

US009695223B2

(12) United States Patent

Alper et al.

(54) ENGINEERED XYLOSE TRANSPORTERS WITH REDUCED GLUCOSE INHIBITION

- (71) Applicant: Board of Regents, The University of Texas System, Austin, TX (US)
- (72) Inventors: Hal Alper, Austin, TX (US); Eric Young, Arlington, MA (US); Sunmi Lee, Austin, TX (US)
- (73) Assignee: **BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM**, Austin, TX (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 14/719,206
- (22) Filed: May 21, 2015

(65) **Prior Publication Data**

US 2015/0344532 A1 Dec. 3, 2015

Related U.S. Application Data

- (60) Provisional application No. 62/001,495, filed on May 21, 2014.
- (51) Int. Cl.

C12N 9/00	(2006.01)
C07K 14/40	(2006.01)
C07K 14/33	(2006.01)
A61K 38/00	(2006.01)

- (52) U.S. Cl. CPC *C07K 14/40* (2013.01); *C07K 14/33* (2013.01); *A61K 38/00* (2013.01)
- (58) Field of Classification Search
 CPC C07K 14/40; C07K 14/39
 USPC 435/183, 252.3; 536/23.2
 See application file for complete search history.

(10) Patent No.: US 9,695,223 B2

(45) **Date of Patent:** Jul. 4, 2017

(56) **References Cited**

U.S. PATENT DOCUMENTS

7,910,718	B2	3/2011	Simkin et al.	
2010/0017904	A1	1/2010	Abad et al.	
2012/0329109	A1	12/2012	Chua et al.	
2016/0280745	A1*	9/2016	Alper	C07K 14/40

FOREIGN PATENT DOCUMENTS

WO	WO-2014/018552	A1	1/2014
WO	WO-2015/179701	A1	11/201:

OTHER PUBLICATIONS

Written Opinion published in a related application: PCT/US15/ 32058, filed on May 21, 2015.*

Bengtsson, O. et al. (Nov. 2008). "Identification of common traits in improved xylose-growing *Saccharomyces cerevisiae* for inverse metabolic engineering," 25(11):835-847.

Curran, K.A. et al. (Jul. 2012). "Expanding the chemical palate of cells by combining systems biology and metabolic engineering," *Metab Eng* 14(4):289-297.

International Search Report mailed on Aug. 26, 2015, for PCT Application No. PCT/US2015/032058, filed May 21, 2015, 4 pages. Wahlbom, C.F. et al. (Feb. 2003). "Molecular analysis of a *Saccharomyces cerevisiae* mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway," *Appl Environ Microbiol* 69(2):740-746.

Written Opinion mailed on Aug. 26, 2015, for PCT Application No. PCT/US2015/032058, filed May 21, 2015, 5 pages.

Young, E.M. et al. (Jan. 7, 2004, e-published Dec. 16, 2013). "Rewiring yeast sugar transporter preference through modifying a conserved protein motif," *Proc Natl Aced Sci USA* 111(1):131-136.

* cited by examiner

Primary Examiner — Tekchand Saidha

(74) Attorney, Agent, or Firm — Meunier Carlin & Curfman LLC

(57) **ABSTRACT**

Provided herein are compositions and methods useful for reducing glucose inhibition in transporting xylose, arabinose and other monosaccharides, into a yeast cell.

9 Claims, 12 Drawing Sheets

FIG. 1

Sheet 5 of 12

8000	0000	8	8	8	8	8		
8.000	000	8	8	8	8	8		
8000	888	8	88	8	8	8		
8000	88	8	8	8	8	8		
or a constant	88	8	8	8	8	8		
8000	8	8	8	8	8	8		oplasn
8000 8	88	8	8	8	8	8	20000000 2000000	đ
8000	8	8	8	8	8	8	888 8	
e	88	8	8	8	8	8		
ĕ	8	8	8	8	8	88	8	
0000000 000000 000000	88	8	8	8	8	8	8	
-98283 98280 982800 9828000 98280000	88	8	8	8	8	8	80000000000000000000000000000000000000	

FIG. 7 Extracellular

U.S. Patent

FIG. 9A

FIG. 9C

FIG. 9E

FIG. 9F

FIG. 10

5

25

55

ENGINEERED XYLOSE TRANSPORTERS WITH REDUCED GLUCOSE INHIBITION

CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application No. 62/001,495, filed May 21, 2014, the disclosure of which is incorporated herein in its entirety and for all purposes.

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

This invention was made with government support under grant no. CBET1067506, awarded by the National Science Foundation. The government has certain rights in the invention.

REFERENCE TO A "SEQUENCE LISTING," A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK

The Sequence Listing written in file 48932-525001US_ST25.TXT, created on May 21, 2015, 171,093 bytes, machine format IBM-PC, MS Windows operating system, is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

The quest for an optimal xylose pathway in yeast is of utmost importance along the way to realizing the potential of 35 lignocellulosic biomass conversion into fuels and chemicals. An often overlooked aspect of this catabolic pathway is the molecular transport of this sugar. Molecular transporter proteins facilitate monosaccharide uptake and serve as the first step in catabolic metabolism. In this capacity, the 40 preferences, regulation, and kinetics of these transporters ultimately dictate total carbon flux (1-3); and optimization of intracellular catabolic pathways only increases the degree to which transport exerts control over metabolic flux (4, 5). Thus, monosaccharide transport profiles and rates are impor- 45 tant design criteria and a driving force to enable metabolic engineering advances (6-10). Furthermore, the presence of other hexose sugars, such as glucose, can hamper efficient transport of xylose by inhibiting sugar transporters. There is a need in the art for efficient transport systems for xylose in 50 yeast when glucose is present. Provided herein are solutions to these and other problems in the art.

BRIEF SUMMARY OF THE INVENTION

Provided herein are compositions and methods useful for transporting xylose, arabinose, and galactose into a yeast cell in the presence of glucose.

Recombinant transporter proteins are provided herein that transport hexoses or pentoses. In one aspect, the recombi-60 nant transporter is a recombinant xylose transporter protein that includes a xylose transporter motif sequence and a glucose mitigation mutation. In another aspect, the recombinant transporter is a recombinant arabinose transporter protein that includes an arabinose transporter motif sequence 65 and a glucose mitigation mutation. In yet another aspect, the recombinant transporter protein is a recombinant galactose

transporter protein that includes a galactose transporter motif sequence and a glucose mitigation mutation.

Also provided herein are nucleic acids that encode recombinant transporter proteins described herein. Thus, in one aspect is a nucleic acid encoding a recombinant xylose transporter as described herein, including embodiments thereof. In another aspect is a nucleic acid encoding a recombinant arabinose transporter as described herein, including embodiments thereof. In yet another aspect is a nucleic acid encoding a recombinant galactose transporter as described herein, including embodiments thereof.

Recombinant yeast cells are described herein which include a recombinant transporter protein as described herein. In one aspect is a recombinant yeast cell that includes ¹⁵ a recombinant xylose transporter as described herein, including embodiments thereof. In another aspect is a recombinant yeast cell that includes a recombinant arabinose transporter as described herein, including embodiments thereof. In another aspect is a recombinant yeast cell that ²⁰ includes a recombinant galactose transporter as described herein, including embodiments thereof.

Methods of transporting xylose into a recombinant yeast cell are also described herein. In one aspect, the method includes contacting a recombinant yeast cell with a xylose compound, where the recombinant yeast cell includes a recombinant xylose transporter protein as described herein, including embodiments thereof. The recombinant xylose transporter protein transports the xylose compound into the recombinant yeast cell. In another aspect, the method includes contacting a recombinant yeast cell with a xylose compound, where the xylose compound is the only sugar (i.e. carbon source) in the media, and where the recombinant yeast cell includes a recombinant xylose transporter protein as described herein, including embodiments thereof.

In another aspect is a method of transporting arabinose into a recombinant yeast cell. The method includes contacting a recombinant yeast cell with an arabinose compound, where the recombinant yeast cell includes a recombinant arabinose transporter protein as described herein, including embodiments thereof. The recombinant arabinose transporter protein transports the arabinose compound into the recombinant yeast cell. In another aspect, the method includes contacting a recombinant yeast cell with an arabinose compound, where the arabinose compound is the only sugar (i.e. carbon source) in the media, and where the recombinant yeast cell includes a recombinant arabinose transporter protein as described herein, including embodiments thereof.

In another aspect is a method of transporting galactose into a recombinant yeast cell. The method includes contacting a recombinant yeast cell with a galactose compound, where the recombinant yeast cell includes a recombinant galactose transporter protein as described herein, including embodiments thereof. The recombinant galactose transporter protein transports the galactose compound into the recombinant yeast cell. In another aspect, the method includes contacting a recombinant yeast cell with a galactose compound, where the galactose compound is the only sugar (i.e. carbon source) in the media, and where the recombinant yeast cell includes a recombinant galactose transporter protein as described herein, including embodiments thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1: The growth of *S. cerevisiae* expressing mutants (78 and 105), FIM, wild-type CiGXS1 transporters on xylose medium supplemented with different concentration

10

of glucose: X20: xylose 20 g/L, X20+G2.5: xylose 20 g/L+glucose 2.5 g/L, X20+G5: xylose 20 g/L+glucose 5 g/L, X20+G10: xylose 20 g/L+glucose 10 g/L, G20: glucose 20 g/L.

FIG. **2**: SACS HMMTOP Prediction of the mutant 105⁵ xylose transporter and mutant positions: mutations are indicated with arrows.

FIG. **3**: SACS HMMTOP Prediction of the mutant 78 xylose transporter and mutant positions: mutations are indicated with arrows.

FIG. 4: Mutations to residue N326 to convert to a histidine or phenylalanine were explored in the background of the gxs1 (FIM) mutant containing the xylose transporter motif sequence G-G-F-I-M-G (SEQ ID NO:107). Mutations in residue N326 improve assimilation rates and growth rates in pure xylose over the wild-type GXS1 and N326H is a better mutation than N326F.

FIG. **5**: Mutations to residue N326 to convert to a histidine or phenylalanine were explored in the background of ²⁰ the gxs1 (FIM) mutant containing the xylose transporter motif sequence G-G-F-I-M-G (SEQ ID NO:107). Mutations in residue N326 improve assimilation rates and growth rates in a mixture of 2% glucose and 2% xylose over the wild-type GXS1 and N326H is a better mutation than N326F.²⁵

FIG. **6**: Mutations to residue N326 to convert to a histidine (N326H) are compared with an additionally discovered mutation T170N in the background of the gxs1 (FIM) mutant containing the xylose transporter motif sequence G-G-F-I-M-G (SEQ ID NO:107). Both mutants improved xylose growth rates over the wild-type transporter with the mutation of N326H stronger than T170N.

FIG. 7: An additional round of mutagenesis and selection was completed in the background of gxs1 (FIM) containing N326H (SEQ ID NO:3). These experiments were conducted in the presence of 4% glucose and 2% xylose. Several mutations in the tail region of the transporter were identified including a stop codon (dark dots on schematic of tail with circle indicating location of stop codon). To assess the 40 potential inhibition of this tail region, several truncations of this transporter protein were created (see vertical lines in the sequence on the bottom).

FIG. 8: The gxs1 (FIM) strain with the N326H mutation was truncated at various amino acid residues (indicated by 45 number) and assessed for growth in the presence of 4% glucose, 2% xylose. Several truncations were superior with respect to growth over the starting transporter with a truncation after amino acid residue 497 giving the highest performance. Truncations before residue 487 were detrimen-50 tal to performance.

FIG. 9A-9F: Schematics of the transporter structures for the wild-type GXS1 and gxs1 mutant showing the location of the F-I-M xylose transporter sequence motif. FIG. 9A: WT CiGXS1 (SEQ ID NO:1). FIG. 9B: CiGXS1FIM (SEQ 55 ID NO:2). FIG. 9C: CiGXS1FIM N326H (SEQ ID NO:3). FIG. 9D: CiGXS1FIM T170N (SEQ ID NO:4). FIG. 9E: CiGXS1(FIMH) Δ 497 (SEQ ID NO:5). FIG. 9F: CiGXS1 (FIMH- Δ 497) with 1171F (SEQ ID NO:6).

FIG. **10**: The inhibition fraction (the ratio of the trans- 60 porter capacity in 4% glucose compared to the transporter capacity in pure xylose) for various mutants. The gxs1 mutant with the F-I-M xylose transporter sequence motif and the N326H mutation along with the tail region after truncating past residue 497 and the T171F mutation per- 65 formed best and was the least inhibited by high glucose levels.

DETAILED DESCRIPTION OF THE INVENTION

Unless defined otherwise, all technical and scientific terms used herein generally have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Generally, the nomenclature used herein and the laboratory procedures in cell culture, molecular genetics, organic chemistry, and nucleic acid chemistry and hybridization described below are those wellknown and commonly employed in the art. Standard techniques are used for nucleic acid and peptide synthesis. The techniques and procedures are generally performed according to conventional methods in the art and various general references (see generally, Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL, 2d ed. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., which is incorporated herein by reference), which are provided throughout this document.

"Nucleic acid" refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or doublestranded form, and complements thereof. The term "polynucleotide" refers to a linear sequence of nucleotides. The term "nucleotide" typically refers to a single unit of a 25 polynucleotide, i.e., a monomer. Nucleotides can be ribonucleotides, deoxyribonucleotides, or modified versions thereof. Examples of polynucleotides contemplated herein include single and double stranded DNA, single and double stranded RNA (including siRNA), and hybrid molecules having mixtures of single and double stranded DNA and RNA. Nucleic acid as used herein also refers nucleic acids that have the same basic chemical structure as a naturally occurring nucleic acids. Such analogues have modified sugars and/or modified ring substituents, but retain the same basic chemical structure as the naturally occurring nucleic acid. A nucleic acid mimetic refers to chemical compounds that have a structure that is different the general chemical structure of a nucleic acid, but that functions in a manner similar to a naturally occurring nucleic acid. Examples of such analogues include, without limitation, phosphorothiolates, phosphoramidates, methyl phosphonates, chiralmethyl phosphonates, 2-O-methyl ribonucleotides, and peptide-nucleic acids (PNAs).

"Synthetic mRNA" as used herein refers to any mRNA derived through non-natural means such as standard oligonucleotide synthesis techniques or cloning techniques. Such mRNA may also include non-proteinogenic derivatives of naturally occurring nucleotides. Additionally, "synthetic mRNA" herein also includes mRNA that has been expressed through recombinant techniques or exogenously, using any expression vehicle, including but not limited to prokaryotic cells, eukaryotic cell lines, and viral methods. "Synthetic mRNA" includes such mRNA that has been purified or otherwise obtained from an expression vehicle or system.

The words "complementary" or "complementarity" refer to the ability of a nucleic acid in a polynucleotide to form a base pair with another nucleic acid in a second polynucleotide. For example, the sequence A-G-T is complementary to the sequence T-C-A. Complementarity may be partial, in which only some of the nucleic acids match according to base pairing, or complete, where all the nucleic acids match according to base pairing.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the

polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding 15 sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the 5 DNA sequences being linked are near each other, and, in the case of a secretory leader, contiguous and in reading phase.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in 10 which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.

The term "amino acid" refers to naturally occurring and 15 synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, 20 y-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, 25 methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure 30 that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter 35 symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

A "conservative substitution" as used with respect to amino acids, refers to the substitution of an amino acid with 40 a chemically similar amino acid. Amino acid substitutions which often preserve the structural and/or functional properties of the polypeptide in which the substitution is made are known in the art and are described, for example, by H. Neurath and R. L. Hill, 1979, in "The Proteins," Academic 45 Press, New York. The most commonly occurring exchanges are isoleucine/valine, tyrosine/phenylalanine, aspartic acid/ glutamic acid, lysine/arginine, methionine/leucine, aspartic acid/asparagine, glutamic acid/glutamine, leucine/isoleucine, methionine/isoleucine, threonine/serine, tryptophan/ 50 phenylalanine, tyrosine/histidine, tyrosine/tryptophan, glutamine/arginine, histidine/asparagine, histidine/glutamine, lysine/asparagine, lysine/glutamine, lysine/glutamic acid, phenylalanine/leucine, phenylalanine/methionine, serine/ alanine, serine/asparagine, valine/leucine, and valine/me- 55 thionine. The following eight groups each contain amino acids that are conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), 60 Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)). In some embodiments, there may be at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 65 9, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, or at least 40 conservative substitutions. In some

embodiments, there may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, or 40 conservative substitutions.

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.

An amino acid or nucleotide base "position" is denoted by a number that sequentially identifies each amino acid (or nucleotide base) in the reference sequence based on its position relative to an N-terminus (or 5'-end). Due to deletions, insertions, truncations, fusions, and the like that must be taken into account when determining an optimal alignment, in general the amino acid residue number in a test sequence determined by simply counting from the N-terminus will not necessarily be the same as the number of its corresponding position in the reference sequence. For example, in a case where a variant has a deletion relative to an aligned reference sequence, there will be no amino acid in the variant that corresponds to a position in the reference sequence at the site of deletion. Where there is an insertion in an aligned reference sequence, that insertion will not correspond to a numbered amino acid position in the reference sequence. In the case of truncations or fusions there can be stretches of amino acids in either the reference or aligned sequence that do not correspond to any amino acid in the corresponding sequence.

The terms "numbered with reference to" or "corresponding to," when used in the context of the numbering of a given amino acid or polynucleotide sequence, refers to the numbering of the residues of a specified reference sequence when the given amino acid or polynucleotide sequence is compared to a reference sequence. In embodiments the reference sequence is a *Candida intermedia* GXS1 protein having SEQ ID NO: 1. In embodiments, the comparison to the reference sequence is a sequence alignment between the given amino acid or polynucleotide sequence and the reference sequence.

"GXS1 protein" or "Candida intermedia GXS1 protein" is used according to its common, ordinary meaning and refers to proteins of the same or similar names and functional fragments and homologs thereof. The term includes recombinant or naturally occurring forms of GXS1 protein (e.g. Genbank ID: CAI44932.1; GI: 85057135; SEQ ID NO: 1), or variants thereof that maintain GXS1 protein activity (e.g. within at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% as compared to SEQ ID NO: 1). The term includes recombinant or naturally occurring forms of GXS1 protein or variants thereof that have sequence identity to SEQ ID NO: 1 (e.g. about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100% identity to SEQ ID NO: 1). GXS1 protein may refer to variants having mutated amino acid residues that modulate (e.g. increase or decrease when compared to GXS1 protein) GXS1 protein activity, expression, cellular targeting, or protein translocation. GXS1 protein may be modified as described herein (e.g. modified with a transporter motif sequence and/or glucose mitigation mutation).

SEQ ID NO: 1: MGLEDNRMVK RFVNVGEKKA GSTAMAIIVG LFAASGGVLF GYDTGTISGV MTMDYVLARY PSNKHSFTAD ESSLIVSILS VGTFFGALCA PFLNDTLGRR WCLILSALIV FNIGAILQVI STAIPLLCAG RVIAGFGVGL ISATIPLYQS ETAPKWIRGA IVSCYQWAIT IGLFLASCVN KGTEHMTNSG SYRIPLAIQC LWGLILGIGM IFLPETPRFW ISKGNQEKAA ESLARLRKLP IDHPDSLEEL RDITAAYEFE TVYGKSSWSQ VFSHKNHQLK RLFTGVAIQA FQQLTGVNFI FYYGTTFFKR AGVNGFTISL ATNIV<u>N</u>VGST IPGILLMEVL GRRNMLMGGA TGM<u>S</u>LSQLIV ALVGVATSEN NKSSQSVLVA FSCIFIAFFA ATWGPCAWVV VGELFP<u>L</u>RR AKSVSLCTAS NWLWNWGIAY ATPYMVDEDK GNLGS<u>N</u>VFFI WGGFNLACVF FAWYFIYETK GLSLEQVDEL YEHVSKAWKS KGFVPSKHSF REQVDQQMDS KTEAIMSEEA

Residues corresponding to positions 36-41 are underlined ²⁵ and bolded for reference. Residues corresponding to positions 155, 225, 326, 354, 361, 407 and 446 are underlined for reference.

The term "recombinant" when used with reference to, for example, a cell, nucleic acid, or protein, indicates that the cell, nucleic acid, or protein, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, 35 recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express genes otherwise modified from those found in the native form of a cell (e.g. genes encoding a mutation in a native or non-native transporter protein, such as a transporter motif 40 sequence as described herein). For example, a recombinant protein may be a protein that is expressed by a cell or organism that has been modified by the introduction of a heterologous nucleic acid (e.g. encoding the recombinant protein).

The word "expression" or "expressed" as used herein in reference to a DNA nucleic acid sequence (e.g. a gene) means the transcriptional and/or translational product of that sequence. The level of expression of a DNA molecule in a cell may be determined on the basis of either the amount of 50 corresponding mRNA that is present within the cell or the amount of protein encoded by that DNA produced by the cell (Sambrook et al., 1989 *Molecular Cloning: A Laboratory Manual*, 18.1-18.88).

The term "gene" means the segment of DNA involved in 55 producing a protein; it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons). The leader, the trailer as well as the introns include regulatory elements that are necessary during 60 the transcription and the translation of a gene. Further, a "protein gene product" is a protein expressed from a particular gene.

The term "isolated" refers to a nucleic acid, polynucleotide, polypeptide, protein, or other component that is partially or completely separated from components with which it is normally associated (other proteins, nucleic acids, cells,

etc.). In embodiments, an isolated polypeptide or protein is a recombinant polypeptide or protein.

A "yeast cell" as used herein, refers to a eukaryotic unicellular microorganism carrying out metabolic or other

- 5 function sufficient to preserve or replicate its genomic DNA. Yeast cells may carry out fermentation of sugars described herein. In embodiments, fermentation may convert the sugar to a biofuel or biochemical as set forth herein. Yeast cells referenced herein include, for example, the following spe-
- 10 cies: Candida intermedia, Cryptococcos neoformans, Debaryomyces hansenii, Saccharomyces cerevisiae, Scheffersomyces stipitis, or Yarrowia lipolytica. A "recombinant yeast cell" is a yeast cell which expresses a recombinant transporter protein.
- 15 The term "biofuel" as used herein refers to a convenient energy containing substance produced from living organisms (e.g. biomass conversion to a fuel). Thus, biofuels may be produced through, for example, fermentation of carbohydrates (e.g. sugars) found in biomass (e.g. lignocellulosic 20 biomass). Biofuels may be solid, liquid, or gas forms.
 - Biofuels include, for example, ethanol, biodiesel, vegetable oil, ether (oxygenated fuels), or gas (e.g. methane).

The term "biochemical" as used herein refers to production of chemicals by living organisms. Biochemicals herein include production of alcohols (e.g. methanol, butanol, ethanol, isobutanol, 2,3-butanediol, propanol); sugars (e.g. erythritol, mannitol, riboflavin); carotenoids (e.g. β-carotene, lycopene, astaxanthin); fatty acids (e.g. ricinoleic acid, linolenic acid, tetracetyl phytosphingosine); amino acids (e.g. valine, lysine, threonine); aromatics (e.g. indigo, vanillin, sytrene, p-hydroxystyrene); flavonoids (e.g. naringenin, genistein, kaempferol, quercetin, chrysin, apigenin, luteolin); stillbenoids (e.g. resveratrol); terpenoids (e.g. β-amyrin, taxadiene, miltiradiene, paclitaxel, artemisinin, bisabolane); polyketides (e.g. aureothin, spectinabilin, lovastatin, geodin); acetone; or organic acids (e.g. citric acid, succinic acid, malic acid, lactic acid, polylactic acid, adipic acid, glucaric acid). See e.g. Curran K. A., Alper H. S., Metabolic Engineering 14:289-297 (2012).

A "transporter motif sequence" as used herein refers to an amino acid sequence that, when present in a protein (e.g. a sugar transporter protein such as a MFS transporter protein), increases the ability of the protein to transport a sugar or sugar-containing compound into a yeast cell. In embodi-45 ments, the transporter motif sequence imparts a hexose sugar transport preference or pentose sugar transport preference to the protein. Correspondingly, a transporter motif may refer to the specific sugar it transports into a yeast cell. For example, the transporter motif sequence may impart preference to hexose sugars to a transporter protein, thereby allowing the recombinant transporter protein to preferentially transport hexoses into a yeast cell. Such transporter motif sequences may be referred to herein as a "hexose transporter motif sequence." In embodiments the transporter motif sequence imparts preference to a single hexose. The hexose may be galactose or mannose. Such transporter motif sequences may be referred to herein as a "galactose transporter motif sequence" and a "mannose transporter motif sequence" respectively. In embodiments, the transporter motif sequence imparts preference to more than one hexose sugar.

The transporter motif sequence may impart preference to pentose sugars to a transporter protein, thereby allowing the recombinant transporter protein to preferentially transport pentose into a yeast cell. In embodiments the transporter motif sequence imparts preference to a single pentose (e.g. xylose). The pentose may be xylose or arabinose. Such transporter motif sequences may be referred to herein as a "xylose transporter motif sequence" and an "arabinose transporter motif sequence" respectively. In embodiments the transporter motif sequence imparts preference to more than one pentose sugar (e.g. xylose and arabinose). Such transporter motif sequences may be referred to as a "xylose/ arabinose transporter motif sequence."

In embodiments, the transporter motif sequence imparts preference to a hexose and a pentose. That is, in embodiments, the recombinant transporter protein having such a transporter motif sequence preferentially transports one hexose and/or one pentose. Such transporter motif sequences may be referred to by the sugars which are transported (e.g. galactose and arabinose). Accordingly, in embodiments, the transporter motif sequence imparts preference to galactose and arabinose. Such a transporter motif is herein referred to as a "galactose-arabinose transporter motif sequence" (i.e. a recombinant transporter protein that transports both galactose and arabinose, or transports galactose or arabinose).

The transporter motif sequence as described herein corresponds to residues corresponding to positions 36-41 of the Candida intermedia GXS1 protein ("GXS1 motif sequence"). One skilled in the art will immediately recognize the identity and location of residues corresponding to positions 36-41 of the Candida intermedia GXS1 protein in other transporter proteins with different numbering systems. For example, by performing a simple sequence alignment with Candida intermedia GXS1 protein the identity and location of residues corresponding to positions 36-41 of the Candida intermedia GXS1 protein are identified in other yeast transport proteins as illustrated in Table 1. Insertion (e.g. substitution) of a transporter motif sequence into a yeast transport protein may thereby be performed resulting in a functional yeast transporter protein with an altered sugar transport preference (e.g. changing a preference for hexoses to a preference for pentoses). For example, amino acid residue positions 75-81 of S. cerevisiae HXT7 protein correspond to amino acid residue positions 36-41 of the Candida intermedia GXS1 protein (see Table 1).

TABLE 1

Sequence alignment of 54 sequences from major facilitator superfamily sugar transporter proteins (SEQ ID NOs: 51-104, respectively in order of appearance in Table 1). Putative transporter motif sequences are illustrated in the box and corresponds as described herein to residue positions 36-41 of *C. intermedia GXS1* protein.

Dh2C02530p	KFRNFLDKTPNIYNVFVIASISCI	SGLM	FGIDISSMSLFIGDDKYIKYFHK	63
Dh2E01166p	KLRLFLDKLPNIYNIYVIATISCI	SGLM	FGIDISSMSAFLSNDAYLKYFGT	63
Dh2E01298p	KFRNFLDKFPNIHNVYIVVGISCI	SGMM	FGIDISSMSLFIGDDKYLDYFNS	63
SsHGT2	KFRTFLDRLPNIYNVYIIASISCI	SGMM	FGFDISSMSAFIGEDDYKNFFNN	63
Dh2A14300p	SLNKELDKFHTTYNIYVIAMITTI	SGMM	FGFDVSSISAFISEPSYRRFFNY	61
Y10B06391p	QVGALQHRFPKLHNPYLTAAVATM	GGLL	FGFDISSVSAFVDTKPYKEYFGY	59
Y10B01342p	MYKVHNPYLTAAVATM	GGML	FGFDISSVSAFVGEDNYMNYFGH	43
BmHGT2	MGRITNPYVLTALACT	GGLL	FGFDISSMSAIISSPNYLTYFGPKDLTVECPD	52
At5g59250	LASDAPESFSWSSVILPFIFP-AL	GGLL	FGYDIGATSGATLSLQSPALSGTTWFNF	139
At5g17010	HVPENYSVVAAILPFLFP-AL	GGLL	YGYEIGATSCATISLQEPMTLLSYYAVPFSAV	89
SsAUT1	LNAEATNKWHIPPRLIGVIALGSM	AAAV	QGMDESVINGANLFYPKAFGVDTMHNSD	161
Y10D00132	LNREITNKWDHPMKVYYLVVCCSL	AAAV	QGMDETVINGANI IFPAQFGI KEDSGVVSRKS	180
BmSTL1	FLGMRGIKLNWAIGFAASA	GFLL	FGYDQGVLGSLYTLPSWNAQFPEINTAAVGDS	73
SsXUT6	AKTNSYLGLRGHKLNFAVSCFAGV	GFLL	FGYDQGVMGSLLTLPSFENTFPAMK	75
Dh2E01386p	KTNTMGLRGKPLRVAITICCTI	GFSL	FGYDQGLMSGIITGKQFNEEPPTHGT	59
Dh2B05060p	RTNTMGLRGKRLRVMFTVVATL	GFSL	FGYDQGLMSGLITGEQFNAEFPPTAGK	60
SsSTL1	RRNRMGLRGKRLRVMFTVVATL	GFSL	FGYDQGLMSGLITGEQFNAEFPPTAGK	60
ScSTL1	RTSHWGLTGKKLRYFITIASMI	GFSL	FGYDQGLMASLITGKQFNYEFPATKENGD	70
BmHXT10	IDVGLRGNWLLTVITASCAA	GFLL	VGYDNGVMGGVVGLGEFNKTFNNPD	66
SsXUT2	GKQVSYAVTFTCEL	AFIL	FGIEQGIIGNLINNQDFLNTFGNPTG	53
CnBC3990p	HKTQRRLVGHNLLYSVSVFLSI	GVWL	FGYDQGVMSGIITGPYFKAYFNQPTS	62
Y10F06776p	MFSLTGKPLLYFTSVFVSL	GVFL	FGYDQGVMSGIITGFYFKEYPHEPTR	49
BmXUT3	VGATGAKGLIKNARTFAIAVFASM	GGLI	YGYNQGMFGQILSMHSFQEASGVKGIT	78
SsXUT1	AGKSGVAGLVANSRSFFIAVFASL	gglv	YGYNQGMFGQISGMYSFSKAIGVEKIQD	77
SsXUT3	AHGNVVTIMMKDPVVFLVILFASL	GGLL	FGYDQGVISGIVTMESFGAKFPRIFM	63
		I		
SsXUT3-A	AHGNVVTIMMKDPVVFLVILFASL	GGLL	FGYDQGVISGIVTMESFGAKFPRIFM	63
SsXUT3-B	AHGNVVTIMMKDPVVFLVILFASL	GGLL	FGYDQGVISGIVTMESFGAKFPRIFM	63
DhXy1HP	SKGNIITVMSKDPLVFCIIAFASI	GGLL	FGYDQGVISGIVTMESFAAKFPRIFS	64
ScGAL2	PIEIPKKPMSEYVTVSLLCLCVAF	GGFM	FGWDTGTISGFVVQTDFLRRFG-MKHKDGT	113
ScHXT8	EVVVPEKPASAYATVSIMCLCMAF	GGFM	SGWDTGTISGFVNQTDFLRRFGNYSHSKNT	109
ScHXT1	AVAPPNTGKGVYVTVSICCVMVAF	GGFI	FGWDTGTISGFVAQTDFLRRFG-MKHHDGS	107
ScHXT3	VLTNPNTGKGAYVTVSICCVMVAF	GGFV	FGWDTGTISGFVAQTDFLRRFG-MKHKDGS	104
ScHXT7	VVEIPKRPASAYVTVSIMCIMIAF	GGFV	FGWDTGTISGFINQTDFIRRFG-MKHKDGT	107
ScHXT9	PIDLPQKPLSAYTTVAILCLMIAF	GGFI	FGWDTGTISGFVNLSDFIRRFG-QKNDKGT	103
ScHXT2	NAELPAKPIAAYWTVICLCLMIAF	GGFV	FGWDTGTISGFVNQTDFKRRFG-QMKSDGT	98
ScHXT10	SLDIPYKPIIAYWTVMGLCLMIAF	GGFI	FGWDTGTISGFINQTDFKRRFG-ELORDGS	91
CiGXF1	QVDAPQKGFKDYIVISIFCFMVAF	GGFV	FGFDTGTISGFVNMSDFKDRFG-QHHADGT	86
ScHXT13	NVEPPKRGLIGYLVIYLLCYPISF	GGFL	PGWDSGITAGFINMDNFKMNFGSYKHSTGE	100
BmGXF1	-MVFQVRGTPIGALTLFIAMLASM	GGFL	FGWDTGQISGLTQMADFRQRFATVDNPDAIG-	58

TABLE	1-continued
-------	-------------

Sequence alignment of 54 sequences from major facilitator superfamily sugar transporter proteins (SEQ ID NOS: 51-104, respectively in order of appearance in Table 1). Putative transporter motif sequences are illustrated in the box and corresponds as described herein to residue positions 36-41 of *C. intermedia GXS1* protein.

			_
ScHXT14	GOAAKISHNASLHIPVLLCLVISLGGE	IFGWDIGTIGGMTNMVSFOEKFGTTNIIHDDET	105
BmGXS1	GPVARPASVKQSLPAILVAAASAFGGV	LEGYDTGTISGLIVMPNFQETFGKPVPGSTTGA	74
BmRGT2	GPVARPASVKQSLPAILVAAASAFGGV	LFGYDTGTISGLIVMPNFQETFGKPVPGSTTGA	74
CiGXS1	FVNVGEKKAGSTAMAI IVGLFAASGGV	LFGYDTGTISGVMTMDYVLARYPSNK-	64
CiGXS1-A	FVNVGEKKAGSTAMAI IVGLFAASGGV	LVGYDTGTISGVMTMDYVLARYPSNK-	64
CiGXS1-B	FVNVGEKKAGSTAMAI IVGLFAAFGGV	LSGYDTGTISGVMTMDYVLARYPSNK-	64
Dh2D01474	YVNVGEKRAGSASMGI FVGAFAAFGGV	LFGYDTGTISGIMAMNYVKGEFPANK-	64
Dh0D02167p	YVNVGEKRAGSASMGI FVGAFAAFGGV	LFGYDTGTISGIMAMNYVKGEFPANK-	64
SsRGT2	YINFGEKKAGSTTMGICVGLFAAFGGI	LFGYDTGTISGIMAMDYVTARFPSNH-	64
Y10C06424p	IINRGEKPEGSAFMAAFVAVFVAFGGI	LFGYDTGTISGVMAMPFVKKTFTDDG-	58
Y10C08943p	MAIIVAVFVAFGGI	LYGYDTGTIAGIMTMGYVKEHFTDFGK	41
Dh2B14278p	YYKKMQQKS-SSSAITVGLVAAVGGE	LYGYDTGLINDIMEMTYVKDNFPANG-	69
EcXy1E	MNTQYNSSYIFSITLVATLGGI	LFGYDTAVISGTVESLHTVFVAPQNLSESAAN-	54
SsXUT5	RSIGPLIPRNKHLFYGSVLLMSIVHPT	'IMGYDSMMVGSILNLDAYVNYFH	53
ScMAL11	KSMTLKQALLKYPKAALWSILVSTTLV	MEGYDTALLSALYALPVFQRKFGTLNGEGS	148

A "glucose mitigation mutation" as used herein refers to an amino acid mutation that, when present in a recombinant 25 transporter protein, reduces, minimizes, diminishes, or in certain embodiments, eliminates the inhibitory effect of glucose on the recombinant transporter when transporting a sugar other than glucose (e.g. xylose) into a yeast cell. A glucose mitigation mutation may, in embodiments, increase 30 the ability of a recombinant transporter protein to transport a preferred sugar or sugar-containing compound into a yeast cell. Thus, in embodiments, a glucose mitigation mutation may increase the ability of a recombinant transporter protein to transport xylose into a yeast cell. A glucose mitigation 35 mutation may include a single amino acid residue mutation (e.g. a "point mutation") in a recombinant transporter protein. A glucose mitigation mutation may include two or more mutations (e.g. a "substitution set") in a recombinant transporter protein. The glucose mitigation mutation may be in a 40 transmembrane domain, an extracellular loop, or cytoplasmic loop of a recombinant transporter protein. In embodiments, the glucose mitigation mutation may be localized (i.e. glucose mitigation mutations located within a specified domain or region of a recombinant transporter protein) or 45 distributed (i.e. glucose mitigation mutations located throughout the sequence of the recombinant transporter protein).

A "recombinant transporter protein" as used herein refers to a recombinantly expressed transmembrane protein which 50 transports a sugar or sugar-containing compound (e.g. hexoses and pentoses) into a yeast cell. In embodiments, the recombinant transporter protein is a yeast recombinant transporter protein. In embodiments, the recombinant transporter protein is a transporter protein belonging to the major 55 faciliator superfamily ("MFS") transporter proteins. In embodiments, a recombinant transporter protein may transport a hexose (e.g. galactose) into a yeast cell. In embodiments, a recombinant transporter protein may transport a pentose (e.g. xylose or arabinose) into a yeast cell. A 60 recombinant transporter protein may be engineered, using the transporter motif sequences described herein, to alter its sugar preference (e.g. a transporter protein having a preference to transport a hexose compound may be converted to a transporter protein having a preference to transport a pentose 65 compound). A recombinant transporter protein may be characterized by the sugar it transports. Thus, a recombinant

transporter protein transporting xylose is herein referred to a "recombinant xylose transporter protein." Likewise, recombinant transporter proteins transporting arabinose or galactose are herein referred to as a "recombinant arabinose transporter protein" and a "recombinant galactose transporter protein" respectively.

A recombinant transporter protein may be characterized as a transporter protein derived from a particular organism. Where a recombinant transporter protein is derived from a particular organism, the endogenous sequence of the recombinant transporter protein may be maintained and residues corresponding to positions 36-41 of the Candida intermedia GXS1 protein may be replaced with a transporter motif sequence. As an example, a C. intermedia gxs1 transporter protein is a gxs1 transporter protein, a homolog thereof, or a functional fragment thereof, found in C. intermedia. Amino acids 75-81 of S. cerevisiae hxt7 transporter protein may be replace with a transporter motif sequence thereby forming a recombinant transporter protein with desired sugar transport characteristics as described herein. In embodiments, the recombinant transporter protein is a protein, functional fragment, or homolog thereof, identified by the following NCBI gene ID or NCBI accession numbers: 836043, 831564, AJ937350.1, AJ875406.1, 2901237, 2913528, 8998057, 8999011, 50419288, 948529, 4839826, 4852047, 4851844, 4840896, 4840252, 4841106, 4851701, 2907283, 2906708, 2908504, 2909312, 2909701, 4935064, 851943, 856640, 851946, 856494, 8998297, 2902950, 2902912, 853207, 852149, 855023, 853216, 853236, 850536, 855398, 4836720, 4836632, 4840859, 2913215, 2902914, 2910370, and 4838168 (SEQ ID NOs:7-50, respectively in order of appearance). Such recombinant transporter proteins may further be characterized by the sugar preference conferred (e.g. a Candida intermedia GXS1 recombinant xylose transporter protein).

A "pentose compound" or "pentose" is a monosaccharidecontaining compound having 5 carbon atoms. Pentose compounds include aldopentoses (e.g. pentose compounds having an aldehyde moiety at carbon 1) and ketopentoses (e.g. pentose compounds having a ketone moiety at carbon 2 or carbon 3). Pentose compounds include, for example, D/Larabinose, D/L-lyxose, D/L-ribose, D/L-xylose, D/L-ribulose, and D/L-xylulose. The term "monosaccharide-containing" refers to a compound that includes at least one monosaccharide.

A "hexose compound" "or "hexose" is a monosaccharidecontaining compound having 6 carbon atoms. Hexose compounds include aldohexoses (e.g. hexose compounds having an aldehyde moiety at carbon 1) and ketohexoses (e.g. hexose compounds having a ketone moiety at carbon 2). 5 Hexose compounds include, for example, D/L-allose, D/Laltrose, D/L-glucose, D/L-mannose, D/L-glucose, D/Lidose, D/L-galactose, and D/L-talose.

A "xylose compound" is xylose or a xylose-containing compound including at least one xylose moiety. Thus as 10 used herein, the term xylose compound represents a single xylose, a chain including one or more xylose moieties, or a xylose moiety covalently or non-covalently bound to another chemical moiety (e.g. another sugar forming a xylose containing polysaccharide or xylose bound to lignin). 15 An "arabinose compound" is arabinose or an arabinosecontaining compound including at least one arabinose moiety. Thus as used herein, the term arabinose compound represents a single arabinose, a chain including one or more arabinose moieties, or an arabinose moiety covalently or 20 non-covalently bound to another chemical moiety (e.g. another sugar forming an arabinose containing polysaccharide or arabinose bound to lignin). A "galactose compound" is galactose or a galactose-containing compound including at least one galactose moiety. Thus as used herein, the term 25 galactose compound represents a single galactose, a chain including one or more galactose moieties, or a galactose moiety covalently or non-covalently bound to another chemical moiety (e.g. another sugar forming a galactose containing polysaccharide or bound to lignin).

A "sugar" as set forth herein, refers to monosaccharide and polysaccharide compounds metabolized by a yeast cell. In embodiments, a sugar may be a hexose sugar as described herein or a pentose sugar as described herein.

Polysaccharides herein include hexose-only polysaccha- 35 rides, pentose-only polysaccharides, and hexose-pentose mixture polysaccharides. In embodiments, the xylose compound, the arabinose compound, or the galactose compound may be derived from or form part of a lignocellulosic biomass (e.g. plant dry matter that may used in as a source 40 for pentose compounds or hexose compounds and for production of biofuels or biochemicals), hemicellulose, marine biomass (e.g. seaweeds or algae that may used in as a source for pentose compounds or hexose compounds and for production of biofuels or biochemicals) or other natural or 45 synthetic sources for xylose, arabinose, or galactose, including but not limited to xylan or pectin. "Derived from" refers to extraction, removal, purification, or otherwise freeing a xylose compound, arabinose compound, or galactose compound from a source (e.g. lignocellulosic biomass) by either 50 chemical processes (e.g. acid hydrolysis, ammonium explosion, or ionic liquids extraction) or through natural biological processes by organisms capable of using such sources for energy.

A "xylose growth media" refers to a yeast cell media 55 containing a xylose compound in amounts sufficient to serve as a nutrient for growing or culturing recombinant yeast cells. The term refers to a media substantially free of glucose, and, in embodiments, is "glucose free" (i.e. the media contains no glucose). In embodiments, a xylose 60 growth media includes trace amounts of glucose which are undetectable using known methods and which are insufficient to support significant growth of yeast cells. In embodiments, a xylose growth media includes trace amounts of glucose which are insufficient to cause inhibition of activity 65 containing a galactose compound in amounts sufficient to of a recombinant transporter protein (e.g. a recombinant xylose transporter protein) as described herein.

A "xylose-glucose growth media" refers to a yeast cell media containing a xylose compound in an amount sufficient to serve as a nutrient for growing or culturing recombinant yeast cells and a glucose compound. The term refers to a media that includes glucose in an amount sufficient to serve as a nutrient for growth or culturing recombinant yeast cells or in an amount sufficient to cause inhibition of activity of a recombinant transporter protein as described herein. The glucose may be present in the xylose-glucose growth media at a pre-determined concentration as described herein.

Xylose growth media and xylose-glucose growth media may be supplemented with other hexoses or pentoses described herein (e.g. mannose, galactose, or arabinose). Growth of a recombinant yeast cell in a xylose growth media may be compared to growth of a recombinant yeast cell in a xylose-glucose growth media. Thus, in embodiments, a recombinant xylose transporter protein may be selected for its xylose selectivity and/or its rate of transfer of a xylose compound into a yeast cell by comparing its growth in xylose growth media to its growth in xylose-glucose growth media. In embodiments, recombinant yeast cells having impaired growth in xylose-glucose growth media may indicate that the recombinant xylose transporter protein in the recombinant yeast is inhibited, at least in part, by glucose.

An "arabinose growth media" refers to a yeast cell media containing an arabinose compound in amounts sufficient to serve as a nutrient for growing or culturing recombinant yeast cells. The term refers to a media substantially free of glucose, and, in embodiments, is "glucose free" (i.e. the media contains no glucose). In embodiments, an arabinose growth media includes trace amounts of glucose which are undetectable using known methods and which are insufficient to support significant growth of yeast cells. In embodiments, an arabinose growth media includes trace amounts of glucose which are insufficient to cause inhibition of activity of a recombinant transporter protein (e.g. a recombinant arabinose transporter protein) as described herein.

An "arabinose-glucose growth media" refers to a yeast cell media containing an arabinose compound in an amount sufficient to serve as a nutrient for growing or culturing recombinant yeast cells and a glucose compound. The term refers to a media that includes glucose in an amount sufficient to serve as a nutrient for growth or culturing recombinant yeast cells or in an amount sufficient to cause inhibition of activity of a recombinant transporter protein as described herein. The glucose may be present in the arabinose-glucose growth media at a pre-determined concentration as described herein.

Arabinose growth media and arabinose-glucose growth media may be supplemented with other hexoses or pentoses described herein (e.g. mannose, galactose, or xylose). Growth of a recombinant yeast cell in an arabinose growth media may be compared to growth of a recombinant yeast cell in an arabinose-glucose growth media. Thus, in embodiments, a recombinant arabinose transporter may be selected for its arabinose selectivity and/or its rate of transfer of an arabinose compound into a yeast cell by comparing its growth in arabinose growth media to its growth in arabinose-glucose growth media. In embodiments, recombinant yeast cells having impaired growth in arabinose-glucose growth media may indicate that the recombinant arabinose transporter protein in the recombinant yeast is inhibited, at least in part, by glucose.

