. Fig. 4.13

shows that once again, our procedure has disfavored the whole auxiliary branch and

narrowed down the range of viable values of m̃A to a few tens of GeV around the

nominal value mA.

17The anticipated signal-to-background ratio is model-dependent. In this sense, SUSY may not
be the best case for discovery, since other scenarios, e.g., UED [143, 144, 145], have higher signal
cross-sections.
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Figure 4.13: The analogue of Fig. 4.11 for the exercise with tt̄ background events
considered in Section 4.3.3. Results are shown for NS = 3000 signal events and
several choices for the number of background events: NB = 3000 (upper left panel),
NB = 4000 (upper right panel), NB = 5000 (lower left panel) and NB = 6000 (lower
right panel).

4.4 A case study in region (3, 2)

In this section, we shall repeat the analysis from Section 4.3, only this time our

nominal study point, from now on labelled as P32, will be chosen within the cyan

region (3, 2) of Fig. 4.2. Recall that the problematic relation (4.29) was satisfied in

three of the colored regions in Fig. 4.2, namely (2, 3), (3, 1) and (3, 2). The former

two regions, (2, 3) and (3, 1), were already visited by the mass trajectory studied in

Section 4.3, thus here for completeness we will also illustrate the case of region (3, 2).
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Figure 4.14: The analogue of Fig. 4.12 for the exercise with tt̄ background events
considered in Section 4.3.3. The Voronoi tessellation was done for the case of NB =
3000. The red solid line is the phase space boundary for the nominal value mA = 236.6
GeV, while the black dashed line corresponds to the best fit value m̃A = 280.0 GeV
found in the the top left panel of Fig. 4.13.
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true branch mirror branch

Region (3, 2) (3, 1) (4, 2) (4, 3) (2, 3)

Study point P32 P31 P42 P43 P23

mA (GeV) 126.49 5000.00 90.00 150.00 500.00

mB (GeV) 282.84 5207.42 194.61 250.96 609.04

mC (GeV) 447.21 5324.17 399.99 460.80 815.72

mD (GeV) 500.00 5372.07 458.78 518.78 869.36

RAB 0.200 0.922 0.214 0.357 0.674

RBC 0.400 0.957 0.237 0.297 0.557

RCD 0.800 0.982 0.760 0.789 0.880

mmax
ll (GeV)

√
a 309.84

mmax
jll (GeV)

√
b 368.78

mmax
jl(lo) (GeV)

√
c 149.07

mmax
jl(hi) (GeV)

√
d 200.00 200.00 198.23 199.87 200.00

mmin
jll(θ>π

2
) (GeV)

√
e 247.94 237.47 253.72 250.99 243.81

Table 4.2: The same as Table 4.1, except now the starting point is a point (P32)
from region (3, 2).

Figure 4.15: The same as Fig. 4.3, but for the flat direction generated by point P32

from Table 4.2.

4.4.1 Kinematical properties along the flat direction

The mass spectrum for the study point P32 and the corresponding mass squared ratios

and kinematic endpoints are shown in the cyan-shaded column of Table 4.2. Point

P32 was used previously in Ref. [36] as an example of a discrete two-fold ambiguity,

while here it serves to define a flat direction (4.7) in mass parameter space. This flat

direction is illustrated in Figs. 4.15 and 4.16, which are the analogues of Figs. 4.3
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Figure 4.16: The analogue of Fig. 4.4, but for the flat direction defined in Fig. 4.15.

and 4.4, respectively. According to Figs. 4.15 and 4.16, the mass trajectory now goes

through five of the six colored regions in Fig. 4.2: there is a true branch through the

red region (3, 1), the cyan region (3, 2) and the the yellow region (4, 2), as well as an

auxiliary branch through the yellow region (4, 2), the magenta region (4, 3) and the

green region (2, 3). As in Section 4.3, we choose one representative study point in

each of these regions. The four additional study points, P31, P42, P43 and P23, are also

listed in Table 4.2, and their columns are shaded with the color of their respective

regions in Fig. 4.2.

The flat direction depicted in Fig. 4.15 is again parametrized by the trial value

m̃A for the mass of the lightest new particle A. However, as seen in Fig. 4.16, this

time the allowed range for m̃A does not extend all the way to m̃A = 0, and instead the

true and auxiliary branch meet inside the yellow region (4, 2) around at the lowest

value m̃A ∼ 89 GeV.

The transitions between two neighboring regions along the flat direction can be

understood from Fig. 4.17, which plots the mass squared ratios RAB, RBC and RCD

(solid lines) and several other quantities (dotted lines) which are relevant for defining

the regions from Fig. 4.2, as a function of the mass trajectory parameter m̃A. For

example, relations (B.3) and (B.13) imply that the boundary between the cyan region

(3, 2) and the red region (3, 1) is given by RBC = (2 − RAB)−1. Indeed, the lines in

Figs. 4.16 and 4.17 change color from cyan to red when the RBC curve crosses the
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Figure 4.17: The equivalent representation of Fig. 4.16 in terms of the mass squared
ratios RAB, RBC and RCD (solid lines). The dotted lines depict various quantities
of interest which are used to delineate the regions in Fig. 4.2. The left panel shows
the true branch passing through regions (3, 2) (cyan) and (3, 1) (red), while the right
panel shows the auxiliary branch through regions (4, 2) (yellow), (4, 3) (magenta) and
(2, 3) (green). The left insert zooms in on the transition between regions (3, 2) and
(3, 1) near m̃A = 173 GeV, while the right insert focuses on the transitions between
regions (4, 2) and (4, 3) near m̃A = 97 GeV and between regions (4, 3) and (2, 3) near
m̃A = 193 GeV.

dotted line representing the function (2− RAB)−1 near m̃A = 173 GeV. Similarly, it

follows from (B.21) and (B.54) that the boundary between the green region (2, 3) and

the magenta region (4, 3) is given by RBC = RABRCD. The right panel of Fig. 4.17

confirms that the line color changes from magenta to green when the solid line for

RBC is intersected by the dotted line for RABRCD. Finally, according to (B.42) and

(B.53), the transition between the yellow region (4, 2) and the magenta region (4, 3)

occurs at RAB = RBC , and this is borne out by Fig. 4.17 as well.

By construction, all five study points from Table 4.2 predict identical values for

the three kinematic endpoints a, b and c. This is demonstrated in Fig. 4.18, which

is the analogue of Fig. 4.6, but for the five study points from Table 4.2. As before,

the distributions in Fig. 4.18 are color-coded according to our color conventions from

Fig. 4.2. The nominal input study point P32 is represented by the solid line, while

the dotted lines mark the other four study points. Given that the five study points

look very similar on Fig. 4.18, we now focus on the remaining two distributions,

mj`(hi) and mjll(θ>π
2

), which are investigated in Figs. 4.19 and 4.20. The left panels

show the predictions for the kinematic endpoint
√
d = mmax

j`(hi) and the threshold
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Figure 4.18: The analogue of Fig. 4.6, but for the five study points exhibited in
Table 4.2. The distributions are color-coded according to our color conventions for
the regions in Fig. 4.2.

Figure 4.19: The analogue of Fig. 4.19, but for the flat direction defined in Fig. 4.15
(left panel) and for the five study points from Table 4.2 (right panel).

√
e = mmin

j``(θ>π
2

), respectively, while the right panels plot the corresponding kinematic

distributions for the five study points from Table 4.2.

By now, we should not be surprised by the extreme flatness of the curves exhibited

in the left panel of Fig. 4.19. The mass trajectory from Fig. 4.15 passes through all

three of the regions where the endpoint d is not an independent quantity, but is fixed

by the relation (4.29) and is therefore strictly independent of m̃A. In the remaining

two regions, (4, 2) and (4, 3), Fig. 4.19 shows a maximal deviation of only 2 GeV from

the prediction
√
d =

√
b− a of (4.29). Taken together, the left panels of Figs. 4.7

and 4.19 justify our terminology of the mass trajectory (4.7) as a “flat direction” in
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Figure 4.20: The same as Fig. 4.19, but for the kinematic endpoint
√
e and the

corresponding mjll(θ>π
2

) distribution.

mass parameter space.

On the other hand, the left panel of Fig. 4.20 shows a much more significant

variation of the kinematic threshold variable
√
e along the flat direction. The total

variation is on the order of 15 GeV, which is of the same order as our previous result

in Fig. 4.8. However, as we already discussed in Section 4.3, the measurement of
√
e

presents significant experimental challenges, as one can deduce from the very minor

apparent variation of the mj``(θ>π
2

) distributions shown in the right panel of Fig. 4.20.

This motivates searching for alternative methods for lifting the degeneracy along the

flat direction.

As already discussed in Section 4.3, one such method is to track the deformation

of the shape of the kinematic boundary (4.9) along the flat direction. The effect is

illustrated in Figs. 4.21 and 4.22, which are the analogues of Figs. 4.9 and 4.10 for

the example of a flat direction considered in this section. Once again, the solid red

lines in each panel indicate the kinematic boundaries for the nominal study point

P32 with m̃A = 126.5 GeV, while the dashed lines are drawn for several other values

of m̃A, chosen so that they illustrate the typical range of shape fluctuations. Along

the true branch, in Fig. 4.21 we plot contours for m̃A = 100 (black), m̃A = 173

GeV (green), m̃A = 500 GeV (blue), m̃A = 2000 GeV (yellow) and m̃A = 4000 GeV

(gray). Even though we are confined to the true branch only, when we compare

Fig. 4.21 to its analogue, Fig. 4.9, we observe a much larger variation in the shape of
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Figure 4.21: The same as Fig. 4.9, but for the true branch in Fig. 4.15. The red
solid line represents the case of the P32 study point with m̃A = 126.5 GeV, while
the dashed lines correspond to other values of m̃A along the true branch: m̃A = 100
(black), m̃A = 173 GeV (green), m̃A = 500 GeV (blue), m̃A = 2000 GeV (yellow)
and m̃A = 4000 GeV (gray).

the kinematic boundary in the present case, which promises good prospects for the

mass measurement exercise to follow. The results shown in Fig. 4.22 for the auxiliary

branch are also quite good. This should not come as a surprise, since the exercise

in Section 4.3 already indicated that the auxiliary branch has a different kinematic

behavior, as reflected in the shape of the phase space boundary.
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Figure 4.22: The same as Fig. 4.21, but for the auxiliary branch in regions (4, 2), (4, 3)
and (2, 3). The dashed lines represent points with m̃A = 90 GeV (black), m̃A = 150
GeV (green), m̃A = 500 GeV (blue) and m̃A = 5000 GeV (yellow). For reference, we
also show the case of the true mass spectrum for point P32 (red solid lines), although
P32 itself does not belong to the auxiliary branch.