A "galactose growth media" refers to a yeast cell media serve as a nutrient for growing or culturing recombinant yeast cells. The term refers to a media substantially free of glucose, and, in embodiments, is "glucose free" (i.e. the media contains no glucose). In embodiments, a galactose growth media includes trace amounts of glucose which are undetectable using known methods and which are insufficient to support significant growth of yeast cells. In embodi-5 ments, a galactose growth media includes trace amounts of glucose which are insufficient to cause inhibition of activity of a recombinant transporter protein (e.g. a recombinant galactose transporter protein) as described herein.

A "galactose-glucose growth media" refers to a yeast cell 10 media containing a galactose compound in an amount sufficient to serve as a nutrient for growing or culturing recombinant yeast cells and a glucose compound. The term refers to a media that includes glucose in an amount sufficient to serve as a nutrient for growth or culturing recom- 15 binant yeast cells or in an amount sufficient to cause inhibition of activity of a recombinant transporter protein as described herein. The glucose may be present in the galactose-glucose growth media at a pre-determined concentration as described herein.

Galactose growth media and galactose-glucose growth media may be supplemented with other hexoses or pentoses described herein (e.g. mannose, arabinose, or xylose). Growth of a recombinant yeast cell in a galactose growth media may be compared to growth of a recombinant yeast 25 cell in a galactose-glucose growth media. Thus, in embodiments, a recombinant galactose transporter may be selected for its galactose selectivity and/or its rate of transfer of a galactose compound into a yeast cell by comparing its growth in galactose growth media to its growth in galactose- 30 glucose growth media. In embodiments, recombinant yeast cells having impaired growth in galactose-glucose growth media may indicate that the recombinant galactose transporter protein in the recombinant yeast is inhibited, at least in part, by glucose.

As defined herein, the term "inhibition", "inhibit", "inhibiting" and the like refers to negatively affecting (e.g. decreasing) the activity or function of a recombinant transporter protein (e.g. recombinant xylose transporter protein) relative to the activity or function of the protein in the 40 absence of the inhibitor (e.g. glucose). In embodiments, inhibition refers to a reduction in the growth rate of a recombinant yeast cell.

"Contacting" is used in accordance with its plain ordinary meaning and refers to the process of allowing at least two 45 distinct species (e.g. chemical compounds including sugars, biomolecules or cells) to become sufficiently proximal to react, interact or physically touch. The term "contacting" includes allowing two species to react, interact, or physically touch, where the two species may be a sugar as described 50 herein and a recombinant transporter protein as described herein. In embodiments contacting includes allowing a sugar described herein to interact with a recombinant transporter protein that is involved in transporting hexose or pentose compounds into a yeast cell.

I. Compositions

Provided herein are recombinant transporter proteins that include a transporter motif sequence and a glucose mitiga- 60 tion mutation. In one aspect, the recombinant transporter protein is a recombinant xylose transporter protein that includes a xylose transporter motif sequence and a glucose mitigation mutation.

1. Recombinant Xylose Transporter Protein

The xylose transporter motif sequence may correspond to amino acid residue positions 36, 37, 38, 39, 40, and 41 of

65

Candida intermedia GXS1 protein (SEQ ID NO: 1). In embodiments, the xylose transporter motif sequence corresponds to amino acid residue positions 36, 37, 38, 39, 40, and 41 of SEQ ID NO:1. The transporter motif sequence may have the sequence $-G-G/F-X^1-X^2-X^3-G-X^1$ is D, C, G, H, I, L, or F. X² is A, D, C, E, G, H, or I. X³ is N, C, Q, F, G, L, M, S, T, or P. In embodiments, the transporter motif sequence is not -G-G-L-I-F-G- (SEQ ID NO:105) or -G-G-F-I-F-G- (SEQ ID NO:106).

 X^1 may be D, C, G, I, L, or F. X^1 may be D, C, G, H, or F. X^1 may be D. X^1 may be C. X^1 may be G. X^1 may be I. X^1 may be L. X^1 may be H. X^1 may be F. X^2 may be D, C, E, G, H, or I. X^2 may be E, G, H, or I. X^2 may be H or I. X^2 may be H. X² may be I. X³ may be N, Q, F, M, S, T, or P. X³ may be F, M, S, or T. X³ may be S, T, or M. X³ may be T. X^3 may be S. X^3 may be M. In embodiments, when X^1 is F, X^2 may be I and X^3 may be M or S.

The xylose transporter motif sequence may be -G-G-F-I-M-G- (SEQ ID NO:107), -G-F-F-I-M-G- (SEQ ID NO:108), 20 -G-G-F-I-S-G- (SEO ID NO:109), -G-F-F-I-S-G- (SEO ID NO:110), -G-G-F-I-T-G- (SEQ ID NO:111), -G-F-F-I-T-G-(SEQ ID NO:112), -G-G-F-L-M-G- (SEQ ID NO:113), -G-F-F-L-M-G- (SEQ ID NO:114), -G-G-F-L-S-G- (SEQ ID NO:115), -G-F-F-L-S-G- (SEQ ID NO:116), -G-G-F-L-T-G- (SEQ ID NO:117), -G-F-F-L-T-G- (SEQ ID NO:118), -G-G-F-H-M-G- (SEQ ID NO:119), -G-F-F-H-M-G- (SEQ ID NO:120), -G-G-F-H-S-G- (SEQ ID NO:121), -G-F-F-H-S-G- (SEQ ID NO:122), -G-G-F-H-T-G- (SEQ ID NO:123) or -G-F-F-H-T-G- (SEQ ID NO:124). In embodiments, the xylose transporter motif sequence is -G-G-F-I-M-G- (SEQ ID NO:107), -G-F-F-I-M-G- (SEQ ID NO:108), -G-G-F-I-S-G- (SEQ ID NO:109), -G-F-F-I-S-G- (SEQ ID NO:110), -G-G-F-I-T-G- (SEQ ID NO:111), or -G-F-F-I-T-G- (SEQ ID NO:112). In embodiments, the xylose transporter motif 35 sequence is -G-G-F-I-M-G- (SEQ ID NO:107), -G-F-F-I-M-G- (SEQ ID NO:108), -G-G-F-I-S-G- (SEQ ID NO:109), or -G-F-F-I-S-G- (SEQ ID NO:110). In embodiments, the xylose transporter motif sequence is -G-G-F-I-M-G- (SEQ ID NO:107), or -G-F-F-I-M-G- (SEQ ID NO:108). The xylose transporter motif sequence may be -G-G-F-I-M-G-(SEQ ID NO:107). The xylose transporter motif sequence may be -G-F-F-I-M-G- (SEQ ID NO:108). The xylose transporter motif sequence may be -G-G-F-I-S-G- (SEQ ID NO:109). The xylose transporter motif sequence may be -G-F-F-I-S-G- (SEQ ID NO:110). The xylose transporter motif sequence may be -G-G-F-I-T-G- (SEQ ID NO:111). The xylose transporter motif sequence may be -G-F-F-I-T-G- (SEQ ID NO:112). The xylose transporter motif sequence may be -G-G-F-L-M-G- (SEQ ID NO:113). The xylose transporter motif sequence may be -G-F-F-L-M-G-(SEQ ID NO:114). The xylose transporter motif sequence may be -G-G-F-L-S-G- (SEQ ID NO:115). The xylose transporter motif sequence may be -G-F-F-L-S-G- (SEQ ID NO:116). The xylose transporter motif sequence may be 55 -G-G-F-L-T-G- (SEQ ID NO:117). The xylose transporter motif sequence may be -G-F-F-L-T-G- (SEQ ID NO:118). The xylose transporter motif sequence may be -G-G-F-H-M-G- (SEQ ID NO:119). The xylose transporter motif sequence may be -G-F-F-H-M-G- (SEQ ID NO:120). The xylose transporter motif sequence may be -G-G-F-H-S-G-(SEQ ID NO:121). The xylose transporter motif sequence may be -G-F-F-H-S-G- (SEQ ID NO:122). The xylose transporter motif sequence may be -G-G-F-H-T-G- (SEQ ID NO:123). The xylose transporter motif sequence may be -G-F-F-H-T-G- (SEQ ID NO:124).

The glucose mitigation mutation may be within a protein domain corresponding to a transmembrane of a recombinant transporter protein (e.g. one or more of transmembrane domains 1-12). The glucose mitigation mutation may be within two or more protein domains corresponding to transmembranes of a recombinant transporter protein. The glucose mitigation mutation may be within a protein domain 5 corresponding to a transmembrane of Candida intermedia GXS1 protein. The transmembrane may be a protein domain corresponding to transmembrane 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 of Candida intermedia GXS1 protein. The transmembrane may be a protein domain corresponding to a 10 transmembrane a protein of SEQ ID NO:51-104. The glucose mitigation mutation may be within a protein domain corresponding to transmembrane 1 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be within a protein domain corresponding to transmembrane 2 15 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be within a protein domain corresponding to transmembrane 3 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be within a protein domain corresponding to transmembrane 4 of Candida 20 intermedia GXS1 protein. The glucose mitigation mutation may be within a protein domain corresponding to transmembrane 5 of Candida intermedia GXS1 protein.

In embodiments, the glucose mitigation mutation is within a protein domain corresponding to transmembrane 5 25 of SEQ ID NO:1. In embodiments, the glucose mitigation mutation is within a protein domain corresponding to residue 160-179 of SEQ ID NO:1. In embodiments, the glucose mitigation mutation is at a position corresponding to T170 or 1171 of SEQ ID NO:1. In embodiments, the glucose miti-30 gation mutation is a T170N mutation. In embodiments, the glucose mitigation mutation is a 1171F mutation.

The glucose mitigation mutation may be within a protein domain corresponding to transmembrane 6 of Candida intermedia GXS1 protein. The glucose mitigation mutation 35 may be within a protein domain corresponding to transmembrane 7 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be within a protein domain corresponding to transmembrane 8 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be within a 40 protein domain corresponding to transmembrane 9 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be within a protein domain corresponding to transmembrane 8 or 9 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be within a protein 45 domain corresponding to transmembrane 8 and 9 of Candida intermedia GXS1 protein (e.g. amino acid residues about 347 to about 366 of Candida intermedia GXS1 amino acid sequence (SEQ ID NO: 1)). The glucose mitigation mutation may be within a protein domain corresponding to transmem- 50 brane 10 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be within a protein domain corresponding to transmembrane 11 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be within a protein domain corresponding to transmembrane 12 55 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be within a protein domain corresponding to transmembrane 9 of Candida intermedia GXS1.

In embodiments, the glucose mitigation mutation is within a protein domain corresponding to an extracellular 60 domain of *Candida intermedia* GXS1 protein. The glucose mitigation mutation may be in a protein domain corresponding to the 11-12 extracellular domain of *Candida intermedia* GXS1 protein. The glucose mitigation mutation may be within a protein domain corresponding to a cytoplasmic 65 domain (i.e. intracellular) of *Candida intermedia* GXS1 protein. In embodiments, the glucose mitigation mutation is

in a protein domain corresponding to the 4-5 cytoplasmic domain (i.e. an intracellular domain between protein domains corresponding to transmembranes 4 and 5 of *Candida intermedia* GXS1 protein); the central cytoplasmic domain (i.e. an intracellular domain between protein domains corresponding to transmembranes 6 and 7 of *Candida intermedia* GXS1 protein); or the 10-11 cytoplasmic domain (i.e. an intracellular domain between protein domains corresponding to transmembranes 10 and 11 of *Candida intermedia* GXS1 protein) of *Candida intermedia* GXS1 protein) of *Candida intermedia* GXS1 protein.

The glucose mitigation mutation may be at a position corresponding to K155, T170, I171, N225, S354, A361, L407, or N446 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be at a position corresponding to T170 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be at a position corresponding to I171 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be at a position corresponding to K155 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be a conservative mutation at position 155 as described herein. In embodiments, the glucose mitigation mutation is a K155E mutation. The glucose mitigation mutation may be at a position corresponding to N225 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be a conservative mutation at position 225 as described herein. In embodiments, the glucose mitigation mutation is a N225D mutation. The glucose mitigation mutation may be at a position corresponding to S354 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be a conservative mutation at position 354 as described herein. In embodiments, the glucose mitigation mutation is a S354T mutation. The glucose mitigation mutation may be at a position corresponding to A361 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be a conservative mutation at position 361 as described herein. In embodiments, the glucose mitigation mutation is a A361T mutation. The glucose mitigation mutation may be at a position corresponding to L407 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be a conservative mutation at position 407 as described herein. In embodiments, the glucose mitigation mutation is a L407M mutation. The glucose mitigation mutation may be at a position corresponding to N446 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be a conservative mutation at position 446 as described herein. In embodiments, the glucose mitigation mutation is a N446S mutation. The glucose mitigation mutation may be at a position corresponding to N326 of Candida intermedia GXS1 protein. The glucose mitigation mutation may be a conservative mutation at position 326 as described herein. In embodiments, the glucose mitigation mutation is a N326S mutation. In embodiments, the glucose mitigation mutation is a N326H mutation.

The glucose mitigation mutation may include two or more positions corresponding to K155, T170, I171, N225, N326, S354, A361, L407, or N446 of *Candida intermedia* GXS1 protein as described hereinabove. The glucose mitigation mutation may include three or more positions corresponding to K155, T170, I171, N225, N326, S354, A361, L407, or N446 of *Candida intermedia* GXS1 protein as described hereinabove. The glucose mitigation mutation may include four or more positions corresponding to K155, T170, I171, N225, N326, S354, A361, L407, or N446 of *Candida intermedia* GXS1 protein as described hereinabove. The glucose mitigation mutation may include five or more positions corresponding to K155, T170, I171, N225, N326, S354, A361, L407, or N446 of Candida intermedia GXS1 protein as described hereinabove. The glucose mitigation mutation may include six or more positions corresponding to K155, T170, I171, N225, N326, S354, A361, L407, or N446 5 of Candida intermedia GXS1 protein as described hereinabove. The glucose mitigation mutation may include mutation at positions corresponding to K155, T170, I171, N225, N326, S354, A361, L407, and N446 of Candida intermedia GXS1 protein as described hereinabove. The glucose miti- 10 gation mutation may include mutation at positions corresponding to K155, T170, I171, N225, S354, A361, L407, and N446 of Candida intermedia GXS1 protein as described hereinabove.

herein including embodiments thereof may further include an amino acid deletion. An amino acid deletion as provided herein is a deletion of at least one amino acid residue of a Candida intermedia GXS1 protein as described hereinabove. Thus, the sequence of a Candida intermedia GXS1 20 protein including an amino acid deletion includes at least one amino acid residue less relative to the sequence of a Candida intermedia GXS1 protein lacking said deletion. In embodiments, the deletion is at least 5 amino acids in length. In embodiments, the deletion is at least 10 amino acids in 25 length. In embodiments, the deletion is at least 15 amino acids in length. In embodiments, the deletion is at least 20 amino acids in length. In embodiments, the deletion is at least 25 amino acids in length. In embodiments, the deletion is at least 30 amino acids in length. In embodiments, the 30 deletion is at least 35 amino acids in length. In embodiments, the deletion is at least 40 amino acids in length. In embodiments, the deletion is at least 45 amino acids in length. In embodiments, the deletion is at least 50 amino acids in length. In embodiments, the deletion is at least 55 amino 35 acids in length. In embodiments, the deletion is at least 60 amino acids in length. In embodiments, the deletion is at least 65 amino acids in length. In embodiments, the deletion is at least 70 amino acids in length. In embodiments, the deletion is at least 75 amino acids in length. In embodiments, 40 the deletion is at least 80 amino acids in length. In embodiments, the deletion is at least 85 amino acids in length. In embodiments, the deletion is at least 90 amino acids in length. In embodiments, the deletion is at least 95 amino acids in length. In embodiments, the deletion is at least 100 45 amino acids in length.

In embodiments, the deletion is less than 50 amino acids in length. In embodiments, the deletion is less than 45 amino acids in length. In embodiments, the deletion is less than 40 amino acids in length. In embodiments, the deletion is less 50 than 35 amino acids in length. In embodiments, the deletion is less than 30 amino acids in length. In embodiments, the deletion is less than 25 amino acids in length. In embodiments, the deletion is less than 20 amino acids in length. In embodiments, the deletion is less than 15 amino acids in 55 length. In embodiments, the deletion is less than 10 amino acids in length. In embodiments, the deletion is within a protein domain corresponding to residue 497-522 of SEQ ID NO:1. In embodiments, the deletion is within a protein domain corresponding to residue 497-522 of a Candida 60 intermedia GXS1 protein as described hereinabove.

2. Recombinant Arabinose Transporter Protein

Also provided herein is a recombinant arabinose transporter protein that includes an arabinose transporter motif sequence and a glucose mitigation mutation.

The arabinose transporter motif sequence may correspond to residue positions 36, 37, 38, 39, 40, and 41 of Candida

intermedia GXS1 protein. The arabinose transporter motif sequence may have the sequence -G-G/F-X⁴-X⁵-X⁶-G-. X⁴ is D, C, F, G, H, L, R, T, or P. X⁵ is A, C, E, F, H, K, S, P, or V. X⁶ is R, D, E, F, H, I, M, T, or Y. In embodiments, the arabinose transporter is not -G-G-L-V-Y-G- (SEQ ID NO:125), or -G-G-F-V-F-G- (SEQ ID NO:126).

 X^4 may be D, F, G, L, R, or T. X^4 may be R, T, H, or F. X^4 may be R. X^4 may be T. X^4 may be H. X^4 may be F. X^5 may be A, E, F, P, H, or V. X⁵ may be P, H, or V. X⁵ may be P. X^5 may be H. X^5 may be V. X^6 may be T, H, F, M, or Y. X^6 may be F or Y. X^6 may be T or M. X^6 may be T. X^6 may be H. X⁶ may be F. X⁶ may be M. X⁶ may be Y. In embodiments, X^4 is F or T, X^5 is P or I, and X^6 is M or T.

The arabinose transporter motif sequence may be -G-G-The recombinant xylose transporter protein provided 15 F-H-M-G- (SEQ ID NO:119), -G-F-F-H-M-G- (SEQ ID NO:120), -G-G-R-P-T-G- (SEQ ID NO:127), -G-F-R-P-T-G- (SEQ ID NO:128), -G-G-T-P-T-G- (SEQ ID NO:129), or -G-F-T-P-T-G- (SEQ ID NO:130). The arabinose transporter motif sequence may be -G-G-F-H-M-G- (SEQ ID NO:119), or -G-F-F-H-M-G- (SEQ ID NO:120). The arabinose transporter motif sequence may be -G-G-R-P-T-G- (SEQ ID NO:127), -G-F-R-P-T-G- (SEQ ID NO:128). The arabinose transporter motif sequence may be -G-G-T-P-T-G- (SEQ ID NO:129) or -G-F-T-P-T-G- (SEQ ID NO:130). The arabinose transporter motif sequence may be -G-G-F-H-M-G-(SEQ ID NO:119). The arabinose transporter motif sequence may be -G-F-F-H-M-G- (SEQ ID NO:120). The arabinose transporter motif sequence may be -G-G-R-P-T-G- (SEQ ID NO:127). The arabinose transporter motif sequence may be -G-F-R-P-T-G- (SEQ ID NO:128). The arabinose transporter motif sequence may be -G-G-T-P-T-G- (SEQ ID NO:129). The arabinose transporter motif sequence may be -G-F-T-P-T-G- (SEQ ID NO:130).

> The glucose mitigation mutation of the recombinant arabinose transporter protein is as described hereinabove for the "recombinant xylose transporter protein" and includes embodiments thereof.

3. Recombinant Galactose Transporter Protein

Provided herein is a recombinant galactose transporter protein that includes an galactose transporter motif sequence and a glucose mitigation mutation.

The galactose transporter motif sequence is as described hereinabove for the "arabinose transporter motif sequence" and includes embodiments thereof. The glucose mitigation mutation of the recombinant arabinose transporter protein is as described hereinabove for the "recombinant xylose transporter protein" and includes embodiments thereof.

Also provided herein is a recombinant galactose-arabinose transporter protein that includes a galactose-arabinose transporter motif sequence and a glucose mitigation mutation. The galactose-arabinose transporter motif sequence may be as described hereinabove for the "arabinose transporter motif sequence" and includes embodiments thereof. The glucose mitigation mutation of the recombinant galactose-arabinose transporter protein is as described hereinabove for the "recombinant xylose transporter protein" and includes embodiments thereof.

II. Nucleic Acids

In another aspect is a nucleic acid encoding a recombinant xylose transporter protein described herein, including embodiments thereof. In yet another aspect is a nucleic acid encoding a recombinant arabinose transporter protein described herein, including embodiments thereof. In still another aspect is a nucleic acid encoding a recombinant galactose transporter protein described herein, including embodiments thereof. In another aspect is a nucleic acid encoding a recombinant galactose-arabinose transporter protein described herein, including embodiments thereof. The nucleic acids may be RNA or DNA. The nucleic acids may be cDNA. The nucleic acids may be single- or doublestranded RNA or single- or double-stranded DNA. The nucleic acids may be located on a plasmid or other vector. The nucleic acids may be introduced and expressed by a yeast cell using conventional techniques known to those in the art.

III. Recombinant Yeast Cells

Provided herein are recombinant yeast cells that include a recombinant transporter protein as described herein, includ- 15 ing embodiments thereof. Also provided herein are recombinant yeast cells that include a nucleic acid encoding a recombinant xylose transporter protein described herein, including embodiments thereof.

1. Recombinant Yeast Cell Including a Recombinant 20 Xylose Transporter Protein

In one aspect is a recombinant yeast cell that includes a recombinant xylose transporter protein as described herein, including embodiments thereof. In embodiments, the growth rate of the recombinant yeast cell including a recombinant 25 transporter protein as described herein can be measured. The growth rate may be determined in xylose growth media (i.e. in the absence of glucose). The growth rate may be determined in xylose-glucose growth media. In embodiments, the growth rates (i.e. growth rate in the absence and presence of 30 glucose) are compared to determine the differential growth rate of the recombinant yeast cells. If the growth rate of recombinant yeast cells grown in xylose-glucose growth media is less than the growth rate of recombinant yeast cells grown in xylose growth media, the differential growth rate 35 may indicate the presence of glucose inhibition of the recombinant transporter protein. As described herein, inclusion of a glucose mitigating mutation decreases, minimizes, or may eliminate glucose inhibition of a recombinant xylose transporter protein.

In embodiments, the growth rate of the recombinant yeast cell in a xylose-glucose growth media is about 5% to about 150% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 45 5% to about 140% of the growth rate of the recombinant veast cell in xvlose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 5% to about 130% of the growth rate of the recombinant yeast cell in xylose growth media. The growth 50 rate of the recombinant yeast cell in a xylose-glucose growth media may be about 5% to about 120% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 5% to about 110% of the growth 55 rate of the recombinant yeast cell in xylose growth media.

The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 5% to about 100% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant 60 yeast cell in a xylose-glucose growth media may be about 5% to about 90% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 5% to about 80% of the growth rate of the recombi- 65 nant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media

may be about 5% to about 70% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 5% to about 60% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 5% to about 50% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xyloseglucose growth media may be about 5% to about 40% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 5% to about 30% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 5% to about 20% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 5% to about 10% of the growth rate of the recombinant yeast cell in xylose growth media.

The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% to about 150% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% to about 140% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% to about 130% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% to about 120% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% to about 110% of the growth rate of the recombinant yeast cell in xylose growth media.

The growth rate of the recombinant yeast cell in a 40 xylose-glucose growth media may be about 10% to about 100% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% to about 90% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% to about 80% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% to about 70% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% to about 60% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xyloseglucose growth media may be about 10% to about 50% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% to about 40% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% to about 30% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% to about 20% of the growth rate of the recombinant yeast cell in xylose growth media.

The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 5% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 10% of the 5 growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 20% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a 10 xylose-glucose growth media may be about 30% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 40% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 50% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 60% of the 20 growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 70% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a 25 xylose-glucose growth media may be about 80% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 90% of the growth rate of the recombinant yeast cell in xylose growth 30 media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 100% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about equal to the 35 growth rate of the recombinant yeast cell in xylose growth media. Thus, in embodiments, the growth rate of the recombinant yeast cell is not inhibited in the presence of glucose. The growth rate of the recombinant yeast cell in a xyloseglucose growth media may be greater than the growth rate 40 of the recombinant yeast cell in xylose growth media.

The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 110% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a 45 xylose-glucose growth media may be about 120% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 130% of the growth rate of the recombinant yeast cell in xylose growth 50 media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 140% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 150% of the 55 growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 160% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a 60 xylose-glucose growth media may be about 170% of the growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 180% of the growth rate of the recombinant yeast cell in xylose growth 65 media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 190% of the

growth rate of the recombinant yeast cell in xylose growth media. The growth rate of the recombinant yeast cell in a xylose-glucose growth media may be about 200% of the growth rate of the recombinant yeast cell in xylose growth media.

In embodiments, the recombinant yeast cells have a growth rate of about 0.005 hr^{-1} to about 0.05 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.005 hr^{-1} to about 0.04 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.005 hr^{-1} to about 0.03 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.005 hr⁻¹ to about 0.025 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.005 hr^{-1} to about 0.0225 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.005 hr^{-1} to about 0.02 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.005 hr^{-1} to about 0.0175 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.005 hr^{-1} to about 0.015 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.005 hr^{-1} to about 0.0125 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.005 hr^{-1} to about 0.01 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.005 hr^{-1} to about 0.0075 hr^{-1} . In embodiments, the recombinant yeast cells are cultured in a xylose growth media and the growth rate is measured in the xylose growth media. In embodiments, the recombinant yeast cells are cultured in lignocellulosic biomass, hemicellulose, or xylan and the growth rate is measured in the lignocellulosic biomass, hemicellulose, or xylan respectively.

In embodiments, the recombinant yeast cells have a growth rate of about 0.005 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.0075 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.01 hr⁻¹ The recombinant yeast cells may have a growth rate of about 0.0125 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.0175 hr⁻¹. The recombinant veast cells may have a growth rate of about 0.02 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.0225 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.025 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.0275 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.03 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.0325 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.035 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.0375 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.04 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.0425 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.045 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.0475 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} . In embodiments, the recombinant yeast cells are cultured in a xylose growth media and the growth rate is measured in the xylose growth media. In embodiments, the recombinant yeast cells are cultured in lignocellulosic biomass, hemicellulose, or xylan and the growth rate is measured in the lignocellulosic biomass, hemicellulose, or xylan respectively.

In embodiments, the recombinant yeast cells have a growth rate of about 0.05 hr^{-1} to about 0.1 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.125 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.15 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.15 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.15 hr^{-1} .

may have a growth rate of about 0.05 hr^{-1} to about 0.2 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.225 hr^{-1}. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.25 hr^{-1} . The recombinant yeast cells may have a growth rate of about 5 0.05 hr⁻¹ to about 0.275 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.3 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.325 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.35 hr^{-1} . 10 The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.375 hr^{-1}. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.4 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.425 hr^{-1}. The recombinant yeast cells 15 may have a growth rate of about 0.05 hr^{-1} to about 0.45 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.475 hr^{-1}. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.5 hr^{-1} . The recombinant yeast cells may have a growth rate of about 20 0.05 hr^{-1} to about 0.525 hr^{-1}. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.5 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.575 hr^{-1}. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.6 hr^{-1} . 25 The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.65 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.7 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.75 hr^{-1}. The recombinant yeast cells 30 may have a growth rate of about 0.05 hr^{-1} to about 0.8 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.05 hr⁻¹ to about 0.85 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 0.9 hr^{-1} . The recombinant yeast cells may have a growth rate of about 35 0.05 hr⁻¹ to about 0.95 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} to about 1 hr^{-1} . In embodiments, the recombinant yeast cells are cultured in a xylose growth media and the growth rate is measured in the xylose growth media. In embodiments, the recombinant 40 yeast cells are cultured in lignocellulosic biomass, hemicellulose, or xylan and the growth rate is measured in the lignocellulosic biomass, hemicellulose, or xylan respectively.

In embodiments, the recombinant yeast cells have a 45 growth rate of about 0.1 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.125 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.175 hr^{-1} . The recombinant yeast cells may have a growth 50 rate of about 0.2 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.225 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.25 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.275 hr^{-1} . The recombinant yeast cells may have a growth 55 rate of about 0.3 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.325 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.35 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.375 hr^{-1} . The recombinant yeast cells may have a growth 60 rate of about 0.4 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.425 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.45 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.475 hr^{-1} . The recombinant yeast cells may have a growth 65 rate of about 0.5 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.525 hr⁻¹. The recombinant yeast

26

cells may have a growth rate of about 0.5 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.575 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.6 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.65 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.7 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.75 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.8 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.85 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.9 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.95 hr^{-1} . The recombinant yeast cells may have a growth rate of about 1 hr^{-1} . In embodiments, the recombinant yeast cells are cultured in a xylose growth media and the growth rate is measured in the xylose growth media. In embodiments, the recombinant yeast cells are cultured in lignocellulosic biomass, hemicellulose, or xylan and the growth rate is measured in the lignocellulosic biomass, hemicellulose, or xylan respectively.

The recombinant yeast cells may have a growth rate of about 0.005 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0075 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.01 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0125 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0175 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.02 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0225 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.025 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0275 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.03 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0325 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.035 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0375 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.04 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0425 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.045 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.0475 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.05 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.1 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast

cells may have a growth rate of about 0.125 hr⁻¹ in xyloseglucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth 5 rate of about 0.175 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.2 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.225 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.25 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.275 hr^{-1} in xylose-glucose 15 growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.3 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.325 hr^{-1} in xylose-glucose growth media that includes 2.5 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.35 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.375 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombi- 25 nant yeast cells may have a growth rate of about 0.4 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.425 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth 30 rate of about 0.45 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.475 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in 35 xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.525 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr⁻¹ in xylose-glucose growth media that 40 includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.575 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.6 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. 45 The recombinant yeast cells may have a growth rate of about 0.65 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.7 hr⁻¹ in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may 50 have a growth rate of about 0.75 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.8 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 55 0.85 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.9 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.95 hr⁻¹ in xylose-glucose 60 growth media that includes 2.5 g/L glucose. The recombinant yeast cells may have a growth rate of about 1 hr^{-1} in xylose-glucose growth media that includes 2.5 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.005 hr^{-1} in xylose-glucose growth 65 media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0075 hr^{-1} in

xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.01 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0125 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0175 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.02 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0225 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.025 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0275 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.03 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0325 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.035 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0375 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.04 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0425 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.045 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.0475 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.1 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.125 hr⁻¹ in xyloseglucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.175 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.2 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant veast cells may have a growth rate of about 0.225 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.25 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.275 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.3 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant veast cells may have a growth rate of about 0.325 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.35 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.375 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may

have a growth rate of about 0.4 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.425 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 5 0.45 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.475 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.525 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 5 g/L 15 glucose. The recombinant yeast cells may have a growth rate of about 0.575 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.6 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant 20 yeast cells may have a growth rate of about 0.65 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.7 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate 25 of about 0.75 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.8 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.85 hr⁻¹ in 30 xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.9 hr^{-1} in xylose-glucose growth media that includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.95 hr⁻¹ in xylose-glucose growth media that 35 includes 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 1 hr⁻¹ in xylose-glucose growth media that includes 5 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.005 hr⁻¹ in xylose-glucose growth 40 media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0075 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.01 hr⁻¹ in xylose-glucose growth media that includes 10 45 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0125 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr^{-1} in xyloseglucose growth media that includes 10 g/L glucose. The 50 recombinant yeast cells may have a growth rate of about 0.0175 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.02 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may 55 have a growth rate of about 0.0225 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.025 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 60 0.0275 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.03 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0325 hr⁻¹ in xylose-glucose 65 growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.035 hr^{-1} in

xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0375 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.04 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0425 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0425 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.045 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.045 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.045 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.045 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.045 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.045 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.05 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.1 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.125 hr⁻¹ in xyloseglucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.175 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.2 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.225 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.25 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.275 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.3 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.325 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.35 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.375 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.4 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.425 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.45 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.475 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.525 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.575 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.6 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.65 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.7 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.75 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.8 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.85 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.9 hr^{-1} in xylose-glucose growth media that includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.95 hr⁻¹ in xylose-glucose growth media that 10 includes 10 g/L glucose. The recombinant yeast cells may have a growth rate of about 1 hr⁻¹ in xylose-glucose growth media that includes 10 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.005 hr⁻¹ in xylose-glucose growth 15 media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0075 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.01 hr^{-1} in xylose-glucose growth media that includes 20 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0125 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in xyloseglucose growth media that includes 20 g/L glucose. The 25 recombinant yeast cells may have a growth rate of about $0.0175\ hr^{-1}$ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.02 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may 30 have a growth rate of about 0.0225 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.025 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 35 $0.0275 \ hr^{-1}$ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.03 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0325 hr^{-1} in xylose-glucose 40 growth media that includes 20 g/L glucose. The recombinant veast cells may have a growth rate of about 0.035 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0375 hr^{-1} in xylose-glucose growth media that includes 20 $_{45}$ g/L glucose. The recombinant yeast cells may have a growth rate of about 0.04 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0425 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant 50 yeast cells may have a growth rate of about 0.045 hr^{-1} . The recombinant yeast cells may have a growth rate of about $0.0475\ hr^{-1}$ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.05 hr⁻¹ in xylose-glucose growth media that 55 media that includes 20 g/L glucose. includes 20 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.1 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.125 hr^{-1} in xylose- 60 glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.175 hr^{-1} in xylose-glucose growth media that 65 includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.2 hr^{-1} in xylose-glucose

32

growth media that includes 20 g/L glucose. The recombinant veast cells may have a growth rate of about 0.225 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.25 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.275 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.3 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant veast cells may have a growth rate of about 0.325 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.35 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.375 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.4 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant veast cells may have a growth rate of about 0.425 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.45 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.475 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant veast cells may have a growth rate of about 0.525 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.575 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.6 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant veast cells may have a growth rate of about 0.65 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.7 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.75 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.8 hr⁻¹ in xylose-glucose growth media that includes 20 g/L glucose. The recombinant veast cells may have a growth rate of about 0.85 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.9 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.95 hr^{-1} in xylose-glucose growth media that includes 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 1 hr⁻¹ in xylose-glucose growth

In embodiments, the recombinant yeast cells have a growth rate of about 0.005 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0075 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.01 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.01 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0125 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose are observed. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The glucose growth media that includes 30 g/L glucose. The glucose growth media that includes 30 g/L glucose. The glucose growth media that includes 30 g/L glucose. The glucose growth media that includes 30 g/L glucose. The glucose growth media that includes 30 g/L glucose. The glucose growth media that includes 30 g/L glucose. The glucose growth media that includes 30 g/L glucose. The glucose gluco

recombinant yeast cells may have a growth rate of about 0.0175 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.02 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0225 hr⁻¹ in growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.025 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0275 hr^{-1} in 10 xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.03 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0325 hr^{-1} in xylose-glucose growth media 15 that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.035 hr⁻¹ in xyloseglucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0375 hr^{-1} in xylose-glucose growth media that includes 30 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.04 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0425 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant 25 yeast cells may have a growth rate of about 0.045 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.0475 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} in xylose-glucose growth media that 30 includes 30 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.1 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.125 hr^{-1} in xylose- 35 glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.175 hr^{-1} in xylose-glucose growth media that 40 includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.2 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.225 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. 45 The recombinant yeast cells may have a growth rate of about 0.25 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.275 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may 50 have a growth rate of about 0.3 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.325 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 55 0.35 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.375 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.4 hr⁻¹ in xylose-glucose 60 growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.425 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.45 hr^{-1} in xylose-glucose growth media that includes 30 65 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.475 hr⁻¹ in xylose-glucose growth media that

34

includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.525 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.575 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.6 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.65 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.7 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.75 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.8 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.85 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.9 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.95 hr⁻¹ in xylose-glucose growth media that includes 30 g/L glucose. The recombinant yeast cells may have a growth rate of about 1 hr^{-1} in xylose-glucose growth media that includes 30 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.005 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0075 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.01 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0125 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr^{-1} in xyloseglucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0175 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.02 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant veast cells may have a growth rate of about 0.0225 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.025 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0275 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.03 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0325 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.035 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0375 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.04 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0425 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant

yeast cells may have a growth rate of about 0.045 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.0475 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.05 hr⁻¹ in xylose-glucose growth media that 5 includes 50 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.1 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.125 hr^{-1} in xylose-10 glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.175 hr^{-1} in xylose-glucose growth media that 15 includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.2 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.225 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. 20 The recombinant yeast cells may have a growth rate of about 0.25 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.275 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may 25 have a growth rate of about 0.3 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.325 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 30 0.35 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.375 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.4 hr⁻¹ in xylose-glucose 35 growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.425 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.45 hr^{-1} in xylose-glucose growth media that includes 50 40 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.475 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant 45 yeast cells may have a growth rate of about 0.525 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate 50 of about 0.575 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.6 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.65 hr⁻¹ in 55 xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.7 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.75 hr⁻¹ in xylose-glucose growth media that 60 includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.8 hr^{-1} in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.85 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. 65 The recombinant yeast cells may have a growth rate of about 0.9 hr^{-1} in xylose-glucose growth media that includes 50 g/L

glucose. The recombinant yeast cells may have a growth rate of about 0.95 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose. The recombinant yeast cells may have a growth rate of about 1 hr⁻¹ in xylose-glucose growth media that includes 50 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.005 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0075 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.01 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0125 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in xyloseglucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0175 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.02 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0225 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant veast cells may have a growth rate of about 0.025 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0275 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.03 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0325 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant veast cells may have a growth rate of about 0.035 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0375 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.04 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0425 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.045 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.0475 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.05 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.1 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.125 hr^{-1} in xyloseglucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.175 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.2 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.225 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.25 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.275 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may

have a growth rate of about 0.3 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.325 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 5 0.35 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.375 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.4 hr⁻¹ in xylose-glucose 10 growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.425 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.45 hr^{-1} in xylose-glucose growth media that includes 75 15 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.475 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant 20 yeast cells may have a growth rate of about 0.525 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate 25 of about 0.575 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.6 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.65 hr⁻¹ in 30 xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.7 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.75 hr⁻¹ in xylose-glucose growth media that 35 includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.8 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.85 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. 40 The recombinant yeast cells may have a growth rate of about 0.9 hr^{-1} in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.95 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose. The recombinant yeast cells may 45 have a growth rate of about 1 hr⁻¹ in xylose-glucose growth media that includes 75 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.005 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast 50 cells may have a growth rate of about 0.0075 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.01 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth 55 rate of about 0.0125 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr^{-1} in xyloseglucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 60 0.0175 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.02 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0225 hr⁻¹ in 65 xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about

38

 0.025 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0275 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.03 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0325 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.035 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0375 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.04 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0425 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.045 hr^{-1} . The recombinant veast cells may have a growth rate of about 0.0475 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.1 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.125 hr⁻¹ in xyloseglucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.175 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.2 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.225 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.25 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.275 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.3 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.325 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.35 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.375 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.4 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.425 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.45 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.475 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.525 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr⁻¹ in xylose-glucose growth media that

includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.575 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.6 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. 5 The recombinant yeast cells may have a growth rate of about 0.65 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.7 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may 10 have a growth rate of about 0.75 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.8 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 15 0.85 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.9 hr^{-1} in xylose-glucose growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.95 hr^{-1} in xylose-glucose 20 growth media that includes 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 1 hr⁻¹ in xylose-glucose growth media that includes 100 g/L glucose.

In embodiments, the growth rate of the recombinant yeast cell in xylose-glucose growth media is about 0.1× fold 25 greater than a wildtype yeast cell (i.e. a yeast cell without a recombinant transporter protein described herein) in xyloseglucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about $0.2 \times$ fold greater than a wildtype yeast cell in xylose-glucose 30 growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about 0.3× fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about $0.4 \times$ fold greater 35 than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xyloseglucose growth media may be about $0.5 \times$ fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose 40 growth media may be about $0.6 \times$ fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about 0.7× fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the 45 recombinant yeast cell in xylose-glucose growth media may be about $0.8 \times$ fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about $0.9 \times$ fold greater than a wildtype yeast cell in xylose- 50 glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about 1× fold greater than a wildtype yeast cell in xylose-glucose growth media.

The growth rate of the recombinant yeast cell in xyloseglucose growth media may be about $2\times$ fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about $3\times$ fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate 60 of the recombinant yeast cell in xylose-glucose growth media may be about $4\times$ fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about $5\times$ fold greater than a wildtype yeast cell in 65 xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be 40

about $6\times$ fold greater than a wildtype yeast cell in xyloseglucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about $7\times$ fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about $8\times$ fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about $9\times$ fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xyloseglucose growth media may be about $9\times$ fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xyloseglucose growth media may be about $10\times$ fold greater than a wildtype yeast cell in xylose-glucose growth media.

The growth rate of the recombinant yeast cell in xyloseglucose growth media may be about 11× fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about 12× fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about $13 \times$ fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about 14× fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about 15× fold greater than a wildtype yeast cell in xyloseglucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about 16× fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about 17× fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about 18× fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xyloseglucose growth media may be about 19x fold greater than a wildtype yeast cell in xylose-glucose growth media. The growth rate of the recombinant yeast cell in xylose-glucose growth media may be about 20× fold greater than a wildtype yeast cell in xylose-glucose growth media.

In embodiments, the recombinant xylose transporter transports a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 5% to about 150% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 5% to about 140% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 5% to about 130% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 5% to about 120% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 5%

to about 110% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media.

The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose- 5 glucose growth media at a rate of about 5% to about 100% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a 10 xylose-glucose growth media at a rate of about 5% to about 90% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast 15 in a xylose-glucose growth media at a rate of about 5% to about 80% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant 20 yeast in a xylose-glucose growth media at a rate of about 5% to about 70% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant 25 yeast in a xylose-glucose growth media at a rate of about 5% to about 60% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant 30 yeast in a xylose-glucose growth media at a rate of about 5% to about 50% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant 35 yeast in a xylose-glucose growth media at a rate of about 5% to about 40% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant 40 yeast in a xylose-glucose growth media at a rate of about 5% to about 30% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant 45 yeast in a xylose-glucose growth media at a rate of about 5% to about 20% of the rate the recombinant xvlose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant 50 yeast in a xylose-glucose growth media at a rate of about 5% to about 10% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media.

The recombinant xylose transporter may transport a 55 xylose compound into a recombinant yeast in a xyloseglucose growth media at a rate of about 5% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose 60 compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 10% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose-glucose growth media at a rate of about 10% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose 65 compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 20% of the rate the 42

recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 30% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 40% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 50% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 60% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 70% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 80% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 90% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 100% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. In embodiments, a recombinant xylose transporter transports a xylose compound into a recombinant yeast in a xyloseglucose growth media at a rate about equal to the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. In embodiments, a recombinant xylose transporter transports a xylose compound into a recombinant yeast in a xyloseglucose growth media at a rate greater to the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media.

The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 110% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 120% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose-glucose growth media at a rate of about 120% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 130% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media.

The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 140% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 150% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 160% of the rate the recombinant xylose transporter transports the xylose compound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 170% of the rate the recombinant xylose transporter transports the xylose com- 20 pound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 180% of the rate the recombinant xylose transporter transports the xylose com- 25 pound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate of about 190% of the rate the recombinant xylose transporter transports the xylose com- 30 pound into the recombinant yeast in a xylose growth media. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast in a xylose-glucose growth media at a rate about 200% of the rate the recombinant xylose transporter transports the xylose compound 35 into the recombinant yeast in a xylose growth media.

In embodiments, the xylose growth media includes xylose at a concentration of about 0.05 g/L to about 100 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 90 g/L. The xylose growth media 40 may include xylose at a concentration of about 0.05 g/L to about 80 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 70 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 60 g/L. The xylose growth media 45 may include xylose at a concentration of about 0.05 g/L to about 50 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 40 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 30 g/L. The xylose growth media 50 may include xylose at a concentration of about 0.05 g/L to about 25 g/L.

In embodiments, the xylose growth media includes xylose at a concentration of about 0.05 g/L to about 20 g/L. The xylose growth media may include xylose at a concentration 55 of about 0.05 g/L to about 15 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 10 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 5 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 4 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 4 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 3 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 2 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 1 g/L. The xylose growth media may include xylose at a concentration 65 of about 0.05 g/L to about 1 g/L. The xylose growth media may include xylose at a concentration 65 of about 0.05 g/L to about 1 g/L. The xylose growth media may include xylose at a concentration 65 of about 0.05 g/L to about 1 g/L. The xylose growth media

about 0.5 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 0.1 g/L.

The xylose growth media may include xylose at a concentration of about 0.05 g/L. The xylose growth media may include xylose at a concentration of about 0.1 g/L. The xylose growth media may include xylose at a concentration of about 0.5 g/L. The xylose growth media may include xylose at a concentration of about 1 g/L. The xylose growth media may include xylose at a concentration of about 2 g/L. The xylose growth media may include xylose at a concentration of about 3 g/L. The xylose growth media may include xylose at a concentration of about 4 g/L. The xylose growth media may include xylose at a concentration of about 5 g/L. The xylose growth media may include xylose at a concentration of about 10 g/L. The xylose growth media may include xylose at a concentration of about 15 g/L. The xylose growth media may include xylose at a concentration of about 20 g/L. The xylose growth media may include xylose at a concentration of about 25 g/L. The xylose growth media may include xylose at a concentration of about 30 g/L. The xylose growth media may include xylose at a concentration of about 40 g/L. The xylose growth media may include xylose at a concentration of about 50 g/L. The xylose growth media may include xylose at a concentration of about 60 g/L. The xylose growth media may include xylose at a concentration of about 70 g/L. The xylose growth media may include xylose at a concentration of about 80 g/L. The xylose growth media may include xylose at a concentration of about 90 g/L. The xylose growth media may include xylose at a concentration of about 100 g/L.

In embodiments, the xylose growth media includes xylose at a concentration of about 0.05 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 250 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 200 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 150 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 100 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 50 g/L. The xylose growth media may include xylose at a concentration of about 0.05 g/L to about 25 g/L. The xylose growth media may include xylose at a concentration of about 1 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 10 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 20 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 30 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 40 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 50 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 75 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 100 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 125 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 150 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 175 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 200 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 225 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 250 g/L to about 300 g/L. The xylose growth media may include xylose at a concentration of about 275 g/L to about 300 g/L.

In embodiments, the xylose growth media includes xylose at a concentration of about 10 g/L to about 275 g/L. The xylose growth media may include xylose at a concentration of about 10 g/L to about 250 g/L. The xylose growth media may include xylose at a concentration of about 10 g/L to 5 about 225 g/L. The xylose growth media may include xylose at a concentration of about 10 g/L to about 200 g/L. The xylose growth media may include xylose at a concentration of about 10 g/L to about 175 g/L. The xylose growth media may include xylose at a concentration of about 10 g/L to 10 about 150 g/L. The xylose growth media may include xylose at a concentration of about 10 g/L to about 125 g/L. The xylose growth media may include xylose at a concentration of about 10 g/L to about 100 g/L. The xylose growth media may include xylose at a concentration of about 10 g/L to 15 about 75 g/L. The xylose growth media may include xylose at a concentration of about 10 g/L to about 50 g/L. The xylose growth media may include xylose at a concentration of about 10 g/L to about 25 g/L.

The xylose growth media may include xylose at a con- 20 centration of about 125 g/L. The xylose growth media may include xylose at a concentration of about 150 g/L. The xylose growth media may include xylose at a concentration of about 175 g/L. The xylose growth media may include xylose at a concentration of about 200 g/L. The xylose 25 growth media may include xylose at a concentration of about 225 g/L. The xylose growth media may include xylose at a concentration of about 250 g/L. The xylose growth media may include xylose at a concentration of about 275 g/L. The xylose growth media may include xylose at a 30 concentration of about 300 g/L.

In embodiments, the xylose-glucose growth media includes xylose at a concentration as described herein for xylose growth media. In embodiments, the xylose-glucose growth media includes glucose at a concentration of about 35 0.05 g/L to about 20 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 15 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 10 g/L. The xylose-glucose growth media may include glucose at a 40 a recombinant arabinose transporter protein as described concentration of about 0.05 g/L to about 5 g/L. The xyloseglucose growth media may include glucose at a concentration of about 0.05 g/L to about 4 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 3 g/L. The xylose-glucose growth 45 media may include glucose at a concentration of about 0.05 g/L to about 2 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 1 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 0.5 g/L. 50 The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 0.1 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.1 55 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.5 g/L. The xylose-glucose growth media may include glucose at a concentration of about 1 g/L. The xylose-glucose growth media may include glucose at a concentration of about 2 g/L. The xylose- 60 glucose growth media may include glucose at a concentration of about 3 g/L. The xylose-glucose growth media may include glucose at a concentration of about 4 g/L. The xylose-glucose growth media may include glucose at a concentration of about 5 g/L. The xylose-glucose growth 65 media may include glucose at a concentration of about 10 g/L. The xylose-glucose growth media may include glucose

at a concentration of about 15 g/L. The xylose-glucose growth media may include glucose at a concentration of about 20 g/L.

In embodiments, the xylose-glucose growth media includes glucose at a concentration of about 0.05 g/L to about 100 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 90 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 80 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 70 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 60 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 50 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 40 g/L. The xylose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 30 g/L. The xvlose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 25 g/L.

The xylose-glucose growth media may include glucose at a concentration of about 25 g/L. The xylose-glucose growth media may include glucose at a concentration of about 30 g/L. The xylose-glucose growth media may include glucose at a concentration of about 40 g/L. The xylose-glucose growth media may include glucose at a concentration of about 50 g/L. The xylose-glucose growth media may include glucose at a concentration of about 60 g/L. The xyloseglucose growth media may include glucose at a concentration of about 70 g/L. The xylose-glucose growth media may include glucose at a concentration of about 80 g/L. The xylose-glucose growth media may include glucose at a concentration of about 90 g/L. The xylose-glucose growth media may include glucose at a concentration of about 100 g/L.

2. Recombinant Yeast Cell Including a Recombinant Arabinose Transporter Protein

In another aspect is a recombinant yeast cell that includes herein, including embodiments thereof. In embodiments, the growth rate of the recombinant yeast cell including a recombinant arabinose transporter protein as described herein can be measured. The growth rate may be determined in arabinose growth media (i.e. in the absence of glucose). The growth rate may be determined in arabinose-glucose growth media. In embodiments, the growth rates (i.e. growth rate in the absence and presence of glucose) are compared to determine the differential growth rate of the recombinant yeast cells. If the growth rate of recombinant yeast cells grown in arabinose-glucose growth media is less than the growth rate of recombinant yeast cells grown in arabinose growth media, the differential growth rate may indicate glucose inhibits the activity of the recombinant arabinose transporter protein. As described herein, inclusion of a glucose mitigating mutation decreases, minimizes, or may eliminate glucose inhibition of the recombinant arabinose transporter protein.

In embodiments, the growth rate of the recombinant yeast cell in an arabinose-glucose growth media is about 5% to about 150% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 5% to about 140% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinoseglucose growth media may be about 5% to about 130% of
the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 5% to about 120% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 5% to about 110% of the growth rate of the recombinant yeast cell in arabinose growth media.

The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 5% to about 10 100% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 5% to about 90% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate 15 of the recombinant yeast cell in an arabinose-glucose growth media may be about 5% to about 80% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinoseglucose growth media may be about 5% to about 70% of the 20 growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 5% to about 60% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recom- 25 binant yeast cell in an arabinose-glucose growth media may be about 5% to about 50% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinoseglucose growth media may be about 5% to about 40% of the 30 growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 5% to about 30% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recom- 35 binant yeast cell in an arabinose-glucose growth media may be about 5% to about 20% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinoseglucose growth media may be about 5% to about 10% of the 40 growth rate of the recombinant yeast cell in arabinose growth media.

The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 10% to about 150% of the growth rate of the recombinant yeast cell in 45 arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 10% to about 140% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth 50 media may be about 10% to about 130% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 10% to about 120% of the growth rate of the recombinant yeast cell in 55 of the growth rate of the recombinant yeast cell in arabinose arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 10% to about 110% of the growth rate of the recombinant yeast cell in arabinose growth media.

The growth rate of the recombinant yeast cell in an 60 arabinose-glucose growth media may be about 10% to about 100% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 10% to about 90% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth **48**

media may be about 10% to about 80% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 10% to about 70% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 10% to about 60% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 10% to about 50% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 10% to about 40% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 10% to about 30% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 10% to about 20% of the growth rate of the recombinant yeast cell in arabinose growth media.

The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 5% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 10% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 20% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 30% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 40% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 50% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 60% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 70% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant veast cell in an arabinose-glucose growth media may be about 80% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 90% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 100% growth media.

The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 110% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 120% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 120% of the growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 130% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 130% of the growth rate of the recombinant yeast cell in an arabinose growth media.

of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 150% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell 5 in an arabinose-glucose growth media may be about 160% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 170% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 180% of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 190% 15 of the growth rate of the recombinant yeast cell in arabinose growth media. The growth rate of the recombinant yeast cell in an arabinose-glucose growth media may be about 200% of the growth rate of the recombinant yeast cell in arabinose growth media.

In embodiments, the recombinant yeast cells have a growth rate of about 0.005 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0075 hr^{-1} in arabinose-glucose growth media that includes 25 about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.01 hr⁻¹ in arabinoseglucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0125 hr^{-1} in arabinose-glucose growth media 30 that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0175 hr^{-1} in ${\rm 35}$ arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.02 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 40 0.0225 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.025 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a 45 growth rate of about 0.0275 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.03 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombi- 50 nant yeast cells may have a growth rate of about 0.0325 hr in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.035 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L 55 glucose. The recombinant yeast cells may have a growth rate of about 0.0375 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.04 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 60 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0425 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.045 hr⁻¹. The recombinant yeast cells may have 65 a growth rate of about 0.0475 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L

50

glucose. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.1 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.125 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} in arabinoseglucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.175 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.2 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.225 hr⁻¹ in arabinoseglucose growth media that includes about 2.5, 5, 10, or 20 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.25 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.275 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.3 hr⁻¹ in arabinoseglucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.325 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.35 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.375 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.4 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.425 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.45 hr⁻¹ in arabinoseglucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.475 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.525 hr^{-1} in arabinoseglucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.575 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.6 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.65 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.7 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.75 hr⁻¹ in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.8 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.85 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.9 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 5 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.9 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.95 hr^{-1} in arabinose-glucose growth media that includes about 2.5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 1.5, 10, or 20 g/L glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose.

The recombinant yeast cells may have a growth rate of 15 about 0.005 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0075 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may 20 have a growth rate of about 0.01 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0125 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombi- 25 nant yeast cells may have a growth rate of about 0.015 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0175 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L 30 glucose. The recombinant yeast cells may have a growth rate of about 0.02 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0225 hr⁻¹ in arabinose-glucose growth media that includes about 25 to 35 about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.025 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0275 hr^{-1} in arabinose-glucose growth media that 40 includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.03 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0325 hr⁻¹ in arabinose-glucose 45 growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.035 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0375 hr^{-1} 50 in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.04 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate 55 of about 0.0425 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.045 hr^{-1} . The recombinant yeast cells may have a growth rate of about 0.0475 hr^{-1} in arabinose-glucose growth media that includes 60 about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.05 hr^{-1} in arabinoseglucose growth media that includes about 25 to about 100 g/L glucose.

In embodiments, the recombinant yeast cells have a $_{65}$ growth rate of about 0.1 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The

52

recombinant yeast cells may have a growth rate of about 0.125 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} in arabinoseglucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.175 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.2 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.225 hr^{-1} in arabinoseglucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.25 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.275 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.3 hr^{-1} in arabinoseglucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.325 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.35 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.375 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.4 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.425 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.45 hr⁻¹ in arabinoseglucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.475 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.525 hr⁻¹ in arabinoseglucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.575 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.6 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.65 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.7 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.75 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.8 hr⁻¹ in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.85 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may

have a growth rate of about 0.9 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.95 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 1 hr^{-1} in arabinose-glucose growth media that includes about 25 to about 100 g/L glucose.

In embodiments, the growth rate of the recombinant yeast cell in arabinose-glucose growth media is about $0.1 \times$ fold greater than a wildtype yeast cell (i.e. a yeast cell without a recombinant transporter protein described herein) in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 0.2× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about $0.3 \times$ fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recom- 20 binant yeast cell in arabinose-glucose growth media may be about 0.4× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 0.5× fold greater than a wildtype yeast cell in arab- 25 inose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 0.6× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 0.7× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 0.8× fold greater than a wildtype yeast cell in arab-35 inose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 0.9× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be $_{40}$ about 1× fold greater than a wildtype yeast cell in arabinoseglucose growth media.

The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 2× fold greater than a wildtype yeast cell in arabinose-glucose growth 45 media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 3× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 4× fold 50 greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 5× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell 55 in arabinose-glucose growth media may be about 6x fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 7× fold greater than a wildtype yeast cell in arabinose-glucose 60 growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 8× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 9× fold 65 greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell

54

in arabinose-glucose growth media may be about $10 \times$ fold greater than a wildtype yeast cell in arabinose-glucose growth media.

The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 11× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 12× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 13× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 14× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 15× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 16x fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 17× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 18× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 19× fold greater than a wildtype yeast cell in arabinose-glucose growth media. The growth rate of the recombinant yeast cell in arabinose-glucose growth media may be about 20× fold greater than a wildtype yeast cell in arabinose-glucose growth media.

In embodiments, the recombinant arabinose transporter transports an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% to about 150% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% to about 140% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant veast in an arabinose-glucose growth media at a rate of about 5% to about 130% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% to about 120% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% to about 110% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media.

The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% to about 100% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% to about 90% of the rate the recombinant arabinose transporter transports the arabinose 5 compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% to about 80% of the rate the recombinant arabinose transporter 10 transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% to about 70% of the rate the 15 recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% to 20 about 60% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth 25 media at a rate of about 5% to about 50% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in 30 an arabinose-glucose growth media at a rate of about 5% to about 40% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound 35 into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% to about 30% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may 40 transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% to about 20% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant ara- 45 binose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% to about 10% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose 50 growth media.

The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 5% of the rate the recombinant arabinose transporter transports the arab- 55 inose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 10% of the rate the recombinant arabinose transporter transports the 60 arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 20% of the rate the recombinant arabinose trans- 65 porter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant

56

arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 30% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 40% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 50% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 60% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 70% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 80% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 90% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 100% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media.

The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 110% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 120% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 130% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 140% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate

of about 150% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 160% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 170% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 180% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. The recombinant 20 arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate of about 190% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose growth media. 25 The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast in an arabinose-glucose growth media at a rate about 200% of the rate the recombinant arabinose transporter transports the arabinose compound into the recombinant yeast in an arabinose 30 growth media.

In embodiments, the arabinose growth media includes arabinose at a concentration of about 0.05 g/L to about 20 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 15 g/L. The 35 arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 10 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 5 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L 40to about 4 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 3 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 2 g/L. The arabinose growth media may include arabinose at a concentra- 45 tion of about 0.05 g/L to about 1 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 0.5 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 0.1 g/L.

The arabinose growth media may include arabinose at a concentration of about 0.05 g/L. The arabinose growth media may include arabinose at a concentration of about 0.1 g/L. The arabinose growth media may include arabinose at a concentration of about 0.5 g/L. The arabinose growth 55 media may include arabinose at a concentration of about 1 g/L. The arabinose growth media may include arabinose at a concentration of about 2 g/L. The arabinose growth media may include arabinose at a concentration of about 3 g/L. The arabinose growth media may include arabinose at a concen- 60 tration of about 4 g/L. The arabinose growth media may include arabinose at a concentration of about 5 g/L. The arabinose growth media may include arabinose at a concentration of about 10 g/L. The arabinose growth media may include arabinose at a concentration of about 15 g/L. The 65 arabinose growth media may include arabinose at a concentration of about 20 g/L.

58

In embodiments, the arabinose growth media includes arabinose at a concentration of about 0.05 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 250 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 200 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 150 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 100 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 50 g/L. The arabinose growth media may include arabinose at a concentration of about 0.05 g/L to about 25 g/L. The arabinose growth media may include arabinose at a concentration of about 1 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 10 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 20 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 30 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 40 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 50 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 75 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 100 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 125 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 150 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 175 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 200 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 225 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 250 g/L to about 300 g/L. The arabinose growth media may include arabinose at a concentration of about 275 g/L to about 300 g/L.

In embodiments, the arabinose growth media includes arabinose at a concentration of about 10 g/L to about 275 g/L. The arabinose growth media may include arabinose at a concentration of about 10 g/L to about 250 g/L. The arabinose growth media may include arabinose at a concentration of about 10 g/L to about 225 g/L. The arabinose growth media may include arabinose at a concentration of about 10 g/L to about 200 g/L. The arabinose growth media may include arabinose at a concentration of about 10 g/L to about 175 g/L. The arabinose growth media may include arabinose at a concentration of about 10 g/L to about 150 g/L. The arabinose growth media may include arabinose at a concentration of about 10 g/L to about 125 g/L. The arabinose growth media may include arabinose at a concentration of about 10 g/L to about 100 g/L. The arabinose growth media may include arabinose at a concentration of about 10 g/L to about 75 g/L. The arabinose growth media may include arabinose at a concentration of about 10 g/L to about 50 g/L. The arabinose growth media may include arabinose at a concentration of about 10 g/L to about 25 g/L.

The arabinose growth media may include arabinose at a concentration of about 25 g/L. The arabinose growth media may include arabinose at a concentration of about 50 g/L. The arabinose growth media may include arabinose at a concentration of about 75 g/L. The arabinose growth media may include arabinose at a concentration of about 75 g/L.

The arabinose growth media may include arabinose at a concentration of about 125 g/L. The arabinose growth media may include arabinose at a concentration of about 150 g/L. The arabinose growth media may include arabinose at a concentration of about 175 g/L. The arabinose growth media 5 may include arabinose at a concentration of about 200 g/L. The arabinose growth media may include arabinose at a concentration of about 225 g/L. The arabinose growth media may include arabinose at a concentration of about 250 g/L. The arabinose growth media may include arabinose at a 10 concentration of about 275 g/L. The arabinose growth media may include arabinose at a concentration of about 300 g/L.

In embodiments, the arabinose-glucose growth media includes arabinose at a concentration described herein for an arabinose growth media. In embodiments, the arabinose- 15 glucose growth media includes glucose at a concentration of about 0.05 g/L to about 100 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 90 g/L. The arabinose-glucose growth media may include glucose at a concentration of 20 a recombinant galactose transporter protein as described about 0.05 g/L to about 80 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 70 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 60 g/L. The arabinose-glucose 25 growth media may include glucose at a concentration of about 0.05 g/L to about 50 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 40 g/L. The arabinose-glucose growth media may include glucose at a concentration of 30 about 0.05 g/L to about 30 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 25 g/L.

The arabinose-glucose growth media may include glucose at a concentration of about 25 g/L. The arabinose-glucose 35 growth media may include glucose at a concentration of about 30 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 40 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 50 g/L. The arabinose-glucose 40 cell in a galactose-glucose growth media is about 5% to growth media may include glucose at a concentration of about 60 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 70 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 80 g/L. The arabinose-glucose 45 growth media may include glucose at a concentration of about 90 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 100 g/L.

In embodiments, the arabinose-glucose growth media includes glucose at a concentration of about 0.05 g/L to 50 about 20 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 15 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 10 g/L. The arabinose-glucose growth media may include glucose at 55 a concentration of about 0.05 g/L to about 5 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 4 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 3 g/L. The arabinose- 60 glucose growth media may include glucose at a concentration of about 0.05 g/L to about 2 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 1 g/L. The arabinoseglucose growth media may include glucose at a 65 concentration of about 0.05 g/L to about 0.5 g/L. The arabinose-glucose growth media may include glucose at a

concentration of about 0.05 g/L to about 0.1 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 0.5 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 1 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 2 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 3 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 4 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 5 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 10 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 15 g/L. The arabinose-glucose growth media may include glucose at a concentration of about 20 g/L.

3. Recombinant Yeast Cell Including a Recombinant Galactose Transporter Protein

In another aspect is a recombinant yeast cell that includes herein, including embodiments thereof. In embodiments, the growth rate of the recombinant yeast cell including a recombinant transporter protein as described herein can be measured. The growth rate may be determined in galactose growth media (i.e. in the absence of glucose). The growth rate may be determined in galactose-glucose growth media. In embodiments, the growth rates (i.e. growth rate in the absence and presence of glucose) are compared to determine the differential growth rate of the recombinant yeast cells. If the growth rate of recombinant yeast cells grown in galactose-glucose growth media is less than the growth rate of recombinant yeast cells grown in galactose growth media, the differential growth rate may indicate glucose inhibits the activity of the recombinant galactose transporter protein. As described herein, inclusion of a glucose mitigating mutation decreases, minimizes, or may eliminate glucose inhibition experienced by the recombinant galactose transporter protein.

In embodiments, the growth rate of the recombinant yeast about 150% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 5% to about 140% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactoseglucose growth media may be about 5% to about 130% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 5% to about 120% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 5% to about 110% of the growth rate of the recombinant yeast cell in galactose growth media.

The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 5% to about 100% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 5% to about 90% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 5% to about 80% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactoseglucose growth media may be about 5% to about 70% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 5% to about 60% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recom- 5 binant yeast cell in a galactose-glucose growth media may be about 5% to about 50% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactoseglucose growth media may be about 5% to about 40% of the 10 growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 5% to about 30% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recom- 15 binant yeast cell in a galactose-glucose growth media may be about 5% to about 20% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactoseglucose growth media may be about 5% to about 10% of the 20 growth rate of the recombinant yeast cell in galactose growth media.

The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 10% to about 150% of the growth rate of the recombinant yeast cell in 25 galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 10% to about 140% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media 30 may be about 10% to about 130% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactoseglucose growth media may be about 10% to about 120% of the growth rate of the recombinant yeast cell in galactose 35 growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 10% to about 110% of the growth rate of the recombinant yeast cell in galactose growth media.

The growth rate of the recombinant yeast cell in a 40 galactose-glucose growth media may be about 10% to about 100% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 10% to about 90% of the growth rate of the recombinant 45 yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 10% to about 80% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose- 50 glucose growth media may be about 10% to about 70% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 10% to about 60% of the growth rate of the recombinant yeast cell 55 in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 10% to about 50% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose- 60 glucose growth media may be about 10% to about 40% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 10% to about 30% of the growth rate of the recombinant yeast cell 65 in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may

be about 10% to about 20% of the growth rate of the recombinant yeast cell in galactose growth media.

The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 5% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 10% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 20% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 30% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 40% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 50% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 60% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 70% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 80% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 90% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 100% of the growth rate of the recombinant yeast cell in galactose growth media.

The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 110% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 120% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 130% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 140% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 150% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 160% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 170% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 180% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 190% of the growth rate of the recombinant yeast cell in galactose growth media. The growth rate of the recombinant yeast cell in a galactose-glucose growth media may be about 200% of the growth rate of the recombinant yeast cell in galactose growth media.

In embodiments, the recombinant yeast cells have a growth rate of about 0.005 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0075 hr^{-1} in galactose-glucose growth media that includes 5 about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.01 hr⁻¹ in galactoseglucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0125 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0175 hr⁻¹ in 15 galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.02 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 20 0.0225 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.025 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a 25 growth rate of about 0.0275 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.03 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombi- 30 nant yeast cells may have a growth rate of about 0.0325 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.035 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L 35 glucose. The recombinant yeast cells may have a growth rate of about 0.0375 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.04 hr^{-1} in galactose-glucose growth media that includes about 2.5, 40 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0425 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.045 hr⁻¹. The recombinant yeast cells may have 45 a growth rate of about 0.0475 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.05 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.1 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.125 hr^{-1} in galactose-glucose growth media that includes 55 about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.15 hr^{-1} in galactoseglucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.175 hr⁻¹ in galactose-glucose growth media 60 that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.2 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.225 hr⁻¹ in galactose- 65 glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth

64

rate of about 0.25 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.275 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.3 hr⁻¹ in galactoseglucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.325 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.35 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.375 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.4 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.425 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.45 hr^{-1} in galactoseglucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.475 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.525 hr^{-1} in galactoseglucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.575 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.6 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.65 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.7 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.75 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.8 hr⁻¹ in galactose-glucose growth media that includes about 50 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.85 hr^{-1} in galactoseglucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.9 hr⁻¹ in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.95 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose. The recombinant yeast cells may have a growth rate of about 1 hr^{-1} in galactose-glucose growth media that includes about 2.5, 5, 10, or 20 g/L glucose.

In embodiments, the recombinant yeast cells have a growth rate of about 0.005 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0075 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast

cells may have a growth rate of about 0.01 hr⁻¹ in galactoseglucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0125 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The 5 recombinant yeast cells may have a growth rate of about 0.015 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0175 hr^{-1} in galactose-glucose growth media that includes about 25 to 10 about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.02 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0225 hr^{-1} in galactose-glucose growth media that 15 includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.025 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0275 hr^{-1} in galactose-glucose 20 growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.03 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.0325 hr^{-1} 25 in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.035 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate 30 of about 0.0375 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.04 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may 35 have a growth rate of about 0.0425 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.045 hr⁻¹. The recombinant yeast cells may have a growth rate of about 0.0475 hr⁻¹ in galactose-glucose 40 growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.05 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose.

In embodiments, the recombinant yeast cells have a 45 growth rate of about 0.1 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.125 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast 50 cells may have a growth rate of about 0.15 hr^{-1} in galactoseglucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.175 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The 55 recombinant yeast cells may have a growth rate of about 0.2 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.225 hr^{-1} in galactoseglucose growth media that includes about 25 to about 100 60 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.25 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.275 hr^{-1} in galactose-glucose growth media that includes 65 about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.3 hr^{-1} in galactose66

glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.325 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.35 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.375 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.4 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.425 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.45 hr^{-1} in galactoseglucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.475 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.525 hr⁻¹ in galactoseglucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.5 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.575 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.6 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.65 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.7 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.75 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.8 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.85 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.9 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 0.95 hr⁻¹ in galactose-glucose growth media that includes about 25 to about 100 g/L glucose. The recombinant yeast cells may have a growth rate of about 1 hr^{-1} in galactose-glucose growth media that includes about 25 to about 100 g/L glucose.

In embodiments, the growth rate of the recombinant yeast cell in galactose-glucose growth media is about $0.1\times$ fold greater than a wildtype yeast cell (i.e. a yeast cell without a recombinant transporter protein described herein) in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about $0.2\times$ fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media.

about 0.4× fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 0.5× fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recom- 5 binant yeast cell in galactose-glucose growth media may be about 0.6× fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about $0.7 \times$ fold greater than a wildtype yeast cell in galac- 10 tose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 0.8× fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be 15 about 0.9× fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 1× fold greater than a wildtype yeast cell in galactoseglucose growth media.

The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 2× fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 3x fold 25 greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 4× fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell 30 in galactose-glucose growth media may be about 5x fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 6x fold greater than a wildtype yeast cell in galactose-glucose 35 growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 7× fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 8x fold 40 greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 9× fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell 45 in galactose-glucose growth media may be about 10× fold greater than a wildtype yeast cell in galactose-glucose growth media.

The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 11× fold greater 50 than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 12× fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell 55 in galactose-glucose growth media may be about 13× fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 14× fold greater than a wildtype yeast cell in galactose-glucose 60 growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 15× fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about 16x fold 65 greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell

in galactose-glucose growth media may be about $17\times$ fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about $18\times$ fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about $19\times$ fold greater than a wildtype yeast cell in galactose-glucose growth media may be about $19\times$ fold greater than a wildtype yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media. The growth rate of the recombinant yeast cell in galactose-glucose growth media may be about $20\times$ fold greater than a wildtype yeast cell in galactose-glucose growth media.

In embodiments, the recombinant galactose transporter transports an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 5% to about 150% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a 20 recombinant yeast in a galactose-glucose growth media at a rate of about 5% to about 140% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactoseglucose growth media at a rate of about 5% to about 130% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 5% to about 120% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactoseglucose growth media at a rate of about 5% to about 110% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media.

The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactoseglucose growth media at a rate of about 5% to about 100% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 5% to about 90% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 5% to about 80% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 5% to about 70% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 5% to about 60% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactoseglucose growth media at a rate of about 5% to about 50% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galac- 5 tose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 5% to about 40% of the rate the recombinant galactose transporter transports the galactose compound into the 10 recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 5% to about 30% of the rate the recombinant galactose transporter transports the galac- 15 tose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 5% to about 20% of the rate the recombinant galactose transporter 20 transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 5% to about 10% of the rate the recombinant 25 galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media.

The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactoseglucose growth media at a rate of about 5% of the rate the 30 recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 10% of the rate 35 the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 20% of 40 the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 45 30% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of 50 about 40% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a 55 rate of about 50% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose 60 growth media at a rate of about 60% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galac- 65 tose-glucose growth media at a rate of about 70% of the rate the recombinant galactose transporter transports the galac70

tose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 80% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 90% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 100% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media.

The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactoseglucose growth media at a rate of about 110% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 120% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 130% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 140% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 150% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 160% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 170% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 180% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate of about 190% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media. The recombinant galactose transporter may transport an galactose compound into a recombinant yeast in a galactose-glucose growth media at a rate about 200% of the rate the recombinant galactose transporter transports the galactose compound into the recombinant yeast in a galactose growth media.

In embodiments, the galactose growth media includes galactose a concentration of about 0.05 g/L to about 20 g/L. 5 The galactose growth media may include galactose a concentration of about 0.05 g/L to about 15 g/L. The galactose growth media may include galactose a concentration of about 0.05 g/L to about 10 g/L. The galactose growth media may include galactose a concentration of about 0.05 g/L to 10 about 5 g/L. The galactose growth media may include galactose a concentration of about 0.05 g/L to about 4 g/L. The galactose growth media may include galactose a concentration of about 0.05 g/L to about 3 g/L. The galactose growth media may include galactose a concentration of about 0.05 g/L to about 2 g/L. The galactose growth media may include galactose a concentration of about 0.05 g/L to about 1 g/L. The galactose growth media may include galactose a concentration of about 0.05 g/L to about 0.5 g/L. The galactose growth media may include galactose a con- 20 centration of about 0.05 g/L to about 0.1 g/L.

The galactose growth media may include galactose a concentration of about 0.05 g/L. The galactose growth media may include galactose a concentration of about 0.1 g/L. The galactose growth media may include galactose a 25 concentration of about 0.5 g/L. The galactose growth media may include galactose a concentration of about 1 g/L. The galactose growth media may include galactose a concentration of about 2 g/L. The galactose growth media may include galactose a concentration of about 3 g/L. The galactose 30 growth media may include galactose a concentration of about 4 g/L. The galactose growth media may include galactose a concentration of about 5 g/L. The galactose growth media may include galactose a concentration of about 10 g/L. The galactose growth media may include 35 galactose a concentration of about 15 g/L. The galactose growth media may include galactose a concentration of about 20 g/L.

In embodiments, the galactose growth media includes galactose a concentration of about 0.05 g/L to about 300 g/L. 40 The galactose growth media may include galactose a concentration of about 0.05 g/L to about 250 g/L. The galactose growth media may include galactose a concentration of about 0.05 g/L to about 200 g/L. The galactose growth media may include galactose a concentration of about 0.05 g/L to 45 about 150 g/L. The galactose growth media may include galactose a concentration of about 0.05 g/L to about 100 g/L. The galactose growth media may include galactose a concentration of about 0.05 g/L to about 50 g/L. The galactose growth media may include galactose a concentration of 50 about 0.05 g/L to about 25 g/L. The galactose growth media may include galactose a concentration of about 1 g/L to about 300 g/L. The galactose growth media may include galactose a concentration of about 10 g/L to about 300 g/L. The galactose growth media may include galactose a con- 55 centration of about 20 g/L to about 300 g/L. The galactose growth media may include galactose a concentration of about 30 g/L to about 300 g/L. The galactose growth media may include galactose a concentration of about 40 g/L to about 300 g/L. The galactose growth media may include 60 galactose a concentration of about 50 g/L to about 300 g/L. The galactose growth media may include galactose a concentration of about 75 g/L to about 300 g/L. The galactose growth media may include galactose a concentration of about 100 g/L to about 300 g/L. The galactose growth media 65 may include galactose a concentration of about 125 g/L to about 300 g/L. The galactose growth media may include

galactose a concentration of about 150 g/L to about 300 g/L. The galactose growth media may include galactose a concentration of about 175 g/L to about 300 g/L. The galactose growth media may include galactose a concentration of about 200 g/L to about 300 g/L. The galactose growth media may include galactose a concentration of about 200 g/L to about 300 g/L. The galactose growth media may include galactose a concentration of about 200 g/L to about 300 g/L. The galactose growth media may include galactose a concentration of about 250 g/L to about 300 g/L. The galactose growth media may include galactose a concentration of about 250 g/L to about 300 g/L. The galactose a concentration of about 250 g/L to about 300 g/L.

In embodiments, the galactose growth media includes galactose a concentration of about 10 g/L to about 275 g/L. The galactose growth media may include galactose a concentration of about 10 g/L to about 250 g/L. The galactose growth media may include galactose a concentration of about 10 g/L to about 225 g/L. The galactose growth media may include galactose a concentration of about 10 g/L to about 200 g/L. The galactose growth media may include galactose a concentration of about 10 g/L to about 175 g/L. The galactose growth media may include galactose a concentration of about 10 g/L to about 150 g/L. The galactose growth media may include galactose a concentration of about 10 g/L to about 125 g/L. The galactose growth media may include galactose a concentration of about 10 g/L to about 100 g/L. The galactose growth media may include galactose a concentration of about 10 g/L to about 75 g/L. The galactose growth media may include galactose a concentration of about 10 g/L to about 50 g/L. The galactose growth media may include galactose a concentration of about 10 g/L to about 25 g/L.

The galactose growth media may include galactose a concentration of about 25 g/L. The galactose growth media may include galactose a concentration of about 50 g/L. The galactose growth media may include galactose a concentration of about 75 g/L. The galactose growth media may include galactose a concentration of about 100 g/L. The galactose growth media may include galactose a concentration of about 125 g/L. The galactose growth media may include galactose a concentration of about 150 g/L. The galactose growth media may include galactose a concentration of about 175 g/L. The galactose growth media may include galactose a concentration of about 200 g/L. The galactose growth media may include galactose a concentration of about 225 g/L. The galactose growth media may include galactose a concentration of about 250 g/L. The galactose growth media may include galactose a concentration of about 275 g/L. The galactose growth media may include galactose a concentration of about 300 g/L.

In embodiments, the galactose-glucose growth media includes galactose at a concentration as described herein for a galactose growth media. In embodiments, the galactoseglucose growth media includes glucose at a concentration of about 0.05 g/L to about 100 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 90 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 80 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 70 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 60 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 50 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 40 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 30 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 25 g/L.

The galactose-glucose growth media may include glucose at a concentration of about 25 g/L. The galactose-glucose growth media may include glucose at a concentration of ⁵ about 30 g/L. The galactose-glucose growth media may include glucose at a concentration of about 40 g/L. The galactose-glucose growth media may include glucose at a concentration of about 50 g/L. The galactose-glucose growth media may include glucose at a concentration of ¹⁰ about 60 g/L. The galactose-glucose growth media may include glucose at a concentration of ¹⁰ about 60 g/L. The galactose-glucose growth media may include glucose at a concentration of about 70 g/L. The galactose-glucose growth media may include glucose at a concentration of about 80 g/L. The galactose-glucose growth media may include glucose at a concentration of ¹⁵ about 90 g/L. The galactose-glucose growth media may include glucose at a concentration of ¹⁵ about 90 g/L. The galactose-glucose growth media may include glucose at a concentration of ¹⁵ about 90 g/L. The galactose-glucose growth media may include glucose at a concentration of ¹⁵

In embodiments, the galactose-glucose growth media includes glucose at a concentration of about 0.05 g/L to about 20 g/L. The galactose-glucose growth media may 20 include glucose at a concentration of about 0.05 g/L to about 15 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 10 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 5 g/L. The $^{\rm 25}$ galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 4 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 3 g/L. The galactoseglucose growth media may include glucose at a 30 concentration of about 0.05 g/L to about 2 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 1 g/L. The galactoseglucose growth media may include glucose at a concentration of about 0.05 g/L to about 0.5 g/L. The 35 galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L to about 0.1 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.05 g/L. The galactose-glucose growth media may include glucose at a concentration of 40 about 0.1 g/L. The galactose-glucose growth media may include glucose at a concentration of about 0.5 g/L. The galactose-glucose growth media may include glucose at a concentration of about 1 g/L. The galactose-glucose growth media may include glucose at a concentration of about 2 g/L. 45 The galactose-glucose growth media may include glucose at a concentration of about 3 g/L. The galactose-glucose growth media may include glucose at a concentration of about 4 g/L. The galactose-glucose growth media may include glucose at a concentration of about 5 g/L. The 50 galactose-glucose growth media may include glucose at a concentration of about 10 g/L. The galactose-glucose growth media may include glucose at a concentration of about 15 g/L. The galactose-glucose growth media may include glucose at a concentration of about 20 g/L.

IV. Methods

Also provided herein are methods of transporting xylose into a recombinant yeast cell. In one aspect, the method 60 includes contacting a recombinant yeast cell with a xylose compound described herein, where the recombinant yeast cell includes a recombinant xylose transporter protein as described herein, including embodiments thereof. The recombinant xylose transporter protein transports the xylose 65 compound into the recombinant yeast cell. In embodiments, the only sugar (i.e. carbon source) present is a xylose

compound. The recombinant xylose transporter protein is as described herein, including embodiments thereof. By extension, the xylose transporter motif sequence and the glucose mitigation mutation are as described herein, including embodiments thereof.

In another aspect, the method includes contacting a recombinant yeast cell with a xylose compound, where the xylose compound is the only sugar (i.e. carbon source) in the media, and where the recombinant yeast cell includes a recombinant xylose transporter protein as described herein, including embodiments thereof.

1. Transporting Xylose into a Recombinant Yeast Cell

The xylose compound may be derived from lignocellulosic biomass, hemicellulose, or xylan. Thus, in embodiments, the xylose compound is not the only sugar (i.e. carbon source) present. The xylose compound may be derived from lignocellulosic biomass. The xylose compound may be derived from hemicellulose. The xylose compound may be derived from xylan. In embodiments, the recombinant veast cell metabolizes the xylose compound. The xylose compound may be present at a concentration as described hereinabove for the "xylose growth media". In embodiments, the recombinant yeast cell converts the xylose compound to a biofuel as described herein (e.g. ethanol) or to a biochemical as described herein. The recombinant yeast cell may convert the xylose compound to a biofuel as described herein (e.g. ethanol). The recombinant yeast cell may convert the xylose compound to a biochemical as described herein. In embodiments, the only sugar (i.e. carbon source) available is the xylose compound.

In embodiments, the recombinant xylose transporter transports a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 1 nmol min^{-1} gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The term "gDCW" provided herein is well known in the art and refers to gram dry cell weight. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 2 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 3 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 4 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 5 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 6 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose com-55 pound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 7 nmol min^{-1} gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 8 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 9 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 10 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹.

The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 11 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant 5 yeast cell in a xylose-glucose growth media at a rate of at least 12 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose transporter may transport a xylose transporter may transport a xylose growth media at a rate of at least 12 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant yeast cell in a xylose-glucose growth media at a rate of at least 13 nmol min⁻¹ gDCW⁻¹ to 10 15 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 14 nmol min⁻¹ gDCW⁻¹.

The recombinant xylose transporter may transport a 15 xylose compound into a recombinant yeast cell in a xyloseglucose growth media at a rate of at least 1 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 2 nmol 20 min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 3 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in 25 a xylose-glucose growth media at a rate of at least 4 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 5 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may 30 transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 6 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 7 nmol 35 min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 8 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in 40 a xylose-glucose growth media at a rate of at least 9 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 10 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may 45 transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 11 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 12 nmol 50 min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 13 nmol \min^{-1} gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in 55 a xylose-glucose growth media at a rate of at least 14 nmol \min^{-1} gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 15 nmol min⁻¹ gDCW⁻¹

In embodiments, the recombinant xylose transporter transports a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 1 nmol \min^{-1} gDCW⁻¹ to 50 nmol \min^{-1} gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound 65 into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 2.5 nmol \min^{-1} gDCW⁻¹ to 50

76

nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 5 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 10 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 12 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 15 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 20 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 25 nmol min^{-1} gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 30 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 35 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 40 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 45 nmol min⁻¹ gDCW⁻¹ to $50 \text{ nmol min}^{-1} \text{ gDCW}^{-1}$.

The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xyloseglucose growth media at a rate of at least 2.5 nmol min^{-1} gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 17 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 18 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 19 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 20 nmol \min^{-1} gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 22 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 25 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in 60 a xylose-glucose growth media at a rate of at least 30 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 35 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 40 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may

transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 45 nmol min^{-1} gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 50 nmol 5 min^{-1} gDCW⁻¹.

In embodiments, the recombinant xylose transporter transports a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 10 nmol \min^{-1} gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombi- 10 nant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 20 nmol min^{-1} gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast 15 cell in a xylose-glucose growth media at a rate of at least 30 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 40 nmol min⁻¹ $gDCW^{-1}$ to 20 min⁻¹ $gDCW^{-1}$. 150 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 50 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose 25 compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 60 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at 30 least 70 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 80 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant xylose trans- 35 porter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 90 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose 40 growth media at a rate of at least 100 nmol min⁻¹ gDCW⁻ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 110 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. 45 The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 120 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant 50 yeast cell in a xylose-glucose growth media at a rate of at least 130 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 140 nmol min⁻¹ gDCW⁻¹ 55 to 150 nmol min⁻¹ gDCW⁻¹.

The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 60 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport 60 a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 70 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 80 nmol 65 min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a transport a xylose growth media at a rate of at least 80 nmol 65 min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in

78

a xylose-glucose growth media at a rate of at least 90 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 100 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 110 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 120 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 130 nmol min⁻¹ gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 140 nmol \min^{-1} gDCW⁻¹. The recombinant xylose transporter may transport a xylose compound into a recombinant yeast cell in a xylose-glucose growth media at a rate of at least 150 nmol

2. Transporting Arabinose into a Recombinant Yeast Cell Also provided herein are methods of transporting arabinose into a recombinant yeast cell. In one aspect, the method includes contacting a recombinant yeast cell with an arabinose compound described herein, where the recombinant yeast cell includes a recombinant arabinose transporter protein as described herein, including embodiments thereof. The recombinant arabinose transporter protein transports the arabinose compound into the recombinant yeast cell. In embodiments, the only sugar (i.e. carbon source) present is an arabinose compound. The recombinant arabinose transporter protein is as described herein, including embodiments thereof. By extension, the arabinose transporter motif sequence and the glucose mitigation mutation are as described herein, including embodiments thereof.

In another aspect, the method includes contacting a recombinant yeast cell with an arabinose compound, where the arabinose compound is the only sugar (i.e. carbon source) in the media, and where the recombinant yeast cell includes a recombinant arabinose transporter protein as described herein, including embodiments thereof.

The arabinose compound may be derived from lignocellulosic biomass, hemicellulose, pectin, or xylan. Thus, in embodiments, the arabinose compound is not the only sugar (i.e. carbon source) present. The arabinose compound may be derived from lignocellulosic biomass. The arabinose compound may be derived from hemicellulose. The arabinose compound may be derived from pectin. The arabinose compound may be derived from xylan. In embodiments, the recombinant yeast cell metabolizes the arabinose compound. The arabinose compound may be present at a concentration as described hereinabove for the "arabinose growth media". In embodiments, the recombinant yeast cell converts the arabinose compound to a biofuel (e.g. ethanol) or to a biochemical as described herein, including embodiments thereof. The recombinant yeast cell may convert the arabinose compound to a biofuel (e.g. ethanol). The recombinant yeast cell may convert the arabinose compound to a biochemical as described herein, including embodiments thereof.

In embodiments, the recombinant arabinose transporter transports an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 1 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 2 nmol min⁻¹

gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 3 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may 5 transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 4 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arab- 10 inose-glucose growth media at a rate of at least 5 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 6 nmol min⁻¹ gDCW⁻¹ to 15 nmol 15 min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 7 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arab- 20 inose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 8 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth 25 media at a rate of at least 9 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 10 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The 30recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose glucose growth media at a rate of at least 11 nmol \min^{-1} gDCW⁻¹ to 15 nmol \min^{-1} gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose com- 35 pound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 12 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a 40 rate of at least 13 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 14 nmol min⁻¹ gDCW⁻¹ to 15 nmol min⁻¹ gDCW⁻¹.

The recombinant arabinose transporter may transport an arabinose compound into a recombinant veast cell in an arabinose-glucose growth media at a rate of at least 1 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast 50 cell in an arabinose-glucose growth media at a rate of at least 2 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 3 nmol min⁻¹ gDCW⁻¹. The recombinant 55 arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 4 nmol min^{-1} gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arab- 60 inose-glucose growth media at a rate of at least 5 nmol min⁻¹ gDCW-1. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 6 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose trans- 65 porter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a

80

rate of at least 7 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 8 nmol min^{-1} gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 9 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 10 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 11 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 12 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 13 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 14 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 15 nmol min⁻¹ gDCW⁻¹.

In embodiments, the recombinant arabinose transporter transports an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 1 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 2.5 nmol \min^{-1} gDCW⁻¹ to 50 nmol \min^{-1} gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 5 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 10 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in 45 an arabinose-glucose growth media at a rate of at least 12 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 15 nmol \min^{-1} gDCW⁻¹ to 50 nmol \min^{-1} gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 20 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 25 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 30 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 35 nmol \min^{-1} gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose

growth media at a rate of at least 40 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 45 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹.

The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 2.5 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 17 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a 15 rate of at least 18 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 19 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arab- 20 inose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 20 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 25 22 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 25 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound 30 into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 30 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 35 nmol 35 \min^{-1} gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 40 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recom- 40 binant yeast cell in an arabinose-glucose growth media at a rate of at least 45 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 50 nmol min⁻¹ gDCW⁻¹. 45

In embodiments, the recombinant arabinose transporter transports an arabinose compound into a recombinant veast cell in an arabinose-glucose growth media at a rate of at least 10 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arab- 50 inose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 20 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose 55 growth media at a rate of at least 30 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 40 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ 60 gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 50 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arab- 65 inose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 60 nmol

82

min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 70 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 80 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 90 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 100 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 110 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 120 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 130 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 140 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹.

The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 60 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 70 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 80 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 90 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 100 nmol \min^{-1} gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 110 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 120 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 130 nmol min⁻¹ gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 140 nmol min^{-1} gDCW⁻¹. The recombinant arabinose transporter may transport an arabinose compound into a recombinant yeast cell in an arabinose-glucose growth media at a rate of at least 150 nmol min⁻¹ $gDCW^{-1}$.