4.4.2 A toy study with uniformly distributed background

In the remainder of Section 4.4 we shall repeat the two exercises from Sections 4.4.2

and 4.4.3, only this time we shall use P32 as our input study point, and perform the

measurement along the corresponding flat direction described in Figs. 4.15 and 4.16.

First we consider the case of uniformly distributed (in mass squared) background
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Figure 4.23: The same as Fig. 4.11, but now taking point P32 as input and measuring
along the flat direction depicted in Fig. 4.15.

events, and proceed to evaluate the quantity Σ̄ along the flat direction. As before,

we fix NB = 1000 and then vary the signal-to-background ratio inside the boundary

surface S. Fig. 4.23 shows our results for the same choices of S/B as in Fig. 4.11:

S/B = 3 (upper left panel), S/B = 1 (upper right panel), S/B = 0.5 (lower left

panel) and S/B = 0.2 (lower right panel). We find that the function Σ̄(m̃A) once

again peaks in the vicinity of the true value mA = 126.5 GeV. Specifically, for S/B =

{3.0, 1.0, 0.5, 0.2}, the maxima are found at m̃A = {125, 125, 116, 116} GeV, to be

contrasted with the true value of mA = 126.5 GeV. In all four cases, the auxiliary

branch is disfavored, as it always gives low values for Σ̄, while the true branch is

restricted to a very narrow region near the true mass spectrum.

Fig. 4.24 provides a consistency check on our fitting procedure, similarly to Fig. 4.12.

We show two-dimensional views at fixed m2
`` of the Voronoi tessellation of the data

for the case of S/B = 3. The red solid line is the expected signal boundary for the

nominal case of point P32, i.e., with the true value m̃A = mA = 126.5 GeV. The black
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Figure 4.24: The same as Fig. 4.12, but for the exercise performed in Section 4.4.2,
with point P32 as input (solid red lines). The black dashed line corresponds to the
mass spectrum with m̃A = 125 GeV, which was found to maximize the quantity Σ̄ in
the top left panel of Fig. 4.23.

dashed line then corresponds to the best fit, i.e., a mass spectrum with m̃A = 126

GeV, which was found to maximize the quantity Σ̄ in the top left panel of Fig. 4.23.
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Figure 4.25: The same as Fig. 4.13, but using study point P32 as input.

4.4.3 A study with tt̄ dilepton background events

Our final task will be to repeat the P32 exercise with dilepton tt̄ events as was done in

Section 4.3.3. As before, we fix the number of signal events NS = 3000 and then con-

sider several values for the number of background events: NB = {3000, 4000, 5000, 6000}.
In each case, we compute the function Σ̄(m̃A) along the flat direction of Fig. 4.15. The

results are shown in Fig. 4.25, which has the same qualitative behavior as Fig. 4.23.

The Σ̄ values for the auxiliary branch tend to be low, and the branch is disfavored.

The global peak of Σ̄(m̃A) is again found in the vicinity of the right answer (for

NB = {3000, 4000, 5000, 6000}, the peak is at m̃A = {116, 125, 125, 125} GeV), and

the large m̃A tail of the true branch is also disfavored. One final consistency check is

provided by Fig. 4.26, which shows a comparison of the kinematic boundaries for the

nominal study point P32 with mA = 126.5 GeV (red solid lines), and the boundaries

for the best fit value m̃A = 125 GeV (black dashed lines).
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Figure 4.26: The same as Fig. 4.14, but for the exercise performed in Section 4.4.3,
using study point P32 as input. The red solid line is the phase space boundary for
the nominal value mA = 126.5 GeV, while the black dashed line corresponds to the
best fit value m̃A = 116 GeV found in the the top left panel of Fig. 4.25.

4.4.4 A detector level study

In this paper, we introduced the new Voronoi-based method for mass measurement as

a proof of principle, and showed that at the parton level it does reasonably well in the

two examples considered so far in Sections 4.3 and 4.4. Before concluding, we would
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Figure 4.27: The same as Fig. 4.25, but accounting for the detector resolution as
described in the text.

like to also test the method in the presence of detector effects (this subsection) and

combinatorics (see Sec. 4.4.5 below). For this purpose, we first repeat the exercise

from Section 4.4.3, only this time we account for the finite detector resolution by

smearing the jet energies with the typical hadronic calorimeter resolution

σ

E
=

(
1√
E

)
(4.40)

and electromagnetic calorimeter resolution( σ
E

)2

=

(
0.0363√

E

)2

+

(
0.124

E

)2

+ 0.00262 (4.41)

in CMS [146], with the energy measured in GeV. Smearing of the muon momenta

is done according to the “Full System” values in Fig. 1.5 of [146]. The result of the

fitting exercise is shown in Fig. 4.27. We see that the peak structure in the vicinity

of the correct mass value (126.5 GeV) is preserved, but somewhat degraded due to

the detector resolution effects.
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4.4.5 D-pair production and combinatorics effects

Our proposed mass measurement method uses a single decay chain like the one de-

picted in Fig. 4.1. In that sense, the method is inclusive and model-independent,

since it does not depend on what else is going on in the event. In particular, the

method is equally applicable when particle D is produced singly, in pairs, or in asso-

ciation with another object. Nevertheless, a well-motivated and widely studied class

of models are the SUSY-like dark matter scenarios in which all particles A, B, C and

D carry negative parity under the additional Z2 symmetry. In that case, D has to be

produced in association with another negative parity object. If A is a neutral dark

matter candidate, then D must carry color, therefore D pair-production is strong and

may dominate the inclusive cross-section for D production.

The presence of a second D decay chain in the event can either be a blessing or

a curse. If both D particles decay the same way, as in Fig. 4.1, we can attempt to

double our statistics by considering the second decay chain as well. However, this

comes at a cost, since now we have to face the combinatorial problem of associating the

different reconstructed final state objects to one of the two decay chains. First, there

is a two-fold ambiguity of associating each jet to the correct side, and furthermore,

there is an additional two-fold ambiguity in the case when all leptons are the same

flavor. The simplest approach would be to consider all possible combinations and use

the resulting data set for building the Voronoi tessellation, then proceeding with the

fitting of the boundary surface as before. The result from this exercise is shown in

Fig. 4.28 for the case of 100 (left panel) and 500 (right panel) signal events. We see

that despite the pollution from wrong combinatorics, the peak in Σ̄ is still very well

visible, and found in the right location.

Our final study is reserved for the most challenging example so far — a case with

a severe combinatorics problem, in the presence of SM (tt̄) background events. For

signal, let us again consider D-pair production, only this time let all three of the decay

products of the secondD particle be QCD jets. Thus, each one of our signal events has

2 leptons and 4 jets, and picking the correct jet becomes a difficult task. Now, instead

of using all possible combinations, we design a preselection cut in order to improve

our chances of capturing the correct jet pairing. For this purpose, we consider the

four possible jet-lepton-lepton combinations and compute the corresponding three-

body invariant masses. Next, we rank-order these four values [99, 128] and eliminate
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Figure 4.28: The same as Fig. 4.25, but for signal events where particles D are pair-
produced and decay as in Fig. 4.1. The left (right) panel is made with 100 (500)
signal events.

Figure 4.29: The same as the lower two plots in Fig. 4.25, but for signal events where
particles D are pair-produced and one of them decays as in Fig. 4.1, while the other
decays to 3 jets and particle A.

from further consideration the two jets which correspond to the two largest jet-lepton-

lepton invariant masses, since those jets are very likely to come from the decay chain

opposite the two leptons. The remaining two jets still cause a two-fold ambiguity,

which we handle as in Fig. 4.28: by simply plotting both combinations. The end

result from the analysis is shown in Fig. 4.29. As in the example from Sec. 4.4.3, here

we also include a certain number of tt̄ background events: 5000 in the left panel and

6000 in the right panel. The fact that the Σ̄ peak is again obtained in the correct

location indicates that our method can be viable in the presence of combinatorial

background due to pair production of particles D.
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4.5 Conclusions

In this paper, we reconsidered the classic endpoint method for particle mass deter-

mination in SUSY-like decay chains like the one shown in Fig. 4.1. Our main points

are:

• We have identified a “flat direction” in the mass parameter space (4.1), along

which mass differences can be measured relatively well, but the overall mass

scale remains poorly constrained. (The analytical formulas parametrizing this

flat direction can be found in Appendix B.) We quantified the problem with

examples of specific study points, P31 and P32, considered in Sections 4.3 and

4.4, respectively.

• We then proposed a new method for mass measurements in general, and for

extracting the mass scale along the flat direction, in particular. The method

takes advantage of the changes in the shape of the two-dimensional kinematic

boundary surface within the fully differential three-dimensional space of observ-

ables, as one moves along the flat direction. We have tested our Voronoi-based

algorithm [134, 17] for detecting the boundary surface and demonstrated that

it can be usefully applied in order to lift the degeneracy along the flat direc-

tion. This approach represents the natural extension of the one-dimensional

kinematic endpoint method to the relevant three dimensions of invariant mass

phase space.