3. Transporting Galactose into a Recombinant Yeast Cell Also provided herein are methods of transporting galactose into a recombinant yeast cell. In one aspect, the method includes contacting a recombinant yeast cell with a galactose compound described herein, where the recombinant yeast cell includes a recombinant galactose transporter protein as described herein, including embodiments thereof. The recombinant galactose transporter protein transports the 5 galactose compound into the recombinant yeast cell. In embodiments, the only sugar (i.e. carbon source) present is a galactose compound. The recombinant galactose transporter protein is as described herein, including embodiments thereof. By extension, the galactose transporter motif 10 sequence and the glucose mitigation mutation are as described herein, including embodiments thereof.

In another aspect, the method includes contacting a recombinant yeast cell with a galactose compound, where the galactose compound is the only sugar (i.e. carbon 15 source) in the media, and where the recombinant yeast cell includes a recombinant galactose transporter protein as described herein, including embodiments thereof.

The galactose compound may be derived from lignocellulosic biomass, hemicellulose, or marine biomass. Thus, in 20 embodiments, the galactose compound is not the only sugar (i.e. carbon source) present. The galactose compound may be derived from lignocellulosic biomass. The galactose compound may be derived from hemicellulose. The galactose compound may be derived from marine biomass. In 25 embodiments, the recombinant yeast cell metabolizes the galactose compound. The galactose compound may be present at a concentration as described hereinabove for the "galactose growth media". In embodiments, the recombinant yeast cell converts the galactose compound to a biofuel 30 (e.g. ethanol) or to a biochemical as described herein, including embodiments thereof. The recombinant yeast cell may convert the galactose compound to a biofuel (e.g. ethanol). The recombinant yeast cell may convert the galactose compound to a biochemical as described herein, includ- 35 ing embodiments thereof.

In embodiments, the recombinant galactose transporter transports a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 1 nmol min⁻¹ gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹. 40 The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 2 nmol min⁻¹ gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose 45 compound into a recombinant yeast cell in a galactoseglucose growth media at a rate of at least 3 nmol min^{-1} gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose 50 growth media at a rate of at least 4 nmol min^{-1} gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 5 nmol \min^{-1} gDCW⁻¹ to about 15 nmol 55 \min^{-1} gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 6 nmol min⁻¹ gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a 60 galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 7 nmol min⁻¹ gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose- 65 glucose growth media at a rate of at least 8 nmol min⁻¹ gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹. The recombi84

nant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 9 nmol min^{-1} gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 10 nmol min⁻¹ gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 11 nmol min⁻¹ gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 12 nmol min⁻¹ gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactoseglucose growth media at a rate of at least 13 nmol min⁻¹ gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 14 nmol min^{-1} gDCW⁻¹ to about 15 nmol min⁻¹ gDCW⁻¹.

The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 1 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 2 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 3 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 4 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 5 nmol min^{-1} gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactoseglucose growth media at a rate of at least 6 nmol min⁻¹ $gDCW^{-1}$. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 7 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant veast cell in a galactose-glucose growth media at a rate of at least 8 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 9 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 10 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 11 nmol min^{-1} gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 12 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 13 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate

of at least 14 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 15 nmol min⁻¹ gDCW⁻¹.

In embodiments, the recombinant galactose transporter 5 transports a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 1 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose- 10 glucose growth media at a rate of at least 2.5 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 5 nmol min⁻¹ gDCW⁻¹ to 50 nmol 15 min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 10 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose 20 compound into a recombinant yeast cell in a galactoseglucose growth media at a rate of at least 12 nmol min^{-1} gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth 25 media at a rate of at least 15 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant veast cell in a galactose-glucose growth media at a rate of at least 20 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The 30 recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactoseglucose growth media at a rate of at least 25 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound 35 into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 30 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 40 35 nmol min⁻¹ gDCW⁻¹ to 50 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactoseglucose growth media at a rate of at least 40 nmol min⁻¹ $gDCW^{-1}$ to 50 nmol min⁻¹ $gDCW^{-1}$. The recombinant 45 galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 45 nmol min⁻¹ gDCW⁻¹ to 50 nmol \min^{-1} gDCW⁻¹.

The recombinant galactose transporter may transport a 50 galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 2.5 nmol \min^{-1} gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 55 17 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 18 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a 60 recombinant yeast cell in a galactose-glucose growth media at a rate of at least 19 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 20 nmol min⁻¹ gDCW⁻¹. 65 The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a

86

galactose-glucose growth media at a rate of at least 22 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 25 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 30 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 35 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 40 nmol min^{-1} gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 45 nmol \min^{-1} gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 50 nmol min⁻¹ gDCW⁻¹.

In embodiments, the recombinant galactose transporter transports a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 10 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactoseglucose growth media at a rate of at least 20 nmol min⁻¹ $gDCW^{-1}$ to 150 nmol min⁻¹ $gDCW^{-1}$. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 30 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 40 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 50 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactoseglucose growth media at a rate of at least 60 nmol min^{-1} gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 70 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 80 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 90 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactoseglucose growth media at a rate of at least 100 nmol min^{-1} gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 110 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 120 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 130 nmol min⁻¹ gDCW⁻¹ to 150 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose- 5 glucose growth media at a rate of at least 140 nmol min^{-1} $gDCW^{-1}$ to 150 nmol min⁻¹ $gDCW^{-1}$.

The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 60 nmol \min^{-1} gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 70 nmol min⁻¹ gDCW⁻¹. The recombinant galactose trans-15porter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 80 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media 20 at a rate of at least 90 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 100 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a 25 1. Reijenga K A, et al. (2001) Control of glycolytic dynamgalactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 110 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 30 120 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 130 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound 35 into a recombinant yeast cell in a galactose-glucose growth media at a rate of at least 140 nmol min⁻¹ gDCW⁻¹. The recombinant galactose transporter may transport a galactose compound into a recombinant yeast cell in a galactoseglucose growth media at a rate of at least 150 nmol min⁻¹ 40 $gDCW^{-1}$.

V. Examples

In previous research, was developed a xylose specific 45 transporter hereafter termed "CiGXS1-FIM" ("FIM"), based on a hexose transporter from C. intermedia, GXS1. The FIM mutation imparted specificity in transporting xylose over glucose. (11) The presence of glucose, however, inhibited the performance of FIM in transporting xylose. Herein 50 7. Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencerdirected evolution was conducted to reduce the observed glucose inhibition.

A library of randomly mutated FIM was generated by error-prone PCR with a library size of over 1×10^5 mutants (as measured by independent E. coli colonies post-transfor- 55 mation). The mutant FIM was then transformed into S. cerevisiae ETKXG strain, a triple hexokinase knockout strain which is not able to grow on glucose, and screened on the xylose dependent growth based advantage on the dropout plates with 20 g/L of xylose and 2.5 g/L of glucose. The 60 140 selected mutants from the plates were then tested for the growth on the medium with 20 g/L of xylose and 2.5 g/L glucose using Bioscreen C and the top 6 mutants were selected for further confirmation. The growth rates of the selected mutants on xylose in the presence of various 65 concentration of glucose were then confirmed using Bioscreen C (FIG. 1).

The mutant 105, which has 6 mutations: K155E, N225D, S354T, A361T, L407M, N446S (FIG. 2), showed reduced glucose inhibition. Indeed, the mutant 105 showed significantly higher growth rates in the all tested conditions compared to FIM and wild-type transporters. Mutant 105 shows nearly a 30-fold increase in the growth rate on a xvlose medium with the presence of glucose. The growth rate of the mutant 105 in the xylose 20 g/L+glucose 2.5 g/L medium was slightly higher than the growth rate of the wild-type transporter in the xylose only medium. Though the mutant 105 showed the highest reduction in glucose inhibition, the growth rate on xylose only was slightly reduced compared to FIM and wild-type. See FIG. 1

The mutant 78, which has a single mutation, N326S, showed reduced glucose inhibition without decrease in xylose transport capability. In contrast to mutant 105, mutant 78 showed no reduction in the xylose transport performance. This suggests the mutant 78 represents a promising candidate for further round of directed evolution to develop xylose transporters with reduced glucose inhibition.

REFERENCES

- ics by hexose transport in Saccharomyces cerevisiae. Biophysical Journal 80(2):626-634.
- 2. Gardonyi M, Jeppsson M, Liden G, Gorwa-Grausland M F, & Hahn-Hagerdal B (2003) Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnology and Bioengineering 82(7):818-824.
- 3. Elbing K, et al. (2004) Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Applied and Environmental Microbiology 70(9):5323-5330.
- 4. Wahlbom C F, Otero R R C, van Zyl W H, Hahn-Hagerdal B, & Jonsson L J (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Applied and Environmental Microbiology 69(2):740-746.
- 5. Bengtsson O, et al. (2008) Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 25(11):835-847.
- 6. Jeffries T W & Jin Y S (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Applied Microbiology and Biotechnology 63(5):495-509.
- Martins I, & Gorwa-Grauslund M F (2007) Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology 74(5):937-953.
- 8. Martin C H, Nielsen D R, Solomon K V, & Prather K L J (2009) Synthetic metabolism: engineering biology at the protein and pathway scales. Chemistry & Biology 16(3): 277 - 286
- 9. Tyo K E J, Kocharin K, & Nielsen J (2010) Toward design-based engineering of industrial microbes. Current Opinion in Microbiology 13(3):255-262.
- 10. Curran K A & Alper H S (2012) Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metabolic Engineering 14(4):289-297.
- 11. Eric Young, Alice Tong, Hang Bui, Caitlin Spofford, and Hal Alper, 2014. Rewiring yeast sugar transporter preference through modifying a conserved protein motif. PNAS 111(1), 131-136

50

65

89

VI. P Embodiments

Embodiment P 1

A recombinant xylose transporter protein comprising a 5 xylose transporter motif sequence and a glucose mitigation mutation.

Embodiment P 2

10The recombinant xylose transporter protein of embodiment P 1, wherein said xylose transporter motif sequence corresponds to amino acid residue positions 36, 37, 38, 39, 40, and 41 of Candida intermedia GXS1 protein, and wherein said xylose transporter motif sequence is -G-G/F-15 X^1 - X^2 - X^3 -G-; wherein, X^1 is D, C, G, H, Î, L, or F; X^2 is A, D, C, E, G, H, or I; and X³ is N, C, Q, F, G, L, M, S, T, or P.

Embodiment P 3

The recombinant xylose transporter protein of embodiment P1 or embodiment P2, wherein said xylose transporter motif sequence is -G-G-F-I-M-G- (SEQ ID NO:107), -G-F-F-I-M-G- (SEQ ID NO:108), -G-G-F-I-S-G- (SEQ ID NO:109), -G-F-F-I-S-G- (SEQ ID NO:110), -G-G-F-I-T-G-25 (SEQ ID NO:111), -G-F-F-I-T-G- (SEQ ID NO:112), -G-G-F-L-M-G- (SEQ ID NO:113), -G-F-F-L-M-G- (SEQ ID NO:114), -G-G-F-L-S-G- (SEQ ID NO:115), -G-F-F-L-S-G- (SEQ ID NO:116), -G-G-F-L-T-G- (SEQ ID NO:117), -G-F-F-L-T-G- (SEQ ID NO:118), -G-G-F-H-M-G- (SEQ 30 ID NO:119), -G-F-F-H-M-G- (SEQ ID NO:120), -G-G-F-H-S-G- (SEQ ID NO:121), -G-F-F-H-S-G- (SEQ ID NO:122), -G-G-F-H-T-G- (SEQ ID NO:123) or -G-F-F-H-T-G- (SEQ ID NO:124).

Embodiment P 4

The recombinant xylose transporter protein of any one of embodiments P1 to 3, wherein said xylose transporter motif sequence is -G-G-F-I-M-G- (SEQ ID NO:107), -G-F-F-I-40 M-G- (SEQ ID NO:108), -G-G-F-I-S-G- (SEQ ID NO:109), or -G-F-F-I-S-G- (SEQ ID NO:110).

Embodiment P 5

The recombinant xylose transporter protein of any one of 45 embodiments P1 to 4, wherein said xylose transporter motif sequence is -G-G-F-I-M-G- (SEQ ID NO:107).

Embodiment P 6

The recombinant xylose transporter protein of any one of embodiments P 1 to 5, wherein said glucose mitigation mutation is within a protein domain corresponding to transmembrane 9 of Candida intermedia GXS1 protein.

Embodiment P 7

The recombinant xylose transporter protein of any one of embodiments P 1 to 6, wherein said glucose mitigation mutation is at a position corresponding to K155, N225, 60 the growth rate of said recombinant yeast cell in a xylose-S354, A361, L407, or N446 of Candida intermedia GXS1 protein.

Embodiment P 8

The recombinant xylose transporter protein of any one of embodiments P 1 to 5, wherein said glucose mitigation mutation is within a protein domain corresponding to transmembrane 8 of Candida intermedia GXS1 protein.

Embodiment P 9

The recombinant xylose transporter protein of any one of embodiments P 1 to 5, or embodiment P 8, wherein said glucose mitigation mutation is at a position corresponding N326 of Candida intermedia GXS1 protein.

Embodiment P 10

The recombinant xylose transporter protein of embodiment P 9, wherein said glucose mitigation mutation is a N326S mutation.

Embodiment P 11

A recombinant yeast cell comprising a recombinant xylose transporter protein of any one of embodiments P 1 to 20 10

Embodiment P 12

The recombinant yeast cell of embodiment P 11, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 10% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment P 13

The recombinant yeast cell of embodiment P 11, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 20% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment P 14

The recombinant yeast cell of embodiment P 11, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 30% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment P 15

The recombinant yeast cell of embodiment P 11, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 40% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment P 16

The recombinant yeast cell of embodiment P 11, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 50% of the growth ⁵⁵ rate of said recombinant yeast cell in a xylose growth media.

Embodiment P 17

The recombinant yeast cell of embodiment P 11, wherein glucose growth media is at least about 60% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment P 18

The recombinant yeast cell of embodiment P 11, wherein the growth rate of said recombinant yeast cell in a xylose-

40

45

50

55

glucose growth media is at least about 70% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment P 19

The recombinant yeast cell of embodiment P 11, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 80% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment P 20

The recombinant yeast cell of embodiment P 11, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 90% of the growth ¹⁵ rate of said recombinant yeast cell in a xylose growth media.

Embodiment P 21

The recombinant yeast cell of embodiment P 11, wherein ²⁰ the growth rate of said recombinant yeast cell in a xylose-glucose growth media is at least about 100% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment P 22

The recombinant yeast cell of embodiment P 11, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 110% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment P 23

The recombinant yeast cell of embodiment P 11, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 120% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment P 24

The recombinant yeast cell of any one of embodiments P 11 to 23, wherein said xylose-glucose growth media comprises about 0.05 g/L to about 20 g/L glucose.

Embodiment P 25

The recombinant yeast cell of any one of embodiments P 11 to 24, wherein said xylose-glucose growth media comprises about 2.5 g/L glucose.

Embodiment P 26

The recombinant yeast cell of any one of embodiments P 11 to 25, wherein said xylose-glucose growth media comprises about 5 g/L glucose.

Embodiment P 27

The recombinant yeast cell of any one of embodiments P 11 to 26, wherein said xylose-glucose growth media com- 60 prises about 10 g/L glucose.

Embodiment P 28

The recombinant yeast cell of any one of embodiments P 65 11 to 27, wherein said xylose-glucose growth media comprises about 20 g/L glucose.

Embodiment P 29

The recombinant yeast cell of any one of embodiments P 11 to 28, wherein said xylose-glucose growth media comprises about 0.05 g/L to about 300 g/L xylose.

Embodiment P 30

The recombinant yeast cell of any one of embodiments P 11 to 29, wherein said xylose growth media comprises about 0.05 g/L to about 300 g/L xylose.

Embodiment P 31

The recombinant yeast cell of any one of embodiments P 11 to 30, wherein said xylose growth media comprises about 20 g/L xylose.

Embodiment P 32

A method of transporting xylose into a recombinant yeast cell, said method comprising: i) contacting a recombinant 25 yeast cell with a xylose compound, wherein said recombinant yeast cell comprises a recombinant xylose transporter protein, said recombinant xylose transporter protein comprising a xylose transporter motif sequence and a glucose mitigation mutation; and ii) allowing said recombinant 30 xylose transporter protein to transport said xylose compound into said recombinant yeast cell.

Embodiment P 33

The method of embodiment P 32, wherein said xylose transporter motif sequence corresponds to amino acid residue positions 36, 37, 38, 39, 40, and 41 of *Candida intermedia* GXS1 protein, and wherein said xylose transporter motif sequence is -G-G/F-X¹-X²-X³-G-; wherein, X¹ is D, C, G, H, I, L, or F; X² is A, D, C, E, G, H, or I; and X³ is N, C, Q, F, G, L, M, S, T, or P.

Embodiment P 34

The method of embodiment P 32 or embodiment P 33, wherein said xylose transporter motif sequence is -G-G-F-I-M-G- (SEQ ID NO:107), -G-F-F-I-M-G- (SEQ ID NO:108), -G-G-F-I-S-G- (SEQ ID NO:109), -G-F-F-I-S-G-(SEQ ID NO:110), -G-G-F-I-T-G- (SEQ ID NO:111), -G-F-F-I-T-G- (SEQ ID NO:112), -G-G-F-L-M-G- (SEQ ID NO:113), -G-F-F-L-M-G- (SEQ ID NO:114), -G-G-F-L-S-G- (SEQ ID NO:115), -G-F-F-L-S-G- (SEQ ID NO:116), -G-G-F-L-T-G- (SEQ ID NO:117), -G-F-F-L-T-G- (SEQ ID NO:118), -G-G-F-H-M-G- (SEQ ID NO:119), -G-F-F-H-M-G- (SEQ ID NO:120), -G-G-F-H-S-G- (SEQ ID NO:121), -G-F-F-H-S-G- (SEQ ID NO:122), -G-G-F-H-T-G- (SEQ ID NO:123) or -G-F-F-H-T-G- (SEQ ID NO:124).

Embodiment P 35

The method of any one of embodiments P 32 to 34, wherein said xylose transporter motif sequence is -G-G-F-I-M-G- (SEQ ID NO:107), -G-F-F-I-M-G- (SEQ ID NO:108), -G-G-F-I-S-G- (SEQ ID NO:109), or -G-F-F-I-S-G- (SEQ ID NO:110).

50

55

Embodiment P 36

The method of any one of embodiments P 32 to 35, wherein said xylose transporter motif sequence is -G-G-F-I-M-G- (SEQ ID NO:107).

Embodiment P 37

The method of any one of embodiments P 32 to 36, wherein said glucose mitigation mutation is within a protein domain corresponding to transmembrane 9 of *Candida*¹⁰ *intermedia* GXS1 protein.

Embodiment P 38

The method of any one of embodiments P 32 to 37, ¹⁵ wherein said glucose mitigation mutation is at a position corresponding to K155, N225, S354, A361, L407, or N446 of *Candida intermedia* GXS1 protein.

Embodiment P 39

The method of any one of embodiments P 32 to 36, wherein said glucose mitigation mutation is within a protein domain corresponding to transmembrane 8 of *Candida intermedia* GXS1 protein. 25

Embodiment P 40

The method of any one of embodiments P 32 to 36, or embodiment P 39, wherein said glucose mitigation mutation is at a position corresponding N326 of *Candida intermedia* ³⁰ GXS1 protein.

Embodiment P 41

The method of embodiment P 40, wherein said glucose 35 mitigation mutation is a N326S mutation.

Embodiment P 42

The method of any one of embodiments P 32 to 41, $_{40}$ wherein said recombinant yeast cell metabolizes said xylose compound.

Embodiment P 43

The method of any one of embodiments P 32 to 42, ⁴⁵ wherein said recombinant yeast cell converts said xylose compound to a biofuel.

Embodiment P 44

The method of any one of embodiments P 32 to 43, wherein said xylose compound forms part of lignocellulosic biomass, hemicellulose, or xylan.

Embodiment P 45

The method of any one of embodiments P 32 to 44, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 10% of the rate said recom- ⁶⁰ binant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment P 46

The method of any one of embodiments P 32 to 44, wherein said recombinant xylose transporter transports said

xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 20% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment P 47

The method of any one of embodiments P 32 to 44, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 30% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment P 48

The method of any one of embodiments P 32 to 44, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 40% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment P 49

The method of any one of embodiments P 32 to 44, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 50% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment P 50

The method of any one of embodiments P 32 to 44, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 60% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment P 51

The method of any one of embodiments P 32 to 44, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 70% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment P 52

The method of any one of embodiments P 32 to 44, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 80% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment P 53

The method of any one of embodiments P 32 to 44, 65 wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 90% of the rate said recom-

20

binant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment P 54

The method of any one of embodiments P 32 to 44, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 100% of the rate said recombinant xylose transporter transports said xylose compound ¹⁰ into said yeast in a xylose growth media.

Embodiment P 55

The method of any one of embodiments P 32 to 44, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 110% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment P 56

The method of any one of embodiments P 32 to 44, ²⁵ wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 120% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment P 57

The method of any one of embodiments P 45 to 56, wherein said xylose-glucose growth media comprises about $_{35}$ 0.05 g/L to about 20 g/L glucose.

Embodiment P 58

The method of any one of embodiments P 45 to 57, 40 wherein said xylose-glucose growth media comprises about 2.5 g/L glucose.

Embodiment P 59

The method of any one of embodiments P 45 to 58, wherein said xylose-glucose growth media comprises about 5 g/L glucose.

Embodiment P 60

The method of any one of embodiments P 45 to 59, wherein said xylose-glucose growth media comprises about 10 g/L glucose.

Embodiment P 61

The method of any one of embodiments P 45 to 60, wherein said xylose-glucose growth media comprises about 20 g/L glucose.

Embodiment P 62

The method of any one of embodiments P 45 to 61, 65 wherein said xylose-glucose growth media comprises about 0.05 g/L to about 300 g/L xylose.

Embodiment P 63

The method of any one of embodiments P 45 to 62, wherein said xylose growth media comprises about 0.05 g/L to about 300 g/L xylose.

Embodiment P 64

The method of any one of embodiments P 45 to 63, wherein said xylose growth media comprises about 20 g/L xylose.

Embodiment P 65

The method of any one of embodiments P 32 to 64, ¹⁵ wherein said recombinant xylose transporter protein transports said xylose compound into said recombinant yeast cell in a xylose-glucose growth media growth media at a rate of at least 5 nmol min⁻¹ gDCW⁻¹.

Embodiment P 66

A nucleic acid encoding the recombinant xylose transporter protein of one of embodiments P 1 to 10.

VII. Further Embodiments

Embodiment 1

A recombinant xylose transporter protein comprising a xylose transporter motif sequence and a glucose mitigation ³⁰ mutation.

Embodiment 2

The recombinant xylose transporter protein of embodiment 1, wherein said xylose transporter motif sequence corresponds to amino acid residue positions 36, 37, 38, 39, 40, and 41 of *Candida intermedia* GXS1 protein.

Embodiment 3

The recombinant xylose transporter protein of embodiment 1 or embodiment 2, wherein said xylose transporter motif sequence is -G-G/F-X¹-X²-X³-G-; wherein, X¹ is D, C, G, H, I, L, or F; X² is A, D, C, E, G, H, or I; and X³ is ⁴⁵ N, C, Q, F, G, L, M, S, T, or P.

Embodiment 4

The recombinant xylose transporter protein of one of
embodiments 1-3, wherein said xylose transporter motif
sequence is G-G-F-I-M-G- (SEQ ID NO:107), -G-F-F-I-M-G- (SEQ ID NO:108), -G-G-F-I-S-G- (SEQ ID NO:109),
-G-F-F-I-S-G- (SEQ ID NO:110), -G-G-F-I-T-G- (SEQ ID NO:111), -G-F-F-I-T-G- (SEQ ID NO:112), -G-G-F-L-MG- (SEQ ID NO:113), -G-F-F-L-M-G- (SEQ ID NO:114),
-G-G-F-L-S-G- (SEQ ID NO:115), -G-F-F-L-S-G- (SEQ ID NO:116), -G-G-F-L-T-G- (SEQ ID NO:115), -G-F-F-L-T-G- (SEQ ID NO:118), -G-G-F-H-M-G- (SEQ ID NO:119),
-G-F-F-H-M-G- (SEQ ID NO:120), -G-G-F-H-S-G- (SEQ ID NO:121), -G-F-F-H-S-G- (SEQ ID NO:122), -G-G-F-H-T-G- (SEQ ID NO:123) or -G-F-F-H-T-G- (SEQ ID NO:124).

Embodiment 5

The recombinant xylose transporter protein of any one of embodiments 2 to 4, wherein said xylose transporter motif

50

65

sequence is G-G-F-I-M-G- (SEQ ID NO:107), -G-F-F-I-M-G- (SEQ ID NO:108), -G-G-F-I-S-G- (SEQ ID NO:109), or -G-F-F-I-S-G- (SEQ ID NO:110).

Embodiment 6

The recombinant xylose transporter protein of any one of embodiments 1 to 5, wherein said xylose transporter motif sequence is -G-G-F-I-M-G- (SEQ ID NO:107).

Embodiment 7

The recombinant xylose transporter protein of any one of embodiments 1 to 6, wherein said glucose mitigation mutation is within a protein domain corresponding to transmembrane 9 of *Candida intermedia* GXS1 protein. ¹⁵

Embodiment 8

The recombinant xylose transporter protein of any one of embodiments 1 to 7, wherein said glucose mitigation mutation is at a position corresponding to K155, N225, S354, A361, L407, or N446 of *Candida intermedia* GXS1 protein.

Embodiment 9

The recombinant xylose transporter protein of any one of embodiments 1 to 6, wherein said glucose mitigation mutation is within a protein domain corresponding to transmembrane 8 of *Candida intermedia* GXS1 protein.

Embodiment 10

The recombinant xylose transporter protein of any one of embodiments 1 to 6, or embodiment 9, wherein said glucose mitigation mutation is at a position corresponding to N326 of *Candida intermedia* GXS1 protein. 35

Embodiment 11

The recombinant xylose transporter protein of embodiment 10, wherein said glucose mitigation mutation is a N326H mutation.

Embodiment 12

The recombinant xylose transporter protein of embodiment 10, wherein said glucose mitigation mutation is a N326S mutation.

Embodiment 13

The recombinant xylose transporter protein of any one of embodiments 1 to 6, wherein said glucose mitigation mutation is within a protein domain corresponding to transmembrane 5 of *Candida intermedia* GXS1 protein.

Embodiment 14

The recombinant xylose transporter protein of any one of embodiments 1 to 6, or embodiment 13, wherein said glucose mitigation mutation is within a protein domain ⁶⁰ corresponding to residue 160-179 of *Candida intermedia* GXS1 protein.

Embodiment 15

The recombinant xylose transporter protein of any one of embodiments 1 to 6, 13 or 14, wherein said glucose mitigation mutation is at a position corresponding to T170 or I171 of *Candida intermedia* GXS1 protein.

Embodiment 16

The recombinant xylose transporter protein of embodiment 15, wherein said glucose mitigation mutation is a T170N mutation.

Embodiment 17

The recombinant xylose transporter protein of embodiment 15, wherein said glucose mitigation mutation is a 1171F mutation.

Embodiment 18

The recombinant xylose transporter protein of one of embodiments 1-17 further comprising an amino acid deletion.

Embodiment 19

The recombinant xylose transporter protein of embodiment 18, wherein said deletion is within a protein domain corresponding to residue 497-522 of *Candida intermedia* GXS1 protein.

Embodiment 20

The recombinant xylose transporter protein of embodi-³⁰ ment 18 or embodiment 19, wherein said deletion is at least 10 amino acids in length.

Embodiment 21

A recombinant yeast cell comprising a recombinant xylose transporter protein of any one of embodiments 1 to 20

Embodiment 22

The recombinant yeast cell of embodiment 21, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 10% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment 23

The recombinant yeast cell of embodiment 21, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 20% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment 24

The recombinant yeast cell of embodiment 21, wherein the growth rate of said recombinant yeast cell in a xylose-⁵⁵ glucose growth media is at least about 30% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment 25

The recombinant yeast cell of embodiment 21, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 40% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment 26

The recombinant yeast cell of embodiment 21, wherein the growth rate of said recombinant yeast cell in a xylose-

10

20

25

35

50

55

60

glucose growth media is at least about 50% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment 27

The recombinant yeast cell of embodiment 21, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 60% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment 28

The recombinant yeast cell of embodiment 21, wherein the growth rate of said recombinant yeast cell in a xylose-15 glucose growth media is at least about 70% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment 29

The recombinant yeast cell of embodiment 21, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 80% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment 30

The recombinant yeast cell of embodiment 21, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 90% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment 31

The recombinant yeast cell of embodiment 21, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 100% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment 32

The recombinant yeast cell of embodiment 21, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 110% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment 33

The recombinant yeast cell of embodiment 21, wherein the growth rate of said recombinant yeast cell in a xyloseglucose growth media is at least about 120% of the growth rate of said recombinant yeast cell in a xylose growth media.

Embodiment 34

The recombinant yeast cell of any one of embodiments 21 to 33, wherein said xylose-glucose growth media comprises about 0.05 g/L to about 20 g/L glucose.

Embodiment 35

The recombinant yeast cell of any one of embodiments 21 65 to 34, wherein said xylose-glucose growth media comprises about 2.5 g/L glucose.

100

Embodiment 36

The recombinant yeast cell of any one of embodiments 21 to 35, wherein said xylose-glucose growth media comprises about 5 g/L glucose.

Embodiment 37

The recombinant yeast cell of any one of embodiments 21 to 36, wherein said xylose-glucose growth media comprises about 10 g/L glucose.

Embodiment 38

The recombinant yeast cell of any one of embodiments 21 to 37, wherein said xylose-glucose growth media comprises about 20 g/L glucose.

Embodiment 39

The recombinant yeast cell of any one of embodiments 21 to 38, wherein said xylose-glucose growth media comprises about 0.05 g/L to about 300 g/L xylose.

Embodiment 40

The recombinant yeast cell of any one of embodiments 21 to 39, wherein said xylose growth media comprises about 0.05 g/L to about 300 g/L xylose.

Embodiment 41

The recombinant yeast cell of any one of embodiments 21 to 40, wherein said xylose growth media comprises about 20 g/L xylose.

Embodiment 42

A method of transporting xylose into a recombinant yeast 40 cell, said method comprising: i) contacting a recombinant yeast cell with a xylose compound, wherein said recombinant yeast cell comprises a recombinant xylose transporter protein, said recombinant xylose transporter protein comprising a xylose transporter motif sequence and a glucose 45 mitigation mutation; and ii) allowing said recombinant xylose transporter protein to transport said xylose compound into said recombinant yeast cell.

Embodiment 43

The method of embodiment 42, wherein said xylose transporter motif sequence corresponds to amino acid residue positions 36, 37, 38, 39, 40, and 41 of *Candida intermedia* GXS1 protein.

Embodiment 44

The method of embodiment 42 or embodiment 43, wherein said xylose transporter motif sequence is -G-G/F- X^1 - X^2 - X^3 -G-; wherein, X^1 is D, C, G, H, I, L, or F; X^2 is A, D, C, E, G, H, or I; and X^3 is N, C, Q, F, G, L, M, S, T, or P.

Embodiment 45

The method of one of embodiments 42-44, wherein said xylose transporter motif sequence is -G-G-F-I-M-G- (SEQ

ID NO:107), -G-F-F-I-M-G- (SEQ ID NO:108), -G-G-F-I-S-G- (SEQ ID NO:109), -G-F-F-I-S-G- (SEQ ID NO:110), -G-G-F-I-T-G- (SEQ ID NO:111), -G-F-F-I-T-G- (SEQ ID NO:112), -G-G-F-L-M-G- (SEQ ID NO:113), -G-F-F-L-M-G- (SEQ ID NO:114), -G-G-F-L-S-G- (SEQ ID NO:115), 5-G-F-F-L-S-G- (SEQ ID NO:116), -G-G-F-L-T-G- (SEQ ID NO:117), -G-F-F-L-T-G- (SEQ ID NO:118), -G-G-F-H-M-G- (SEQ ID NO:119), -G-F-F-H-M-G- (SEQ ID NO:120), -G-G-F-H-S-G- (SEQ ID NO:121), -G-F-F-H-S-G- (SEQ ID NO:122), -G-G-F-H-T-G- (SEQ ID NO:123) or -G-F-F- 10 H-T-G- (SEQ ID NO:124).

Embodiment 46

The method of any one of embodiments 42 to 45, wherein said xylose transporter motif sequence is -G-G-F-I-M-G-(SEQ ID NO:107), -G-F-F-I-M-G- (SEQ ID NO:108), -G-G-F-I-S-G- (SEQ ID NO:109), or -G-F-F-I-S-G- (SEQ ID NO:110).

Embodiment 47

The method of any one of embodiments 42 to 46, wherein said xylose transporter motif sequence is -G-G-F-I-M-G- 25 (SEQ ID NO:107).

Embodiment 48

The method of any one of embodiments 42 to 47, wherein said glucose mitigation mutation is within a protein domain corresponding to transmembrane 9 of *Candida intermedia* GXS1 protein.

Embodiment 49

The method of any one of embodiments 42 to 48, wherein said glucose mitigation mutation is at a position corresponding to K155, N225, S354, A361, L407, or N446 of *Candida* 40 *intermedia* GXS1 protein.

Embodiment 50

The method of any one of embodiments 42 to 47, wherein said glucose mitigation mutation is within a protein domain corresponding to transmembrane 8 of *Candida intermedia* GXS1 protein.

Embodiment 51

The method of any one of embodiments 42 to 47, or embodiment 50, wherein said glucose mitigation mutation is at a position corresponding N326 of *Candida intermedia* 55 GXS1 protein.

Embodiment 52

The method of embodiment 51, wherein said glucose 60 mitigation mutation is a N326H mutation.

Embodiment 53

The method of embodiment 51, wherein said glucose mitigation mutation is a N326S mutation.

102

Embodiment 54

The method of any one of embodiments 42 to 47, wherein said glucose mitigation mutation is within a protein domain corresponding to transmembrane 5 of *Candida intermedia* GXS1 protein.

Embodiment 55

The method of one of embodiments 42 to 47, or embodiment 54, wherein said glucose mitigation mutation is within a protein domain corresponding to residue 160-179 of *Candida intermedia* GXS1 protein.

Embodiment 56

The method of embodiment 54 or 55, wherein said glucose mitigation mutation is at a position corresponding to 20 T170 or I171 of *Candida intermedia* GXS1 protein.

Embodiment 57

The method of embodiment 56, wherein said glucose mitigation mutation is a T170N mutation.

Embodiment 58

The method of embodiment 56, wherein said glucose mitigation mutation is a I171F mutation.

Embodiment 59

The method of any one of embodiments 42 to 58, further comprising an amino acid deletion.

Embodiment 60

The method of embodiment 59, wherein said deletion is within a protein domain corresponding to residue 497-522 of *Candida intermedia* GXS1 protein.

Embodiment 61

The method of any one of embodiments 42 to 53, wherein said recombinant yeast cell metabolizes said xylose compound.

Embodiment 62

⁵⁰ The method of any one of embodiments 42 to 61, wherein said recombinant yeast cell converts said xylose compound to a biofuel.

Embodiment 63

The method of any one of embodiments 42 to 62, wherein said xylose compound forms part of lignocellulosic biomass, hemicellulose, or xylan.

Embodiment 64

The method of any one of embodiments 42 to 63, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 10% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

15

20

65

103

Embodiment 65

The method of any one of embodiments 42 to 63, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media ⁵ at a rate at least about 20% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment 66

The method of any one of embodiments 42 to 63, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 30% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment 67

The method of any one of embodiments 42 to 63, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 40% of the rate said recombinant xylose transporter transports said xylose compound into said ²⁵ yeast in a xylose growth media.

Embodiment 68

The method of any one of embodiments 42 to 63, wherein ³⁰ said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 50% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media. ³⁵

Embodiment 69

The method of any one of embodiments 42 to 63, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 60% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment 70

The method of any one of embodiments 42 to 63, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media ⁵⁰ at a rate at least about 70% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment 71

The method of any one of embodiments 42 to 63, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 80% of the rate said recombinant ⁶⁰ xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment 72

The method of any one of embodiments 42 to 63, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 90% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment 73

The method of any one of embodiments 42 to 63, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 100% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment 74

The method of any one of embodiments 42 to 63, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 110% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment 75

The method of any one of embodiments 42 to 63, wherein said recombinant xylose transporter transports said xylose compound into said yeast in a xylose-glucose growth media at a rate at least about 120% of the rate said recombinant xylose transporter transports said xylose compound into said yeast in a xylose growth media.

Embodiment 76

The method of any one of embodiments 64 to 75, wherein said xylose-glucose growth media comprises about 0.05 g/L to about 20 g/L glucose.

Embodiment 77

The method of any one of embodiments 64 to 76, wherein said xylose-glucose growth media comprises about 2.5 g/L ₄₀ glucose.

Embodiment 78

The method 1 of any one of embodiments 64 to 77, wherein said xylose-glucose growth media comprises about ⁴⁵ 5 g/L glucose.

Embodiment 79

The method of any one of embodiments 64 to 78, wherein said xylose-glucose growth media comprises about 10 g/L glucose.

Embodiment 80

The method of any one of embodiments 64 to 79, wherein ⁵⁵ said xylose-glucose growth media comprises about 20 g/L glucose.

Embodiment 81

The method of any one of embodiments 64 to 80, wherein said xylose-glucose growth media comprises about 0.05 g/L to about 300 g/L xylose.

Embodiment 82

The method of any one of embodiments 64 to 81, wherein said xylose growth media comprises about 0.05 g/L to about 300 g/L xylose.

SEQUENCE LISTING

105

Embodiment 83

The method of any one of embodiments 64 to 82, wherein said xylose growth media comprises about 20 g/L xylose.

Embodiment 84

The method of any one of embodiments 42 to 83, wherein said recombinant xylose transporter protein transports said

<160> NUMBER OF SEQ ID NOS: 130 <210> SEO ID NO 1 <211> LENGTH: 522 <212> TYPE: PRT <213> ORGANISM: Candida intermedia <400> SEOUENCE: 1 Met Gly Leu Glu Asp Asn Arg Met Val Lys Arg Phe Val Asn Val Gly 5 10 Glu Lys Lys Ala Gly Ser Thr Ala Met Ala Ile Ile Val Gly Leu Phe 20 25 30 Ala Ala Ser Gly Gly Val Leu Phe Gly Tyr Asp Thr Gly Thr Ile Ser 35 40 Gly Val Met Thr Met Asp Tyr Val Leu Ala Arg Tyr Pro Ser Asn Lys 50 55 60 His Ser Phe Thr Ala Asp Glu Ser Ser Leu Ile Val Ser Ile Leu Ser 70 75 Val Gly Thr Phe Phe Gly Ala Leu Cys Ala Pro Phe Leu Asn Asp Thr 85 90 Leu Gly Arg Arg Trp Cys Leu Ile Leu Ser Ala Leu Ile Val Phe Asn 105 110 100 Ile Gly Ala Ile Leu Gln Val Ile Ser Thr Ala Ile Pro Leu Leu Cys 120 115 125 Ala Gly Arg Val Ile Ala Gly Phe Gly Val Gly Leu Ile Ser Ala Thr 135 140 130
 Ile Pro Leu Tyr Gln Ser Glu Thr Ala Pro Lys Trp Ile Arg Gly Ala

 145
 150
 155
 160
 Ile Val Ser Cys Tyr Gln Trp Ala Ile Thr Ile Gly Leu Phe Leu Ala 165 170 Ser Cys Val Asn Lys Gly Thr Glu His Met Thr Asn Ser Gly Ser Tyr 185 180 190 Arg Ile Pro Leu Ala Ile Gln Cys Leu Trp Gly Leu Ile Leu Gly Ile 195 200 205 Gly Met Ile Phe Leu Pro Glu Thr Pro Arg Phe Trp Ile Ser Lys Gly 210 215 220 Asn Gln Glu Lys Ala Ala Glu Ser Leu Ala Arg Leu Arg Lys Leu Pro 230 225 235 240 Ile Asp His Pro Asp Ser Leu Glu Glu Leu Arg Asp Ile Thr Ala Ala 245 250 255 Tyr Glu Phe Glu Thr Val Tyr Gly Lys Ser Ser Trp Ser Gln Val Phe 265 260 270 Ser His Lys Asn His Gln Leu Lys Arg Leu Phe Thr Gly Val Ala Ile 280 275 285 Gln Ala Phe Gln Gln Leu Thr Gly Val Asn Phe Ile Phe Tyr Tyr Gly 295 290 300

xylose compound into said recombinant yeast cell in a xylose-glucose growth media growth media at a rate of at least 5 nmol min^{-1} gDCW⁻¹

Embodiment 85

A nucleic acid encoding the recombinant xylose transporter protein of one of embodiments 1 to 21.

-continued

Thr 305	Thr	Phe	Phe	Lys	Arg 310	Ala	Gly	Val	Asn	Gly 315	Phe	Thr	Ile	Ser	Leu 320
Ala	Thr	Asn	Ile	Val 325	Asn	Val	Gly	Ser	Thr 330	Ile	Pro	Gly	Ile	Leu 335	Leu
Met	Glu	Val	Leu 340	Gly	Arg	Arg	Asn	Met 345	Leu	Met	Gly	Gly	Ala 350	Thr	Gly
Met	Ser	Leu 355	Ser	Gln	Leu	Ile	Val 360	Ala	Ile	Val	Gly	Val 365	Ala	Thr	Ser
Glu	Asn 370	Asn	Lys	Ser	Ser	Gln 375	Ser	Val	Leu	Val	Ala 380	Phe	Ser	Суз	Ile
Phe 385	Ile	Ala	Phe	Phe	Ala 390	Ala	Thr	Trp	Gly	Pro 395	Суз	Ala	Trp	Val	Val 400
Val	Gly	Glu	Leu	Phe 405	Pro	Leu	Arg	Thr	Arg 410	Ala	Lys	Ser	Val	Ser 415	Leu
Суз	Thr	Ala	Ser 420	Asn	Trp	Leu	Trp	Asn 425	Trp	Gly	Ile	Ala	Tyr 430	Ala	Thr
Pro	Tyr	Met 435	Val	Asp	Glu	Asp	Lys 440	Gly	Asn	Leu	Gly	Ser 445	Asn	Val	Phe
Phe	Ile 450	Trp	Gly	Gly	Phe	Asn 455	Leu	Ala	Суз	Val	Phe 460	Phe	Ala	Trp	Tyr
Phe 465	Ile	Tyr	Glu	Thr	Lys 470	Gly	Leu	Ser	Leu	Glu 475	Gln	Val	Asp	Glu	Leu 480
Tyr	Glu	His	Val	Ser 485	Lys	Ala	Trp	Lys	Ser 490	Lys	Gly	Phe	Val	Pro 495	Ser
Lys	His	Ser	Phe 500	Arg	Glu	Gln	Val	Asp 505	Gln	Gln	Met	Asp	Ser 510	Lys	Thr
Glu	Ala	Ile 515	Met	Ser	Glu	Glu	Ala 520	Ser	Val						
<210 <211 <211 <211 <211 <220 <223	0> SI L> LI 2> T 3> OI 0> FI 3> O	EQ II ENGTH YPE: RGANI EATUH FHER	D NO H: 52 PRT ISM: RE: INF(2 22 Art: DRMA	ific: FION	ial : : Syn	seque	ence tic p	poly	pept:	ide				
<400)> SI	EQUEI	ICE :	2											
Met 1	Gly	Leu	Glu	Asp 5	Asn	Arg	Met	Val	Lys 10	Arg	Phe	Val	Asn	Val 15	Gly
Glu	Lys	Lys	Ala 20	Gly	Ser	Thr	Ala	Met 25	Ala	Ile	Ile	Val	Gly 30	Leu	Phe
Ala	Ala	Ser 35	Gly	Gly	Phe	Ile	Met 40	Gly	Tyr	Asp	Thr	Gly 45	Thr	Ile	Ser
Gly	Val 50	Met	Thr	Met	Asp	Tyr 55	Val	Leu	Ala	Arg	Tyr 60	Pro	Ser	Asn	Lys
His 65	Ser	Phe	Thr	Ala	Asp 70	Glu	Ser	Ser	Leu	Ile 75	Val	Ser	Ile	Leu	Ser 80
Val	Gly	Thr	Phe	Phe 85	Gly	Ala	Leu	Суз	Ala 90	Pro	Phe	Leu	Asn	Asp 95	Thr
Leu	Gly	Arg	Arg 100	Trp	Суа	Leu	Ile	Leu 105	Ser	Ala	Leu	Ile	Val 110	Phe	Asn
Ile	Gly	Ala 115	Ile	Leu	Gln	Val	Ile 120	Ser	Thr	Ala	Ile	Pro 125	Leu	Leu	Сув
Ala	Gly 130	Arg	Val	Ile	Ala	Gly 135	Phe	Gly	Val	Gly	Leu 140	Ile	Ser	Ala	Thr

-continued

Ile 145	Pro	Leu	Tyr	Gln	Ser 150	Glu	Thr	Ala	Pro	Lys 155	Trp	Ile	Arg	Gly	Ala 160	
Ile	Val	Ser	Сүв	Tyr 165	Gln	Trp	Ala	Ile	Thr 170	Ile	Gly	Leu	Phe	Leu 175	Ala	
Ser	Cys	Val	Asn 180	Lys	Gly	Thr	Glu	His 185	Met	Thr	Asn	Ser	Gly 190	Ser	Tyr	
Arg	Ile	Pro 195	Leu	Ala	Ile	Gln	Cys 200	Leu	Trp	Gly	Leu	Ile 205	Leu	Gly	Ile	
Gly	Met 210	Ile	Phe	Leu	Pro	Glu 215	Thr	Pro	Arg	Phe	Trp 220	Ile	Ser	Lys	Gly	
Asn 225	Gln	Glu	Гла	Ala	Ala 230	Glu	Ser	Leu	Ala	Arg 235	Leu	Arg	Lys	Leu	Pro 240	
Ile	Asp	His	Pro	Asp 245	Ser	Leu	Glu	Glu	Leu 250	Arg	Asp	Ile	Thr	Ala 255	Ala	
Tyr	Glu	Phe	Glu 260	Thr	Val	Tyr	Gly	Lys 265	Ser	Ser	Trp	Ser	Gln 270	Val	Phe	
Ser	His	Lys 275	Asn	His	Gln	Leu	Lys 280	Arg	Leu	Phe	Thr	Gly 285	Val	Ala	Ile	
Gln	Ala 290	Phe	Gln	Gln	Leu	Thr 295	Gly	Val	Asn	Phe	Ile 300	Phe	Tyr	Tyr	Gly	
Thr 305	Thr	Phe	Phe	ГЛа	Arg 310	Ala	Gly	Val	Asn	Gly 315	Phe	Thr	Ile	Ser	Leu 320	
Ala	Thr	Asn	Ile	Val 325	Asn	Val	Gly	Ser	Thr 330	Ile	Pro	Gly	Ile	Leu 335	Leu	
Met	Glu	Val	Leu 340	Gly	Arg	Arg	Asn	Met 345	Leu	Met	Gly	Gly	Ala 350	Thr	Gly	
Met	Ser	Leu 355	Ser	Gln	Leu	Ile	Val 360	Ala	Ile	Val	Gly	Val 365	Ala	Thr	Ser	
Glu	Asn 370	Asn	Lys	Ser	Ser	Gln 375	Ser	Val	Leu	Val	Ala 380	Phe	Ser	Cys	Ile	
Phe 385	Ile	Ala	Phe	Phe	Ala 390	Ala	Thr	Trp	Gly	Pro 395	Суз	Ala	Trp	Val	Val 400	
Val	Gly	Glu	Leu	Phe 405	Pro	Leu	Arg	Thr	Arg 410	Ala	Lys	Ser	Val	Ser 415	Leu	
Cys	Thr	Ala	Ser 420	Asn	Trp	Leu	Trp	Asn 425	Trp	Gly	Ile	Ala	Tyr 430	Ala	Thr	
Pro	Tyr	Met 435	Val	Asp	Glu	Asp	Lys 440	Gly	Asn	Leu	Gly	Ser 445	Asn	Val	Phe	
Phe	Ile 450	Trp	Gly	Gly	Phe	Asn 455	Leu	Ala	Суз	Val	Phe 460	Phe	Ala	Trp	Tyr	
Phe 465	Ile	Tyr	Glu	Thr	Lys 470	Gly	Leu	Ser	Leu	Glu 475	Gln	Val	Asp	Glu	Leu 480	
Tyr	Glu	His	Val	Ser 485	Lys	Ala	Trp	Lys	Ser 490	Lys	Gly	Phe	Val	Pro 495	Ser	
Lys	His	Ser	Phe	Arg	Glu	Gln	Val	Asp	Gln	Gln	Met	Asp	Ser	Lys	Thr	
Glu	Ala	Ile	500 Met	Ser	Glu	Glu	Ala	Ser	Val				210			
		515					520									
<21 <21	0> SH 1> LH	EQ II ENGTH) NO H: 52	3 22												
<21 <21 <22	∠> T 3> OH 0> FH	i pe : RGANI EATUI	PKT ISM: RE:	Art	ific	ial :	seque	ence								
<22	3 > 0	THER	INF	ORMA'	TION	: Syı	nthe	ic 1	poly	pept	ide					

<400)> SH	EQUEN	ICE :	3											
Met 1	Gly	Leu	Glu	Asp 5	Asn	Arg	Met	Val	Lys 10	Arg	Phe	Val	Asn	Val 15	Gly
Glu	Lys	Lys	Ala 20	Gly	Ser	Thr	Ala	Met 25	Ala	Ile	Ile	Val	Gly 30	Leu	Phe
Ala	Ala	Ser 35	Gly	Gly	Phe	Ile	Met 40	Gly	Tyr	Asp	Thr	Gly 45	Thr	Ile	Ser
Gly	Val 50	Met	Thr	Met	Asp	Tyr 55	Val	Leu	Ala	Arg	Tyr 60	Pro	Ser	Asn	Lys
His 65	Ser	Phe	Thr	Ala	Asp 70	Glu	Ser	Ser	Leu	Ile 75	Val	Ser	Ile	Leu	Ser 80
Val	Gly	Thr	Phe	Phe 85	Gly	Ala	Leu	Суз	Ala 90	Pro	Phe	Leu	Asn	Asp 95	Thr
Leu	Gly	Arg	Arg 100	Trp	Сүз	Leu	Ile	Leu 105	Ser	Ala	Leu	Ile	Val 110	Phe	Asn
Ile	Gly	Ala 115	Ile	Leu	Gln	Val	Ile 120	Ser	Thr	Ala	Ile	Pro 125	Leu	Leu	Сүз
Ala	Gly 130	Arg	Val	Ile	Ala	Gly 135	Phe	Gly	Val	Gly	Leu 140	Ile	Ser	Ala	Thr
Ile 145	Pro	Leu	Tyr	Gln	Ser 150	Glu	Thr	Ala	Pro	Lys 155	Trp	Ile	Arg	Gly	Ala 160
Ile	Val	Ser	Cys	Tyr 165	Gln	Trp	Ala	Ile	Thr 170	Ile	Gly	Leu	Phe	Leu 175	Ala
Ser	Суз	Val	Asn 180	Lys	Gly	Thr	Glu	His 185	Met	Thr	Asn	Ser	Gly 190	Ser	Tyr
Arg	Ile	Pro 195	Leu	Ala	Ile	Gln	Cys 200	Leu	Trp	Gly	Leu	Ile 205	Leu	Gly	Ile
Gly	Met 210	Ile	Phe	Leu	Pro	Glu 215	Thr	Pro	Arg	Phe	Trp 220	Ile	Ser	Lys	Gly
Asn 225	Gln	Glu	Lys	Ala	Ala 230	Glu	Ser	Leu	Ala	Arg 235	Leu	Arg	ГЛа	Leu	Pro 240
Ile	Asp	His	Pro	Asp 245	Ser	Leu	Glu	Glu	Leu 250	Arg	Asp	Ile	Thr	Ala 255	Ala
Tyr	Glu	Phe	Glu 260	Thr	Val	Tyr	Gly	Lys 265	Ser	Ser	Trp	Ser	Gln 270	Val	Phe
Ser	His	Lys 275	Asn	His	Gln	Leu	Lys 280	Arg	Leu	Phe	Thr	Gly 285	Val	Ala	Ile
Gln	Ala 290	Phe	Gln	Gln	Leu	Thr 295	Gly	Val	Asn	Phe	Ile 300	Phe	Tyr	Tyr	Gly
Thr 305	Thr	Phe	Phe	Lys	Arg 310	Ala	Gly	Val	Asn	Gly 315	Phe	Thr	Ile	Ser	Leu 320
Ala	Thr	Asn	Ile	Val 325	His	Val	Gly	Ser	Thr 330	Ile	Pro	Gly	Ile	Leu 335	Leu
Met	Glu	Val	Leu 340	Gly	Arg	Arg	Asn	Met 345	Leu	Met	Gly	Gly	Ala 350	Thr	Gly
Met	Ser	Leu 355	Ser	Gln	Leu	Ile	Val 360	Ala	Ile	Val	Gly	Val 365	Ala	Thr	Ser
Glu	Asn 370	Asn	Lys	Ser	Ser	Gln 375	Ser	Val	Leu	Val	Ala 380	Phe	Ser	Суз	Ile
Phe 385	Ile	Ala	Phe	Phe	Ala 390	Ala	Thr	Trp	Gly	Pro 395	Cys	Ala	Trp	Val	Val 400
Val	Gly	Glu	Leu	Phe	Pro	Leu	Arg	Thr	Arg	Ala	Lys	Ser	Val	Ser	Leu

				405					410					415	
Сүз	Thr	Ala	Ser 420	Asn	Trp	Leu	Trp	Asn 425	Trp	Gly	Ile	Ala	Tyr 430	Ala	Thr
Pro	Tyr	Met 435	Val	Asp	Glu	Asp	Lys 440	Gly	Asn	Leu	Gly	Ser 445	Asn	Val	Phe
Phe	Ile 450	Trp	Gly	Gly	Phe	Asn 455	Leu	Ala	Суз	Val	Phe 460	Phe	Ala	Trp	Tyr
Phe 465	Ile	Tyr	Glu	Thr	Lys 470	Gly	Leu	Ser	Leu	Glu 475	Gln	Val	Asp	Glu	Leu 480
Tyr	Glu	His	Val	Ser 485	ГЛа	Ala	Trp	ГЛа	Ser 490	Lys	Gly	Phe	Val	Pro 495	Ser
Lys	His	Ser	Phe 500	Arg	Glu	Gln	Val	Asp 505	Gln	Gln	Met	Asp	Ser 510	Lys	Thr
Glu	Ala	Ile 515	Met	Ser	Glu	Glu	Ala 520	Ser	Val						
<210 <211 <211 <211 <2210 <220 <220	0> SI 1> LI 2> T 3> OI 0> FI 3> O	EQ II ENGTH YPE: RGANI EATUH THER	D NO H: 52 PRT ISM: RE: INFO	4 22 Art: DRMA	ific: TION	ial : Syn	sequ nthe	ence tic]	poly	pept	ide				
<400 Met	U> SI Gly	EQUE1 Leu	Glu	4 Asp	Asn	Arg	Met	Val	Lys	Arg	Phe	Val	Asn	Val	Gly
1 Glu	Lys	Lys	Ala	5 Gly	Ser	Thr	Ala	Met	10 Ala	Ile	Ile	Val	Gly	15 Leu	Phe
Ala	Ala	Ser	20 Glv	- Glv	Phe	Ile	Met.	25 Glv	Tvr	Asp	Thr	Glv	30 Thr	Ile	Ser
a	a	35 Mot	о⊥у т⊾	∪⊥у ма+	7	т	40	5±y	-y-	7.0D	тт	45 Pr-			1
GIY	Va1 50	Met	Thr	Met	Asp	Tyr 55	Val	Leu	Ala	Arg	fyr 60	Pro	Ser	Asn	ГЛа
His 65	Ser	Phe	Thr	Ala	Asp 70	Glu	Ser	Ser	Leu	Ile 75	Val	Ser	Ile	Leu	Ser 80
Val	Gly	Thr	Phe	Phe 85	Gly	Ala	Leu	Сүз	Ala 90	Pro	Phe	Leu	Asn	Asp 95	Thr
Leu	Gly	Arg	Arg 100	Trp	Суз	Leu	Ile	Leu 105	Ser	Ala	Leu	Ile	Val 110	Phe	Asn
Ile	Gly	Ala 115	Ile	Leu	Gln	Val	Ile 120	Ser	Thr	Ala	Ile	Pro 125	Leu	Leu	Сүз
Ala	Gly 130	Arg	Val	Ile	Ala	Gly 135	Phe	Gly	Val	Gly	Leu 140	Ile	Ser	Ala	Thr
Ile 145	Pro	Leu	Tyr	Gln	Ser 150	Glu	Thr	Ala	Pro	Lys 155	Trp	Ile	Arg	Gly	Ala 160
Ile	Val	Ser	Суз	Tyr 165	Gln	Trp	Ala	Ile	Asn 170	Ile	Gly	Leu	Phe	Leu 175	Ala
Ser	Суз	Val	Asn 180	ГЛа	Gly	Thr	Glu	His 185	Met	Thr	Asn	Ser	Gly 190	Ser	Tyr
Arg	Ile	Pro 195	Leu	Ala	Ile	Gln	Cys 200	Leu	Trp	Gly	Leu	Ile 205	Leu	Gly	Ile
Gly	Met 210	Ile	Phe	Leu	Pro	Glu 215	Thr	Pro	Arg	Phe	Trp 220	Ile	Ser	Lys	Gly
Asn	Gln	Glu	ГЛа	Ala	Ala	Glu	Ser	Leu	Ala	Arg	Leu	Arg	Lys	Leu	Pro
∠∠5 Ile	Asp	His	Pro	Asp	∠30 Ser	Leu	Glu	Glu	Leu	∠35 Ara	Asp	Ile	Thr	Ala	∠40 Ala
	~ P		0		~ ~ +		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								

_

245 250 255 Tyr Glu Phe Glu Thr Val Tyr Gly Zes Ser Sr Tr Ser Gln Val Phe Ser His Lyr Ann His Gln Leu Lyr Ann Phe The Gln Val Phe Gln Ala Phe Gln Gln Leu Tyr Gly Val Ann Phe The Phe Tyr Gly Gln Thr Phe Phe His Lyr Gly Ala Phe Tyr Gly Gln Thr Phe Phe His Lyr Ann Gly Ser Thr Fhe Tyr Gly Ala Thr Ann Lyr Ann Ann Tyr Gly Gly	_															
Tyr Glu Phe Glu Thr Val Tyr Gly Yar Phe Thr Ser Gln Gln Val Phe Thr Gly Val And Phe Thr T					245					250					255	
Ser. His Lys Ann His Clu Lys Arg Leu Pie	ту	r Glu	Phe	Glu 260	Thr	Val	Tyr	Gly	Lys 265	Ser	Ser	Trp	Ser	Gln 270	Val	Phe
Gin Ala Phe Gin Gin Leu Thr Giy Vai Asn Phe Jie Phe Tyr Tyr Giy Thr Thr Phe Phe Lyg Arg Ala Gly Vai Asn Giy Phe Thr IIe Ser Leu Jais Thr Asn IIe Vai Asn Vai Gly Ser Thr IIe Pro Gly IIe Leu Leu Jais Thr Asn IIe Vai Asn Vai Gly Ser Thr IIe Pro Gly Gly Ala Thr Gly Ala Thr Asn IIe Vai Cly Arg Arg An Met Leu Met Gly Gly Ala Thr Gly Met Gu Vai Leu Gly Arg Arg An Met Leu Met Gly Gly Ala Thr Gly Met Ser Leus Ser Gln Leu IIe Vai Ala IIe Vai Gly Vai An Thr Ser Glu Asn Asn Lys Ser Ser Gln Ser Vai Leu Vai Ala Phe Ser Cys IIe Jaro N Jaro Phe Ala Ala Thr Trp Gly Pro Cys Ala Trp Vai 400 Vai Gly Glu Leu Phe Pro Leu Arg Thr Arg Ala Lys Ser Vai Ser Vai 415 Cys Thr Ala Ser Asn Trp Leu Trp Asn Trp Gly IIe Ala Tyr Ala Thr 450 Phe IIe Trp Gly Gly Phe Asn Leu Ala Cys Vai Phe Phe Ala Trp Tyr 450 Phe He Trp Gly Gly Phe Asn Leu Ala Cys Vai Phe Phe Ala Trp Tyr 450 Phe He Ser Phe Alg Glu Asp Lys Ser Vai Ser Vai Ser Vai 450 Cys Thr Ala Ser Clu Glu Ala Trp Lys Ser Lys Gly Phe Vai Asp Ser Lys Thr 510 Glu Ala IIe Wet Ser Glu Glu Ala Ser Vai Ser Vai 510 Cys The Ser Phe Alg Glu Glu Ala Ser Vai Ser Vai 520 Cys Thr Ser Phe Alg Glu Glu Ala Ser Vai 520 Cys Thr Ser Phe Alg Glu Glu Ala Ser Vai 520 Cys The Her Ser Glu Glu Ala Ser Vai 520 Cys The Her Ser Glu Glu Ala Ser Vai 520 Cys The Her Ser Clu Glu Ala S	Se	r His	Lys 275	Asn	His	Gln	Leu	Lys 280	Arg	Leu	Phe	Thr	Gly 285	Val	Ala	Ile
The The Phe Lys Arg Ala Gly Val Asn Gly Phe The Ile Ser Leu 320 Ala The Asn Ile Val Asn Val Gly Ser The Ile Pro Gly Ile Leu Leu 325 Net Glu Val Leu Gly Arg Arg Asn Met Leu Met Gly Gly Ala The Gly 340 Ala The Ser Leu Ser Gln Leu Ile Val Ala Ile Val Gly Val Ala The Ser 365 Glu Asn Asn Lys Ser Ser Gln Ser Val Leu Val Ala Phe Ser Cys Ile 370 And Gly Glu Leu Phe Phe Ala Ala The Trp Gly Pro Cys Ala Trp Val Val 386 Phe Ile Ala Phe Phe Ala Ala The Trp Gly Pro Cys Ala Trp Val Val 400 Val Gly Glu Leu Phe Pro Leu Arg The Arg Ala Lys Ser Val Ser Leu 415 Cys The Ala Ser Asn Trp Leu Trp Asn Trp Gly Ile Ala Tyr Ala The 405 Phe Ile Trp Gly Gly Phe Asn Leu Ala Cys Val Phe Phe Ala Trp Try 440 Val Gly Glu Leu 405 Cys The Ala Ser Lys Ala Trp Leu Ser Leu Glu Gln Val Asp Glu Leu 405 Phe 1le Trp Gly Gly Phe Asn Leu Ala Cys Val Phe Phe Ala Trp Try 445 Phe Ile Trp Glu The Lys Gly Leu Ser Leu Glu Gln Val Asp Glu Leu 405 Cys The Ala Ser Lys Ala Trp Lys Ser Lys Gly Phe Val Pro Ser 485 Lys His Ser Phe Arg Glu Gln Val Asp Gln Gln Met Asp Ser Lys The 500 Solut Ala Ile Met Ser Glu Glu Ala Ser Val 525 Clu Ala Ile Met Ser Glu Glu Ala Ser Val 525 Clu Ala Ile Met Ser Glu Glu Ala Ser Val 525 Clu Ala Ile Met Ser Glu Glu Ala Ser Val 525 Clu First Solut Ser Cys Ala Trp Lys 625 Val First 630 Clu Ala Ile Met Ser Glu Glu Ala Ser Val 525 Clu Ala Ile Met Ser Glu Glu Ala Ser Val 525 Clu Ala Ile Met Ser Glu Glu Ala Ser Val 525 Clu Ala Ile Met Ser Glu Glu Ala Ser Val 525 Clu Val NFTH: 496 Clu Chrotter: 496 Clu Chrotter: 496 Clu Chrotter Clu Chrots 5 Clu Chrotter Clu Chrots 5 Clu Lys Lys Ala Gly Ser The Ala Met Val Lys Arg Phe Val Asn Val Gly Leu Phe 40 Clu Lys Lys Ala Gly Ser The Ala 617 Try Asp Thr Gly Thr Ile Ser 35 Glu Ala Ala Ser Cly Gly Phe Ile Met Gly Tyr Asp Thr Gly Thr Ile Ser 35 Glu Val Met Thr Met Asp Tyr Val Leu Ala Arg Tyr Pro Ser Asn Lys 50 Cla Gly Val Met Thr Met Asp Tyr Val Leu Ala Arg Tyr For Ser Asn Lys 50 Cla Gly Thr Phe Phe Gly Ala Lys Cys Ala Pro Phe Leu Asn Asp Thr	Gl	n Ala 290	Phe	Gln	Gln	Leu	Thr 295	Gly	Val	Asn	Phe	Ile 300	Phe	Tyr	Tyr	Gly
Ala Thr An lle Val An Val Gly Se Int lle Pro Gly lle Leu $\frac{1}{325}$ Met Glu Val Leu Gly Arg Arg An Met Leu Met Gly Gly Ala Thr Gly $\frac{1}{350}$ Met Ser Leu Ser Gln Leu Ile Val Ala Ile Val Gly Vat Ala Thr Ser $\frac{3}{350}$ and $\frac{1}{350}$ Val Leu Val Ala Phe Ser Cyr Ile $\frac{3}{370}$ Ner Lyr Ser Ser Gln Ser Val Leu Val Ala Phe Ser Cyr Ile $\frac{3}{370}$ Ner Lyr Ser Ser Gln Ser Val Leu Val Ala Phe Ser Cyr Ile $\frac{3}{370}$ Ner Lyr Ser Ser Gln Ser Val Leu Val Ala Phe Ser Cyr Ile $\frac{3}{370}$ Ner Arg Ala Phe Phe Ala Ala Thr Tr Gly Pro Cyr Ala Tr Val Val 400 Val Gly Glu Leu Phe Pro Leu Arg Thr Arg Ala Lyr Ser Val Ser Leu $\frac{4}{405}$ Ner Tr Ala Ser Arg Tr Leu Tr An Tr Gly Ile Ala Tyr Ala Thr $\frac{4}{420}$ Ner Val Arg Glu Arg Lyr Gly Arg Leu Gly Gly Ser Val Ser Leu $\frac{4}{415}$ Ner Tr Mat Arg Glu Arg Lyr Gly Arg Leu Gly Gly Arg Leu Marg Arg Arg Arg Ner Val Phe Phe Ala Arg Cyr Gly Arg Leu Gly Gly Arg Leu $\frac{4}{450}$ Ner Val Phe $\frac{1}{450}$ Ner Val Arg Glu Arg Lyr Gly Arg Leu Gly Gly Arg Leu $\frac{1}{450}$ Arg Cu Leu $\frac{4}{450}$ Ner Val Arg Glu Arg Lyr Gly Arg Leu Glu Glu Val Arg Glu Leu $\frac{1}{450}$ Arg Cu Leu $\frac{1}{450}$ Arg Cu Thr Lyr Gly Leu Ser Leu Glu Glu Nal Arg Glu Leu $\frac{1}{450}$ Ner Val $\frac{1}{50}$ Ner Val	Th 30	r Thr 5	Phe	Phe	Lys	Arg 310	Ala	Gly	Val	Asn	Gly 315	Phe	Thr	Ile	Ser	Leu 320
Met Glu Val Leu Glu Val Arg Arg Arg Arg Jate Met Glu Val Jate The Glu Jate Jate Glu Val Jate The Jate	Al	a Thr	Asn	Ile	Val 325	Asn	Val	Gly	Ser	Thr 330	Ile	Pro	Gly	Ile	Leu 335	Leu
Met Ser Leu Ser Gln Leu Ile Val Ala Pie Sie Cys Ile Glu Asn Asn Lys Ser Gln Ser Val Leu Val Ala Pie Ser Cys Ile Pie Ile Ala Pie Pie Ala Pie Tr Gly Pie Val Val Val Ser Val Va	Me	t Glu	Val	Leu 340	Gly	Arg	Arg	Asn	Met 345	Leu	Met	Gly	Gly	Ala 350	Thr	Gly
Glu Asn Asn Lys Ser Ser Gln Ser Val Leu Val Ala Phe Ser Cys Ile 370 370 Asn Lys Ser Ser Gln Ser Val Leu Val Ala Phe Ser Cys Ile 380 375 Glu Ala Phe Phe Ala Ala Thr Trp Gly Pro Cys Ala Trp Val Val 380 375 Cys Ala Cys Val Ser Val Ser Leu 400 405 Cys Thr Ala Ser Asn Trp Leu Trp Asn Trp Gly Ile Ala Tyr Ala Thr 420 410 Cys Thr Ala Ser Asn Trp Leu Trp Asn Trp Gly Ile Ala Tyr Ala Thr 420 440 Asn Val Phe Pro Leu Arg Thr Arg Ala Lys Ser Val Ser Val Phe 70 Tyr Met Val Asp Glu Asp Lys Gly Asn Leu Gly Ser Asn Val Phe 445 440 Cys Val Phe Phe Ala Trp Tyr 450 440 Cys Cys ID NO 5 510 Clu Ala Ile Met Ser Glu Glu Ala Ser Val 510 510 SEQ ID NO 5 521 SEQ ID NO 5 521 SEQ ID NO 5 521 SEQ ID NO 5 521 SEQ TID NO 5 521 SEQUENCE: 5 Met Gly Leu Glu Asp Asn Arg Met Val Lys Arg Phe Val Asn Val Gly 1 Glu Lys Lys Ala Gly Ser Thr Ala Met Ala Ile Ile Val Gly Leu Phe 20 SEQUENCE: 5 Met Gly Leu Glu Asp Asn Arg Met Cal Lys Arg Phe Val Asn Val Gly 1 Glu Lys Lys Ala Gly Ser Thr Ala Met Ala Ile Ile Val Gly Leu Phe 30 Ala Ala Ser Gly Gly Phe Ile Met Gly Tyr Asp Thr Gly Thr Ile Ser 40 40 40 40 40 40 40 40 40 40	Me	t Ser	Leu 355	Ser	Gln	Leu	Ile	Val 360	Ala	Ile	Val	Gly	Val 365	Ala	Thr	Ser
Phe Ile Ala Phe Phe Ala Ala Thr Try Gly Pro Cys Ala Try Val Val 400 Val Gly Glu Leu Phe Pro Leu Arg Thr Arg Ala Lys Ser Val Ser Leu 415 Cys Thr Ala Ser Asn Try Leu Try Asn Try Gly Ile Ala Tyr Ala Thr 420 Try Met Val Asp Glu Asp Lys Gly Asn Leu Gly Ser Asn Val Phe 455 Phe Ile Try Glu Thr Lyg Gly Leu Ser Leu Glu Gln Val Asp Glu Leu 475 Phe Ile Try Glu Thr Lyg Gly Leu Ser Leu Glu Gln Val Asp Glu Leu 475 Tyr Glu His Val Ser Lys Ala Try Lys Ser Lys Gly Phe Val Phe Val Pro Ser 495 Lys His Ser Phe Arg Glu Gln Val Asp Gln Gln Met Asp Ser Lys Thr 500 Clu Ala Ile Met Ser Glu Glu Ala Ser Val 505 Clu SEQ ID NO 5 C2110 SEQ ID NO 5 C2110 SEQ ID NO 5 C2110 SEQ ID NO 5 C2110 SEQ UD NO 5 C2120 FEATURE: C2200 FEATURE: C2200 FEATURE: C2200 FEATURE: C2200 FEATURE: C2200 FEATURE: C2000 SEQUENCE: 5 Met Gly Leu Glu Asp Asn Arg Met Val Lys Arg Phe Val Asn Val Gly Is In Concentration Structure for the tash of the form form form form form form form form	Gl	u Asn 370	Asn	Lys	Ser	Ser	Gln 375	Ser	Val	Leu	Val	Ala 380	Phe	Ser	Суз	Ile
Val Gly Glu Leu Phe Pro Leu Arg Thr Arg Ala Lys Ser Val Ser LugCys Thr Ala Ser Asn Trp Leu Trp Asn Trp Gly Ile Ala Tyr Ala Thr 425Cys Thr Ala Ser Asn Trp Leu Trp Asn Trp Gly Ile Ala Tyr Ala Thr 425Pro Tyr Met Val Asp Glu Asp Lys Gly Asn Leu Gly Ser Asn Val Phe 455Phe Ile Trp Gly Gly Phe Asn Leu Ala Cys Val Phe Phe Ala Trp Tyr 465Phe Ile Tyr Glu Thr Lys Gly Leu Ser Leu Glu Gln Val Asp Glu Leu 475Cyr Glu His Val Ser Lys Ala Trp Lys Ser Lys Gly Phe Val Pro Ser 485Cys His Ser Phe Arg Glu Glu Ala Ser Val 500Cyll Ala Ile Met Ser Glu Glu Ala Ser Val 515Cyll Ala Ile Met Ser Glu Glu Ala Ser Val 515Cyll Ala Ile Met Ser Glu Glu Ala Ser Val 515Cyll Ala Ile Met Ser Glu Glu Ala Ser Val 515Cyll Ala Ile Met Ser Glu Glu Ala Ser Val 515Cyll Ala Ile Met Ser Glu Glu Ala Ser Val 515Cyll Ala Ile Met Ser Glu Glu Ala Ser Val 515Cyll SeQUENCE: 5Met Gly Leu Glu Asp Asn Arg Met Val Lys Arg Phe Val Asn Val Gly 200Met Gly Leu Glu Asp Asn Arg Met Gly Tyr Asp Thr Gly Thr Ile Ser 30Glu Ala Ala Ser Gly Gly Phe Ile Met Gly Tyr Asp Thr Gly Thr Ile Ser 30Gly Val Met Thr Met Asp Tyr Val Leu Ala Arg Tyr Pro Ser Asn Lys 60Gly Val Met Thr Ala App Glu Ser Ser Leu Tie Val Asp Chi Leu Ser 70Gly Val Met Thr Ala App Glu Ser Ser Leu Tie Val Asp Tie Ker 70Kala Ala Ser Phe Thr Ala App Glu Ser Ser Leu Ala Arg Tyr Asp Thr Gly Thr Ile Ser 60Kala Ala Ker Thr Met Asp Tyr Val Leu Ala Arg Tyr Asp Thr Gly Chi Asp Asp 60Kala Ker Thr Ala App Glu Ser Ser Leu Tie Val Asp Asp Asp Asp 60Kala Ker Thr Ala App Glu Ser Ser Leu T	Ph 38	e Ile 5	Ala	Phe	Phe	Ala 390	Ala	Thr	Trp	Gly	Pro 395	Cys	Ala	Trp	Val	Val 400
CysThrAlaSerAsnTrpLeuTrpAsnTrpGlyIleAlaTypAlaThrProTyrMetValAspGluAspLysGlyAsnLeuGlySerAsnValPheAtoTrpGlyGlyPheAsnLeuAlaCysValPheAlaTrpTyrTyrPheIleTyrGluThrLysGlyLeuSerLeuGluGluAspGluLeu465TyrGluThrLysGlyLeuSerLysGluAspGluLeu465TyrGluThrLysGlyAlaTrpLysSerLysGlyPheAlaTrpTyr465TyrGluThrLysGluSerLysGluAspGluLeu465TyrGluThrLysGluGluAspGluLeuAspGluLeu465TyrGluGluSerPheAspGluLeuAspSerLysAspSerLys61uLisSerPheAspAspGluLisLysAspGlyLis </td <td>Va</td> <td>l Gly</td> <td>Glu</td> <td>Leu</td> <td>Phe 405</td> <td>Pro</td> <td>Leu</td> <td>Arg</td> <td>Thr</td> <td>Arg 410</td> <td>Ala</td> <td>Lys</td> <td>Ser</td> <td>Val</td> <td>Ser 415</td> <td>Leu</td>	Va	l Gly	Glu	Leu	Phe 405	Pro	Leu	Arg	Thr	Arg 410	Ala	Lys	Ser	Val	Ser 415	Leu
ProTyrMetValAspGluAspLayGlyAsnLeuGlySerAsnValPheHe11eTyrGlyGlyPheAsnLeuAlaCysValPhePheAlaTyrTyrPhe11eTyrGluThrLysGlyLeuSerLeuGluGluGluAspGluLeu465TyrGluHisValSerLysAlaTyrLysSerLysGlyPheValProSerTyrGluHisValSerLysAlaTyrLysSerLysGlyPheValProSerLysHisSerPheArgGluGluNalAspGluAspSerLysThrGluAla11eMetSerGluGluAlaSerValMetSerLysC210>SEQIDN05SerSerGluGluAspSerLysThrC210>SEQIDN05SerSerGluAspSerLysThrC210>SEQIDN05SerSerGluAspYasSerLysC210>SEQIDN0SerSerInLysAspYasNaYasYasC210>SEQIDN0	су	s Thr	Ala	Ser 420	Asn	Trp	Leu	Trp	Asn 425	Trp	Gly	Ile	Ala	Tyr 430	Ala	Thr
Phe IIe Trp Gly Gly Phe Asn Leu Ala Cys Val Phe Phe Ala Trp Tyr Phe IIe Tyr Glu Thr Lys Gly Leu Ser Leu Glu Gln Val Asp Glu Leu 465 I Glu His Val Ser Lys Ala Trp Lys Ser Lys Gly Phe Val Pro Ser 485 Van Asp Glu Gln Val Asp Gln Gln Met Asp Ser Lys Thr 505 Gln Gln Met Asp Ser Lys Thr 510 SEQ ID NO 5 2210> SEQ ID NO 5 2210> SEQ ID NO 5 2212> TYPE: PRT 2213> ORGANISM: Artificial sequence 2200> FEATURE: 2223> OTHER INFORMATION: Synthetic polypeptide 2400> SEQUENCE: 5 Met Gly Leu Glu Asp Asn Arg Met Val Lys Arg Phe Val Asn Val Gly 1 $\frac{1}{20}$ Seq Gly Gly Phe IIE Met Gly Tyr Asp Thr Gly Thr IIe Ser 400 $\frac{1}{20}$ Val Met Thr Met Asp Tyr Val Leu Ala Arg Tyr Pro Ser Asn Lys 61 $\frac{1}{20}$ Val Met Thr Met Asp Glu Ser Ser Leu IIe Val Ser IIe Leu Ser 25 $\frac{1}{20}$ Val Gly Thr Phe Phe Gly Ala Leu Cys Ala Pro Phe Leu Asn Asp Thr	Pr	o Tyr	Met 435	Val	Aap	Glu	Asp	Lys 440	Gly	Asn	Leu	Gly	Ser 445	Asn	Val	Phe
Phe lle Tyr Glu Thr Lys Gly Leu Ser Leu Glu Glu Nal Asp Glu Lys Ma Ser Lys Gly Phe Val Pro Ser $\frac{480}{490}$ Tyr Glu His Val Ser Lys Ala Trp Lys Ser Lys Gly Phe Val Pro Ser $\frac{490}{490}$ Lys His Ser Phe Arg Glu Glu Val Asp Glu Gln Met Asp Ser Lys Thr Glu Ala 11e Met Ser Glu Glu Ala Ser Val $\frac{2210}{515}$ SEQ ID NO 5 $\frac{2211}{223}$ DRGANISM: Artificial sequence $\frac{2220}{223}$ FEATURE: $\frac{2220}{223}$ ORGANISM: Artificial sequence $\frac{2200}{10}$ FEATURE: $\frac{2200}{2223}$ ORGANISM: Artificial sequence $\frac{2200}{10}$ FEATURE: $\frac{2200}{10}$ SEQUENCE: 5 Met Gly Leu Glu Asp Asn Arg Met Val Lys Arg Phe Val Asn Val Gly 15 Glu Lys Lys Ala Gly Ser Thr Ala Met Ala 11e 11e Val Gly Leu Phe $\frac{10}{30}$ Clu Phe Gly And Leu Ala Arg Tyr Pro Ser Asn Lys $\frac{10}{60}$ Val Met Thr Met Asp Tyr Val Leu Ala Arg Tyr Pro Ser Asn Lys $\frac{10}{60}$ Val Gly Thr Phe Phe Gly Ala Leu Cys Ala Pro Phe Leu Asn Asp Thr	Ph	e Ile 450	Trp	Gly	Gly	Phe	Asn 455	Leu	Ala	Сув	Val	Phe 460	Phe	Ala	Trp	Tyr
Tyr Glu His Val Ser Lys Ala Trp Lys Ser Lys Gly Phe Val Pro Ser App Ser Clys His Ser Phe Arg Glu Gln Val Asp Gln Gln Met Asp Ser Lys Thr $\frac{500}{500}$ SeQ Glu Glu Ala Ser Glu Glu Ala Ser Val $\frac{510}{520}$ SEQ ID NO 5 (211> LENGTH: 496 (212> TYPE: PRT (213> ORGANISM: Artificial sequence (220> FEATURE: (223> OTHER INFORMATION: Synthetic polypeptide) (400> SEQUENCE: 5 Met Gly Leu Glu Asp Asn Arg Met Val Lys Arg Phe Val Asn Val Gly 15 Glu Lys Lys Ala Gly Ser Thr Ala Met Ala IIe IIe Val Gly Leu Phe 20 Ala Ala Ser Gly Gly Phe IIe Met Gly Tyr Asp Thr Gly Thr IIe Ser 40 $\frac{510}{50}$ Val Met Thr Met Asp Tyr Val Leu Ala Arg Tyr Pro Ser Asn Lys 60 $\frac{510}{50}$ Val Gly Thr Phe Phe Gly Ala Leu Cys Ala Pro Phe Leu Asn Asp Thr	Ph 46	e Ile 5	Tyr	Glu	Thr	Lys 470	Gly	Leu	Ser	Leu	Glu 475	Gln	Val	Asp	Glu	Leu 480
Lys His Ser Phe Arg Glu Gln Val Asp Gln Gln Met Asp Ser Lys Thr Glu Ala Ile Met Ser Glu Glu Ala Ser Val 515 SEQ ID NO 5 521> LENGTH: 496 212> TYPE: PRT 213> ORGANISM: Artificial sequence 220> FEATURE: 223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 5 Met Gly Leu Glu Asp Asn Arg Met Val Lys Arg Phe Val Asn Val Gly 10 10 10 10 10 10 10 10 10 10 10 10 10 1	ту	r Glu	His	Val	Ser 485	Lys	Ala	Trp	Lys	Ser 490	Lys	Gly	Phe	Val	Pro 495	Ser
Glu Ala lie Met Ser Glu Glu Ala Ser Val 5210> SEQ ID NO 5 5211> LENGTH: 496 5212> TYPE: PRT 5213> ORGANISM: Artificial sequence 5200> FEATURE: 5223> OTHER INFORMATION: Synthetic polypeptide 5400> SEQUENCE: 5 Met Gly Leu Glu Asp Asn Arg Met Val Lys Arg Phe Val Asn Val Gly 10 Glu Lys Lys Ala Gly Ser Thr Ala Met Ala Ile Ile Val Gly Leu Phe 20 Ala Ala Ser Gly Gly Phe Ile Met Gly Tyr Asp Thr Gly Thr Ile Ser 61y Val Met Thr Met Asp Tyr Val Leu Ala Arg Tyr Pho Ser Asn Lys 61s Ser Phe Thr Ala Asp Glu Ser Ser Leu Ile Val Ser Ile Leu Ser 70 Val Gly Thr Phe Phe Gly Ala Leu Cys Ala Pro Phe Leu Asn Asp Thr	гу	s His	Ser	Phe 500	Arg	Glu	Gln	Val	Asp 505	Gln	Gln	Met	Asp	Ser 510	Lys	Thr
<pre><210> SEQ ID NO 5 <211> LENGTH: 496 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 5 Met Gly Leu Glu Asp Asn Arg Met Val Lys Arg Phe Val Asn Val Gly 1 5 10 10 10 11 11 11 11 11 11 11 11 11 11</pre>	Gl	u Ala	Ile 515	Met	Ser	Glu	Glu	Ala 520	Ser	Val						
<pre><400> SEQUENCE: 5 Met Gly Leu Glu Asp Asn Arg Met Val Lys Arg Phe Val Asn Val Gly Glu 1 Lys Lys Ala Cly Ser Thr Ala Met Ala IIe IIe Val Cly Clu Phe Ala Ala Ser Cly Cly Phe IIe Met Cly Val Leu Asp Thr Cly Thr IIe Ser Cly Val Met Thr Met Asp Tyr Val Leu Ala Arg Tyr Clu Ser IIe Leu Ser Clu Cly Thr Phe Phe Cly Ala Leu Cys Ala Pro Phe Leu Asp Asp Thr </pre>	<2 <2 <2 <2 <2 <2	10> S 11> L 12> T 13> O 20> F 23> O	EQ II ENGTI YPE : RGAN EATUI THER	D NO H: 4 PRT ISM: RE: INF	5 96 Art: DRMA'	ific: TION	ial : : Syn	seque nthe	ence tic p	poly	pept:	ide				
MetGlyLeuGluAspAspAspMetValLysArgPheValAspValGlyGluLysLysAlaGlySerThrAlaMetAlaIleIleValGlyGlyPheAlaAspSerGlyGlyGlySerThrAlaMetAlaIleValGlyThrIleSerAlaAspSerClySerGlySerSerGlyThrMetAspTyrValAspTyrAspAlaArgTyrThrSerAspAspSerSerFibThrAlaAspGlySerSerFibAspAspGlySerSerFibSerIleAspThrValGlyThrPheFibGlyAlaLeuCysAlaProPheLeuAspThrValGlyThrPheFibAlaLeuCysAlaProPheLeuAspThrValGlyThrPheFibAlaLeuCysAlaProPheLeuAspThrSerSerPheFibFibAlaLeuCysAlaProPheLeuAspThrSerSerFibFibFibAlaLeuCysAlaProPheLeuAspTh	< 4	00> S	EQUEI	NCE:	5											
GluLysLysAlaGlySerThrAlaMetAlaIleIleValGlyGlyLeuPheAlaAlaSerGlyGlyPheIleMetGlyTyrAspThrGlyThrIleSerAlaAlaSerGlyMetThrMetAspTyrValClyTyrAspThrAlaSerAspLysGlyValMetThrAlaAspTyrValLeuAlaArgTyrValSerIleLeuSerHisSerPheThrAlaAspGluSerSerLeuThrAlaSerSerLeuAspThrValGlyThrPhePheGlyAlaLeuCysAlaProPheLeuAspThr	Me 1	t Gly	Leu	Glu	Asp 5	Asn	Arg	Met	Val	Lys 10	Arg	Phe	Val	Asn	Val 15	Gly
AlaAsSerGlyGlyPheIleMetGlyTyrAspThrAspGlyThrIleSerGlyValMetThrMetAspTyrValLeuAlaArgTyrProSerAsnLysGlySerPheThrAlaAspGluSerSerLeuAlaArgThrNeSerLysHisSerPheThrAlaAspGluSerSerLeuThrNeSerSerValGlyThrPhePheGlyAlaLeuCysAlaProPheLeu AsnAspThr	Gl	u Lys	Lys	Ala 20	Gly	Ser	Thr	Ala	Met 25	Ala	Ile	Ile	Val	Gly 30	Leu	Phe
Gly Val Met Thr Met Asp 50Tyr Val Leu Ala Arg 55Tyr Pro Ser Asn Lys 60His 65Ser Phe Thr Ala 70Asp 61Glu Ser Ser Leu 75Ile 75Val Ser Ile Leu 80Val Gly Thr Phe Phe Gly Ala Leu Cys Ala Pro Phe Leu Asn Asp Thr	Al	a Ala	Ser 35	Gly	Gly	Phe	Ile	Met 40	Gly	Tyr	Asp	Thr	Gly 45	Thr	Ile	Ser
His Ser Phe Thr Ala Asp Glu Ser Ser Leu Ile Val Ser Ile Leu Ser 65 70 75 80 Val Gly Thr Phe Phe Gly Ala Leu Cvs Ala Pro Phe Leu Asn Asp Thr	Gl	y Val 50	Met	Thr	Met	Aap	Tyr 55	Val	Leu	Ala	Arg	Tyr 60	Pro	Ser	Asn	Lys
Val Gly Thr Phe Phe Gly Ala Leu Cvs Ala Pro Phe Leu Asn Asp Thr	Ні 65	s Ser	Phe	Thr	Ala	Asp 70	Glu	Ser	Ser	Leu	Ile 75	Val	Ser	Ile	Leu	Ser 80
· · · · · · · · · · · · · · · · · · ·	Va	l Gly	Thr	Phe	Phe	Gly	Ala	Leu	Суз	Ala	Pro	Phe	Leu	Asn	Asp	Thr