• We introduced a new variable, Σ̄, which is the average RSD per unit area,

calculated over the hypothesized kinematic boundary. We showed that the

location of the Σ̄ maximum correlates very well with the true values of the new

particle masses, see Figs. 4.11, 4.13, 4.23, 4.25, and 4.27.

The work reported here can be extended in several directions. First of all, the

method can be readily generalized to longer decay chains with more visible particles,

where the boundary enhancement is even more pronounced [135], and therefore, the

detection of the boundary surface should be in principle easier. One could also try to

apply Voronoi-based boundary detection algorithms for the discovery of new physics.

It is also interesting to develop a general and universal method for estimating the

statistical significance of the local peaks found in Figs. 4.11, 4.13, 4.23 and 4.25, and
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hence the statistical precision of our mass measurement. These, along with many

other interesting questions, will be investigated in future studies [110].
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Chapter Five: Enhancing the discovery prospects

for SUSY-like decays with a forgotten kinematic

variable1

5.1 Introduction

The possible existence of particles beyond the Standard Model (SM) at the TeV

scale is theoretically motivated both by naturalness considerations for the electroweak

scale [147], and by the so-called WIMP (weakly interacting massive particle) miracle

for obtaining the correct dark matter relic abundance [148]. Nevertheless, as we

approach the end of Run II of the Large Hadron Collider (LHC), we have as yet no

conclusive evidence of new particles beyond the SM (BSM) [149]. This requires us to

pause, rethink and perhaps re-optimize our search strategies, in preparation for what

may lie ahead. In particular, we should be mindful of the following challenges:

• The signal may be buried under a large SM background. Of course, one obvi-

ous possibility for why partner particles may so far have evaded detection is

that they are simply too heavy and therefore have small production cross sec-

tions. If that is the case, then discovery could be waiting around the corner,

provided that the signatures of the new particles are distinctive. For instance,

significant mass gaps in the spectrum of the new particles will result in high

pT leptons and jets in the final state and a sizable missing transverse energy,

ET . Therefore, while the signal cross section may be low, signal over back-

ground can still be large and reaching discovery sensitivity will simply be a

question of collecting sufficient statistics. This scenario is rather uninterest-

ing to us, and instead in this paper we focus on the alternative — that the

new particles are being produced in sizable numbers, but their signatures are

1Previously published as D. Debnath, J. S. Gainer, C. Kilic, D. Kim, K. T. Matchev, Y.-P.
Yang,”Enhancing the discovery prospects for SUSY-like decays with a forgotten kinematic variable”
on on Journal of High Energy Physics 05(2019)08. Y.-P. Yang derived the analytic distribution of
∆4/∆4,max, conducted Monte Carlo simulation and mass spectrum scan, and analyzed the results
with receiver operating characteristic curve
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plagued by large SM backgrounds, so the name of the game is whether we

can identify selection criteria which have the best potential for discriminating

against the background. This attitude is supported by the flurry of theoreti-

cal activity in recent years in designing models which “hide” the new physics

from the LHC. One of the standard methods for doing so is to arrange for

a “compressed” mass spectrum with a mass degeneracy of the relevant par-

ticles, such as supersymmetric (SUSY) partners, so that the resulting decay

products are too soft to be triggered upon and tagged in the experimental

analysis [150, 151, 152, 153, 154, 155, 156, 157, 158, 159], or a “stealth” mass

spectrum, where the new physics signature becomes identical to the SM back-

ground, since the additional particles are too soft to make any appreciable

difference [160, 161, 95, 162, 163, 164, 165]. Our aim will be to highlight a kine-

matic variable that, either by itself or in conjunction with more conventional

variables, can more effectively select signal over background when the signal

spectrum is compressed and when signal events contain multi-stage cascade

decays.

• Exclusive searches may be reducing the signal statistics to unobservable levels.

When searching for new physics, one has to find the right balance between inclu-

sive and exclusive searches. Inclusive searches are more robust since they have

fewer theoretical assumptions about the event topology and have a higher signal

efficiency. On the flip side, they tend to suffer from larger SM backgrounds. In

contrast, exclusive searches have the potential to reach higher sensitivity when

the correct assumptions are made about the features of signal events, since those

features can then be used to reduce backgrounds, but at the cost of relying on

the assumptions about event topology that may prove to be incorrect.

In our study we will remain much more inclusive than in experimental searches

that model the topology of the entire event, and instead we will only operate

on the assumption that the event contains (at least) one SUSY-like cascade

decay proceeding through a sequence of two-body decays and with an invisible

particle at the end of the decay chain. We will make no assumptions about

whether the particle at the beginning of the cascade is singly or pair-produced,

and if the latter, what the “other side” of the event looks like. Because of this,

we will not make direct use ofET , or any other transverse variables. Adopting
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a benchmark final state with three visible and one invisible final state particles

[see Fig. 5.1(d)], we will focus our attention on fully Lorentz-invariant kinematic

variables.

• Uncertainties in background modeling. A required component of any new physics

search is the prediction of the expected SM background. Depending on the fi-

nal state, this may turn out to be a difficult task, plagued by large systematics.

Ideally one would like to use data-driven background estimates, and not rely on

theoretical input or Monte Carlo. The classic technique for such searches is the

“bump hunting” method with sideband subtraction. Fig. 5.1(a-c) shows exam-

ples of simpler decay chains for which this method is easily applied. Fig. 5.1(a)

depicts a visibly decaying resonance, here to two visible particles v1 and v2.

In this case, the relevant kinematic variable is the invariant mass mv1v2 of the

decay products — it exhibits a Breit-Wigner peak at the mass mX1 of the new

resonance. Since the mv1v2 distribution for the SM background is expected to be

smooth, one can interpolate from the sidebands and obtain a reliable prediction

for the background under the peak. This tried-and-true method has been used

successfully many times in the past, including most recently for the discovery

of the Higgs boson in the diphoton channel [166, 167].

However, the method runs into a complication if one of the final state particles

is invisible in the detector, e.g. particle χ in Fig. 5.1(b). Nevertheless, the

procedure still goes through, only this time one has to use a suitable kinematic

variable which retains the “bump” feature for the signal, namely the transverse

invariant mass mT,X1 [168, 169, 170]. The downside of the transverse mass

variable mT (and the related mass variables mT2 [171], m2 [90, 92, 94], etc.)

is that its definition uses theET measurement, which forces a departure from

inclusivity, and also suffers from the systematics of all possible detector effects.

For decay chains containing more than one visible particle, one can remain more

inclusive by working only with Lorentz-invariant variables constructed from the

momenta of these particles. For the two-stage decay chain in Fig. 5.1(c), the

only such kinematic variable is the invariant mass mv1v2 , whose distribution

does have a distinctive feature [172]. While these cases have all been studied

in great detail in the past, there has not been a comparable effort to design

optimized variables for a longer decay chain, such as in Fig. 5.1(d). We will
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Figure 5.1: Benchmark decay topologies which allow for inclusive searches for the
production of a new heavy resonance X1. Here v1, v2 and v3 are SM particles which
are reconstructed in the detector (either directly, or through their respective visible
decay products), while χ is a potential dark matter candidate which is invisible in
the detector. X2 and X3 are additional BSM particles with masses mX1 > mX2 >
mX3 > mχ.

therefore adopt this decay topology as our benchmark in this paper. Our main

goal will be to identify and study a kinematic variable for this decay topology

that is robust to a certain amount of uncertainty in the modeling of the relevant

backgrounds.

Based on the arguments above, an obvious choice of kinematic variables to consider

are the pair-wise2 invariant masses of the visible decay products, mv1v2 , mv2v3 , and

mv1v3 , or some combination of those. For plotting convenience, in what follows we

shall actually use the squares of those variables and denote them as

m2
12 ≡ m2

v1v2
, m2

23 ≡ m2
v2v3

, m2
13 ≡ m2

v1v3
. (5.1)

2The invariant mass variable mv1v2v3 of all three visible particles is not an independent quantity,
since

m2
v1v2v3 = m2

v1v2 +m2
v2v3 +m2

v1v3 −m2
v1 −m2

v2 −m2
v3 .
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The variables (5.1) are in principle good candidates for the analysis, not only because

they are Lorentz invariant, but also because their distributions exhibit interesting

kinematic features (edges and endpoints) which are traditionally used for determining

the masses of the new particlesX1, X2, X3 and χ [22, 23, 173, 24, 26, 27, 28, 29, 36, 37].

However, as discussed in refs. [98, 174, 1, 99, 175, 135], the multidimensional

phase space {m2
12,m

2
23,m

2
13} in this case in fact contains more information than is

captured by edge-and-endpoint variables alone. As we will be describing in more

detail in section 5.2, the vicinity of the endpoints corresponds only to a fraction of

the full boundary of the kinematically available phase space. This boundary is defined

via the condition3 ∆4 = 0 where the variable ∆4 will be introduced and defined in

section 5.2 below. For now we simply remark that the location of this boundary

contains the complete information about the spectrum in the cascade decay [98, 174].

A determination of this boundary (using Voronoi tessellations [17, 134]) has already

been shown to result in an improvement in the measurement of the new physics

mass spectrum [175].4 More importantly, the phase space volume element has an

enhancement near the boundary, even in the case of a compressed spectrum [1].

This suggests that ∆4 may be an effective discovery variable, especially in difficult

scenarios of compressed spectra. The main goal of this paper will be to investigate

the suitability of the ∆4 variable as an analysis variable, either on its own, or when

paired with the edge-and-endpoint variables5.