				0 E					0.0					0E	
				85					90					95	
Leu	Gly	Arg	Arg 100	Trp	Сүз	Leu	Ile	Leu 105	Ser	Ala	Leu	Ile	Val 110	Phe	Asn
Ile	Gly	Ala 115	Ile	Leu	Gln	Val	Ile 120	Ser	Thr	Ala	Ile	Pro 125	Leu	Leu	Сув
Ala	Gly 130	Arg	Val	Ile	Ala	Gly 135	Phe	Gly	Val	Gly	Leu 140	Ile	Ser	Ala	Thr
Ile 145	Pro	Leu	Tyr	Gln	Ser 150	Glu	Thr	Ala	Pro	Lys 155	Trp	Ile	Arg	Gly	Ala 160
Ile	Val	Ser	Суз	Tyr 165	Gln	Trp	Ala	Ile	Thr 170	Ile	Gly	Leu	Phe	Leu 175	Ala
Ser	Cys	Val	Asn 180	Lys	Gly	Thr	Glu	His 185	Met	Thr	Asn	Ser	Gly 190	Ser	Tyr
Arg	Ile	Pro 195	Leu	Ala	Ile	Gln	Суз 200	Leu	Trp	Gly	Leu	Ile 205	Leu	Gly	Ile
Gly	Met 210	Ile	Phe	Leu	Pro	Glu 215	Thr	Pro	Arg	Phe	Trp 220	Ile	Ser	Lys	Gly
Asn 225	Gln	Glu	Lys	Ala	Ala 230	Glu	Ser	Leu	Ala	Arg 235	Leu	Arg	Lys	Leu	Pro 240
Ile	Asp	His	Pro	Asp 245	Ser	Leu	Glu	Glu	Leu 250	Arg	Asp	Ile	Thr	Ala 255	Ala
Tyr	Glu	Phe	Glu 260	Thr	Val	Tyr	Gly	Lys 265	Ser	Ser	Trp	Ser	Gln 270	Val	Phe
Ser	His	Lys 275	Asn	His	Gln	Leu	Lys 280	Arg	Leu	Phe	Thr	Gly 285	Val	Ala	Ile
Gln	Ala 290	Phe	Gln	Gln	Leu	Thr 295	Gly	Val	Asn	Phe	Ile 300	Phe	Tyr	Tyr	Gly
Thr 305	Thr	Phe	Phe	Lys	Arg 310	Ala	Gly	Val	Asn	Gly 315	Phe	Thr	Ile	Ser	Leu 320
Ala	Thr	Asn	Ile	Val 325	His	Val	Gly	Ser	Thr 330	Ile	Pro	Gly	Ile	Leu 335	Leu
Met	Glu	Val	Leu 340	Gly	Arg	Arg	Asn	Met 345	Leu	Met	Gly	Gly	Ala 350	Thr	Gly
Met	Ser	Leu 355	Ser	Gln	Leu	Ile	Val 360	Ala	Ile	Val	Gly	Val 365	Ala	Thr	Ser
Glu	Asn 370	Asn	Lys	Ser	Ser	Gln 375	Ser	Val	Leu	Val	Ala 380	Phe	Ser	Суз	Ile
Phe 385	Ile	Ala	Phe	Phe	Ala 390	Ala	Thr	Trp	Gly	Pro 395	Суз	Ala	Trp	Val	Val 400
Val	Gly	Glu	Leu	Phe 405	Pro	Leu	Arg	Thr	Arg 410	Ala	ГЛа	Ser	Val	Ser 415	Leu
Суа	Thr	Ala	Ser 420	Asn	Trp	Leu	Trp	Asn 425	Trp	Gly	Ile	Ala	Tyr 430	Ala	Thr
Pro	Tyr	Met 435	Val	Asp	Glu	Asp	Lys 440	Gly	Asn	Leu	Gly	Ser 445	Asn	Val	Phe
Phe	Ile 450	Trp	Gly	Gly	Phe	Asn 455	Leu	Ala	Cys	Val	Phe 460	Phe	Ala	Trp	Tyr
Phe 465	Ile	Tyr	Glu	Thr	Lys 470	Gly	Leu	Ser	Leu	Glu 475	Gln	Val	Asp	Glu	Leu 480
Tyr	Glu	His	Val	Ser 485	ГЛа	Ala	Trp	Гла	Ser 490	Lys	Gly	Phe	Val	Pro 495	Ser
<211	L> LE	ENGTH	I: 49	96											
--------------	----------------	---------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------
<213	3> 0F	RGANI	SM:	Arti	fici	lal s	eque	ence							
<220 <223)> FE 3> O1	CATUF THER	E: INFC	ORMAI	ION:	Syr	nthet	ic p	olyr	epti	.de				
<400)> SB	EQUEN	ICE :	6											
Met 1	Gly	Leu	Glu	Asp 5	Asn	Arg	Met	Val	Lys 10	Arg	Phe	Val	Asn	Val 15	Gly
Glu	Lys	Lys	Ala 20	Gly	Ser	Thr	Ala	Met 25	Ala	Ile	Ile	Val	Gly 30	Leu	Phe
Ala	Ala	Ser 35	Gly	Gly	Phe	Ile	Met 40	Gly	Tyr	Asp	Thr	Gly 45	Thr	Ile	Ser
Gly	Val 50	Met	Thr	Met	Asp	Tyr 55	Val	Leu	Ala	Arg	Tyr 60	Pro	Ser	Asn	Lys
His 65	Ser	Phe	Thr	Ala	Asp 70	Glu	Ser	Ser	Leu	Ile 75	Val	Ser	Ile	Leu	Ser 80
Val	Gly	Thr	Phe	Phe 85	Gly	Ala	Leu	Суз	Ala 90	Pro	Phe	Leu	Asn	Asp 95	Thr
Leu	Gly	Arg	Arg 100	Trp	CÀa	Leu	Ile	Leu 105	Ser	Ala	Leu	Ile	Val 110	Phe	Asn
Ile	Gly	Ala 115	Ile	Leu	Gln	Val	Ile 120	Ser	Thr	Ala	Ile	Pro 125	Leu	Leu	Сүз
Ala	Gly 130	Arg	Val	Ile	Ala	Gly 135	Phe	Gly	Val	Gly	Leu 140	Ile	Ser	Ala	Thr
Ile 145	Pro	Leu	Tyr	Gln	Ser 150	Glu	Thr	Ala	Pro	Lys 155	Trp	Ile	Arg	Gly	Ala 160
Ile	Val	Ser	Cys	Tyr 165	Gln	Trp	Ala	Ile	Thr 170	Phe	Gly	Leu	Phe	Leu 175	Ala
Ser	Суз	Val	Asn 180	Lys	Gly	Thr	Glu	His 185	Met	Thr	Asn	Ser	Gly 190	Ser	Tyr
Arg	Ile	Pro 195	Leu	Ala	Ile	Gln	Суз 200	Leu	Trp	Gly	Leu	Ile 205	Leu	Gly	Ile
Gly	Met 210	Ile	Phe	Leu	Pro	Glu 215	Thr	Pro	Arg	Phe	Trp 220	Ile	Ser	Lys	Gly
Asn 225	Gln	Glu	Lys	Ala	Ala 230	Glu	Ser	Leu	Ala	Arg 235	Leu	Arg	Lys	Leu	Pro 240
Ile	Asp	His	Pro	Asp 245	Ser	Leu	Glu	Glu	Leu 250	Arg	Asp	Ile	Thr	Ala 255	Ala
Tyr	Glu	Phe	Glu 260	Thr	Val	Tyr	Gly	Lys 265	Ser	Ser	Trp	Ser	Gln 270	Val	Phe
Ser	His	Lys 275	Asn	His	Gln	Leu	Lys 280	Arg	Leu	Phe	Thr	Gly 285	Val	Ala	Ile
Gln	Ala 290	Phe	Gln	Gln	Leu	Thr 295	Gly	Val	Asn	Phe	Ile 300	Phe	Tyr	Tyr	Gly
Thr 305	Thr	Phe	Phe	ГЛа	Arg 310	Ala	Gly	Val	Asn	Gly 315	Phe	Thr	Ile	Ser	Leu 320
Ala	Thr	Asn	Ile	Val 325	His	Val	Gly	Ser	Thr 330	Ile	Pro	Gly	Ile	Leu 335	Leu
Met	Glu	Val	Leu 340	Gly	Arg	Arg	Asn	Met 345	Leu	Met	Gly	Gly	Ala 350	Thr	Gly
Met	Ser	Leu 355	Ser	Gln	Leu	Ile	Val 360	Ala	Ile	Val	Gly	Val 365	Ala	Thr	Ser
Glu	Asn 370	Asn	Lys	Ser	Ser	Gln 375	Ser	Val	Leu	Val	Ala 380	Phe	Ser	Суз	Ile

121

Phe Ile Ala Phe Phe Ala Ala Thr Trp Gly Pro Cys Ala Trp Val Val 385 390 395 400 Val Gly Glu Leu Phe Pro Leu Arg Thr Arg Ala Lys Ser Val Ser Leu 405 410 415 Cys Thr Ala Ser Asn Trp Leu Trp Asn Trp Gly Ile Ala Tyr Ala Thr 420 425 430 Pro Tyr Met Val Asp Glu Asp Lys Gly Asn Leu Gly Ser Asn Val Phe 435 440 445 Phe Ile Trp Gly Gly Phe Asn Leu Ala Cys Val Phe Phe Ala Trp Tyr 450 455 Phe Ile Tyr Glu Thr Lys Gly Leu Ser Leu Glu Gln Val Asp Glu Leu 465 480 Tyr Glu His Val Ser Lys Ala Trp Lys Ser Lys Gly Phe Val Pro Ser 490 485 495 <210> SEQ ID NO 7 <211> LENGTH: 3086 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 7 cgaagatgag agataagcga ccaaaattag cgggagaatc ctcacttgtc tcactccgat 60 ccqatcatqq ctttcqctqt ctcqqttcaq tcacatttcq caatcaqaqc qttaaaacqa 120 gaccacttca agaaccette teetegtaet ttetgetegt gttttaaate gaggeetgae 180 tcgtcttacc ttagtttaaa ggaacgtact tgcttcgttt ccaaaccggg tttagtcact 240 actagataca gacatatatt ccaggtgaaa agcaattttc tctgattttg atttcttcta 300 aaaaaaattc aaaagttttg atttttccgg ttttggttca tggttaggtc ggagctgaga 360 cgggaggaga gttcgccgac agtggagaag tagctgattc gcttgcttct gatgcaccag 420 agtcattttc ttggtcttct gtgatactcc cgtgcgtatt gatccttctc gttaatttga 480 atttaactgt tcctgagtaa tggatttgga ttgcctgtgt aatgatcttg cctaatgact 540 taatctctta gcaatgcctt atgtatcatc aattatagaa gatagaaaat tagttatttg 600 cctagattgc actgatttaa tagtaattta cttgaatcgt aggtttatct tcccggcttt 660 gggaggatta ttgtttgggt atgacattgg ggctacctcc ggtgctacgc tctcacttca 720 ggttatttta aagtatctat tttcatctag ttacatttta gctttcagaa ttttaacatt 780 atgtactgtc tcatatggtc ttgaacagtc acctgcgctt agcggaacta catggtttaa 840 cttctcacct gttcagctag gacttgtggt atgttatttg gagatcgata ttttctgtag 900 ttaagccata gagttagcag aaaatgatag tttttactgc attttgttgt gtaggttagc 960 ggateettgt atggageeet tettggetea atttetgtet atggegttge tgattteett 1020 ggtaagtett gtttttttgg gttgacttet egttettett aaetgaatge aagtatetea 1080 ttctggtttt cttcacatct ttatgaagga agaaggcggg aacttattat agctgctgtt 1140 ctctatctcc tcgggtctct gatcactggc tgtgcccctg atcttaatat tctcttagtt 1200 ggaaggette tetatggett tggtattggt ttggtgaget eeggaaacet gaategttat 1260 ggtaatttet ttgttaettt tgttgttgat tgttagttaa tgttttatgt aaattggttt 1320 tgettgatag geaatgeatg gggeteeest etatattget gagacatgee eateteaaat 1380 ccgtggaact ttgatatctc tgaaagaact cttcatcgta ttgggaattt tggtaagtgt 1440 ctgatgtcaa tctcttccca gtatgatttc tgcgtaaata ttgatttcct tcttgtgcag 1500

123

ttgggttttt ctgttggaag cttccagatt gatgtagttg gagggtggcg ttacatgtat

ggatttggta cgcctgttgc tttgctgatg ggactaggca tgtggagtct ccctgcatct

-continued

cctcgctggt	tgctgcttag	agctgtccaa	ggtaaaggac	aattacaaga	atacaaagag	1680
aaggccatgc	ttgccctcag	caaattacgt	ggcagacctc	caggtgataa	aatctcagag	1740
aagttggtag	atgatgccta	tttatctgtg	aaaacggcct	atgaagatga	gaaatctggg	1800
ggaaacttcc	tggaagtatt	ccaagggcct	aatttgaaag	ctttgacaat	tggtggaggt	1860
ttagtcctct	tccaacaggt	gattcttctt	cgctgtttcc	atttggatga	atgtgtgagc	1920
atttttgaaa	taatttacac	tctgcttcgt	tgtgacagat	aactggacag	cctagtgttc	1980
tttattatgc	gggttcgatt	cttcaggtat	gctcgcctta	acattgaaat	gaatgagatt	2040
acctactaat	ttttactgcc	tttagtcgga	tgtttaatga	gactttatgc	tcacttatct	2100
attcaaagac	tgctggattc	tctgctgctg	ctgatgcaac	tcgagtctct	gttattattg	2160
gtgttttcaa	ggtggccctt	tttattttt	tgtttggatg	tgtaaatatc	ttattttcca	2220
acaagcttcc	agttattcaa	tactaacctc	ttcaattgat	aacgctctcg	tagttactga	2280
tgacatgggt	agctgttgcg	aaagttgatg	atctcggcag	acgaccttta	ctgattggag	2340
gtgtcagcgg	cattgtatga	attcatttta	tgtctatatc	ttctgtttct	tattttccaa	2400
agaaaagata	tcatttctta	tatttcttcc	aaattccagg	cgttgtcctt	gtttctactg	2460
tcagcatact	acaagtttct	cggaggcttt	ccccttgtcg	ctgttggtgc	actgcttctc	2520
tatgttggtt	gttaccaggt	ttgtactcta	gctcactgtt	agctgtggct	acatagtttt	2580
atctagcata	ttactaaagt	ctcagcgcga	acagatctca	tttggaccca	tcagctggct	2640
aatggtgtca	gagattttcc	cgctccgcac	aagagggaga	gggatcagtc	ttgcagttct	2700
tacaaacttt	ggctccaatg	ctattgtgac	atttgcattt	tcacctttaa	aggtatattt	2760
ttctgttcct	gcttgttcaa	cccttgaagt	tattagtaac	tcttatcaaa	atatgcattc	2820
tctgtaggaa	tttcttggag	ccgagaatct	tttccttctc	tttggggggca	tagcactggt	2880
atcactgctg	tttgtaatac	tagtagttcc	agagaccaag	ggtctcagct	tggaagaaat	2940
tgaatcaaaa	atcttgaagt	gaaacgttga	agaacatatt	tgttatagtt	gattctggtg	3000
aaatacatgt	atgaggatgt	gactattctc	tttgtaacat	aatatgtttc	gtaatcaatg	3060
ggaaaaccaa	acctttttca	tgatta				3086
<210> SEQ : <211> LENG <212> TYPE <213> ORGAN <400> SEQUI	ID NO 8 IH: 5119 : DNA NISM: Arabio ENCE: 8	dopsis thal:	iana			
gtgaagatga	ttcaatgtcg	ttgagtggta	gtagttaaat	cttcaaaacc	ccggagaatt	60
atatatatgg	gtttcgttca	gcaaacctaa	ctaaactcag	aaccagaatt	catatttcgg	120
tcgctcaaat	cacagctatg	gcgcttgatc	ctgagcagca	gcaaccaatc	tcctctgttt	180
ccagagaggt	atacgtctcc	tttcattgtc	tacttcgtcg	ttttgtttcc	tgttcgatta	240
aacggtgtga	gagagttttc	atttgaagta	tacgtctcct	ttcatctgaa	gcttaattct	300
ctagtaaatt	cgtacttctt	gacttgccac	attaggaatg	ttccttttga	gatcaacttt	360
ggcttttagc	tgacaaattt	ctggaaaaat	tctgaaattt	gctatgttgg	aatcttagag	420
attgtattta	agagtcatat	attcactttt	tggggactcg	cttcaattct	gagaagaaat	480

1560

126

125

ttagaggctt	ttacggattt	ttagccatca	gcctcacagt	tatctttaag	catgaaattt	540	
ttagacccta	aatgctgtgt	acaattggtt	tgttggtttc	atgatttgtg	tgttccttac	600	
tgttttttt	ttttgggtg	gcaactttct	gaaactgttt	atgcgtttta	gtttggtaag	660	
tcatctggtg	agatcagccc	agaaagggag	cctcttatta	aagagaatca	tgtcccagaa	720	
aactactctg	tcgttgccgc	cattctcccg	tgagatctct	catctcttct	ccaagtttgg	780	
tagttettaa	aatgattcaa	atgaaacact	cttgaacaat	tccgatgtgt	tctttgtttg	840	
gttatattgt	gtatcattta	gcataatatg	tatcctgact	aggaaactag	aacgctgtgt	900	
atggtacctt	gcatagcttt	caaatagaat	tccttatgga	attacatacc	atctgcagga	960	
atttggacct	atgtcccttt	gcgcatggta	gtttttggt	ttgtagctag	tccattgatg	1020	
attgatatat	gcatgttaag	aagtttctgt	ttcattatca	ggtttttatt	tccagctctc	1080	
ggaggactgc	tttatggtta	tgaaattggt	gcaacttctt	gtgcaaccat	ttcacttcag	1140	
gtaaagttaa	aagttgtctg	aaactatcta	gtcctacaaa	atttgttatc	attcaactta	1200	
tttttcaagt	gcctagtcac	tgttttcaaa	gcctaaatat	tataaagctc	tggaaattgg	1260	
actgagatat	cagtactgaa	acatgatatt	tcacacttgc	cagaccattt	tttccctttg	1320	
atttctcctg	tatattgttg	tcacatgcat	gtacgttatt	tatatttgtc	tacattcttt	1380	
taggagccta	tgactttgct	atcttactat	gctgttccct	tttctgcagt	cgccttcatt	1440	
aagtggaatt	tcatggtaca	acttgtcctc	agtggatgtt	ggtctagttg	taagtttcca	1500	
agttatatgt	gatacttctt	ctttatcctg	gtcattgctt	atcatttatt	cacctgccgc	1560	
tcttggatat	gtgtttgcca	tttggagtaa	agacaaattt	gcttacaaaa	tagtgttaaa	1620	
ttttctccag	accagtggct	cactttacgg	tgcattattt	ggctcaattg	tggcttttac	1680	
tatcgctgac	gttataggtt	agttttactt	ctcactatct	tcattttgta	ggcatgagta	1740	
tttagcaatg	tttgcttgtg	gaaaaagata	aagttttggt	tttgttgaat	ttggaaggaa	1800	
gaagaaagga	gctgattttg	gctgcattat	tgtatctcgt	tggagccctt	gtgactgcac	1860	
tagccccaac	ctattccgtt	ctgataattg	gacgggttat	ttatggggtc	tcagttggac	1920	
tggtaagact	gatcatgctt	ctttattgtt	tgacatctaa	agactttctt	atgcatgcca	1980	
atggctcaaa	cgttatatat	tatgcatttg	gcggtgtact	aagaatcgca	catctgttag	2040	
gaggggagca	aattaatgct	ttataggact	ttagggcacc	cacactctta	atttatagtg	2100	
gtgactactt	tccaaggtct	tataatattt	taacttgttc	ccctcctaaa	ggatgtggag	2160	
ttcttatcat	gtatataatc	aacctaactt	aacctttcca	atgaatctaa	cagttgatgc	2220	
aaatatattt	ccatctattg	ctgagcatgg	gttgttatcc	agtgcatcat	catagaaaca	2280	
taattgatgt	ctattctatg	tacatgtata	cagagtacac	atatattgtg	actgtattct	2340	
tcgtccttcg	tatttttat	gtttttccag	cttaaaagcc	agtgactaga	aatcttgttt	2400	
acctttcgaa	aatattgttt	atccatgtgc	ttttgctgtg	gattacatat	agcagtactc	2460	
ttgctacggg	aactgaattg	tttccctaca	tttaggcaat	gcatgcggct	ccgatgtaca	2520	
ttgcagagac	tgctccaagt	ccgatacgtg	gacagctggt	atcattaaag	gaattcttca	2580	
tagtccttgq	gatggttgta	agtteetgea	accctgagat	ttaggacgtt	gattgcttta	2640	
tataaacaa	ttgagttgaa	atottatta	accaadttaa	tctcacatat	ccccatacaa	2700	
aatttacac	addaddtta	tagaatcagt	agtettagag	tcaatottca	ttetaattaa	2760	
castoactet	atacaacaa	tataattt	agacttatta	tagaaatta	gatetectec	2000	
	auguaacaag	LGLCCCTTTG	ycagttatta	Lgggaattgg	yargrggtgg	2820	
ctcccagcat	cccctaggtg	gcttttgttg	cgcgtcatac	aggggaaagg	gaatgtggag	2880	

127

-continued

aaccaacgag aggetgeaat caaatetete tgetgeetta gaggeeetge ttttgttgat 2940 tcagctgctg aacaagtaaa tgagattttg gctgaactaa cttttgtggg cgaggataaa 3000 gaagtcacat ttggtgaatt atttcaaggg aagtgcttga aagctctcat cataggagga 3060 ggtctagtct tgtttcagca ggttggtata gtcaaatcta atcattgtgt tctcttgaaa 3120 gaataattac taatgaattc ttgtctaatg gcagataact ggacaaccaa gtgtgcttta 3180 3240 atattggett tgttgeactt egaaacteae gaetggattt ttaacttete eeceateee 3300 acattteetg ttagaceget ggetttteag eegeaggtga tgeaacaagg gteteaatte 3360 tacttggtct attgaaggtt ttcactgttt cccacctggc taaaatttaa gttacttttc 3420 caatgtaata aagaaatgcc gttttagtta ttttgccttc aaagaaataa cacccgcctc 3480 tgttgttgca gttgattatg acaggagtag ctgttgtagt tatcgacaga cttggaagga 3540 3600 gacetttact tettggtgga gttggtggca tggtatgtee tetgtettta teeetteeet tttctcatcc atgttccgtt tatacacctt aagcaaaagt acagtaaatt taggtcaagc 3660 tcactaaatg ttcagctcaa tgatagagag aacccaatac tcctaataac attttattt 3720 caatgtcaaa caggttgttt cattatteet getggggtea tactacetet ttttcagege 3780 ctcaccagtt gttgctgtag ttgcactgct gctttatgtg ggctgttacc aggtaaacaa 3840 3900 ataqttqatt aqaattttqc taatcaaact tcactaccac aatqtcaatq cttqtcctaa aagtatcata gactttttga tataactcgt ggcatctaaa gttggagttc ttataacaag 3960 tagttccatt ggagtttatg tacaaaagtg attcatggat ttcattattt tcgccttaaa 4020 acttttgata tgcttctagt tcttttttc aacatgtttg gctttctact tttcaataag 4080 agettgaacg tattaccatc aatettgeag ctatetttg gtecaattgg ttggetgatg 4140 atttcagaga tatttcccct taaactaaga ggtcgaggtc tcagtctagc agtgcttgtg 4200 aattttggtg caaacgcact tgtgacattt gcgttttcac ccctaaaggt aacctaccat 4260 tcccttgagg acaaaaattc tcgtttgttt aagcttggta tggccattac tgtagaaatg 4320 gtagcaaccc ttttgcaaga cttttttact ttagaagaaa ttgtcaatca tatggttagt 4380 cgtggtgaaa ttctagtcga atgatatcga cacccacagt tagagtagtt tttcttctga 4440 tatctaactg gaacttttcg tttggctcaa atggctctgt tttgcaggaa ctgctgggag 4500 ctgggatact gttttgtggg tttggtgtga tatgtgtatt gtctctggta ttcatattct 4560 tcattgtgcc agagacaaag ggtctcactc ttgaggaaat tgaagccaaa tgtctctaaa 4620 aaagaggtct gttctttgct tagaaaccac aaagtcgtgt gcttcctcac atgattttga 4680 ttcatattgt taatcagtga ggaaaataat agtgcaggtt cagaaacaaa taaacatatg 4740 aatctgccgc acaagacggg aaatgaatct tcagagacca ctaagttatt tgaagcaatg 4800 ttacttcaaa ggctcggttg tttctagcaa aatacatgta cgagaattca taaatacaga 4860 aatctttgta atgattatta gcgctctgat gaagttagaa aataaaaaaa gaaaacatca 4920 4980 taqaaqaatt taaatttqta qaatatqtcc taaccaqtqa tqtttcqaaa tccqaaqqtt tetcaaagtt tgtatttttt ttaaacgatt ecaegattet geaatgetge attatgatat 5040 agaacattat gctgaataga agatattttt cgggatttgt aagacttgat gtgatatagt 5100

ataatggaac attgtggtc

<210> SEQ ID NO 9

-continued

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

960

60

120

180

240

300

<211> LENGTH: 1644 <212> TYPE: DNA <213> ORGANISM: Candida intermedia <400> SEQUENCE: 9 atgtcacaag attcgcattc ttctggtgcc gctacaccag tcaatggttc catccttgaa aaggaaaaag aagactctcc agttcttcaa gttgatgccc cacaaaaggg tttcaaggac tacattgtca tttctatctt ctgttttatg gttgccttcg gtggtttcgt cttcggtttc gacactggta ccatttccgg tttcgtgaac atgtctgact ttaaagacag attcggtcaa caccacgetg atggtactee ttacttgtee gaegttagag ttggtttgat gatttetatt ttcaacgttg gttgcgctgt cggtggtatt ttcctctgca aggtcgctga tgtctggggt agaagaattg gtettatgtt etceatgget gtetaegttg ttggtattat tatteagate tetteateea ceaagtggta ceagttette attggtegte ttattgetgg tttggetgtt ggtaccgttt ctgtcgtttc cccacttttc atctctgagg tttctcccaaa gcaaattaga qqtactttaq tqtqctqctt ccaqttqtqt atcaccttqq qtatcttctt qqqttactqt actacttacg gtactaagac ctacactgac tctagacagt ggagaattcc tttgggtttg tgtttcgctt gggctatctt gttggttgtc ggtatgttga acatgccaga gtctccaaga tacttggttg agaagcacag aattgatgag gccaagagat ccattgccag atccaacaag atccctgagg aggacccatt cgtctacact gaggttcagc ttattcaggc cggtattgag agagaagett tggetggtea ggeatettgg aaggagttga teaetggtaa geeaaagate ttcagaagag ttatcatggg tattatgctt cagtccttgc aacagttgac cggtgacaac tacttettet actaeggtae taceatttte eaggetgteg gtttgaagga ttettteeag 1020 acttctatca ttttgggtat tgtcaacttt gcttccacct tcgttggtat ctatgtcatt 1080 gagagattgg gtagaagatt gtgtcttttg accggttccg ctgctatgtt catctgtttc 1140 atcatctact ctttgattgg tactcagcac ttgtacaagc aaggttactc caacgagacc 1200 tccaacactt acaaggette tggtaacget atgatettea teaettgtet ttaeatttte 1260 ttetttgett etacetggge tggtggtgtt taetgtatea ttteegagte etaceeattg 1320 agaattagat ccaaggccat gtctattgct accgctgcta actggttgtg gggtttcttg 1380 1440 attteettet teacteeatt cateaceagt gecateeact tetactaegg tttegtttte actggttgtt tggctttctc tttcttctac gtctacttct tcgtctacga aaccaagggt 1500 ctttctttgg aggaggttga tgagatgtac gcttccggtg ttcttccact caagtctgcc 1560 agetgggtte caccaaatet tgageacatg geteactetg ceggttaege tggtgetgae 1620 1644 aaggccaccg acgaacaggt ttaa <210> SEQ ID NO 10 <211> LENGTH: 1569 <212> TYPE: DNA <213> ORGANISM: Candida intermedia <400> SEOUENCE: 10 atgggtttgg aggacaatag aatggttaag cgtttcgtca acgttggcga gaagaaggct ggetetaetg ceatggeeat categteggt ettttgetg ettetggtgg tgteettte ggatacgata ctggtactat ttctggtgtg atgaccatgg actacgttct tgctcgttac ccttccaaca agcactcttt tactgctgat gaatcttctt tgattgtttc tatcttgtct gttggtactt tetttggtge actttgtget ceatteetta acgaeaceet eggtagaegt

131

-continued

tggtgtctta	ttctttctgc	tcttattgtc	ttcaacattg	gtgctatctt	gcaggtcatc	360
tctactgcca	ttccattgct	ttgtgctggt	agagttattg	caggttttgg	tgtcggtttg	420
atttctgcta	ctattccatt	gtaccaatct	gagactgctc	caaagtggat	cagaggtgcc	480
attgtctctt	gttaccagtg	ggctattacc	attggtcttt	tcttggcctc	ttgtgtcaac	540
aagggtactg	agcacatgac	taactctgga	tcttacagaa	ttccacttgc	tattcaatgt	600
ctttggggtc	ttatcttggg	tatcggtatg	atcttcttgc	cagagactcc	aagattctgg	660
atctccaagg	gtaaccagga	gaaggctgct	gagtetttgg	ccagattgag	aaagcttcca	720
attgaccacc	cagactctct	cgaggaatta	agagacatca	ctgctgctta	cgagttcgag	780
actgtgtacg	gtaagtcctc	ttggagccag	gtgttctctc	acaagaacca	ccagttgaag	840
agattgttca	ctggtgtggc	tatccaggct	ttccagcaat	tgaccggtgt	taacttcatt	900
ttctactacg	gtactacctt	cttcaagaga	gctggtgtta	acggtttcac	tatctccttg	960
gccactaaca	ttgtcaatgt	cggttctact	attccaggta	ttcttttgat	ggaagteete	1020
ggtagaagaa	acatgttgat	gggtggtgct	actggtatgt	ctctttctca	attgatcgtt	1080
gccattgttg	gtgttgctac	ctcggaaaac	aacaagtctt	cccagtccgt	ccttgttgct	1140
ttctcctgta	ttttcattgc	cttcttcgct	gccacctggg	gtccatgtgc	ttgggttgtt	1200
gttggtgagt	tgttcccatt	gagaaccaga	gctaagtctg	tctccttgtg	tactgcttcc	1260
aactggttgt	ggaactgggg	tattgcttac	gctactccat	acatggtgga	tgaagacaag	1320
ggtaacttgg	gttccaatgt	gttcttcatc	tggggtggtt	tcaacttggc	ttgtgttttc	1380
ttcgcttggt	acttcatcta	cgagaccaag	ggtetttett	tggagcaggt	cgacgagttg	1440
tacgagcatg	tcagcaaggc	ttggaagtct	aagggcttcg	ttccatctaa	gcactctttc	1500
agagagcagg	tggaccagca	aatggactcc	aaaactgaag	ctattatgtc	tgaagaagct	1560
tctgtttaa						1569
<210> SEQ <211> LENG <212> TYPE <213> ORGA	ID NO 11 TH: 1584 : DNA NISM: Debary	yomyces han:	senii			
<400> SEQU	ENCE: 11					
atgggtttag	aagataatgc	gcttattaga	aagtatgtca	atgtcgggga	aaaaagggct	60
gggtcagcat	ctatggggat	tttcgtaggt	gccttcgcag	ctttcggggg	tgttttgttc	120
gggtatgata	ctggaaccat	ttcaggtatc	atggccatga	actatgtcaa	aggagaattt	180
cctgccaata	aggagagttt	tacgtcaaaa	gaaagttcgt	tgattgtttc	catcttatca	240
gcaggtactt	tcttcggtgc	gttgttagca	ccgtttatgt	ctgatacttt	aggtagaaga	300
tggtcattaa	ttatttcaac	attcattgtt	ttcaacttgg	gagtgatttt	acaaactgtt	360
tcaactggta	ttccattact	atgtgctgga	agagctattg	ctggttttgg	tgttggtctt	420
atatctgctg	tcattccatt	atatcaatca	gaagccactc	caaaatggat	tagaggggct	480
gttgtatctt	gttatcaatg	ggccattact	attggcttat	tgttagcggc	ttgtgttaac	540
caaggtactc	ataatagaaa	tgactcgggt	tcatacagaa	ttccaattgc	tgttcaactt	600
ttatggtcgt	taattttggg	tactggtatg	atcttcttgc	ctgacacgcc	acgtttctgg	660
atccacaaag	gtaatgaatc	tgaagctaag	aaatcgttga	agattttaag	aaaattacca	720
cttgaccacc	cagacttaat	tgaagaatac	gaagacatca	aagctgctta	cgatttcgag	780

133

				0011011	raoa		
tgttctttcg	gaaaatcgtc	ttggatggat	ctttttacca	caaggaatag	gcaattgaag	840	
agattattta	ccggtgttgc	tcttcaagca	tttcaacaat	taactggtgt	taactttatc	900	
ttctattttg	gtacctcttt	cttcaagagt	gctggtattg	aaaacgaatt	tcttatttct	960	
ttagccacca	gtattgttaa	cgtaggtatg	actgttccag	gtatctttt	aattgaatta	1020	
gtgggtcgtc	gttctatgtt	gttgtggggt	gctgttggta	tgtcggtttc	tcaatttatc	1080	
gttgctattg	ttggtattgc	cactgatagt	gccgacgcta	acaaagtctt	gatcgcattc	1140	
acttgtttct	tcattgcatt	ctttgcttct	acctggggtc	caattgcttg	ggttgttgtt	1200	
ggtgagattt	tcccattaag	aactagagct	aagtccgttg	cattatctgc	cgcttccaac	1260	
tggctttgga	actgggctat	cgcatacgct	actccatact	tggtagaaga	tggtaagggt	1320	
aatgctaact	taggaacaaa	cgttttcttc	atctggggtg	gatgtaactt	tctttgtatt	1380	
ttgttcactt	acgtcttcat	ttacgaaacc	aagggttact	ctttggaaca	aattgatgaa	1440	
ttatatgaaa	aagttccaca	tgcttggaaa	tctcgtggct	tcattccttc	tgcccatgct	1500	
ttcagagaag	atgctccaga	gtcaatcagc	tctatgggaa	aggatatgga	aaaagttact	1560	
gaaattgaaa	ccacttcagt	ctaa				1584	
<210> SEQ 3 <211> LENG <212> TYPE <213> ORGAN	ID NO 12 IH: 2196 : DNA NISM: Debary	yomyces han:	senii				
<400> SEQUI	ENCE: 12						
atgtggccat	ttctagatag	gatcatgtat	gatcactcga	cggaggagga	atattacaaa	60	
aagatgcaac	agaagtcgtc	ttcgtcgagt	gccattacag	tggggctagt	ggcggcggta	120	
gggggatttt	tgtatgggta	cgatactggg	ctcattaacg	atattatgga	gatgacgtac	180	
gtgaaggata	acttcccggc	gaatggacat	agcttcagcg	tacacgagcg	agcgttgata	240	
acggccatct	tgtcactcgg	aacatttttt	ggggcgttga	tagcgccgtt	gatatcggat	300	
acgtggggta	gaaagttttc	gatcattgta	tcgtcagctc	tcatatttaa	tgtgggaaac	360	
atcttgcagg	tgtcatccac	agaggtggtg	cttttatgtg	ttgggagagc	tgtttcgggg	420	
ttgtcagtgg	gtatactctc	agccattgtg	ccgttgtatc	aagctgaagc	ttcgccaaaa	480	
tgggtaagag	gttccattgt	gtatacttac	caatgggcga	taacatgggg	gttgttgatt	540	
gctagtgcta	tatgtcaggg	ggcaaaaaac	attatgaatt	cgggctcgta	tagaataccg	600	
gtgggaatac	agttcttgtg	ggcaattatt	ttgtctgtcg	ggatgctttt	tttacccgaa	660	
tctcctcgat	tccatgtaca	gaaggataat	atccaagaag	cattgaaatg	cttagctaga	720	
ctaagaaaag	tgccgacaga	tgaccctgat	ttgatagaag	aactagttga	aatcaaggcc	780	
aactatgact	acgagttatc	gtttggaaag	gcatcctata	tagattgctt	taagagtggt	840	
ggaggaagaa	ataagcaact	cacgaggatg	ctcacaggta	ttggggtcca	ggcatttcaa	900	
caaagttcag	gaatcaattt	tattttctat	tacggggtta	atttcttcgc	aagttcagga	960	
attaagaatt	attacttaat	gtcatttgta	acttatgcag	ttaacacact	ttttacaata	1020	
ccagggataa	ttttgattga	agtcatagga	agaaggaaac	tattattatt	tggcggcatt	1080	
ggaatggctg	tttcaaattt	cataatagca	attgttggtg	ttagtatgtc	agatgagtca	1140	
atcagttcta	taatatgtgt	gtcattttcg	tgtgtcttta	ttgcattttt	tgcatcatca	1200	
tggggcggtg	ccgtatgggc	gctctcttca	gatatatttg	gtattggtat	tagacaaaaa	1260	
gcaatatcgc	taacggcagc	gacaaattgg	ttagttaatt	ttacctttgc	atttataacg	1320	

135

ccatatttga	ttgatactgg	taaacatacc	gcagcattgg	gtaacaaaat	ttttttatc	1380	
tggggtggtt	gtaatgctct	aggcgtcgta	tttgtgtact	ttatggttta	cgaaacgaaa	1440	
ggattaaaat	tggaagaaat	tgatttcatg	tacaaaaact	gtgtgaacgc	tagagcttcg	1500	
actaagttca	aatctcaaaa	gattgtatac	gccaatcaaa	tttcaacacc	gatctcagag	1560	
cttcttaatc	ccaaccgatc	gcatattgcg	attgagaaat	caagtggaag	taacaataat	1620	
ggcgatgatg	atgagaatag	cgaagaaaat	caccatgatt	ttggtttaga	gaacggaaac	1680	
gtcttacaca	acaatttgga	taataggaat	ataactctta	tcccttataa	gaatattatt	1740	
tcacctctgc	gatcattcag	ttcagattct	tcaagcgatt	ccgactcatc	ttcaccactc	1800	
aatgattatg	aaagatactt	acatagettg	caaaaagaag	gcagccatca	tgacacctct	1860	
caaacttcaa	cgtccttaat	tactgacaat	aagctaagtc	atcttaattc	catgcataat	1920	
gcccactcac	ggggtaattt	tactgaggag	gacttgaagt	acctcaatga	tgaatatgat	1980	
ttagcgatgt	cgcagaaata	cccaggcaca	actacggcgc	ctctaaaacc	aagcacgaat	2040	
atgactgtta	tagcggcgcc	attttttgac	gctccaccaa	gcgattcaga	cacggacgac	2100	
gaaagcgacg	acgatgaagt	cggtgacgaa	gatagcgaaa	cagaaccaga	aactactaag	2160	
ggctcaccgg	ttgataccaa	ggactctagt	tcgtag			2196	
<210> SEQ : <211> LENG <212> TYPE <213> ORGAN	ID NO 13 TH: 1593 : DNA NISM: Debary	yomyces han:	senii				
<400> SEQUI	ENCE: 13						
atgttcaata	aaatcagatt	tggtttctgc	agcttaaaca	aggagcttga	taagtttcat	60	
acgacatata	atatatatgt	tattgctatg	attacaacaa	tctcaggtat	gatgtttgga	120	
tttgatgtct	cttcaatctc	tgcatttata	tctgaaccat	cctacaggcg	gttcttcaat	180	
tatccaaact	ctacgacaca	gggtgcaatt	actgcatcca	tgtctgcagg	gagettettg	240	
ggtgcaatat	tatcatcttt	tgtatcagaa	agaattggga	gaagaacctc	attgcttttt	300	
tgtgccatgt	tctgggtttt	aggttccata	atccaatcat	catgcagaaa	ccttggtcaa	360	
ttaatcgcag	gtcgcataat	atccgggggta	ggtgttggta	ttggatccgc	aataacccca	420	
atatattgtt	cagaagtatc	tcctgcccct	tctagaggtg	ttattggagg	tttatttcaa	480	
ttagctatca	catttgggat	attgataatg	ttttacatag	gatatggttg	tacatttatt	540	
aacggtcagg	cgtctttcag	attagcttgg	gcgctacaaa	tgattcccgg	tttggttttg	600	
tttgctggtg	tattcatttt	acctgagtca	ccacgctggt	tagcaaacaa	tagtaagtgg	660	
gagcaagcag	aagaagtgat	tcgaagaatt	aacgaaaaag	acaaaacagg	aagatatttg	720	
attgaattag	aggagttgaa	ggaaagtatc	acaattcata	aattatcaaa	agatataggg	780	
tacctagatc	ttttcaggaa	aaagaactat	aaaagtagta	ttgttggtat	ttcggctcaa	840	
atctggaatc	agcttaccgg	aatgaacgtg	atgatgtatt	atatagtcta	tatctttgaa	900	
atggtgggat	atactggaaa	tacagtttta	gttagttcaa	gtatccaata	tgttatcaat	960	
tttggcgtga	ctttaatagc	tttgccttta	tctgattatg	ttggaagaag	aagactaatg	1020	
ctaatcggtg	gtgtactaat	gatggcatgg	ctatttgctg	ttggtggact	ctttgcagcc	1080	
tattctgaaa	aggtagaaaa	cgtcaccagt	gacgcaaccg	tggttgttac	tatccccgaa	1140	
gaacatcgaa	atattggaaa	agccattgtt	gcttgctctt	atttattcgt	tgccaccttc	1200	

-1		~
	- 1	- 1

-continued

gctagtacgt gggcagtatg	ttcatggtgt	tatttttctg	aagtgctccc	aactaggaca	1260	
agatcaaaag caggactgtt	agcagttgca	agtgactggg	caataaattt	tgccatagct	1320	
ctttttactt cttcagcatt	tagaaatatt	acttggaaaa	cttactttgt	ttttggaaca	1380	
ttctgcggcg ctatgaccgt	tcataccttc	ctttcatacc	ctgaaactcg	tatgaaaacg	1440	
ctagaagaaa ttgatatgac	tttccaaaat	tgtatcccac	catggaggtc	cgcgggagtt	1500	
actattcaaa gtcttgacgg	ttatttaagt	gattctaagg	aaaataacgt	aacgcatgtc	1560	
gaacaagtgg aatcaaatag	cataagtaag	tag			1593	
<210> SEQ ID NO 14 <211> LENGTH: 1731 <212> TYPE: DNA <213> ORGANISM: Debar	yomyces han	senii				
<400> SEQUENCE: 14						
atgtettegt tattgaceaa	caaatatttc	aaagactatt	acaataatcc	aagtccaacg	60	
gcgattggta ctatgatcgc	catcctagag	attggtgctt	tgatatcatc	gttcgttgcg	120	
ggtaaagttg gtgatcatat	cggaagaaga	cgcactatac	gttatggatc	gtttatcttc	180	
ataatcgggg ggcttatcca	aacttcgtca	atcaatatta	ttaacttagg	ggcaggaagg	240	
tttatcagtg gtgtggcaat	tgggtttttg	actactatca	ttccatgcta	tcagtctgaa	300	
atcagtccac ctgatgatag	aggattctat	gcgtgcttag	aatttactgg	taacatcatt	360	
ggttactcta caagtatttg	ggtggattat	gggttttcgt	tcatagaaaa	tgactactca	420	
tggagaactc cattggccat	ccaatgtgtc	atgggtggcc	ttttgtttat	tggatcattc	480	
gtaatcgtag aaactccaag	atggetttta	gatcatgatc	atgatattga	aggaatgatt	540	
gtgatttctg atttgtatgg	tgatggtgat	gttgaagacg	aattatctaa	aacggaatat	600	
agaaacatta aggaaaacat	tctcatcgca	agagtggaag	gaggggaacg	ttcatatcgt	660	
tatatgttaa ctaagtataa	gaaacgtctt	tcagttgcgt	gcttttcgca	gatgtttgca	720	
caattgaatg gtattaatat	ggtttcctat	tatgcgccta	tgatttttga	gctggccggt	780	
tgggttggta gacaggccat	tttaatgact	ggtattaatt	ccatagttta	cgtattgagt	840	
acaattccgc catggtattt	ggtggatggt	tggggcagaa	agccgttatt	gttgtctggc	900	
gctgttgtca tgggtatacc	attattagtg	atttcgtatt	cattattcct	tgataacatt	960	
tataccccaa acatagtggt	tgtatcggtg	atcatattca	atgctgcatt	tggtgcaagt	1020	
tggggggccaa tcccatggat	gatgaatgaa	gtattaccta	atagtattag	atctaaaggt	1080	
gctgccatgt ccactgcaac	taattggcta	ttcaacttca	tcgtagggga	aatgacccca	1140	
atattgttgg ataccattaa	atggagaacc	tatttgatct	cagccgtctc	gtgtgcatta	1200	
tcatttttat gcgtccactt	cttgtttccg	gaaacaaagg	ggttgagctt	agaggacatg	1260	
ggctccgtat ttgatgataa	ctcgtctatt	ttttcgttcc	attcgggtgc	atccagtgga	1320	
aacaatgcat caactactac	tatcaataac	tacgggggctg	cagatagaga	tagcggtatc	1380	
gaggttcgca gaactagtat	ctccgttgaa	actccaaacc	atgcaaacat	agttaatgaa	1440	
gcatttcgcc aatccccagc	atcaattgct	cgtaattcaa	aggccaaacc	agagttagac	1500	
ggtettatta etggtaatee	accacccqta	ccacctgace	teteqqtett	qqactccaat	1560	
gtacctccac aagaaatoga	accacettea	ttogacotca	ttttcaaata	taaagttege	1620	
	attoreeso	actiticate	caatctoood	tratactacc	1690	
taallayaya aaccaaaCat	accocaaaag	guuludgug	caaloloogg		1000	
ttcaaaccac cacagatcga	cgaagaacgt	actttgctct	cgaataattg	a	1731	

-continued

60

<210> SEQ ID NO 15 <211> LENGTH: 1674 <212> TYPE: DNA <213> ORGANISM: Debaryomyces hansenii <400> SEQUENCE: 15 atgactactg ctgttggatt agaagataat tccaaaggga atattattac tgttatgagt aaagatccgt tagtgttttg cataattgcg tttgcatcta ttgggggttt actctttggg 120 tacgatcagg gagttattag tggtatagtt actatggagt catttgcggc aaaattcccc 180 agaatttttt ccgatcctga ttataagggt tggtttgttt ctacattttt gttgtgtgct 240 tggtttggtt cgttgataaa ctctcctgtt gttgatcgat ttggaagaag ggatactata 300 agaatagett gegttgtatt tgttategga tetgtettte aatgtgeagg taegteggtt 360 agtatgettt tegetgggag ageagttget ggtateggtg teggaeaatt gaetatggta 420 gtcccaattt atatgtcgga attagctcca ccttcagtaa gaggtggttt agttgtaata 480 cagcaatttt caataacaat aggtattttg atatcatttt ggataaatta tggcactcaa 540 tttattggag gaactaaatg tgctcctgac caagattaca aaggcgatac tttcgaccca 600 tacattgatg ttcctcaagg tggttgttac ggtcaaaaag atgcttcctg gagaattcca 660 tttgggttac aaattgcacc agetttcatt ttaggtattg gtatgtettt ttttccaaga 720 tcgccaagat ggctcttatc aagaaaaaga gaagaggagg catgggaggc tttgaattat 780 ttgaggagaa gaaataatcc tgatatgatt gatgctgaat tcaatgaaat taaatcggac 840 gtattatttg aacaaaaata taacgagagg aaatttcaag gaaaaacagg aatgtctttc 900 tttataacat cgtattggga tctagtctct accaaatcaa attttaagag agtttttata 960 ggctctgcgg ttatgttctt ccaacaattt attggttgta atgcaattat ttattacgca 1020 ccaacaatat ttagtcaatt aggaatggat tccaacacca cagcattgtt aggaacaggg 1080 gtctatggga ttgttaattg cctttcaact attcctgcta tctttgcgat tgacagattt 1140 ggtagaaaaa ctttattgat ggctggggca gctggaactt ttgtttcgtt ggttatagta 1200 ggtgcaattg teggeacata tggtgataet ttatetaage ataaaaetge tggtagageg 1260 gcaatagett ttattttat atatgattte aaetttteat atagetggge acetattgga 1320 tgggttttac catccgaaat cttctctatt ggaatcagat caaaagctat atccattact 1380 acttcatcaa catggatgaa taatttcata attggtttgg tcaccccccg tatgttggag 1440 acaatgaaat ggggaacata tatcttttt gcagcatttg ctataattgc atttgctttc 1500 acttggtttg ttatcccaga aactaaagga gtacctttag aagaaatgga tttagttttt 1560 ggtgatttag atgcgttgca agaaaagcaa aacttctctc gcatgaatga attatcaaaa 1620 atggattcaa ttaaagctac aacagatatt tcggaagcac attattctga ttaa 1674 <210> SEO ID NO 16 <211> LENGTH: 1476 <212> TYPE: DNA <213> ORGANISM: Escherichia coli <400> SEQUENCE: 16

atgaataccc agtataattc cagttatata ttttcgatta ccttagtcgc tacattaggt 60 ggtttattat ttggctacga caccgccgtt atttccggta ctgttgagtc actcaatacc 120 gtetttgttg etecacaaaa ettaagtgaa teegetgeea aeteeetgtt agggttttge 180