In order to demonstrate the basic idea, we adopt a specific realization of our

benchmark decay topology from Fig. 5.1(d), by specifying a final state on which we

will base our analysis (see Fig. 5.2). In particular, we will take X1 and X3 to be

charged particles, while X2 and χ are neutral. We also take the neutral particles

to be flavor singlets. The SM particles produced in the second and third stages of

the cascade are therefore oppositely charged, and have the same flavor, whereas the

charge and flavor assignments of the SM particle produced in the first stage of the

cascade are uncorrelated with the other two. Furthermore, in order to concentrate

on what can be achieved using phase space techniques for discovery, we will aim

to minimize possible complications due to challenging collider objects, so we choose

3Alternative parametrizations of the kinematic boundary can be found in [98, 174, 99].
4For a related qualitative discussion, see page 573 in [174].
5Note that ∆4 is only defined for the phase space of four or more final state particles, and

therefore cannot be used for the topologies in Fig. 5.1(a)-(c).
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X1 χX3X2

ℓ ℓ′± ℓ′∓

Figure 5.2: The specific realization of the event topology from Fig. 5.1(d) which will
be studied in this paper. Here `′± and `′∓ is a pair of opposite-sign, same-flavor
leptons, while ` is a third lepton of a different flavor.

the visible particles to be leptons. It is worth reiterating that our choice of final

state is simply a choice of convenience in order to demonstrate the applicability of

our methods, but the methods can be applied to photons, jets or even unstable SM

particles with fully visible decays (such as visibly decaying Z-bosons) as well, at the

potential cost of worse detector energy resolution and combinatorics. Our analysis

w ill take into account the effect of finite energy resolution for leptons, as well as the

combinatoric ambiguity about which lepton is emitted at the various decay stages. In

particular, there will not in general be a way to distinguish which of the same-flavor,

opposite-charge leptons is emitted higher upstream in the cascade. On the other

hand, the lepton emitted in the first stage of the cascade can be distinguished by

demanding it to carry a flavor different from the same-flavor, opposite-charge lepton

pair.

Since we aim to focus on improving signal selection in the case of compressed spec-

tra, we adopt the following benchmark spectrum: mX1 = 390 GeV, mX2 = 360 GeV,

mX3 = 330 GeV and mχ = 300 GeV. Note that the choice of spectrum is mainly

intended to demonstrate how well the kinematic variables in question compare to one

another. Our conclusions would not be affected by raising all masses in the spectrum

(while preserving the mass gaps), if we wanted to assign additional significance to

this mass benchmark and avoid existing exclusion constraints for various potential

underlying models, such as supersymmetry.

The outline of this paper is as follows: In the next section we will review the

theoretical aspects of multidimensional phase space and formally introduce the ∆4

variable. In section 5.3, we will then perform a preliminary study with simplified
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assumptions to outline the salient features of ∆4 as a discovery variable. In section 5.4

we will address a subtlety about the use of a hypothesis spectrum in order to calculate

∆4. Once this is done, we will then perform a realistic study of the performance of

∆4 as a discovery variable in section 5.5. We conclude in section 5.6.

5.2 Mathematical description of four-body phase

space

Let us start by introducing a manifestly Lorentz-invariant parametrization of the

phase space for the cascade decay of our benchmark decay topology. Using the

formalism of ref. [6],6 we introduce the matrix

Z = {zij} with zij = pi · pj , (5.2)

where the {pi} are the four momenta of the final state particles `, `′±, and χ. The

variables ∆i can then be defined as

det [λI4×4 −Z] ≡ λ4 −
(

4∑
i=1

∆iλ
4−i
)
. (5.3)

Among these variables, ∆4 will play a special role in the rest of this paper. As

described in ref. [6], the kinematically allowed region is given by ∆1,2,3,4 > 0, with

the boundary located at7

∆4 = 0, ∆1,2,3 > 0 . (5.4)

With the requirement that all m2
ij ≥ 0, outside of the kinematically allowed region

the values of ∆4 are negative and become arbitrarily large in magnitude as one moves

towards infinity.

The general four-body phase space volume element is given by

dΠ4 =

(∏
i<j

dm2
ij

)
8

(4π)10M2
X1

∆
1/2
4

δ

(∑
i<j

m2
ij −

(
M2

X1
+ 2

4∑
i=1

m2
i

))
, (5.5)

6For an alternative derivation, the curious reader is invited to follow Exercise 11 on page 574 in
[174].

7Alternative equivalent parametrizations of this kinematic boundary were previously derived in
[98, 174, 99]. However, those results were not used to study the interior of the kinematically allowed
phase space, as we will be doing here.
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where m2
ij = (pi + pj)

2 = 2zij + m2
i + m2

j
8. Note the factor of ∆

−1/2
4 , which causes

an enhancement near the boundary ∆4 = 0.

Of course, the physically observable quantities depend not only on dΠ4 but on

|M|2, the quantum mechanical matrix element squared for the decay:

dΓ = |M|2 dΠ4 . (5.6)

In particular, for the benchmark decay topology of Fig. 5.2, the volume element will

be combined with the squares of the internal propagators in the cascade, which in

the narrow width approximation are given as delta functions with arguments linear

in the m2
ij and can therefore be used to perform some of the m2

ij integrals. As a

result, the events fill out a three-dimensional phase space that can conveniently be

fully parameterized in terms of the observables m2
12, m2

13 and m2
23.

The enhancement in the phase space volume element near the boundary should

make it clear why it is promising to consider ∆4 as a discovery variable. The promi-

nent features in the edge-and-endpoint variable distributions happen at the extremes

of linear slicings of the three dimensional phase space, and therefore only a small frac-

tion of signal events contribute to these features. In contrast, the prominent feature

in the ∆4 distribution at ∆4 = 0 captures the full boundary of phase space, where

the density of signal events is enhanced, so it is reasonable to expect that selecting

for events near ∆4 = 0, one could significantly enhance signal over background.

It is worth remarking that the phase space for any known SM background process

does not develop a singular structure like the one described in eq. (5.5). Furthermore,

there is no reason to expect the |M|2 factor for the background to have any sharp

features over the kinematically accessible signal region (the location of which depends

on the signal spectrum). In particular, for a compressed signal spectrum which results

in a relatively small signal region, the variation of the background matrix element

over this region will in all likelihood be mild.

Note that for a given event, ∆4 cannot be calculated from the observable data

alone. As can be seen from eq. (5.3), ∆4 is equal to −det[Z], and the last column

and row of Z contain the four momentum of the lightest supersymmetric particle

(LSP) χ, which is unobservable. However, if one starts with a hypothesis for the

spectrum {mX1 ,mX2 ,mX3 ,mχ}, the on-shell constraints allow one to solve for all

8This is the general formula. For our analysis, while mχ > 0, we will take the leptons to be
massless.
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entries of Z, and thus a mass hypothesis dependent value of ∆4 can be calculated. The

obvious question to ask then is whether this requirement for a spectrum hypothesis

significantly weakens the usefulness of the ∆4 variable. We will take up this question

in section 5.4, drawing the conclusion that ∆4 is a powerful variable despite this

caveat.

5.3 Preliminary study with uniform background

In order to illustrate the usefulness of ∆4, we wish to compare its performance as a

discovery variable to the conventional edge-and-endpoint variables using the bench-

mark cascade decay and spectrum specified in the introduction. The performance

of all variables will depend on the differential distribution of signal and background

events, which as mentioned in the previous section will in turn depend on both the

geometry of phase space as well as the matrix elements for signal and background.

Again as emphasized in the previous section, the usefulness of ∆4 originates from

the phase space geometry for signal, in particular, the enhancement of the signal

event density near the boundary of the kinematically allowed region where there is

no strong reason to expect a feature in the density of background events. Therefore,

we devote this section to a toy study where we minimize the effects of the matrix el-

ements and of the background event distribution, by taking all particles in the signal

decay chain to be scalars, and we make the highly simplifying approximation that

the background varies not only slowly over the signal region but is in fact uniformly

distributed over phase space (parameterized in terms of the coordinates m2
ij). We will

also use the true signal spectrum in calculating ∆4 and return to the issue of having

to scan over spectrum hypotheses in the next section, before we do a full analysis with

SM backgrounds and a signal model with spins of new particles assigned SUSY-like

in section 5.5.

Since we use a uniformly distributed background, we need to define a finite box

in the three-dimensional space formed by the three m2
ij variables in order to deal

with only a finite number of background events. We choose the box size as twice the

maximal possible signal value in each of the m2
ij variables. This choice ensures that

finite energy resolution in the detector does not push signal events outside the box,

and that no artificial features are introduced in background distributions at small
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but negative values of ∆4, close to but outside the signal region. We generate high

statistics samples with one million signal and background events each, where in the

signal the flavors of the leptons ` and `′ are randomly assigned as electrons or muons.

We only consider events where those two flavors are distinct.

Even in this preliminary study, we will need to face two complications. One

is finite energy resolution, as mentioned, while the other complication arises from

combinatoric ambiguities. Note that in our benchmark topology of Fig. 5.2, it cannot

be experimentally determined in which order the particles `
′+ and `

′− are emitted in

the cascade, leading to a combinatoric ambiguity. As argued in ref. [24], in such a

case it is advantageous to work with ordered variables instead, so we define and work

with the variables

m2
1(hi) ≡ max(m2

12,m
2
13), m2

1(lo) ≡ min(m2
12,m

2
13). (5.7)

Note that there is no combinatorial ambiguity in defining m2
23 as we require `′ and `

to have distinct flavors. Due to the combinatorial ambiguity, there are two possible

values of ∆4 for every event, and both of them will be used when populating ∆4

histograms. In setting up our study, we will choose to start by using perfect energy

resolution and by ignoring the combinatoric ambiguity, before introducing them be-

low. We do this because there are a few important lessons we can learn even before

the analysis is made more complicated by these effects.