141

-continued

gtggccagcg	ctctgattgg	ttgcatcatc	ggcggtgccc	tcggtggtta	ttgcagtaac	240
cgcttcggtc	gtcgtgattc	acttaagatt	gctgctgtcc	tgtttttat	ttctggtgta	300
ggttctgcct	ggccagaact	tggttttacc	tctataaacc	cggacaacac	tgtgcctgtt	360
tatctggcag	gttatgtccc	ggaatttgtt	atttatcgca	ttattggcgg	tattggcgtt	420
ggtttagcct	caatgctctc	gccaatgtat	attgcggaac	tggctccagc	tcatattcgc	480
gggaaactgg	tctcttttaa	ccagtttgcg	attattttcg	ggcaactttt	agtttactgc	540
gtaaactatt	ttattgcccg	ttccggtgat	gccagctggc	tgaatactga	cggctggcgt	600
tatatgtttg	cctcggaatg	tatccctgca	ctgctgttct	taatgctgct	gtataccgtg	660
ccagaaagtc	ctcgctggct	gatgtcgcgc	ggcaagcaag	aacaggcgga	aggtatcctg	720
cgcaaaatta	tgggcaacac	gcttgcaact	caggcagtac	aggaaattaa	acactccctg	780
gatcatggcc	gcaaaaccgg	tggtcgtctg	ctgatgtttg	gcgtgggcgt	gattgtaatc	840
ggcgtaatgc	tctccatctt	ccagcaattt	gtcggcatca	atgtggtgct	gtactacgcg	900
ccggaagtgt	tcaaaacgct	gggggccagc	acggatatcg	cgctgttgca	gaccattatt	960
gtcggagtta	tcaacctcac	cttcaccgtt	ctggcaatta	tgacggtgga	taaatttggt	1020
cgtaagccac	tgcaaattat	cggcgcactc	ggaatggcaa	tcggtatgtt	tagcctcggt	1080
accgcgtttt	acactcaggc	accgggtatt	gtggcgctac	tgtcgatgct	gttctatgtt	1140
gccgcctttg	ccatgtcctg	gggtccggta	tgctgggtac	tgctgtcgga	aatcttcccg	1200
aatgctattc	gtggtaaagc	gctggcaatc	gcggtggcgg	cccagtggct	ggcgaactac	1260
ttcgtctcct	ggaccttccc	gatgatggac	aaaaactcct	ggctggtggc	ccatttccac	1320
aacggtttct	cctactggat	ttacggttgt	atgggcgttc	tggcagcact	gtttatgtgg	1380
aaatttgtcc	cggaaaccaa	aggtaaaacc	cttgaggagc	tggaagcgct	ctgggaaccg	1440
gaaacgaaga	aaacacaaca	aactgctacg	ctgtaa			1476
<210> SEQ <211> LENG <212> TYPE <213> ORGA	ID NO 17 TH: 1701 : DNA NISM: Schef:	fersomyces :	stipitis			
<400> SEQU	ENCE: 17					
atgcacggtg	gtggtgacgg	taacgatatc	acagaaatta	ttgcagccag	acgtctccag	60
atcgctggta	agtctggtgt	ggctggttta	gtcgcaaact	caagatcttt	cttcatcgca	120
gtctttgcat	ctcttggtgg	attggtctac	ggttacaatc	aaggtatgtt	cggtcaaatt	180
tccggtatgt	actcattctc	caaagctatt	ggtgttgaaa	agattcaaga	caatcctact	240
ttgcaaggtt	tgttgacttc	tattcttgaa	cttggtgcct	gggttggtgt	cttgatgaac	300
ggttacattg	ctgatagatt	gggtcgtaag	aagtcagttg	ttgtcggtgt	tttcttcttc	360
ttcatcggtg	tcattgtaca	agctgttgct	cgtggtggta	actacgacta	catcttaggt	420
ggtagatttg	tcgtcggtat	tggtgtgggt	attctttcta	tggttgtgcc	attgtacaat	480
gctgaagttt	ctccaccaga	aattcgtggt	tctttggttg	ctttgcaaca	attggctatt	540
actttcggta	ttatgatttc	ttactggatt	acctacggta	ccaactacat	tggtggtact	600
ggctctggtc	aaagtaaagc	ttettggttg	gttcctattt	gtatccaatt	ggttccagct	660
ttgctcttgg	gtgttggtat	cttcttcatg	cctgagtctc	caagatggtt	gatgaacgaa	720
gacagagaag	acgaatgttt	gtccgttctt	tccaacttgc	gttccttgag	taaggaagat	780
actcttgttc	aaatggaatt	ccttgaaatg	aaggcacaaa	agttgttcga	aagagaactt	840

US 9.695.223 B2

143

-continued tetgeaaagt actteeetea eeteeaagae ggttetgeea agageaaett ettgattggt 900 ttcaaccaat acaagtccat gattactcac tacccaacct tcaagcgtgt tgcagttgcc 960 tgtttaatta tgaccttcca acaatggact ggtgttaact tcatcttgta ctatgctcca 1020 ttcatcttca gttctttagg tttgtctgga aacaccattt ctcttttagc ttctggtgtt 1080 gtcggtatcg tcatgttcct tgctaccatt ccagctgttc tttgggtcga cagacttggt 1140 1200 agaaagccag ttttgatttc cggtgccatt atcatgggta tttgtcactt tgttgtggct gcaatcttag gtcagttcgg tggtaacttt gtcaaccact ccggtgctgg ttgggttgct 1260 1320 1380 1440

gttgtcttcg tttggatttt cgctatcggt ttcggttact cttggggtcc atgtgcttgg gtccttgttg ccgaagtctt cccattgggt ttgcgtgcta agggtgtttc tatcggtgcc tettetaaet ggttgaacaa ettegetgte gecatgteta eeccagattt tgttgetaag gctaagttcg gtgcttacat tttcttaggt ttgatgtgta ttttcggtgc cgcatacgtt caattettet gtecagaaac taagggtegt acettggaag aaattgatga actttteggt gacacctctg gtacttccaa gatggaaaag gaaatccatg agcaaaagct taaggaagtt qqtttqcttc aattqctcqq tqaaqaaaat qcttctqaat ccqaaaacaq caaqqctqat

gtctaccacg ttgaaaaata a

<210> SEO ID NO 18 <211> LENGTH: 1404 <212> TYPE: DNA <213> ORGANISM: Scheffersomyces stipitis

<400> SEQUENCE: 18

60 tgtgaattgg catttattct ttttggtatt gaacagggta ttattggtaa tcttattaac 120 aaccaggact teetaaacae ttttggaaae eecaeeggta gttatttagg tattategtt 180 tctatctata ccttagggtg tttttttggt tgtgttatga acttcttcat tggtgatcga 240 atgggcagaa gaagcaaaat tgcttcctca atgacagtta tcacaattgg tgttgctctt 300 caatgtagtt ccttttcagt tgaacaattg atgattggaa gatttatcac tgggcttgga 360 actggttggg aaacttctac ttgtccaatg tatcaggcag aactttcacc tccaaaagtt 420 agaggacgtt tggtgtgctc agaagcattg tttgttggag ttggtttaat ctatgcatat 480 tggtttgatt atgetettte ttteaettet ggteetattg eatggagaet teetettgee 540 tetcagattg tgttegeett tgttgtttte tgttteactt teacaataee egaateeeet 600 agatacatgt tttacaaagg agagaaagaa gaagccaaaa gaattttatc ttatgtcttt 660 ggaaagccag gagatcatcc tgacattctt aaggaatgga atgatattaa tgatgctgtt 720 attttggaaa cttcagaagg agctttctcg tgggcaaaac ttttcaagcc cgataaggca 780 agaactggat acagagtett ettggeatae atgageatgt ttgegeaaea gttgagtggt 840 gttaatgtag ttaattacta tattacattt gttttgatta acagtgttgg catcgaagac 900 aacttggccc taattettgg tggtgttgcc gteatetgtt teaetgttgg tteattagtt 960 cctactttct ttgctgatag gatgggaaga agattgcctt cagcagttgg agcttttggc 1020 tgtggtgttt gtatgatgct aatttcaatc ttattaagtt ttcaagacaa tccaaagttg 1080 aagaagagca gtggagctgg tgctgtggct ttctttttcg ttttccaact tgtcttcggc 1140 tccactggta attgtattcc atggctgatg atttcagagc ttatccccct tcatgcacgt 1200

1500

1560

1620

146

145

-continued

gctaaaggat ctto	cattage	tacatcaagt	aactggcttt	ggaatttctt	tgttgttgag	1260	•
atcactccaa ctat	cattga	aaagttgaag	tggaaagcat	atttgatctt	tatgtgctgc	1320	
aacttctcct tcgt	accaat	gttttacttt	ttctttcccg	agacaaagaa	ccttacttta	1380	
gaagccattg acga	atttgtt	ctca				1404	
<210> SEQ ID NC <211> LENGTH: 1 <212> TYPE: DNF <213> ORGANISM:) 19 1656 A : Schef:	fersomyces :	stipitis				
<400> SEQUENCE:	: 19						
atgagagaag ttgg	gtattct	tgatgttgcc	catggcaacg	ttgtaactat	aatgatgaaa	60	
gatccagtag tatt	tttggt	gattttattt	gcatcccttg	gaggtttgct	ttttggttat	120	
gatcaagggg ttat	tagtgg	cattgtcaca	atggaatctt	ttggtgcaaa	attccccaga	180	
atttttatgg atgo	cgatta	caagggttgg	tttgtgtcta	cttttttgct	atgcgcatgg	240	
tttggctcta ttat	taatac	tccaattgtt	gataggtttg	gaagacgtga	ttctatcaca	300	
atctcttgtg ttat	ttttgt	cattggttct	gcgttccaat	gtgctggcat	taatacaagt	360	
atgttatttg gtgg	gcgtgc	tgttgctggt	cttgcagtcg	gtcaattaac	catggtagtt	420	
ccaatgtaca tgto	cggaatt	ggctcctcca	tcggtgagag	gtgggttggt	tgtaattcag	480	
caactttcga ttac	caattgg	tatcatgatt	tcctattggt	tggattatgg	cactcatttt	540	
attggaggta ctag	gatgtgc	tcctagtcac	ccataccaag	gtgaaacttt	taaccctaat	600	
gtggatgttc ctcc	aggtgg	ctgctatggt	caaagtgatg	ccagttggag	aattcctttt	660	
ggtgttcaga ttgo	ctccagc	agtgttgttg	ggtattggaa	tgatatttt	cccaagatct	720	
cccagatggt tact	ctctaa	aggtcgcgac	gaagaagctt	ggagetettt	gaaatatctc	780	
agaagaaaga gtca	atgagga	tcaagtcgaa	agagagtttg	ctgaaattaa	ggcagaggtc	840	
gtttatgaag acaa	agtacaa	ggaaaagaga	ttccctggta	agactggagt	tgctttaaca	900	
cttactggat acto	ggatat	tcttactact	aaatctcact	tcaagagagt	ttttattgga	960	
tcagctgtca tgtt	cttcca	acaattcatt	ggctgcaatg	caataattta	ttacgcacct	1020	
acaattttca caca	aattggg	aatgaactct	acaactactt	ccttgcttgg	tactggtctt	1080	
tatggtattg ttaa	attgtct	ttccaccctt	ccagcagtgt	tcttgatcga	tagatgtgga	1140	
agaaagactt tgtt	aatggc	aggtgctatt	ggaactttta	tttccttggt	tattgtcggc	1200	
gcaatcgttg gcaa	agtatgg	cgatcgttta	tctgaattca	agacagcagg	gagaactgca	1260	
attgctttca tttt	cattta	tgatgtgaat	ttctcgtaca	gttgggctcc	aattggatgg	1320	
gttttaccct caga	agatttt	cccaatcggc	atcagatcca	atgccatctc	cataactacc	1380	
tcatctactt ggat	gaataa	ttttattatt	ggcttggtca	ctccacatat	gttagaaaca	1440	
atgaagtggg gcac	cttacat	ttttttgca	gcgtttgcta	ttattgcgtt	ctttttcact	1500	
tggettatea teee	cggaaac	caagggagtt	ccattggaag	aaatggatgc	cgtgtttggc	1560	
gatactgcag catt	gcagga	aaagaatttg	gttaccatta	cgtcagtttc	tgaatctgac	1620	
gccaaggatc gcaa	actcgat	tgaaatgtca	gaataa			1656	
<210> SEQ ID NO	20						

<211> SEQ 1D NO 20 <211> LENGTH: 1629 <212> TYPE: DNA <213> ORGANISM: Scheffersomyces stipitis

<400> SEQUENCE: 20

147

atgtcttcgt	tattgactaa	cgaatacttc	aaagactact	accacaaccc	gactcctgtt	60
gaagtgggta	ctatgattgc	tatcttagag	atcggcgcac	tttttcctc	cttcatagct	120
ggaagagtag	gtgacatcgt	tggcagaaga	agaaccatta	gatacgggtc	tttcattttt	180
gtagtaggcg	gtcttgtaca	agctacttcg	gtcaatattg	tcaatctctc	actaggaaga	240
ttgattgccg	gtattgccat	tggctttttg	acaaccatca	tcccatgcta	ccagtctgaa	300
atcagccccc	cagacgatag	aggtttctat	gcctgtttgg	agttcaccgg	aaatatcatt	360
ggatatgcta	gtagtatttg	ggtagactac	gggttttcat	ttttagacaa	tgatttcagc	420
tggaggagcc	cattgtatgt	tcaggttgtt	attggctcca	tgttatttat	tggttcattc	480
cttattgtag	aaacccctag	atggetettg	gatcacaacc	atgatatcga	aggcatgatt	540
gtcatttctg	acttgtatgc	agatggtgat	gtggaagacg	atgatgctat	tgctgagtac	600
agaaacataa	aggaaagtgt	cttgatagcc	agagttgaag	gcggagagag	atcgtaccag	660
tatttgttca	ccaaatatac	caagagactt	tctgtggcat	gcttttcgca	aatgtttgcc	720
cagatgaatg	gtataaacat	ggtatcttac	tatgctccta	tgatcttcga	atctgctggc	780
tgggttggta	gacaagctat	cttgatgact	ggtatcaact	ccattatcta	catctttagt	840
accattcctc	catggtactt	agttgattct	tggggcagaa	aacctttgct	tttatctgga	900
tctgtgctca	tgggtgttcc	gctcttaacc	attgcttgtt	cgttattctt	aaacaacaca	960
tacacacccg	gggttgtggt	tggcagtgta	atcgtattca	atgctgcttt	tggatacagt	1020
tggggtccaa	ttccttggct	catgagcgaa	gtgttcccta	actcagttag	atcaaaaggt	1080
gctgccatgt	ctactgcaac	caactggctc	tttaacttta	ttgttggaga	gatgacacct	1140
attttgttgg	atacaattac	ctggagaact	tacttgatcc	cggcaacttc	gtgtgtatta	1200
tcgttttttg	ctgttggatt	tttatttcca	gagaccaagg	gtttagcatt	ggaggatatg	1260
ggctccgtat	tcgatgataa	ttcgtcaata	ttttcatatc	actcaactcc	ttccactggg	1320
tatggtgcga	ccgagtctaa	cagtaatgcc	aggagagcaa	gtgtcatctc	ttcagaaaac	1380
taccaggata	gtttgcatca	gacagcggct	tcattggcta	gaaatcette	aagcatgagg	1440
cctgattacg	atggcataat	cacaggagct	gctacccttt	cgccagtacc	accattaaaa	1500
ccaataaagt	ctgatgcgtc	agtccattca	gtcgatgcca	taattccaag	catttccagc	1560
aatattccgc	aggaaattga	accaccaacc	tttgatgaaa	tctttaagta	caagttgaat	1620
gagatggaa						1629
<210> SEQ 3 <211> LENG' <212> TYPE <213> ORGAJ <400> SEQUJ	ID NO 21 TH: 1488 : DNA NISM: Scheff ENCE: 21	ersomyces s	stipitis			
atqacqqaaa	qaaqcattqq	acctttaatc	cccaqaaata	aqcacttatt	ctatqqatcc	60
qtattattga	tqaqtattat	tcacccaact	atcatqqat	acqattccat	qatqqttqqt	120
agtattetta	atctagatog	atatgtaaat	tatttccact	taacquetee	taccactora	180
ctcaatacto	ctocactato	acttaacee	gtaattggga	cattgacact	tattetetatat	240
ttasster	antttact	anderst	attest	atattact	and the set	240
LUCAALGACA	aarriggtag	aayaagttCa	yllytataa	ylallgcaat	Cagritggit	300
ggggttgcat	tgcaatcagc	agcccaaaac	attgagatgt	ttattatcgg	aagaatagtt	360
attggttttg	gaatatctat	tggttttgtc	tcatctacca	ttttggtaag	tgaactagcc	420

149

cctccagaca	aaagaggatt	tattcttgga	ttgagtttta	caagctttct	agtaggaagt	480	
ttaattgcag	caggtgtcac	atatggaaca	agaaatgctc	ctggagactg	gtgttggaga	540	
atcccatcaa	ttattcaagg	ggctccagat	attgttgcta	ttattaacat	actctttatt	600	
tcagaatcac	caaggtggtt	gattgcaaag	gaaagattca	gcgaagctcg	tgaaattatt	660	
tctatcatta	gtgatgttcc	tattgaagat	gcacatgaag	aatgtgaaaa	gatacatgcc	720	
catattcaaa	ctgagaagac	tgettteeet	ggcaataagt	ggaaacaaat	ggtgagctcc	780	
aagagcaata	caagaagagt	tattatcttg	ttcacacagg	ccatagttac	tgaaatggcc	840	
ggttcttcag	ttggatcgta	ctattttca	attatattaa	ctcaagctgg	ggtcaaagat	900	
tcgaatgata	gactaagagt	aaatattgtg	atgagttcgt	ggtcattggt	aattgetett	960	
tccggatgtc	taatgtttga	cagaattgga	agaaaaatgc	aatcgctcat	ttcgttatca	1020	
ggtatgatca	tatgctttat	agttttaggt	gttttggtta	aagaatatgg	cgatggtcat	1080	
agcaagagcg	gaagttacgc	agctgtcgcc	atgatgtttt	tattcacagg	attttactca	1140	
ttcactttca	ctccattgaa	ctctttgtac	cctccagaat	tgttccccta	cgtgttgaga	1200	
agtacaggag	ttacactctt	taatattttc	aacggctgct	ggggactttt	cgcaagtttc	1260	
attttaccca	ttgcaatgaa	tggaattggc	tggaaatttt	acatcattaa	tgcttgctat	1320	
gacgtcatat	tccttccaat	aataatgttc	tgttggattg	agacaaaggg	aattaatttg	1380	
gatacaatta	gtgaagtatt	gcacggaaga	ggacctgaag	atgaagaaag	cattgaagaa	1440	
agtcacagcc	taatcagaca	aggttttgtt	gttaatacaa	agaagtaa		1488	
<210> SEQ 1 <211> LENGT <212> TYPE <213> ORGAN	ID NO 22 TH: 1635 : DNA NISM: Schef:	fersomyces :	stipitis				
<400> SEQUE	ENCE: 22						
atgtccagtg	ttgaaaaaag	tgctgaaact	gcttcctata	cgtcgcaggt	cagegeaage	60	
ggctctgcaa	agaccaacag	ctaccttggc	ctcagaggcc	acaaacttaa	ttttgctgtc	120	
tcttgttttg	ctggtgttgg	tttcttactt	ttcggttacg	atcaaggtgt	catgggttca	180	
ttgttgacct	tgccatcctt	cgaaaacact	ttcccggcca	tgaaggctag	caacaacgct	240	
accttacaag	gcgccgttat	tgcactttat	gaaatcggtt	gtatgtcttc	ttctttagca	300	
accatttacc	ttggtgacag	attgggtaga	ttgaagatca	tgtttattgg	ctgtgtaatt	360	
gtctgtattg	gtgctgcttt	gcaagettet	gctttcacta	ttgctcactt	gactgttgct	420	
agaattatca	ctggtttagg	tacaggtttc	atcacttcta	ctgttccagt	ttaccaatcg	480	
gagtgetete	cagccaagaa	aagaggacag	ttgatcatga	tggaaggttc	tcttatcgcc	540	
cttggcattg	ccatctcata	ctggattgac	tttggatttt	actttttgag	aaacgatggt	600	
ttgcactcct	cggcttcttg	gagagcacct	atcgcgcttc	aatgtgtctt	cgctgtcttg	660	
ttgatttcca	cagtcttctt	cttcccagaa	tctccaagat	ggttgctcaa	caaaggtagg	720	
accgaagaag	ctagagaagt	tttttctgct	ctttacgact	tgccagccga	ctctgaaaag	780	
atttctattc	aaattgaaga	aattcaagct	gctatagatt	tagaaagaca	agccggagaa	840	
ggtttcgtac	ttaaggaatt	gttcactcag	ggcccagcca	gaaacttgca	gcgtgtggcc	900	
ttgtcatgtt	ggtctcaaat	aatgcaacaa	atcactggta	ttaacattat	tacgtactat	960	
gctggtacta	tttttgaatc	atacattggt	atgagtccat	ttatgtcaag	aatcttggct	1020	
gccttgaacg	gtactgaata	tttccttgtc	tctcttattg	ctttctacac	cgtcgaaaga	1080	

151

-continued

ttaggtagaa	gattcctttt	gttctggggt	gccatcgcca	tggctcttgt	catggctggt	1140
ttaactgtta	ccgttaaact	tgccggtgaa	ggcaacaccc	atgctggtgt	cggtgctgct	1200
gttcttttgt	ttgcattcaa	ctcattcttc	ggcgtctcct	ggttaggtgg	atcctggttg	1260
ttaccacctg	aattgttgtc	tttgaaattg	agagctcctg	gtgctgcttt	gtcgaccgct	1320
tctaactggg	cttttaactt	catggttgtc	atgatcactc	ctgtcggttt	ccaaagtatt	1380
ggttcctaca	cctaccttat	ctttgctgcc	atcaatttgt	tgatggctcc	ggtcatctac	1440
ttcttgtatc	ccgaaaccaa	gggtagatcg	ttggaagaaa	tggatatcat	tttcaaccaa	1500
tgtcctgttt	gggagccatg	gaaggttgtc	caaattgcca	gagacctccc	tattatgcac	1560
tcagaagttc	ttgaccacga	aaaggatgtc	attattgaaa	aatctagaat	agagcatgtc	1620
gaaaacatca	gctaa					1635

<210> SEQ ID NO 23 <211> LENGTH: 1251 <212> TYPE: DNA <213> ORGANISM: Scheffersomyces stipitis

<400> SEQUENCE: 23

ł	acttttgcag	ttaacttgta	tgtgtttgca	gttggtagag	tgctttctgg	ggtgggtgta	60
ç	ggagttctat	cgactatggt	gccgtcctat	caatgcgaaa	ttagtcccag	cgaagaaaga	120
ç	ggcaagttgg	tgtgtggaga	gttcacggga	aatatcactg	gttatgctct	cagtgtatgg	180
ç	gccgattact	tctgctactt	tattcaagat	ataggtgatg	caagggagaa	gcctcatagc	240
1	ttetttgeee	acttgtcctg	gcgattgcct	ctattcatcc	aggtggtgat	agcggctgtt	300
¢	ctctttgttg	ggggatttt	tattgtcgag	tcacctcgtt	ggttattaga	tgtagaccag	360
ç	gaccaacaag	gattccatgt	attagcgttg	ctctatgatt	cacatctaga	tgataacaaa	420
¢	ccacgtgaag	agttctttat	gatcaaaaac	tccatcttgt	tagaaagaga	aactacacct	480
ł	aagagcgaac	gaacttggaa	acatatgttc	aagaactaca	tgacccgagt	gcttatagct	540
1	tgttcagcac	ttggctttgc	acagttcaac	ggcataaata	tcatttcgta	ctatgccccc	600
č	atggtatttg	aagaagcagg	cttcaacaac	tccaaggctt	tacttatgac	aggcatcaac	660
1	tctatagtat	attggttcag	tacgattcct	ccgtggtttc	tcgtggatca	ttggggtaga	720
ł	aagccaattt	tgatatccgg	gggtttatct	atgggaatat	gtattggttt	gattgcggtg	780
ç	gtaattctac	tagacaagtc	gttcacaccg	tctatggttg	cggtattggt	gataatctac	840
ł	aatgcatctt	ttggctacag	ttggggtcct	atcggattct	tgatcccgcc	ggaggtgatg	900
¢	ccattggcag	ttagatcgaa	aggtgtttct	atttctacgg	ctacaaactg	gtttgccaat	960
1	tttgttgtgg	gtcagatgac	gccaattcta	cagcagagat	tgggctgggg	aacttatcta	1020
1	ttcccggctg	gtagttgtat	catctcggtg	atagtggtga	ttttcttcta	tccagagaca	1080
ł	aagggtgcag	agctagagga	tatggactct	gtgttcgaga	gcttttacaa	ctacaagtct	1140
¢	ccgttcaaga	tttcacgaaa	gagacaccag	aatgatggcc	aggcgtacca	aagggtagag	1200
ł	aacgatatcc	gccacaacga	tgtagaaatg	gacgatttgg	acgatttgga	с	1251

<210> SEQ ID NO 24 <211> LENGTH: 1638 <212> TYPE: DNA <213> ORGANISM: Yarrowia lipolytica

<400> SEQUENCE: 24

153

atgattggaa acgeteaaat taaccaggtg ggageettae ageaeeggtt eeceaaaete

-continued

cacaatcctt	acttaactgc	ggccgtggcc	accatgggtg	gcctgctttt	cggctttgat	120
atctcgtctg	tttctgcctt	tgtcgacacc	aaaccctaca	aggagtactt	tgggtacccc	180
acctccatcc	agcagggcgg	tatcactgcc	tcaatggccg	gtggatcctt	cctgtcgtct	240
ctggtggccg	gctggatttc	cgaccgactt	ggtcgacgtt	tcgccatcca	ctttgcttcc	300
ttttggtggg	tggttggagc	tgccatccag	tcctcagccc	aaaacaaggg	ccaattgatc	360
gccggtcgac	tcatttccgg	ccttggtatc	ggtctgggct	cctcggttat	ccccgtctac	420
atctccgagc	tgtctcccaa	gaagattcga	ggtcggcttg	tcggtctctt	ccaatgggcc	480
gttacctggg	gtatcctcat	catgttctac	atttccttcg	gtctcagtaa	catccacgga	540
gtcgccggat	tcagagtcgc	ctggggtctg	cagatcatcc	ccggtctgct	catgtctctc	600
ggttgtttgt	tcctggaaga	gtctccgcga	tggctagcca	agcaggacaa	ctgggacgag	660
tccgtgcgag	tgcttcgagc	catccaccag	ggaggctacg	gcaccgaaga	agacattttg	720
ttagagattg	aagagatccg	agaagcagtc	cgaatcgagc	atgagaccaa	aaacctgcga	780
ttctggcacc	tgttccaaaa	ggactctatc	aaccgaacaa	tggtgggtat	ctgggcccag	840
atctggcagc	ageteacegg	catgaacgtc	atgatgtatt	acattgtgct	gattttcacc	900
atggctggat	acactggaaa	cgccaatctg	gtggcctcgt	ctatccagta	cgtcatcaac	960
atgatcatga	ccatccccgc	tcttctgttc	attgaccgag	tgggacgacg	acccctgctg	1020
ctgttcggat	caatcgtcat	gatgatctgg	ctgtttgccg	tcgctggtat	ccttgcagtg	1080
tacggaactc	agatccccgg	tggactcgac	ggagacgcat	tcacaaccat	tgtcattgag	1140
cccactcaca	agcctgccca	aaagggagtc	attgcgtgct	cgtacctgtt	tgtggccacc	1200
tttgcgccta	cctggggccc	cggtatctgg	ctgtactgct	ccgagctgtt	ccctctgaag	1260
cagcgagctg	tggctgccgg	tgtaaccgcc	tctgccaact	ggatcttcaa	ctttgctctc	1320
gctctattcg	tgeeetegge	cttcaagaac	atcaactgga	agacctacat	catctttgga	1380
gtcttctgta	tcgtcatgac	catccacgtc	tttgtcctct	tccccgaaac	caagggcaag	1440
accctcgaag	agattgatat	gatgtgggcc	gcccgagttc	ctgcctggag	aaccgcaaac	1500
tgggtgcctg	accacgttcc	tggcgccctt	cccgaagacg	agaaacactc	ggaggagatg	1560
gtcgaggccg	tcgaatccaa	tgaagaggag	cccaagatag	ccagtgctaa	cgtcgacgcc	1620
cctccctctc	aattgtaa					1638
<210> SEQ 3 <211> LENG <212> TYPE <213> ORGAI	ID NO 25 IH: 1665 : DNA NISM: Yarrov	wia lipolyt:	ica			
<400> SEQU	ENCE: 25					
atgtacaagg	tccataaccc	ctacctcacg	gcggcggtag	ccaccatggg	cggaatgete	60
tttggtttcg	atatctcgtc	cgtgtcggcc	tttgtgggcg	aagataacta	catgaactac	120
tttggtcatc	ccacctcctt	ccagcaggga	ggtatcaccg	cctccatggc	cggaggatcc	180
atgctgtcgt	gtgcgtttgc	cggctacatt	teegaeeggg	ttggccgaaa	gcccaccatt	240
caatttgccg	ccgcctggtg	gatggttggc	gcctccattc	aatgctctgc	ccagaatatg	300
ggccaactga	ttgccggccg	ggccatttcc	gggcttggaa	tcggcctcgg	ctcgtcccag	360
atccccgtct	tcatctccga	gttgtccccc	aagaagatcc	gaggeegget	cgtcggctgc	420
ttccaatggt	ccgttacctg	gggtattctc	atcatgttct	acatttcgtt	cggctgctca	480

154

155

tacatcaagg	gccactcgtc	cttccgactg	gcgtggggca	tccagctgat	tccaggagcc	540
atgttggcgt	tcggaatgat	gctgctggac	gaatcgccgc	gatggctggc	gtccaaagac	600
cgctgggaag	aggccatcca	gatcatccgc	tccatcaatg	ccaactacgg	atccgaggag	660
gacattctca	tggaaatcga	agatctgcga	gaggtggtgc	gaatcgacca	cgagtccaag	720
tcggtcacca	tctgggacct	gttccgaaaa	gactccatca	accgaaccat	ggtcggagtg	780
tgggcccaga	tctggcaaca	actgactgga	atgaacatca	tgatgtacta	cgtggtcatc	840
atcttcaaaa	tggccggcta	ctcgggcaaa	agtgccgtca	ttgtctccgg	ctccatccag	900
tacatcatca	acgtggtcat	gaccatcccg	gcgctgcttt	tcattgataa	aatcggacga	960
agacccctgc	tcctctgtgg	aagcatgctc	atggccacct	ggctgctagc	tgtcggagga	1020
atgctaggag	cctacggaat	ccaaatgccc	caaggtctac	cggcagtacc	ctccaaaaac	1080
caggcagcgg	acccctacac	caccatctac	attcccgaca	accaggcgcc	ggcccgaaag	1140
gccattatcg	cctgttgcta	tctgtttgtc	gcctctttg	cacccacctg	gggccccggc	1200
atctggctct	actgctccga	gatcttcccc	aacaaacaac	gagcgctggc	caactcgctg	1260
accgccggcg	ccaactgggg	cttcaacttt	gccctggccc	tgtttgtgcc	caccgccttc	1320
aagaacatca	actggaaggt	gtacatcatc	ttcggtgtct	tctgcatcgt	catgtccatc	1380
cacgtettee	tgetetteee	cgaaaccaag	ggcaagagtc	tggaggtgat	tgaccagatg	1440
tgggacgccc	gcgtgcccgc	ttggaaaacc	gcctcctggg	tccccgacca	catgccttct	1500
cattacgcag	gggaccagga	ggaaaagccc	accgacgaac	tggccgaggc	gccgtttcac	1560
gaggagaatg	ccccggtgaa	caccgagacc	cctcctcatg	aggatgagcc	cacttttgcg	1620
gagaccgagc	ccaagaccca	gtatcctgga	actgagcatg	tctaa		1665
<210> SEQ : <211> LENG <212> TYPE <213> ORGA	ID NO 26 FH: 1599 : DNA NISM: Yarrov	wia lipolyt:	ica			
<400> SEQU	ENCE: 26					
atgttttcgt	taacgggcaa	accgctgctc	tattttacgt	cagtgttcgt	ctctctgggc	60
gtgttcctgt	ttggatacga	ccagggagtc	atgtccggca	tcatcacggg	cttctacttc	120
aaggagtact	tccatgagcc	cacccgagcc	gaaatcggaa	ccatggtgtc	gattettgag	180
gtcggagcgt	ttgtctcgtc	actestadte				
aaaaccatca		geeeacggee	ggccgaatcg	gtgacattat	tggccgacga	240
	tgtacggtgc	cttcatcttc	ggccgaatcg atcatcggag	gtgacattat gtgccttcca	tggccgacga gacatttgcc	240 300
gtcagcatgt	tgtacggtgc ccgagatgat	cttcatcttc tttgggccga	ggccgaatcg atcatcggag gtagtggccg	gtgacattat gtgccttcca gtttcggcgt	tggccgacga gacatttgcc tggtatgctg	240 300 360
gtcagcatgt tcgaccattg	tgtacggtgc ccgagatgat tgccagtcta	cttcatcttc tttgggccga tcagtctgag	ggccgaatcg atcatcggag gtagtggccg atctcgcctc	gtgacattat gtgccttcca gtttcggcgt ctcacaaccg	tggccgacga gacatttgcc tggtatgctg aggcaagctc	240 300 360 420
gtcagcatgt tcgaccattg gcgtgcatcg	tgtacggtgc ccgagatgat tgccagtcta agttcacggg	cttcatcttc tttgggccga tcagtctgag aaacattgtg	ggccgaatcg atcatcggag gtagtggccg atctcgcctc ggctatgcca	gtgacattat gtgccttcca gtttcggcgt ctcacaaccg gctcagtgtg	tggccgacga gacatttgcc tggtatgctg aggcaagctc ggtggactac	240 300 360 420 480
gtcagcatgt tcgaccattg gcgtgcatcg ttctgcagtt	tgtacggtgc ccgagatgat tgccagtcta agttcacggg tcatcaattc	cttcatcttc tttgggccga tcagtctgag aaacattgtg caacatgagc	ggccgaatcg atcatcggag gtagtggccg atctcgcctc ggctatgcca tggcgtatcc	gtgacattat gtgccttcca gtttcggcgt ctcacaaccg gctcagtgtg cactgtttct	tggccgacga gacatttgcc tggtatgctg aggcaagctc ggtggactac gcagtgtgct	240 300 360 420 480 540
gtcagcatgt tcgaccattg gcgtgcatcg ttctgcagtt atgggcgctc	tgtacggtgc ccgagatgat tgccagtcta agttcacggg tcatcaattc ttttgtttgg	cttcatcttc tttgggccga tcagtctgag aaacattgtg caacatgagc aggctcgttc	ggccgaatcg atcatcggag gtagtggccg atctcgcctc ggctatgcca tggcgtatcc ctaattgccg	gtgacattat gtgccttcca gtttcggcgt ctcacaaccg gctcagtgtg cactgtttct agactcctcg	tggccgacga gacatttgcc tggtatgctg aggcaagctc ggtggactac gcagtgtgct atggttgctg	240 300 360 420 480 540 600
gtcagcatgt tcgaccattg gcgtgcatcg ttctgcagtt atgggcgctc gataacgacc	tgtacggtgc ccgagatgat tgccagtcta agttcacggg tcatcaattc ttttgtttgg atgacgagga	cttcatcttc tttgggccga tcagtctgag aaacattgtg caacatgagc aggctcgttc gggattggtt	ggccgaatcg atcatcggag gtagtggccg atctcgcctc ggctatgcca tggcgtatcc ctaattgccg gtcctggcca	gtgacattat gtgccttcca gtttcggcgt ctcacaaccg gctcagtgtg cactgtttct agactcctcg acctgcatgg	tggccgacga gacatttgcc tggtatgctg aggcgagcta ggtggactac gcagtgtgct atggttgctg aggaggagac	240 300 360 420 480 540 600 660
gtcagcatgt tcgaccattg gcgtgcatcg ttctgcagtt atgggcgctc gataacgacc attgactctc	tgtacggtgc ccgagatgat tgccagtcta agttcacggg tcatcaattc ttttgtttgg atgacgagga ctctggctaa	cttcatcttc tttgggccga tcagtctgag aaacattgtg caacatgagc aggctcgttc gggattggtt gcaggaatat	ggccgaatcg atcatcggag gtagtggccg atctcgcctc ggctatgcca tggcgtatcc ctaattgccg gtcctggcca cgggagatta	gtgacattat gtgccttcca gtttcggcgt ctcacaaccg gctcagtgtg cactgtttct agactcctcg acctgcatgg agcagtccgt	tggccgacga gacatttgcc tggtatgctg aggcaagctc ggtggactac gcagtgtgct atggttgctg aggaggagac	240 300 360 420 480 540 600 660 720
gtcagcatgt tcgaccattg gcgtgcatcg ttctgcagtt atgggcgctc gataacgacc attgactctc cggctcgagg	tgtacggtgc ccgagatgat tgccagtcta agttcacggg tcatcaattc ttttgtttgg atgacgagga ctctggctaa gcgagcgatc	cttcatcttc tttgggccga tcagtctgag aaacattgtg caacatgagc aggctcgttc gggattggtt gcaggaatat atataccgac	ggccgaatcg atcatcggag gtagtggccg atctcgcctc ggctatgcca tggcgtatcc ctaattgccg gtcctggcca cgggagatta atgtggaaga	gtgacattat gtgccttcca gtttcggcgt ctcacaaccg gctcagtgtg cactgtttct agactcctcg acctgcatgg agcagtccgt agtacaagaa	tggccgacga gacatttgcc tggtatgctg aggcaagctc ggtggactac gcagtgtgct atggttgctg aggaggagac tttgatccac gcgagtgctg	240 300 360 420 480 540 600 660 720 780
gtcagcatgt tcgaccattg gcgtgcatcg ttctgcagtt atgggcgctc gataacgacc attgactctc cggctcgagg attgccatgt	tgtacggtgc ccgagatgat tgccagtcta agttcacggg tcatcaattc ttttgtttgg atgacgagga ctctggctaa gcgagcgatc cgtcgcagat	cttcatcttc tttgggccga tcagtctgag aaacattgtg caacatgagc aggctcgttc gggattggtt gcaggaatat atataccgac gtttgcccag	ggccgaatcg atcatcggag gtagtggccg atctcgcctc ggctatgcca tggcgtatcc ctaattgccg gtcctggcca cgggagatta atgtggaaga ctcaacggta	gtgacattat gtgccttcca gtttcggcgt ctcacaaccg gctcagtgtg cactgtttct agactcctcg acctgcatgg agcagtccgt agtacaagaa tcaacgtcat	tggccgacga gacatttgcc tggtatgctg aggcaagctc ggtggactac gcagtgtgct atggttgctg aggaggagac tttgatccac gcgagtgctg ctcttactac	240 300 420 480 540 600 660 720 780 840

157

				-contir	nued	
atcaacggta	tcgtctacgt	gtgttccact	attcccccgt	ggtacctcgt	ggacaaatgg	960
ggccgaagac	ctattcttct	gtccggtgca	gtaattatgg	ctatttccct	ggcgtctgtg	1020
gcgttctgga	tgcgtctaga	ctttgcacat	acaccggctc	tggtggtgat	ttccgtcgtc	1080
atcttcaacg	ctgcttttgg	atactcgtgg	ggccccattc	cctggctcta	tccccctgag	1140
attatgcctc	ttaccatccg	agccaaggga	gcttctctgt	caaccgccac	caactgggcc	1200
tttaactggc	tggtgggata	tatgaccccc	attctccagg	agaccatcaa	gtggcgactg	1260
tatttgatgc	atgccgcctt	ctgtagtctt	tcgtttgttc	tcgtctactt	cacctacccg	1320
gagacctcgg	gaatcaactt	ggaagacatg	gactcgttgt	tcggcgacaa	gtctgttgtg	1380
aacacccccg	actcgcggtc	tttgcttggt	gatcgagaca	ctccagagcc	tgacgtgcct	1440
cacagttata	ctgatgctgc	caccgatcga	ctgcctgctg	gtatgcaggg	ctatggctcc	1500
gctcccagct	cgagaggagg	cagtgtggtc	ggaagtcccc	gacgaggaaa	cagtgtggtt	1560
gggtctccca	agcgggactt	ccctcaacct	ccggtataa			1599
<210> SEQ 3 <211> LENG <212> TYPE <213> ORGAN	ID NO 27 TH: 1548 : DNA NISM: Yarrov	via lipolyt:	ica			
<400> SEQUI	ENCE: 27					
atgggactcg	ctaacatcat	caaccgtgga	gaaaagcccg	agggetegge	cttcatggcg	60
gcctttgtgg	ccgtgtttgt	cgcgtttgga	ggtattctgt	ttggatacga	cactggaacc	120
atttccggcg	tcatggccat	gccattcgtc	aagaagacct	ttacagatga	cggcctggag	180
ttcacttctg	agcagacctc	gctcatcact	tccattcttt	ctgcaggcac	cttcactgga	240
gccatttctg	ctccctgggc	ctctgatact	ctgggaagac	gactgggtct	gatcetette	300
tgtgtcgtct	tctctgttgg	cgctattctt	cagactgctg	ccaccggccg	aacgcttttg	360
attgtcggac	gagttgttgc	tggtettggt	gttggtggag	tctcttccat	cgttcctctt	420
taccagtctg	aggttgcccc	caagtggatc	cgaggtgccg	ttgtctccat	ctaccagttt	480
gccatcacca	ttggtcttct	gctggctgcc	attgtcaaca	acgcaaccaa	aaacaaagac	540
aacagtgctt	cctaccgaat	tcctctcggc	cttcagcttc	tgtgggccgt	catcctgagt	600
ggaggtctca	tcctgctacc	ggagactcct	cgattctgga	tcaagaaggg	cgagtacgac	660
aaggccgccg	attccctgcg	acgactacga	cgacttcctg	ttgagcacga	ggctgtacag	720
aaggagctcc	tggagatcca	atcttctcac	gaccacgaga	tgcagatcgg	tagegeeace	780
tgggccgcct	getteteece	caaggggtcc	cagctgaagc	gaatgctgac	cggtattgcc	840
attcaggccc	tgcagcagct	caccggtatc	aacttcatct	tctactacgg	aaccgagttc	900
ttcaagaagt	ccaacatctc	caaccccttc	ctcatccaga	tgatcaccaa	cattgtcaac	960
gtggttatga	ccatccccgg	tatcatgttt	gttgatcgag	tcggacgacg	aaagctgctg	1020
ttgatcggag	ctatcgtcat	gtgctcttcc	gagtttatcg	tggcggctgt	tggtactgcc	1080
attgataacg	agacctcctc	aaaggttctg	attgccttca	cttgtacctt	cattgccggt	1140
ttcgccgcca	cctggggtcc	tattgcctgg	gttgtcattg	gagagatttt	ccctctacga	1200
atccgagcca	agggtgttgc	tctatgcgcc	gcctccaact	ggcttttcaa	ctttgccatt	1260
gcctttgcaa	ccccctacct	cgtcgacgag	gcccctggat	cggccggtct	caagaccaag	1320
gtcttcttca	tctggggagg	ctgcaacttc	ctgtgcatcg	ccttcactta	cttcttcatc	1380
tacgagacca	agggtcttac	tctggaggag	gtggaccaga	tgtacgccga	gatcaagatt	1440