As mentioned in the introduction, an ideal discovery variable that eliminates the

need for precise background modeling would exhibit a strong feature in the distribu-

tion of the signal while the background distribution is smooth at the same position,

such that a sideband analysis can pick out the signal as in a bump-hunting analysis.

At first sight, ∆4 seems to be a promising variable along these lines, since the signal

event density is enhanced near ∆4 = 0 while the background event density has no rea-

son to be enhanced at the same surface, the location of which after all is dependent on

the signal spectrum. Unfortunately, this line of thinking misses a potential problem,

namely that even though the density of background events may be smooth near the

surface ∆4 = 0, the phase space in which signal and background events are distributed

is three-dimensional, and in making a one-dimensional histogram of ∆4, one has to

integrate the phase space volume between surfaces of constant ∆4. This can still in-

troduce a feature into the background ∆4 histogram if the volume between contours

itself exhibits a feature near ∆4 = 0. This does in fact happen to be the case, since
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Figure 5.3: The ∆4 histograms for signal (blue) and (uniformly distributed) back-
ground (green). The distributions are normalized by the maximum ∆4 value for the
chosen mass spectrum, (mX1 ,mX2 ,mX3 ,mχ) = (390, 360, 330, 300) GeV. The feature
in the background distribution near ∆4 = 0 is caused by the volume between constant
∆4 surfaces becoming maximal.

the gradient of ∆4 is small on a significant portion of the boundary surface, increasing

the volume between ∆4 contours there. The resulting ∆4 histogram for signal and

background (uniform density) is shown in Fig. 5.3, where the normalization of the

signal and background histograms has been chosen such that they both contain the

same total number of events. Here ∆4 values are normalized by the maximum ∆4 for

the chosen mass spectrum, (mX1 ,mX2 ,mX3 ,mχ) = (390, 360, 330, 300) GeV. When

the number of background events are significantly higher than the number of signal

events, as is often the case for searches for new physics, and when the distributions

become smeared due to finite energy resolution, the presence of the background fea-

ture at ∆4 = 0 will make a simple bump hunt based on a sideband analysis difficult,

since the signal can be misinterpreted as a background systematic [174].

We therefore switch to a different approach for a search strategy. In order to com-

pare the effectiveness of the different variables in selecting signal events, we construct

a performance curve of each variable as follows9. For a given variable, a histogram is

9The spirit of these curves is similar to a receiving operator characteristic (ROC) curve, even
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made of the signal and background. For the m2 variables, the interval of interest in

the histogram is between the maximum and minimum possible values predicted by

the spectrum, and for ∆4 it is the interval between ±∆4(max), also as predicted by the

spectrum. The interval of interest is divided into 100 bins10. The first entry in the

performance curve is the ratio of signal to background events (S/B) in the bin with

the highest number of signal events. To obtain the second entry in the performance

curve, this bin is combined with the bin to its left or to its right, whichever of the

two has the larger number of signal events, and S/B is calculated for the combined

two-bin region. For the third entry in the performance curve, these two bins are

combined with the neighboring bin with the higher number of signal events, and so

on. The procedure stops when all bins containing signal events are exhausted, and

therefore the last entry in the performance curve corresponds to S/B over the full

signal region for the variable in question. Note that the ordering of the bins in terms

of signal events (as opposed to S/B) reduces the reliance on background modeling.

We point out that the performance curves of any two variables may be meaning-

fully compared independently of the overall signal and background normalizations,

since any change in the signal and background normalizations will multiply the perfor-

mance curve of all variables by the same common factor. Using the same procedure,

for completeness we also produce performance curves for the S/
√

B metric11. These

performance curves are shown in Fig. 5.4. Note that by construction, the background

has a flat distribution in all m2
ij variables, and in the absence of spin correlations, the

signal has an exactly flat distribution in m2
12 and m2

23, and a nearly flat distribution

in m2
13 as well. This explains the near-flatness of the S/B performance curves of the

m2
ij variables, as well as the

√
Nbins scaling for the S/

√
B performance curves. As can

be seen from the figures, ∆4 performs significantly better than these with respect to

both metrics.

Encouraged by this result, we proceed to check whether it is robust in the presence

of finite detector energy resolution and combinatorial ambiguities. We use the EM

though they are not technically ROC curves.
10We verify that the procedure outlined here is not sensitive to the choice of binning.
11S/B and S/

√
B are the relevant quantities measuring signal significance in searches that are

systematics and statistics dominated, respectively, and we wish to remain agnostic as to which case
may apply in the experimental search of interest.
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Figure 5.4: Performance curves for ∆4 and the invariant mass variables using the S/B
(left panel) and S/

√
B (right panel) metrics, with perfect energy resolution. See the

main text for the way in which we construct these curves.

calorimeter resolution based on the CMS-TDR [176]

σE
E

= (0.0026)⊕ 0.0363 GeV 1/2

√
E

⊕ 0.124 GeV

E
, (5.8)

where the energy E is defined in GeV. For the muon resolution we utilized values

(in terms of muon momentum and pseudorapidity) summarized in Figure 1.5 of the

CMS-TDR [176]. Since the background that we consider in this preliminary study

is not physical and has no four-vectors associated with it, we leave it unmodified.

To incorporate combinatorial ambiguities into the analysis, we use the ordered m2

variables as defined in eq. (5.7), and we populate ∆4 histograms by both possible

values for each event as mentioned above. The effect of smearing and combinatorics

on the ∆4 distribution of figure 5.3 is shown in Fig. 5.5.

As a result of both smearing and combinatorics, the performance curves for ∆4

in Fig. 5.4 are mildly degraded, which can be seen in Fig. 5.6. In Fig. 5.7, the

performance curves of ∆4 and the edge-and-endpoint variables are compared with

energy resolution and combinatorics included. ∆4 is seen to still outperform the

edge-and-endpoint variables, but by a smaller margin.

After this preliminary comparison among single kinematic variables as discovery

tools, it is also interesting to look at how well pairs of variables compare to one

another. In particular we will be interested in whether pairing ∆4 with the m2

variables will be more effective than pairing one of the m2 variables with another

one. The procedure we use to perform this comparison closely mirrors the procedure
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Figure 5.5: The ∆4 histograms for signal (blue) and (uniformly distributed) back-
ground (green), with energy resolution and combinatoric ambiguities included. To be
compared to Fig. 5.3
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Figure 5.6: The effect of energy resolution and combinatorics on the significance
performance curve of ∆4 is shown using the S/B (left panel) and S/

√
B (right panel)

metrics.
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Figure 5.7: The same as Fig. 5.4, but taking the finite energy resolution and combi-
natoric effects into account.
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Figure 5.8: Performance curves for pairs of variables among ∆4 and the invariant
mass variables, using the S/B (left panel) and S/

√
B (right panel) metrics, taking

finite energy resolution and combinatoric effects into account.

outlined above for the case of a single variable. In particular, for any pair of variables,

signal and background events populate a double histogram in the two variables in

question (the same binning parameters are used in each variable as described earlier in

this section). The (double) bins are then ordered in order of their signal contribution,

but w ithout demanding that the bins that are combined neighbor one another, and

performance curves of S/B and of S/
√

B are made. The effects of both smearing and

of combinatorics are included. We exhibit the results in Fig. 5.8 from which it is

easy to see that variable pairs including ∆4 perform better than variable pairs not

including ∆4 with respect to both metrics.

5.4 Scanning over mass spectra

Encouraged by the promising results of our preliminary study described in the pre-

vious section, we will devote this section to address the issue of the spectrum depen-

dence in calculating ∆4. In particular, since the true signal spectrum is not known

a priori, analyses involving ∆4 will need to scan over all possible (correctly ordered)

spectra. Below, we will show that the significance is maximized at least locally for

the true spectrum, a result which is consistent with the conclusions of ref. [175].

Therefore, if one were to scan over all spectra and use the spectrum that yields the

highest significance, then the performance curve based on the true spectrum offers a

guaranteed, and in fact potentially conservative (should other spectra exist far from

the true spectrum that lead to even higher significance), benchmark for comparison
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against the performance curves of the m2 variables. The significances we report will

be local. The calculation of a global significance requires the use of a trials factor

which is tricky to define for this analysis and is beyond the scope of this paper.

The question of the potential existence of other local (or even global) maxima

of significance requires extensive calculational resources, since a fine scan over four

masses is required12. However, since we will show below that the true spectrum yields

at least a local maximum, with a high significance value, then if other local maxima

with even higher significance should exist, this would only strengthen the discovery

potential, not reduce it, but at the cost of having to give up the claim that the

spectrum can be simultaneously measured in the same analysis. We will therefore

not make this claim in this study.

To demonstrate that the true spectrum yields a local maximum of significance,

we will compare the performance curves of ∆4 for a range of hypothesized spectra

obtained by local deformations around the true spectrum. A background uniform in

the m2
ij variables is used as in the previous section, and finite energy resolution as

well as combinatorial ambiguities are included in the analysis.

For the local scan near the true spectrum, we allow each of the four masses to

change up or down by 10 GeV, resulting in 8 variations. The performance curves

obtained as a result of the scan are shown on the left-hand side of Fig. 5.9. It is

easy to see that for any low or moderate number of bins in the performance curve,

the true spectrum yields the highest significance. The strong reduction in the per-

formance as one goes away from the true spectrum (along any direction other than

the flat direction, see the next paragraph) can be traced to the fact that the sharp

peak at ∆4 = 0 is only present when ∆4 is calculated for the true spectrum, and is

severely distorted otherwise, thereby erasing the most distinctive feature in the signal

distribution compared to the background distribution.

We also perform a finer one-dimensional scan along a special direction. In particu-

lar, while the m2
ij variables are sensitive to changes in the mass gaps in the spectrum,

there is a direction where the endpoints of all three m2
ij distributions remain fixed.

We parameterize this direction in terms of the change in the mass of the LSP from

its benchmark value. As shown in ref. [175], ∆4 is sensitive to changes along the flat

direction, while the effect on the shape of the m2
ij distributions is minimal. These

12We expect such resources to be available to the LHC collaborations, however most the analysis
in this paper is performed entirely on standalone computers.
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Figure 5.9: Performance curves for ∆4 calculated by using a range of hypothesis
spectra and the S/B metric. Left: Each one of the plotted curves corresponds to
deforming the spectrum by changing each of the four masses up or down by ± 10
GeV. For comparison, the red curve highlights the true spectrum. Right: Each one of
the curves corresponds to deforming the spectrum along the flat direction described
in the main text over a wide range. The color scheme corresponds to the change in
the mass of the LSP.

results are shown in the right-hand side of Fig. 5.9, with the conclusion that small

deformations along the flat direction leave the performance curve unchanged (within

statistical errors) while more substantial deformations reduce the significance. The

results of the scans presented above thus confirm our claim that the ∆4 performance

has a local maximum for the true spectrum.

5.5 Study with SM background

Having obtained encouraging results in our toy study with uniform background, and

having dealt with the subtlety of scanning over spectrum hypotheses in calculat-

ing ∆4, we are now in the position to conduct a much more realistic study, with SM

backgrounds, matrix element effects in the signal, finite detector resolution, and com-

binatorics taken into consideration. For the signal, we consider a benchmark model

where X1 is a scalar muon partner, X2 is a heavy fermion, X3 is a scalar electron

partner, and χ is the fermionic LSP. It should be emphasized again that we are not

arguing for this as a signal model to be taken literally; as argued in the introduction,

this model is chosen to make an apples-to-apples comparison between ∆4 and the
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m2 variables possible, without introducing distracting complications. Nevertheless,

we believe that our proposed analysis is straightforwardly applicable to the SUSY

signal searches in the channel we study here. This signal model guarantees the fla-

vor arrangement of the three leptons in our benchmark cascade. The dominant SM

background for this final state is WZ(∗) production followed by their leptonic decays.

Since our benchmark spectrum ensures that the opposite sign, same flavor lepton

pair invariant mass remains well below mZ , we impose a Z-veto in simulating the

background, so that the region with off-shell Z’s can be scanned efficiently.

We perform our parton-level simulation for signal and background using MG5@aMC [140],

and apply energy resolution for final state leptons according to the CMS-TDR [176]

[see also eq. (5.8)]. We use the following selection cuts on the events:

pT,` > 10 GeV, |η`| < 2.5, ∆R`` ≥ 0.4, 15GeV < m`+`− < 65 GeV (` = e, µ).

(5.9)

Here the invariant mass cut in the second line is relevant only to same-flavor opposite-

sign lepton pairs.

For the generated signal and background event samples, we plot the ∆4 distribu-

tions, as well as the effect of smearing and combinatorics on these distributions, in

Fig. 5.10. The resulting performance curves for ∆4 are obtained following the same

steps as in section 5.3, and shown in Fig. 5.11. We then compare the performance of

∆4 to the edge-and-endpoint variables in Fig. 5.12. We observe that the ∆4 variable

becomes less powerful than it was in our preliminary study with uniform background.

The main reason for this degradation is because the matrix elements and the parton

distribution functions that govern the phase space distribution of SM background

events lead more events to lie close to the regions in which ∆4 is smaller than that for

the uniform background distribution [174]; for example, the event population in the

same-flavor lepton pair invariant mass is enhanced at small values due to the mixing

between γ and Z, resulting in more background population at small values of ∆4.

Nonetheless, ∆4 shows a comparable performance to the strongest m2 variable with

respect to both metrics.

Furthermore, as we pointed out in our preliminary exercise, some m2 variable,

when combined with ∆4, may outperform traditional approaches with m2 variables

only. Indeed, the same expectation goes through for the signal under consideration,

which is supported by the results presented in Fig. 5.13. As one would expect based
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Figure 5.10: The ∆4 histograms for signal (blue) and the SM background (green),
with energy resolution and combinatoric ambiguities included.
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Figure 5.11: The effect of energy resolution and combinatorics on the significance
performance curve of ∆4 is shown using the S/B (left panel) and S/

√
B (right panel)

metrics.
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Figure 5.12: Performance curves for ∆4 and the m2 variables using the S/B and
S/
√

B metrics.

100 101 102

Percentage of bins with nonzero signal

101

S
/B

100 101 102

Percentage of bins with nonzero signal

103

S
/√ B

∆4 & m2
1(hi)

∆4 & m2
1(lo)

∆4 & m2
23

m2
1(hi) & m2

1(lo)

m2
1(hi) & m2

23

m2
1(lo) & m2

23

Figure 5.13: Performance curves for pairs of variables among ∆4 and the m2 variables,
using the S/B and S/

√
B metrics.

on the single variable results of Fig. 5.12, the best performance is achieved by the

combination between m2
1(hi) and ∆4 (blue lines) in both the S/B (left panel) and

the S/
√

B (right panel) metrics. Therefore, we find that ∆4 can play, at least, a

complementary role in separating signal from background, hence expediting a discov-

ery of new physics.

5.6 Conclusions

As we approach the end of Run II in the LHC experiment, the absence of a discovery

of new physics makes it increasingly more imperative to focus on scenarios where a

new physics signal may exist in the data, but not be distinctive enough to register

in searches looking for high momentum particles. This happens for example when
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the new particles that are produced decay in a cascade with a compressed spectrum.

We argued that using the variable ∆4, which arises naturally in describing four-body

phase space, allows one to design a search strategy in such a scenario that is quite

inclusive and does not rely strongly on background modeling.13 We do this by focus-

ing our attention on only the part of the event containing the cascade decay, using

Lorentz-invariant variables, and by not using detailed properties of the background

in designing our search strategy. We have argued that even though the calculation of

∆4 requires a hypothesis for the mass spectrum in the cascade decay, the significance

has a local maximum for the true signal spectrum which can be used as a benchmark

of comparison against the performance of other variables. We have compared the

performance of the variable ∆4, both singly and paired with conventional edge-and-

endpoint variables, in a study using SM backgrounds, spin correlations, finite energy

resolution and combinatoric effects, concluding that ∆4 can significantly enhance the

signal both for systematics-dominated (S/B metric) and statistics-dominated (S/
√

B

metric) searches.

13In place of ∆4, one could in principle also use the geometrical distance to the kinematical
boundary (5.4), a possibility which was entertained in [174]. However, that choice has disadvantages:
the geometrical distance is suboptimal in terms of performance and cannot be easily computed by
analytical means.
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Appendix A: Curves and Sensitivity Measures

ROC (receiver operating characteristic) curves are a useful tool for measuring the

sensitivity of a variable1. As shown in Fig. A.1, the ROC curve is found by (i)

defining an event selection procedure (“cut”) based on the variable in question and

(ii) determining the fraction, εS, of signal events, and the fraction, εB, of background

events that pass the given cut. The coordinates of each point along the curve are

then provided by (εB, εS). It is easy to see that the ROC curve must include the

point (0, 0), “A” in Figs. A.1 and A.2, where all events, signal and background, have

been disallowed by the cut. The point (1, 1), where all events pass the cut (“C” in

Figs. A.1 and A.2), is also part of every ROC curve. ROC curves have a number

of important and useful properties which we shall explore in the remainder of this

section.

A.1 Comparing ROC curves

If we consider two ROC curves, R1(εB) and R2(εB), obtained for the same signal and

background processes using different choices of variable and/or the cut procedure,

then if

R1(εB) ≥ R2(εB) for all εB, (A.1)

the variable/ cut combination used to produce R1 is clearly more sensitive than the

variable/cut combination used to produce R2. This statement is uncontroversial, but

the comparison is not always applicable, as a pair of ROC curves, R1 and R2 may

have points εB,1 6= εB,2 such that

R1(ε1) > R2(ε1), (A.2)

but

R1(ε2) < R2(ε2). (A.3)

1Much of the information in this section can be found elsewhere [116], however we present a
unified and self-contained exposition of the main facts about ROC curves here for the convenience
of the reader.
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Figure A.1: Schematic illustrating the construction of the ROC curve. Each point
along the curve indicates the fractions of signal and background events that pass a
parameterizable cut. If the cut parameter is chosen to disallow all signal and all
background events, we are at the point labelled “A”, while if the cut parameter is
chosen to allow signal and background events, then the appropriate point is “C”.
An intermediate point, where a certain fraction of signal and background events are
allowed is labelled by “B”.

We will therefore need to develop other procedures to compare ROC curves; we

will present several approaches in section A.4. First, however, we must investigate

the connection between ROC curves and likelihood and explore some of the more

important consequences of this relationship.

A.2 ROC curves and likelihood

There are many ways to perform an analysis using a given variable, and hence many

ROC curves that may be constructed with no other information than the value of a

given variable for signal and background events. We note that the ratio of signal and

background likelihoods is an optimal test statistic, i.e., choosing to accept an event,

e, when
LS(e)

LB(e)
≥ l(εB), (A.4)
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Figure A.2: Schematic illustrating the connection between the Gini coefficient (A.25)
and sensitivity. Points “A”, “B”, and “C” from Fig. A.1 together with the ROC
curve from Fig. A.1 are reproduced here. We have also indicated the ROC curve of
a perfectly insensitive cut, which is shown by the line from point “A” to point “C”.
Finally we have shown a ROC curve for a cut which gives a higher signal fraction for
every choice of background fraction than the ROC curve from Fig. A.1. We see that
the area under the ROC curve of the perfectly insensitive variable (shown in pink) is
1/2, that there is additional area under the ROC curve shown in Fig. A.1 (shown in
blue), and that there is even an even greater area under the ROC curve for the more
sensitive variable.

where LS is the signal likelihood and LB is the background likelihood, is the procedure

which accepts the maximum fraction of signal events (εS) for a given choice of εB

(which in turn determines the numerical value of l(εB) in eq. (A.4)). This fact is

known as the Neyman-Pearson lemma [117] and is equivalent to the statement that

the likelihood ratio produces the optimal ROC curve.

We now provide a heuristic proof of this assertion in terms of ROC curves, which

hopefully provides useful insights into both ROC curves and the Neyman-Pearson

lemma. We consider the situation where signal and background likelihoods are calcu-

lated numerically from samples of signal and background events, S and B, which can

be assumed arbitrarily large in order to approximate analytic expressions with any

desired accuracy. First, we create a set of “variable bins” in our variable of interest,
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i.e.,

Vi = [vmin,i, vmax,i), (A.5)

such that for every event, e, in our signal and background samples,

v(e) ∈ [vmin,i, vmax,i) (A.6)

for exactly one choice of i, where v(e) refers to the value of the variable under consid-

eration obtained from the event, e. We then divide our signal and background events

into bins using the values of the variable, v, under consideration. I.e., we obtain

“signal bins”

Si = {e | v(e) ∈ Vi} for e ∈ S (A.7)

and “background bins”

Bi = {e | v(e) ∈ Vi} for e ∈ B. (A.8)

Since every signal and every background event must be in some bin, by construction,

we have ∑
i

|Si| = |S| (A.9)

and ∑
i

|Bi| = |B|. (A.10)

Hence the estimators of the signal and background likelihood,

LS,i = LS(vi) ≈ |Si|/|S| for vi ∈ Vi (A.11)

and

LB,i = LB(vi) ≈ |Bi|/|B| for vi ∈ Vi, (A.12)

are automatically normalized. Further, we note that the contribution to the ROC

curve from bin i is a line segment from initial point (εB,0, εS,0) to (εB,0+|Bi|/|B|, εS,0+

|Si|/|S|), i.e. from (εB,0, εS,0) to (εB,0 + LB,i, εS,0 + LS,i). We therefore see from

eqs. (A.11) and (A.12) that the slope of the line segment corresponding to a particu-

lar bin is given by the ratio of signal and background likelihoods calculated for that

bin. An interesting corollary, since LS,i and LB,i are always non-negative, is that the

ROC curve must be monotonically increasing, i.e.,

dεS
dεB
≥ 0. (A.13)
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We now assert that any physically reasonable cut procedure2 accepts a set of

variable bins

VA = v ∈ Vi for i ∈ {i1, i2, ...}, (A.14)

signal events

SA = e ∈ Si for i ∈ {i1, i2, ...}, (A.15)

and background events

BA = e ∈ Bi for i ∈ {i1, i2, ...}, (A.16)

where {i1, i2, ...} are the indices of the variable bins which pass the cut. Further if we

have a cut that can be parameterized and that ranges from a cut in which all events

are accepted to a cut in which no events are accepted, then we can express the cut

function as a permutation, p of 1, 2, ..., n, where n is the number of bins, such that the

variable bin labelled by p(1) is the last to be eliminated, the variable bin eliminated

by p(2) is the next-to-last to be eliminated, etc.

The optimal cut function identified by the Neyman-Pearson lemma, i.e., eq. (A.4)

corresponds to the case where p(1) labels a bin with the maximum value of signal to

background likelihood ratio and

LS(vp(i))

LB(vp(i))
≥ LS(vp(j))

LB(vp(j))
(A.17)

if i > j. We claim that this gives the ROC curve for which εS(εB) is maximized for

any choice of εB. This is geometrically obvious given that the likelihood ratio gives

the slope of the line segment in the ROC curve; the optimal ROC curve is one in

which the steepest segments occur first. A more rigourous proof notes that the ROC

curve based on the likelihood ratio has

εS =
m∑
i

LS,p(i)
LB,p(i)

LB,i + fm+1

LS,p(m+1)

LB,p(m+1)

LB,(m+1), (A.18)

where

εB =
m∑
i

LB,i + fm+1LB,(m+1). (A.19)

2We may have to choose different, and, in particular, smaller bins, e.g., we may not be able to
model the cut function v > v0 if v0 is not on a bin boundary. In principle this limitaiton can be
circumvented by choosing the variable bins to be smaller than the detector resolution, which must
be finite. Since physically reasonable cut functions can only use the output of such a detector, we
can eliminate pathological cut functions, like only accepting events with rational v.
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and fm+1 ∈ [0, 1] is the fraction of bin m+1 that must be included to give the desired

value of εB.

We now consider the value of εS at the same value of εB in a different ROC curve.

Since this ROC curve differs from the optimal ROC curve described by eqs. (A.18-

A.19), it must include some different bins or different fractions of bins. These “new

bins” give a contribution to εB of ∆εB, which is also the contribution to εB from

the “replcaed original bins” they replace. The contribution to εS from the replaced

original bins was ∆εS, and can be found by multiplying ∆εB by the (appropriately

weighted) average slope of the replaced original bins. The contribution to εS from

the new bins is also the weighed average slope of the bins. However every bin in the

new bins has a slope less than or equal to the slope of any bin in the replaced original

bins. Thus the value of εS in the new ROC curve is less than or equal to its value in

the ROC curve based on the likelihood ratio.

A.3 Subdividing variable bins

We now consider the effect on our ROC curve of subdividing a bin, by which we

mean that we take a bin, Vi, and break it into two bins, which we label Vi and Vn+1

as follows:

Vi = [vi,min, vi,max)→ [vi,min, vi′,max) and [vi′,max, vi,max) = Vi′ and Vi′′ . (A.20)

We then obtain the signal bins Si and Sn+1 following eq. (A.7) and the background

bins Bi and Bn+1 following eq. (A.8). Using these new bins will always allow for

the construction of a ROC curve that is as good as or better than the curve before

subdivision (in the sense of eq. (A.1)). This is clear as if the permutation of bins that

led to the original ROC curve is p, then the permutation

p′(j) = p(j) for j < i (A.21)

p′(i) = i (which now refers to a fraction of the original bin, i) (A.22)

p′(i+ 1) = i′ = n+ 1 (A.23)

p′(j) = p(j − 1) for j > i+ 1 (A.24)

yields a ROC curve which is the same everywhere except in the region corresponding

to the subdivided bin. If the two “daughter” bins have the same slope (likelihood
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ratio), then this curve will be exactly the same as the original ROC curve. However,

if this is not the case, then if we choose (without loss of generality) the daughter bin

with the greater slope to come first (i.e., to be labelled as i), we have a ROC curve

which has strictly greater signal values than the original ROC curve in the regime

corresponding to the subdivided bin. Finally, it is possible that daughter bin i may

have a greater slope than some of the other bins, that daughter bin n+ 1 may have a

lesser slope than some of the other bins, or both of these possibilities may be realized.

In all of these cases the ROC curve may be further imporoved by sorting the bins by

slope.

As a consequence of this result considering smaller bins will increase sensitivity;

the extreme limit is to use an unbinned likelihood rather than binned likelihood.

While we have not proved it, this fact also motivates the (true) statement that con-

sidering additional relevant, but still independent, variables will improve sensitivity

(as subdividing a bin using the new variable may yield daughter bins with different

slopes).

However, it should be noted, when using actual samples of signal and background

events to construct likelihoods, that one can reach false conclusions about sensitivity

by subdividing bins too far. An extreme example of this is provided by the case where

all the signal and background events we are considering have their own bin. In this

case, the likelihood ratio is infinite for bins with one signal event and zero for bins

with one background event and the ROC curve is vertical from (0, 0) to (0, 1), and

then horizontal from (0, 1) to (1, 1). Obviously this is too good to be true. What

has happened is an example of posterior statistics and is clearly an invalid inference.

Clearly such a situation should be avoided, e.g., by using bins large enough to be

robust with respect to statistical fluctuations.

A.4 Measures of ROC curve sensitivity

In section A.1, we noted that sometimes a ROC curve will indicate that one variable/

cut procedure is absolutely better than another variable/ cut procedure. However,

this may not always be the case. Thus it is important to have procedures for com-

paring ROC curves (and hence sensitivity) that always allow the comparison to be

made. All of these procedures can be viewed as functionals, i.e., they describe a ROC
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curve by a number that corresponds directly to the quality of a variable.

Simple functionals that can be used are (i) the value of εS at a fixed value of εB

and (ii) the value of εB at a fixed value of εS. We can view (i) as the fraction of

signal events chosen with a fixed false positive rate, while in (ii) we demand that the

cut accept a fixed fraction of signal events. A better variable will then reject a larger

fraction of background events.

In particle physics, we are generally interested in the significance with which we

can claim the discovery (or the exclusion) of some process. Therefore we can describe

ROC curves by (i) the maximum value of S/
√
B attained on the ROC curve, (ii) the

maximum value of S/B attained on the ROC curve, or (iii) the maximum discovery

significance on the ROC curve. Choice (i) is appropriate as a measure of significance

in the (Gaussian) limit of a large number of events in situations where systematic

uncertainties do not have a large effect. Choice (ii) is appropriate in the situation

where systematic errors dominate. There are different appropaches to implementing

choice (iii) to model the statistical and systematic components of the significance.

The difference between the Gaussian and Poisson distributions for small numbers of

events may also be modelled. While choice (iii) represents the actual quantity to

be maximized for a specifc analysis, it has the drawbacks of (i) being complicated

and (ii) being dependent on specific experimental conditions, such as the luminosity

gathered, systematic uncertainties, etc.

To make comparisons between ROC curves in a general way, we note that the

worst possible likelihood-based ROC curve is the ROC curve that reflects throwing

away signal and background events indiscriminately, i.e. a straight line from (“A”

to “C” in Figs. A.1 and A.2). On the other hand, a perfect variable would take us

from “A” to (0, 1) to “C”. This ROC curve contains the entire range of εB and εS

underneath it, suggesting the use of the integral of the ROC curve as a sensitivity

measure. Further, as indicated in Fig. A.2, variables which lead to “better” ROC

curves, in the sense of eq. (A.1) in section A.1 have more area under their ROC

curves. In order for the worst possible likelihood ROC curve to have a value of 0 and

the best possible ROC curve to have a value of 1, we multiply the integral under the

ROC curve by 2 and subtract 1. The resulting expression,

G1 ≡ 2 AUROC − 1 = 2

∫ 1

0

dεB × εS(εB)− 1, (A.25)

where AUROC referes to the “area under the ROC curve”, e.g., under curve ABC in
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Figs. A.1 and A.2 gives the measure of sensitivity known as the Gini coefficient; it is

our main quantifier of ROC curves (and hence of variable/ cut procedure sensitivity)

in the bulk of this work.
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Appendix B: Inverse formulas

In this appendix we derive the inverse relations which define mB, mC and mD in

terms of the three measured endpoints

a ≡ (mmax
ll )2 , b ≡

(
mmax
j``

)2
, c ≡

(
mmax
jl(low)

)2
, (B.1)

and the remaining mass parameter mA. For simplicity of notation, in this appendix

we shall omit the tildes on the trial mass parameters mA, mB, mC and mD.

B.1 The case of region (3, 1)

Region (3, 1) is defined by the following conditions

RAB ≤ RBCRCD = RBD, (B.2)

RBC ≥ 1

2−RAB

. (B.3)

The kinematic endpoints are given by the following formulas:

a = m2
D RCD (1−RAB)(1−RBC), (B.4)

b = m2
D (1−RBD)(1−RAB), (B.5)

c = m2
D (1−RBC)(1−RCD), (B.6)

d = m2
D (1−RCD)(1−RAB). (B.7)

The masses of B, C and D are given by

m2
B =

1

2c

{
2m2

Ac+ a(b− a− c) +
[
4m2

Aac(b− a) + a2(b− a− c)2
]1/2}

, (B.8)

m2
C = m2

B

(
1 +

a

m2
B −m2

A

)
, (B.9)

m2
D = m2

B

(
1 +

b

m2
B −m2

A

)
, (B.10)
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where in the right hand sides of the last two equations mA is an input, while mB is

calculated from (B.8). Using (B.2) it is easy to show that in this region, we always

have

b− a− c = m2
D (1−RCD)(RBC −RAB) ≥ 0,

so that (B.8) always gives a non-negative result for m2
B. Substituting (B.8-B.10) into

(B.7), one can explicitly check that the mA dependence drops out and we recover the

“bad” relation (4.29) in the form

d = b− a. (B.11)

B.2 The case of region (3, 2)

Region (3, 2) is defined by the following two conditions:

RAB ≤ RBCRCD = RBD, (B.12)

RBC ≤ 1

2−RAB

. (B.13)

The kinematic endpoints are given by the following formulas:

a = m2
C(1−RAB)(1−RBC), (B.14)

b = m2
D(1−RAB)(1−RBD), (B.15)

c = m2
D(1−RCD)(1−RAB)(2−RAB)−1, (B.16)

d = m2
D(1−RCD)(1−RAB). (B.17)

The masses of B, C and D are given by [139]

m2
B =

cm2
A

2c− b+ a
, (B.18)

m2
C = m2

B

(
1 +

a

m2
B −m2

A

)
, (B.19)

m2
D = m2

B

(
1 +

b

m2
B −m2

A

)
. (B.20)

In this region, we always have

2c− b+ a = m2
D (1−RCD)

(
2

2−RAB

− 1

)
≥ 0,
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so that (B.18) always gives a non-negative result for m2
B. The “bad” relation (4.29)

is again satisfied in this region, so that along the flat direction the endpoint d is again

constant and given by (B.11), providing a useful cross-check on the obtained solution

(B.18-B.20).

B.3 The case of region (2, 3).

Region (2, 3) is defined by the following condition:

RBC ≤ RABRCD, (B.21)

The kinematic endpoints are given by the following formulas:

a = m2
C(1−RAB)(1−RBC), (B.22)

b = m2
D(1−RBC)(1−RABRCD), (B.23)

c = m2
D(1−RCD)(1−RAB)(2−RAB)−1, (B.24)

d = m2
D(1−RCD)(1−RBC). (B.25)

The masses of B, C and D are given by

m2
B =

2m2
A(b− a) + a(2c− b+ a) + [4m2

Aac(b− a) + a2(2c− b+ a)2]
1/2

2(b− a)
,(B.26)

m2
C = m2

B

(
1 +

a

m2
B −m2

A

)
, (B.27)

m2
D =

(
1 +

a

m2
B −m2

A

)[
b

a

(
m2
B −m2

A

)
+m2

A

]
. (B.28)

Using (B.22), (B.23) and (B.25) it is easy to show that in this region, we always have

b− a = d ≥ 0,

and while the term (2c − b + a) can have either sign, the discriminant (i.e., the

term inside the square root in (B.26)) is always larger than a2(2c − b + a)2, which

guarantees a non-negative result for m2
B. In this region, the relation (4.29) is again

satisfied, so that d is again given by (B.11), which can be used to cross-check the

result (B.26-B.28).
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B.4 The case of region (4, 1).

Region (4, 1) is defined by the following conditions:

RAB ≥ RBCRCD = RBD, (B.29)

RBC ≥ 1

2−RAB

, (B.30)

RCD ≥ RABRBC = RAC . (B.31)

For the case (4,1) the endpoints are given by the following formulas:

a = m2
C(1−RAB)(1−RBC), (B.32)

b = m2
D(1−

√
RAD)2, (B.33)

c = m2
D(1−RCD)(1−RBC), (B.34)

d = m2
D(1−RCD)(1−RAB). (B.35)

The masses of B, C and D in terms of a, b, c and mA are given by

m2
B =

am2
D + cm2

A + (m2
A − a)(a+ c) + a [(a+ c−m2

A −m2
D)2 − 4m2

Am
2
D]

1/2

2(a+ c)
,(B.36)

m2
C = m2

B

(
1 +

a

m2
B −m2

A

)
, (B.37)

mD = mA +
√
b, (B.38)

where in (B.36) mD should be taken from (B.38), and the obtained result for mB

should be used in (B.37). The d endpoint is given by

d = b− a−m2
D

(√
RAB −

√
RBD

)2

(B.39a)

=
ac
{

(b− a− c)
[
b(1 +

√
r) + 2mA

√
b
√
r
]

+ 2(2b− a− c)(mA

√
b+m2

A)
}

(a+ c)
[
a(b− a− c)(1 +

√
r) + 2amA

√
b+ 2(a+ c)m2

A

] ,(B.39b)

where

r ≡ 1 +
4mA(mA +

√
b)

b− a− c . (B.40)
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B.5 The case of region (4, 2).

Region (4, 2) is defined by the following conditions:

RAB ≥ RBCRCD = RBD, (B.41)

RBC ≥ RAB, (B.42)

RBC ≤ 1

2−RAB

, (B.43)

RCD ≥ RABRBC = RAC . (B.44)

The kinematic endpoints are given by the following formulas:

a = m2
C(1−RAB)(1−RBC), (B.45)

b = m2
D(1−

√
RAD)2, (B.46)

c = m2
D(1−RCD)(1−RAB)(2−RAB)−1, (B.47)

d = m2
D(1−RCD)(1−RAB). (B.48)

The masses of B, C, D in terms of a, b, c,mA are the following

m2
B =

1

2

[
m2
D +m2

A − a− 2c±
√

(m2
D +m2

A − a− 2c)2 − 4m2
A(m2

D − c)
]
,(B.49)

m2
C = m2

B

(
1 +

a

m2
B −m2

A

)
, (B.50)

mD = mA +
√
b. (B.51)

Here, just as in (B.36-B.38), one should first find mD from (B.51), then use the result

in (B.49) to obtain mB, which will be needed in (B.50). The d endpoint is then given

by

d = b− a−m2
D

(√
RAB −

√
RBD

)2

(B.52a)

=

c

[
a+ 3b− 2c+ 6mA

√
b+ 2m2

A −
√

(b− a− 2c+ 2mA

√
b)2 − 4(a+ c)m2

A

]
2(b− c+ 2mA

√
b+m2

A)
.(B.52b)

144



B.6 The case of region (4, 3).

Region (4, 3) is defined by the following conditions:

RAB ≥ RBC , (B.53)

RBC ≥ RABRCD, (B.54)

RCD ≥ RABRBC = RAC . (B.55)

For the case (4,3) the endpoints are given by the following formulas:

a = m2
C(1−RAB)(1−RBC), (B.56)

b = m2
D(1−

√
RAD)2, (B.57)

c = m2
D(1−RCD)(1−RAB)(2−RAB)−1, (B.58)

d = m2
D(1−RCD)(1−RBC). (B.59)

The masses of B, C, D in terms of a, b, c,mA are the following

m2
B =

1

2

[
m2
D +m2

A − a− 2c−
√

(m2
D +m2

A − a− 2c)2 − 4m2
A(m2

D − c)
]
,(B.60)

m2
C = m2

B

(
1 +

a

m2
B −m2

A

)
, (B.61)

mD = mA +
√
b, (B.62)

where again the masses are calculated in the order mD, mB and then mC . The d

endpoint is given by

d = b− a−m2
D

(√
RBC −

√
RABRCD

)2

(B.63a)

=

4ac

[
b− a− 2c+ 2mA

√
b+m2

A −
√

(b− a− 2c+ 2mA

√
b)2 − 4(a+ c)m2

A

]
(
b− 2c+ 2mA

√
b−

√
(b− a− 2c+ 2mA

√
b)2 − 4(a+ c)m2

A

)2

− a2

.(B.63b)
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