-	= -
	-
	- 7.9

-continued

160

gcttctcgat cccaccagt	t tgtgcctacc	actcgagtcg	ctgcttacga	cgagcacgct	1500	
tctgacgaca agaaggacg	g acagcacgtc	tacattgagt	ctgtctag		1548	
<210> SEQ ID NO 28 <211> LENGTH: 1485 <212> TYPE: DNA <213> ORGANISM: Yarr	owia lipolyt	ica				
<400> SEQUENCE: 28						
atggccatta ttgtggctg	t atttgtggct	tttggaggac	ttctctacgg	ctacgacaca	60	
ggaactattg ctggaatca	t gaccatgggc	tatgtgaaag	aacactttac	agactttggg	120	
aagaacgact tcacctcgg	g ccaatcatct	ctcaccacat	ctatcctatc	tgtgggcaca	180	
tttaccggag ccatcgttg	c tcccttagct	gctgacacgg	ctggtcgacg	tctgggtctt	240	
ctgttgtatt gtcttgtat	t ctctgtgggt	gctattttgc	agaccgtcac	aaccggaaga	300	
gtettgetaa ttgtgggae	g ggtgattgct	ggtcttggtg	tgggaggtat	ctcgtccatt	360	
gtgcctctct atcagtcag	a agtgtctccc	aaatggatca	gaggggccgt	tgtttctgtc	420	
taccagtttg ccatcactg	t gggtcttcta	ctggcagcta	ttgtcaacaa	tgccactaag	480	
gaccgtccaa atacgtcat	c ataccgtatc	cctcttggta	ttcaactcat	ttgggctctt	540	
attettteag eaggaettg	t gtttcttcct	gagactcctc	gtttctgggt	caagaagaac	600	
cggccagaga aagccgccg	a agcactctca	cggctaagaa	ggctaccaac	agactcgaaa	660	
ccggtaaaaa aggaactgc	t tgaactacag	aagtcgttcg	aaatggaaat	ggaggttgga	720	
aactcctcct ggaaggctt	g tttcagtcca	catggatcac	agctcaaaag	actgctgaca	780	
ggagteteaa teeaggete	t gcaacaacta	acaggcatca	atttcatatt	ctactatgga	840	
accaactttt tcaaaacag	c tggcataaaa	gatecetttg	tggtgtccat	gatcacctct	900	
gccgtcaatg tggccttca	c ccttccgggt	attctgtttg	tcgacaaagt	gggccgaaga	960	
aagctgctct tgattggag	c cgtggtaatg	tgtgtttcag	aattaattgt	ggcagctgta	1020	
ggagcagctc tggatagcc	a ggtgtcttcc	aaggteetta	ttgccttcac	ttgtacgttc	1080	
atcgcagget ttgcateca	c ctggggacct	atagcctggg	tggttgttgc	ggagattttc	1140	
ccgcttcgaa tccgggcca	a gggagtggct	atcagtgtgg	ctgccaactg	gattttcaac	1200	
tttgccattg cctttgcaa	c tccgtacttg	gtcgacaaga	aacctgggtc	tgccggtctc	1260	
gagtccaagg tgtttttca	t ctggggaggt	tgcaattttc	tagccattgc	ctttgtgtac	1320	
ttgtttgtct atgaaacca	a agggttgtca	ctggagcagg	tggacgaaat	gtactcggag	1380	
gtcaagtacg cctggcaga	g tgataggttc	cagaccgaga	tcatgtctgg	aaagacggag	1440	
gtttegeegg ateagaget	g cgattetgga	tttgattcgg	attag		1485	
<210> SEQ ID NO 29 <211> LENGTH: 2881 <212> TYPE: DNA <213> ORGANISM: Cryp	tococcus neo	formans				
<400> SEQUENCE: 29						
atgecegate cetetatte	c ggtagtcggt	cacaagactc	agcgtaggct	ggtcggacat	60	
aacctactgt acagtgttt	c agtgtttctt	agcataggag	tctggttatt	tgggtaggtg	120	
ttttgtgaat ccggatggt	g ttgtgctgat	atgataaccg	gttaagatat	gaccaggggt	180	

aagttcactt caagcgctta tccttaagct tcgctgatca tggccttcaa actgtgaaag

162

161

agtaatgtcc gtaaggaatt cattaacatt actaagctga cattcagtgc gtgccttcag cagttacttc gcacaggtgc attccatggt tgccaatcta gtcaccctcg ccagaagatt acaggtaata gcaccatgct actggtcttg gcagcttcgt gcagaactaa gcagtcatcg aaagaaattc acacttgctt agggctttat gctcaactgg actaatgatt ctaaccattt attcttgaca ctaatactgc ccttatgaca ggtccatccg cgggtcgaag caggatggtg tgccatgtcg aattccgcat cggttggaag cgttgtcatt cccgaatgca gcgctttaat ttcaacaccg ttgtgcatta

			-contir	nued		
ggtaagttgg	tatcaccatc	acatatctcg	atagctagtt	gactttctac	300	
attaccggcc	catactttaa	gtaggtatga	agtaaatact	gagtatcttt	360	
tatggcacgt	gtctacagag	cttattgtga	gtaaagccct	aatcaagcaa	420	
cgtttttagt	caaccaacca	acgtcaacgc	agattggcaa	gtaagttagt	480	
cagtagcaat	gtctgaacat	tcgatagtat	ggtggccgtt	ttggagattg	540	
taagattatt	ccatgtcatg	tcattctttc	aagaactcac	ggcaatcacg	600	
tctggctgcc	gctcatattg	cagataatta	tggaaggcgt	atgacccttc	660	
aatagtette	accattggag	gtgctataca	gactttttgc	gttggatata	720	
acttggaaga	attgtcagcg	gctttggggt	agggatgttg	agtatggtcg	780	
tcaggtatgt	ggtttacaat	agtaaaggcg	cggagcataa	gccaatgtgt	840	
cgcagtccga	aatatctcct	gcagaccatg	taagaaacac	ttcaatattt	900	
tttctaataa	aacacgatga	tagcgaggcc	ttttgggctc	tgtcgaattc	960	
tcattggcta	tgcctcctct	gttgtacgat	gtgtcacctg	cctatgtcaa	1020	
cactcaacgt	tcatagtgga	tcgactatgc	ctgttcattc	ttccagtctg	1080	
gcgcctcccg	ctttctgttc	aatgtatagg	cggctctgtt	ctcttcatcg	1140	
cacaccagag	tctccccggt	aagcetteta	tatgtgcatc	atatgtaggt	1200	
gagctgttca	aaggtatctt	gtcgatacag	accaagaggt	ggaaggttta	1260	
ctgattttca	agggaaagcg	ctggacgata	tttcagtgca	agccgagtac	1320	
gagatgctgt	tctagccgac	gtgagacaat	cctctcaacg	ttatccccat	1380	
attctgtttt	gtttttttt	tactagagag	ctgtcggaga	tagaagctat	1440	
ggaggagata	caaaggacga	gttctgattg	caatgagcag	tcaattgttt	1500	
tgagtcaatc	tttgcaaaag	tcaaagaaac	atgaaaataa	agcggtctgt	1560	
attggcagaa	tggcatcaat	ggtgagctta	gagagcgctg	caaacaatta	1620	
ggccagtcat	ctcatattat	gcacgtgcgt	cccatctcat	tctgccgatc	1680	
gctgatgtgg	attacagctc	ttgtctttga	acgttagtct	cactgaagac	1740	
cgtgttacta	atggtggtga	agaggcgggg	tggattggac	gtgacgctat	1800	
ggtatcaatg	ccttatttta	tgtggcaagc	tcacttccgc	cgtaagtcca	1860	
aaattatgca	cattctcaaa	ttattactag	atggtatctc	atggatcgag	1920	
gcccattttg	ctctcgggag	cagtggccat	ggcgattgca	ctgacggcta	1980	
gatatatatt	gatcaagcaa	taacacccaa	tgctggctcg	tcttttgttc	2040	
gatgaagctg	atggtatttg	tcgatagtgg	tcatttgcgt	agtgatttat	2100	
ttggcatgag	ctggggacct	gtcccatggt	atgtgtcatt	gacatatggc	2160	
tgaagttaat	taattaattg	atcccaggct	ttatcctccg	gaaatcatgc	2220	
ccgagcaaag	ggagtatcct	tatctactgc	tacagtacgt	ccaattttat	2280	
caacgatggg	ctaatttgag	ttatcagaac	tggatctcag	tgggtctgga	2340	
cctgcttttt	gctaacgact	gttgtatctg	cagaattggt	gggtaggggt	2400	
ctctttcaag	aacttatcgg	atggcgatta	tatccgatgc	acgcattctt	2460	
tcattcatcc	tcgtgtactt	ccgtgagttg	tcagccgaga	ttcgtaaacc	2520	

2580 2640

accactcatg cacatggaac tagtctatcc cgaaacccga ggcgtaccgc ttgaagaaat

ggacaaattg tttggggatg aaagtgatga agacgaggtt gattcggact tcgatgaagt

1	6	7
1	O	J

-	CC	on	t	1	n	u	е	a	

tgaggaagee gaateagaaa tateetet	agtcagcaat cctcgacacc gacgccgct	c 2700
ggccagctct tcattgggcc catctttgcc	gacctcccga aaaccgtcac ccataccct	c 2760
tagggaggct tcatctagcc gaggactgtt	tggacgtata actgactcgg tgaatggto	et 2820
gattggaagc acaaaacagc aaagcaggag	cgtggggtat actgctgtca acgaggaat	a 2880
g		2881
<210> SEQ ID NO 30 <211> LENGTH: 1713 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cer	revisiae	
<400> SEQUENCE: 30		
atgtcacaag acgctgctat tgcagagcaa	acteetgtgg ageatetete tgetgttga	ac 60
tcagcctccc actcggtttt atctacacca	tcaaacaagg ctgaaagaga tgaaataaa	aa 120
gcttatggtg aaggtgaaga gcacgaacct	gtcgttgaaa ttccaaagag accagctto	t 180
gcctatgtca ctgtctctat tatgtgtatc	atgatcgcct ttggtggttt cgttttcgg	jt 240
tgggatactg gtaccatttc tggtttcatc	aatcaaaccg atttcatcag aagatttg	jt 300
atgaagcata aagatggtac taattatttg	tctaaggtta gaactggttt gattgtcto	2C 360
attttcaaca ttggttgtgc cattggtggt	attattettt ceaaattggg tgatatgta	ac 420
ggtcgtaagg tgggtttgat tgtcgttgtt	gtcatctaca tcatcggtat tattattca	aa 480
attgcatcta tcaacaaatg gtaccaatat	ttcatcggta gaattatttc cggtttggg	gt 540
gttggtggta ttgccgtttt atctcctatg	ttgatttctg aagtatcccc aaagcattt	a 600
aggggtactt tagtctcttg ctaccaattg	atgattactg ccggtatttt cttgggtta	ac 660
tgtaccaact tcggtactaa gaactactcc	aactctgtgc aatggagagt tccattagg	jt 720
ttgtgttttg cctgggcttt gtttatgatt	ggtggtatga catttgttcc agagtctcc	ca 780
cgttatttgg ctgaagtcgg taagatcgaa	gaagccaaac gttctattgc cgtttctaa	ac 840
aaggttgctg ttgatgatcc atctgttttg	gctgaagtcg aagctgtctt ggctggtgt	a 900
gaggcagaga aattagctgg taatgcatcc	tggggtgaat tgtttagtag caagacaaa	ag 960
gtccttcagc gtttgatcat gggtgctatg	attcaatctc tacaacaatt gacaggtga	at 1020
aactatttct tctactatgg tactactatt	ttcaaggctg ttggtttgag tgactcttt	c 1080
gaaacctcta ttgtcttggg tattgttaac	tttgcttcca cctttgttgg tatttacgt	t 1140
gttgagagat atggtcgtcg tacttgtttg	ctatggggtg ctgcatccat gactgcttg	gt 1200
atggttgtct atgcttccgt gggtgtcacc	agattatggc caaatggtca agaccaaco	ca 1260
tettecaagg gtgetggtaa etgtatgatt	gtetttgeet gtttetatat tttetgttt	t 1320
gctactacat gggctccaat tccttatgtc	gttgtttctg aaactttccc attgagagt	c 1380
aagtctaagg ctatgtctat tgctacagct	gctaattggt tgtggggttt cttgattgg	jt 1440
ttcttcactc catttattac tggtgctatt	aacttctact acggttacgt tttcatgg	jc 1500
tgtttggtct tcatgttctt ctatgttttg	ttagttgttc cagaaactaa gggtttgad	t 1560
ttggaagaag tcaacaccat gtgggaagaa	ggtgttctac catggaagtc tgcctcatg	jg 1620
gttccaccat ccagaagagg tgccaactac	gacgctgaag aaatgactca cgatgacaa	ag 1680
ccattgtaca agagaatgtt cagcaccaaa	taa	1713

-continued

<211> LENGTH: 1695 <212> TYPE: DNA			
<213> ORGANISM: Saccharomyces (erevisiae		
<400> SEQUENCE: 31			
atgtetagtg egcaateete tattgatag	je gatggagatg ttegagatg	gc tgatattcat	60
gtcgcaccac ccgtggaaaa agagtggt(a gatggatttg atgacaac	ga agtcataaac l	20
ggggataacg ttgagccacc aaaaagagg	g ctcataggtt atcttgtca	at ttacttactg 1	80
tgttatccaa tatcctttgg gggtttcc1	g cctggttggg atagtggta	at cacagcaggt 2	40
ttcattaaca tggacaactt taaaatgaa	ac tteggttett acaageata	ag cactggtgaa 3	00
tattatttga gcaacgtgcg tatgggtc1	t cttgtggcta tgttcagt:	at tggatgtgcc 3	60
ataggtggcc ttatttttgc ccgtcttg	t gatactttag gtagaaggo	t ggcaattgtg 4	20
atcgtggtgt tggtatatat ggttggtg	a attattcaga tcagttca	aa tcacaaatgg 4	80
taccagtact ttgtcggtaa gatcatcta	ac ggtettggtg etggtgge1	ig tteggtgttg 5	40
tgtccaatgc ttttgtctga aatagccc	c acagatttga gaggtgga	ct ggtctcattg 6	00
taccaactga acatgacgtt cggtattt	c ttgggttatt gtagcgtti	ta tggtacgaga 6	60
aaatacgata acactgcaca atggagagi	c ccccttgggc tttgcttt	t atgggetttg 7	20
attatcatca ttggtatgtt attggttco	a gagtececaa gatatetga	at tgaatgtgag 7	80
agacacgaag aggcccgtgc ttccattgo	c aaaatcaaca aggtttcad	cc agaggatcca 8	40
tgggtactca aacaggctga tgaaatcaa	ac geeggtgtee ttgeeeaa	ag ggaactagga 9	00
gaagetteat ggaaagaaet tttetetg	a aaaactaaag teetteaa	cg tttgatcaca 9	60
ggtattettg tgeaaacett tttgeaaci	t actggtgaaa actacttc	t cttctacgga 10	20
actaccattt ttaaatcagt cggtctta	t gatgggtttg agacgtcga	at cgtcctaggt 10	80
acagtgaact tetteteeac tattattge	t gttatggtcg tagacaaa	at tggccgtcgt 11	40
aaatgtctgt tatttggtgc agctggga	g atggettgta tggteata	t tgcaagtatc 12	00
ggggtgaaat gtctttaccc tcatggcca	ag gacggtcctt cttcgaaaq	gg tgcaggtaat 12	60
gccatgattg tgttcacttg tttctata	a ttetgetttg caacgaca	ng ggeteetgtt 13	20
gettatattg tggttgeega gtegtteed	t tcgaaggtca agtctagag	gc catgtcgatt 13	80
tcaactgcat gcaactggtt atggcaat	t ttgatcggtt ttttcaca	cc attcattact 14	40
gggtctatcc acttctatta tggttatg	g ttegtaggtt gtttggttg	ge tatgtttttg 15	00
tacgttttct tctttttacc agaaacga	t ggtctatctt tggaggaaa	at ccaattacta 15	60
tacgaagaag gtataaaacc atggaaat	t gcatcttggg tcccacct	cc taggagaggt 16	20
atttcttccg aagaaagtaa gaccgagaa	ag aaggattgga agaaattt	t gaagttetea 16	80
aagaattetg attga		16	95
<210> SEQ ID NO 32 <211> LENGTH: 1704 <212> TYPE: DNA <213> ORGANISM: Saccharomyces (erevisiae		
<400> SEQUENCE: 32			
atgaattcaa ctccagattt aatatctco	a caaaagtcaa gtgagaati	c gaatgctgac	60
ctgccttcga atagctctca ggtaatgaa	ac atgcctgaag aaaaaggt	gt tcaagatgat 1	20
ttccaagctg aggccgacca agtactta	c aacccaaata caggtaaaq	gg tgcatatgtc 1	80
actgtgtcta tctgttgtgt tatggttg	e tteggtggtt tegttteg	gg ttgggatact 2	40

167

-continued

ggtaccattt	ctggtttcgt	cgcccaaact	gatttcttga	gaagattcgg	tatgaagcat	300
aaagatggta	gttattattt	gtctaaggtt	agaactggtt	taattgtctc	cattttcaac	360
attggttgtg	ccattggtgg	tattatttg	gctaaattgg	gtgatatgta	cggtcgtaaa	420
atgggtttga	ttgtcgttgt	tgttatctac	atcatcggta	ttattattca	aattgcatcc	480
atcaacaaat	ggtaccaata	tttcatcggt	agaattattt	ccggtttggg	tgttggtggt	540
attgccgttt	tatctcctat	gttgatttct	gaagtcgctc	ctaaggaaat	gagaggtact	600
ttagtctcct	gttaccaact	gatgattacc	ttgggtattt	tcttgggtta	ctgtaccaac	660
ttcggtacta	agaactactc	caactctgtg	caatggagag	ttccattagg	tttgtgtttt	720
gcctgggctt	tgtttatgat	cggtggtatg	actttcgttc	cagaatcccc	acgttatttg	780
gttgaagctg	gtcaaattga	cgaagcaaga	gcatctcttt	ccaaagttaa	caaggttgcc	840
ccagaccatc	cattcattca	acaagagttg	gaagttattg	aagctagtgt	tgaagaagct	900
agagctgctg	gttcagcatc	atggggtgag	ttgttcactg	gtaagccggc	catgtttaag	960
cgtactatga	tgggtatcat	gatccaatct	ctacaacaat	tgactggtga	taactatttc	1020
ttctactatg	gtactaccgt	ttttaacgct	gttggtatga	gtgattcttt	cgaaacttct	1080
attgttttcg	gtgtcgtcaa	cttcttctct	acttgttgtt	ctttgtacac	tgtcgatcgt	1140
tttggacgtc	gtaactgttt	gttatatggt	gccattggta	tggtctgctg	ttatgtagtt	1200
tacgcttctg	ttggtgtcac	cagactatgg	ccaaatggtg	aaggtaatgg	ttcatccaag	1260
ggtgctggta	actgtatgat	tgtctttgcc	tgtttctata	ttttctgttt	tgctaccact	1320
tgggctccaa	ttgcttatgt	tgttatttct	gaaactttcc	cattgagagt	caagtctaag	1380
gctatgtcta	ttgctacagc	tgctaattgg	ttgtggggtt	tcttgattgg	tttcttcact	1440
ccatttatta	ctggtgctat	taacttctac	tacggttacg	ttttcatggg	ctgtatggtt	1500
ttcgcctact	tctacgtttt	cttctttgtg	ccagaaacta	agggtttgac	tttggaagaa	1560
gtcaatgata	tgtacgctga	aggtgttcta	ccatggaagt	ctgcttcatg	ggttccaaca	1620
tctcaaagag	gtgctaacta	cgatgctgat	gcattgatgc	atgatgacca	gccattctac	1680
aagaaaatgt	tcggcaagaa	ataa				1704
<210> SEQ : <211> LENG <212> TYPE <213> ORGAN	ID NO 33 TH: 1713 : DNA NISM: Saccha	aromyces ce	revisiae			
<400> SEQUI	ENCE: 33					
atgaattcaa	ctcccgatct	aatatctcct	cagaaatcca	attcatccaa	ctcatatgaa	60
ttggaatctg	gtcgttcaaa	ggccatgaat	actccagaag	gtaaaaatga	aagttttcac	120
gacaacttaa	gtgaaagtca	agtgcaaccc	gccgttgccc	ctccaaacac	cggaaaaggt	180
gtctacgtaa	cggtttctat	ctgttgtgtt	atggttgctt	tcggtggttt	catatttgga	240
tgggatactg	gtaccatttc	tggttttgtt	gctcaaactg	attttctaag	aagatttggt	300
atgaagcacc	acgacggtag	tcattacttg	tccaaggtga	gaactggttt	aattgtctct	360
attttaaca	ttggttgtgc	cattggtggt	atcgtcttag	ccaagctagg	tgatatgtat	420
ggtcgtagaa	tcggtttgat	tgtcgttgta	gtaatctaca	ctatcggtat	cattattcaa	480
atagcctcga	tcaacaagtg	gtaccaatat	ttcattggta	gaattatctc	tggtttaggt	540
gtcggtggta	tcacagtttt	atctcccatg	ctaatatctg	aggtcgcccc	cagtgaaatg	600

169

agaggacact tggttcatg ttaccagt atgatact taggtattt citaggtag tggtaccat tggttcag ttaggtatt aactegge aactegga ggttggtag tecataggt 720 tggtttgg ciggacgg castacga gaaccagg gttrigtter tgaateree 780 ogtattigg tiggacgg castacga gaaccagg gaaccagg citettag tagacage 900 gagaanatg gagecgetg tattatig gggggaat tattacatg tagacgg 900 aatgeeerae ciggacetee atacattea taigagtgg aactaicga ageoagte 900 aatgeerae ciggacetee tategate tiggacgaat tattaced gaaccage 960 atgtteae gtactagat gggtated tiggacgaat tattaced gaecagetg 1020 aactattet tetactaegg tacgatet tiggagggaat tategateg taaaccage 960 atgtteae gtactagat gggtated atgatege teggggtag gaecage 1140 gtagacget tiggeegteg taacgetg tadggegg eigteggta ggedgetg 1200 tatgtigtet atgeeregt taggetget aatgetg atggggg cigteggta ggedgetg 1200 tatgtigtet atgeeregt taggetget gaetgetg gtatgge cigteggta ggedgetg 1200 tatgtigtet atgeeregt tagteggt getategg teggggaat ggedgetg 1200 getaatace ggggeceaat ggetgetg getaatgga tegggggt cigtagget 1200 gaaateag gaaggag ogggacgag getgatega tegggggtt citegggg 1800 tgtatggtt tegettat tagedgetg getaatgga teggggaat aggetgge 1800 tgtatggtt tegetaet tragedget getaatgga tegggaat aggetgetg 1800 tgtatggtt tegetaet tagedgeg getgatega aggtagetae 1860 ceattrae aggategt tageggaa ggggtteta eatggaate aggetaeta 1860 ceattrae aggategt tageggaa ggggtete eatggaate aggetaeta 1860 ceattrae aggategt tageggaa taa 1713 <210> SSQ ID NO 34 <210> SSQ ID NO								
tiginttig 1720 tiginttig cdggacta gaatcaca gaatcaca 780 cgttattgg tigaactag gaaccagg ctttigt tagatcaca 780 gaagaaatga gaaccaca tagatgaa 900 900 gaagaaatga gaaccaca tataatcaga 900 aatgocca tigaccata tataatcaga 900 gaagaaatga gaaccaca tataatcaga 900 gaagaatga gaaccaca tataatcaca 900 gaagaatda gaaccaca tataatcaca 900 gaacatatt tataatcacaca 1020 gaacatatt tatactacag tacacatad 1140 gttgaccgt taggaga tatgatgad tatgatgad 1200 tatgtigt taggacacat tigtacgat tigtacgat 1380 aaatcacat tigtacgat tigtacgat tigtacgat 1440 tittagaagaa titagaagaa titagaagaa titagaagaa 1520 gittacat totagagaa tatagataat tatagaagaa 1600 cattata gittacat aacagagaga	agaggcacct	tggtttcatg	ttaccaagtc	atgattactt	taggtatttt	cttaggttac	660	
ttgigtting eenggeent attatgatt gigtgitag higttigte tigateteen 780 egitattigg itgaaerigg eagaategie gaageeagig ettettiag taagittae 740 aaatgeeeae etgaeeae etgaetee tigggegaat tatteein aegeeagie 790 gaagaatag gageering tattgeete tigggegaat tatteein gageeagie 790 agagaatet tegeering tattgeet tigggegaat tatteeing taaceage 700 attgitaeegit tiggeering tattgeete teeeaging tegetigat gateateen 100 gitgaeegit tiggeering tattgeet teeeaging tegetigat gateateen 100 tatgitgee digteering tiggegaa etgetigge etgeegita gateateen 110 gitgaeegit tiggeering tattgeet gittee agattatige eaaeging agateatee 1100 tatgitgee digteering tigteering gitteering digteering tereson gesaatteering gigeering tegetaget gitteering atterteering tigteering 1100 tatgitgee digteering tigteering gitteering atterteering tereson gesaatteering gigeering tigteage gesaatteing eeaaeging agateatee 1100 titteering gigeering tigteering gitteering atterteering 1100 titteering tigtegeering tigteering gesteering aggetteering 1100 titteering teatgetering tigteering aggetteering aggetteering 1100 ceattering teatgetering tigteering aggetteering aggetteering 1100 ceattering teatgetering tigteering aggetteering aggetteering 1100 ceattering aggettigt tageageaa ta 111 citteering teatagete gitteering teggaateering 1100 tittiggefing digteering tigteering tittigga digaeaata eintering 100 ceattering teatagete tittigteering gitteering 1100 tittiggefing digtetteing tegesaeering tittiggaa gitteering 120 tittiggefing digtetteing tegesaeering tittigteering 120 tittiggefing gittetteing degeteering tittiggaa gittiggefing 120 tittiggefing gittetteing degeteering tegesaeering 120 tittiggefing gittetteing degeteering tegesaeering tittiggaa gittiggefing 120 tittiggefing gittetteing degeteering tegesaeering tittiggearing 120 tittiggefing gittetteing degeteering gespering tegesaaata eintering 120 gestearing teategeen tetteering tegesaeering tegesaaata eintering 120 gestearing teategeen tetteering tegesaeering tegesaaata eintering 120 gestearing tegesaeering ge	tgtaccaatt	ttggtaccaa	gaattactca	aactctgtcc	aatggagagt	tccattaggt	720	
cgitattigg itgagetgg expandegie gangeeaggg ettettinge taaagtaate 840 aaatgeeeae diggeereg itatgeett iggggegaat tatteereg taaeeeage 960 atgetteae gitattaig gggtateat itgegeereg itatgeett iggggegaat tatteereg taaeeeage 960 aactattet tetaetaeg itaeeatigt iteeeagee itaeeaeaatt aaetggtaf 1000 gaaatat agtgeereg itaeetgit iteeeagee itaeeaeaatt aetggtaf 1000 gaaatate itgeetteg iggegaat ettetteeea ettigtige ettegette 1200 tattgettet itgeereg itaeetgit gitgeggeg of ettegget ettegaate 1200 getaeeagt itgeereg itaeetgit gitteege ettege ettegetae agateaaeea 1200 getaeeagt gitgetgea ettetteeg getaeetgga tettegggett ettegate 1300 aaateeaagg iggetgeeae ettegeereg aagteege ettegggett etteggeere 1500 tetteaaga iggetgetae tigetgeeae aeetteetae aegetaeg ettegggett etteggeere 1600 tetteaagaag itaatate gitgeeregaa getgettee eaeggaat eiggetgeere 1620 gitteaagat teagetgeeaa agetgetg eettegeere 1620 gitteeagta teagetgegaa getgetgaat aa 1713 <100> SEQUENCE: 34 1713 <100> SEQUENCE: 34 120 tittiggetit gittitteg ettegetee gaaatea eigtitte eettegeaag ateaetee 160 tettegateg aagateaat agegeeee aagatee aegettee itggegaag ateaetee 160 geteaeate itet	ttgtgtttcg	cctgggcctt	atttatgatt	ggtggtatga	tgtttgttcc	tgaatctcca	780	
aadtgocrac ctgaccatce atacattea tatgagttgg aactategg agecagtgte 900 gagaaatga gagcogtegg tatgocatet tggggogaat tatteactegg taaccarge 960 atgtteace gtactatgt gggtateatg attecatet tacaacaat actggtgtt 1000 gaaacttet tetactaceg taccattgt teceagget tegggttaag tgactettt 1000 gatagaatga gagcogteg tacattgtt teceagget tegggtta gtstedetgt 1200 tatgtted tiggeogte taactgttg attggggg etgtoggtat gstetdetgt 1200 tatgtted atgoctegt tggtgtace agattagge caacggtea agateacea 1260 cettacaag ggdeogaa etgtagatt gttteegea gtteedet attaaggtt 1320 getacact tiggeogea tigetaget gttetdeat attegggtate titteegea 1400 tettacaagg tgdetgaa etgtagatt gttetdeat acggtaagt tettaegg 1500 tettacaag gtatgtet tigetageaa ggtgtetae attegggaat 1600 catatagaag ttaagaat gadageaga ggtgtetae acagetaga tetgggaat 1600 catttaca agagttgt tageagaaa taa 1713 calloo SSQUINCE: 34 60 acceaaat tetataget tittgtede getstedet tittgedeaga diacaett 180 attgtedeg agaataat agtggeteet getstedga tetageaget diacaetge 120 tteggaaatt attatgtet getstedee acegetaga gaacaacae aggttegg 60 cattatea dagaagt tittatgaaata diagegeteet getsteade 120 cattatea agaataat agtageteet getsteade	cgttatttgg	ttgaagctgg	cagaatcgac	gaagccaggg	cttctttagc	taaagttaac	840	
gagaaataga gagcogcigi tactgcatci tigggggaat tattcactig taaaccagco 960 acgitticaac gitactatigi igggtatcatig attcaatcic tacaacaatt aactiggigat 1020 gaaacttet titgettigg tigggcaac ittetcacca citgitigtt teiggtaccae 1140 gitgaacetti titgecegicg taactigtt itcecagigit ciggttiag tigaccaet 1200 tatgitigtet atgecettig tiggtgtac agattatige caacagigea agateaacaa 1260 cotaaagi gitgeggacaa tigetaggit gitatteagi aatgitteee ataaagagte 1300 gaaaccaadi gitgeggeaa tigetagge gitaactigg attgitteee ataagagte 1300 aaatecaagi gitgeggeaa tigetage gitaactigg attgitteee ataagagte 1300 gaaacagi tiegtigteat tigecagige gitaactigg titgegggit eitgaggitt eitgaagage 1300 tettaagaagaag taagtatig titgecage acteggggat eitgaggittee eitgaggattee 1600 tettaagaagaag taagtaga titaat gitgeceea aaceetgat gitgetaac tigaggaacaa 1600 tettaagaagaag taagtigtt tageaggaaa ta 1713 cotattata agagttegt tageggae taa 1713 cotattata tigtggeeee agetgetge titaagaacat titggaacaa 60 actecaaat totataagt tittigtg tettatatet eigetatget tittiggae git 100 cotattatae tagegetatge tittigtg tettagetge tittigga tittiggae git 100 cotattatae tagegetatge tittigtig tettaget agattage <	aaatgcccac	ctgaccatcc	atacattcaa	tatgagttgg	aaactatcga	agccagtgtc	900	
addttttad gigdtatadg gittadg attaatte taaaatt aattggigdt 1020 aacttatte totataagg tacattgit ticaaggetg teggtttag tgactettt 1000 gataactteta tigtettigg tgegeaca tictetocca ettgitgite tedgiacaee 1140 gitgaacgit tiggeegteg taactgittg atgegegge etgeeggtaa ggeteggeta 1200 tatgitgie atgeettig tgegetae etgetagge eggetag ggeteggeta 1200 getactaeet ggegeeeeaa tgeetagge tgetaetegga teteggget etgetagget 1300 gaateteee etgetagat gitatgee getaactegga teteggett etgetage 1300 gaatetee etgetaget getaetegga teteggette etgetaget 1440 tetetaeaeg gitatgetat tgetegeeta acetedaa eeggtaeg tetegget 1600 tegtaggett tegetaett taegetgeeta acetega atgetaget geteggeta 1600 tegtaggett tegetaet taegegeaa ta 1713 exits segttaget atgetsgeta getegetaet acetegaaateta aggttage 1600 coatttaea aggetgetee gaagetag tetagga gateaaet 1600 coatttaea aggetget getegetaet geteggat 1200 gitteegaaga taastaf atgeegeede gaagetaga ta 1713 e110> SEQ ID NO 34 1200 e111> LENET: ENA 1200 e211> LENET: SAG 1200 tetegaaag taattget getegtate getegate catgeaaga taatetee aggetgetage 1200 tittiggattig atacteete taggetgeeeeeeeeee	gaagaaatga	gagccgctgg	tactgcatct	tggggcgaat	tattcactgg	taaaccagcc	960	
aactatttet tetataegg taccattgtt tecaggetg teggtttag tgacetttt 1000 gaaactteta ttgetettig tgegetaa ettettee attegge etgeggeta ggetegeta 1140 gitgacegit tiggeegteg taactgittig attgigggig etgeeggtaa ggetegeta 1200 tettetaaagg gigetggtaa etgetagatt gittteega attgitee aattegee eaaeeggtea agateaaeea 1200 getactaeet ggegeeeeaa tgeetaegt gittaeteag attettee attaagagte 1300 aaateceaagt gittagtat tgeeagteg tgetaaetega tetggggtte etgataagagt 1300 aaateceaagt gittagteta tgeeagteg tgetaaetega tetggggtte etgatagg 1500 tittagaagat taatgata ggacgeeaa aattetee aaggttaegt titteaggge 1600 tittagaagat taatgata ggacgeeaa aggtgitetae eaggaaaeta aggttaeea 1600 coattettae aggtegeaa taa 1713 *210> SEQ ID NO 34 *211> LEENT: 1644 *211> LEENT: 1644 *212> CRENNIN: 1644 *211> LEENT: 1644 *213> CRENNIN: 1644 *211> LEENT: 1644 *214 *211> LEENT: 1644 *214 *211> LEENT: 1644 *214 *213> CRENNIN: 1644 *214 <td>atgtttcaac</td> <td>gtactatgat</td> <td>gggtatcatg</td> <td>attcaatctc</td> <td>tacaacaatt</td> <td>aactggtgat</td> <td>1020</td> <td></td>	atgtttcaac	gtactatgat	gggtatcatg	attcaatctc	tacaacaatt	aactggtgat	1020	
gaacatteta tigtettigi tigtegteaa tietteteea ettigtigtet ketigtaacae 1140 gitgaacegti tiggeegteg taaceggitg atgegggig etgeeggaa gitetaacaa 1200 tagtigtet atgeeeteeg tiggeggie etgeeggaa gitetaacaa 1200 getaacate gigeeetee tiggeeggaa etgetaatig gittetee aatgegtee aagateaacae 1200 getaacatee gigeeetee tiggeeggaa etgetae aatgettee aatgegtee titteteggaa 1380 aaateeeaag gittetee tiggeeetee aaeteetee aaggettee titteegggee 1500 titteteaae aggettee titteegee giggeeetee aaeteetee aaggettee aggetteetee 1680 tittegaagaag titaatgaat gideeggaa giggettetee etgegaaate aggetteetee 1680 caattee aaggetteet tageeegaa giggetteetee etgegaaate aggetteetee 1680 caattee aagatteet tageeegaa giggetteetee etgegaaetee aggetteetee 1680 caattee aagatteet tageeegaa taa 1713 <210> SEQ ID NO 34 1200 <210> SEQ UENCE: 34 120 atgeggtteeg aagataaat agegeetee gitteegaatee titteggaaaat eetee diggeetee 180 tittigtaat gitteegee gitteega gitteegaae tageetee giggettee 180 tittigtaat gateeee etgeeeeeeeeeeeeeeeeeeeeeee	aactatttct	tctactacgg	taccattgtt	ttccaggctg	tcggtttaag	tgactctttt	1080	
<pre>gttgaccgtt ttggccgtcg taactgtttg atgtggggtg ctgtcggtat ggtcdgctgt 1200 tatgttgtct atgcctctg tggtgttac agattatgg caaacggtca agatcaacca 1260 tcttcaaagg gtgctggta ctgtatgtt gttttcgat gtttctcat tttctgttte 1320 gctactacct gggccccat tgctacgtt gttattcag aatgttcc attaagagte 1380 aaatccaagt gtatgtctt tgccggtg gctacca ggttacta acgttca agggttagt ttatggggg 1500 tgtatggttt togcttact ttaggtgctt ttottggt cagaaacta aggttagt 1440 ttottcacc cattatat tggtgccaca acgttagt cagggaacta aggttagt 1500 tgtatggtt togcttact ttaggtgcaa daggtggt caggaaacta aggttagt 1500 tgtatggtt togctaat gtacgcag ggtgttcac catggaaacta aggttagt 1500 tgtatggtt togctaat gtacgcaga ggtgtctac catggaaacta ggtgaccaa 1680 ccatttaca agagttgtt tagcaggaa taa 1713 </pre>	gaaacttcta	ttgtctttgg	tgtcgtcaac	ttcttctcca	cttgttgttc	tctgtacacc	1140	
tagtgtgt atggttgt aggtgtac agattagg caacggt aggt a	gttgaccgtt	ttggccgtcg	taactgtttg	atgtggggtg	ctgtcggtat	ggtctgctgt	1200	
tetteaaagg gtgetggta etgtatgatt gtttegeat gttetaeat titetgitte 1320 getaetaeet gggeeeeaa tgeetaggte getaactgga tetggggtt ettgattag 1380 aaateeaag gtatgtett tegeeagtge getaactgga tetggggtt ettgattag 1440 teetteaeee eattatae tggtgeeeae aaetteetae aeggtaagt titetagggg 1500 tgtatggtt tegeetaett titegetet tetetegte eagaaaeta aggttatea 1560 titagaagaag teaatgata gtaegeega ggtgtetee eagaaaeta aggttatea 1680 ceatttaa agagttigt tageaggaa taa 1713 <210> SEQ ID NO 34 <211> LENOTH: 1644 <212> TTPE: NA <212> TTPE: NA <213> REANTINE: Debaryomyees hansenii <400> SEQUENCE: 34 atgggttag agataatt agtggeeet getegatte eagaaet taggaaga teataga 180 teetaaae etageaeae eageagg getgetate eagaaet teggeaga teataga 180 teetaaae etageaeae eageaaet teggeagaa tea 300 acteeaaat tetataatg tittgtat geetggatt eagaagaa teate eagaatet titggaeag acteeaaat tetataatg tittgtat geetggatt eagaaagt eageataat eataatee 180 teteataae etageaeae eageageg getgetaette eageatget teggetgga 120 tittggatt g atateete tagteetta titatteggg atgeeaaat eataatae 180 teteataae etageaeae eatgeateg tittattat eggetagaa atee eagaagt a 300 afggtadgg ggttteteg gtgetggg getgetatte ateetegte teagaatea 360 gegeaattga titategge tittatte ggettitgg teggttegg teaaaatae 360 gegeaattga tateggeeg tittatte ggettigg tegetatat tagggggtet 420 getteagtt afggateg agtgetaet agaagaatea gaggtttaa teggggggt 420 tittataae gtgetgeeg tittattee gatteggg titgeg teaacaaga 460 tittataae gtgetegea ettagateg agatecaag eagagtta ateggggt aeaaaaga 540 tittataae gtgetegea ettagateg eagaeeaa taggaagaa taggagaagaa 720 ceagaag atgetgaaa tgetgeaaat agagaacaa taggaacaa titaggaacaa tegaagaaga 720 ceagaagtt taatgaaa gteggaaa taggaacaa taggaagaa taggaagaa tagaagaaa 640 aaggettea eataggaa agattaat aggaacaaa taggaacaa tegagaagaa 720 ceagaagtt taatgaaa gteggaaa agagaaaa taggaacaa titaggaac agaagaaa 720 ceagaagtt taatgaaa gteggaaa agagaaaa taggaacaa titaggaac agaagaaa 720 aaggettea aataggaa gadetaat aggaagaagaa taggaacaa tegagaaaa tegaacaac 780 aaggettea aataggaa aataac ggaagaaaa taggaacaa	tatgttgtct	atgcctctgt	tggtgttacc	agattatggc	caaacggtca	agatcaacca	1260	
<pre>gctactacct gggccccat tgcttagtt gttattcag aatgtttcc attaagagt 1380 aaatccaagt gtatgtcta tgccagtgc gctaactgga tctggggtt cttgattagt 1440 ttcttcaccc cattattac tggtgccatc aactctat acggttagt ttctaggge 1500 tgtatggtt tcgcttact ttacgtctt ttcttggtc cagaaacta aggtttata 1560 ttagaagaag ttaatgata gtacgccgaa ggtgttctac catggaaatc agcttcctgg 1620 gttccagta ccaagaggg cgctgactac aacgctgatg acctaatgca tgatgaccaa 1680 ccatttaca agagttgtt tagcaggaa taa 1713 </pre>	tcttcaaagg	gtgctggtaa	ctgtatgatt	gttttcgcat	gtttctacat	tttctgtttc	1320	
aaatccaagt gtatgtctat tgocagtget getaactgga teeggggttt ettgatagd 1440 ttetteacee eatttattae tggtgeeate aacttetaet aeggttaegt tteeatggee 1500 tgataggttt tegettaett taegetett teettegte cagaaactaa aggttaete 1560 ttagaagaag ttaatgata gtaegeegaa ggegttetee catggaaact agetteegg 1620 gtteeagtat ecaagagagg egetgaetae aaegetgatg acetaatgea tgatgaecaa 1680 ceatttaee agagttigtt tageaggaaa taa 1713 <210- SEQ ID NO 34 <212- SEQ ID NO 34 <212- TYPE: DNA <213- ORGANISM: Debaryomyees hansenii <400- SEQUENCE: 34 atggggtaeg agataaatt agtggeteet gettaaagt ttagaaactt tttggaecaag 60 acteeaaata teataatgt tttgttatt geteggatt eateatee 180 tteggattg atateeate tatgtetta ttattgggg atgaeaaata eataaaaa 180 tteeataae etageeaeae eatgeeaee ttggeeaga ataa 260 gegeaattga tateegeeg ttattette ggtttggt teggtteeg teaeaatee 360 gegeaattga tateegeeg tttattee ggettggt tagaagata taggggteet 420 geteeagtt atggaeteg agataata actageet tagaagate agagggttaat tgggggtett 420 geteeagte ggtttteeg gtgtgtgg eeegetae ageagteeg ttagaagate 420 geteeagte ggtttteeg gtgtgtgg eeegetae ageaggtea ataeeegtt 420 geteeagtt atggaeteg attagee ttagaagtee agaaggae agaggttaat tgggggtett 480 ttetaataee taggaeeg ttattee ggtttggg ttggttegg teeaaatea 360 gegeaattga ttategeeg tttattee ggtttggt tggttegg teeaaatea 360 gegeaattga tateggeeg tttattee ggtttggt tggttegg teeaaatea 360 gegeaattga ttateggeeg tttattee gaaaggaee agaggttaat tgggggtett 480 tttataaeg gtgtegeae etteaggagt getggttgg teggttage taaaaagg 660 taetgggaag atgetgaat tggtgtee agaaceaa tategtga tagaeaagae 720 ccagatgtt taattgaaa gteetgaat agagaata agagaeaa ttatgtaga tgaacaacat 780 aaggettee eaageetge acaattaee ggatgaaa tatggaae tgtaacaeag 780 aaggettee aageetge acaattaee ggatgaaa tatggaae tgtaacaeag 780 aaggettee eaageetge acaattaee ggatgaaa tatggaae tgtaacaeae 360 gttgggget aaggeetge aageetgaa tagtgaaat agagaeaa tatggaagae tgtaacaeaeag 780 aaggettee aageetge acaattaee ggatgaaa tatggaae tgtaacaeae 780 aaggettee aageetge acaattaee ggatgaaa tatggaae tgtaacaeae 360 gttggggete aageetgaa tageetgaa	gctactacct	gggccccaat	tgcttacgtt	gttatttcag	aatgtttccc	attaagagtc	1380	
ttetteace oattatta tggtgeate aacteea aegetaegt tteatagge 1500 tgtatggtt tegettaet ttaegteet ttetetge cagaaactaa aggttaete 1560 ttagaagaag ttaatgata gtaegeega ggtgtetae catggaaact ageteeteg gttecagta ceaagagagg egetgaetae aaegetgatg acetaatgea tgatgaecaa 1680 ceatttaea agagttgt tageaggaaa taa 1713 <210> SEQ ID NO 34 <211> LENGTH: 1644 <212> TPE DNA <212> GRGANISM: Debaryomyees hansenii <400> SEQUENCE: 34 atgggttaeg aagataatt agtggeteet gettgaate catggaaga teateet 100 tteggattg ataeteete tagteett tageaggaa taa 180 ttegatagg tagetaeate tagtgetget getgetate aateett tteggeaga 60 acteeaaaat eetageaeae eatgeaeteg ttattaett eggetagete 120 tttggtattg ataeteete tagteetta ttattgggg atgaeaaata cattaaatae 180 tteeataaae etageaeae eatgeaeteg ttattaett eggetaget etagaaga atea gegeaatga ttateggeeg ttaetteet gettggt getgetaete aateetge teaaaatea atggtatgt ggttttetg gtggtggg getgetate aateetge teaaaatea gegeaatga ttateggeeg ttattatte gettggt teggttegg teaaaatea tteaatte etgeteatt gggtaetet ateatgte t taggagtae taggggtet 420 geteeagtt atggatega atageteet agaagatea gaggttaat tgggggtet 480 tteataaeg gtgtegeae etteaaggt getggggt taeaaata eataagg 660 atetggaag atgetgaat tgtggttegg eetggett ateaateet ateegggtta 660 tteatatee ettegeeg tteagaagt getggtt taeaaataa acaeaggt 660 stetggaag atgetgaat tgtggttege agaateae gaggttaat tgggggtet 480 tteatatee ggtegeae etteaaggt getggggt taeaaaggtaa gaggttaat tgggggtet 480 tteatatee tggtegeae etteaagat getgggt taeaaataa acaeaggt 660 taetgggaag atgetgaat tgtggtege aagaaceaa ttagtgaa tgaacaaat 780 aaggettte etagtggt tegtaat aggaacaa tatggtaga tgaacaaat 780 aaggettte eatageag ttegtaaat aggaacaa tatggtaga tgaacaaat 780 aaggettte aatageag ttegtaaat aggaacaa tatggaaga tgaacaat 280 tgtgggeet aageeegg taegaagg ggagtaat tatggaaga tgaacaat 280 tgtgggeet aageeegg taegaagg ggatgaa eettaga thatgtaga tgaacaaat 780 aaggetttee aatggeegg taegaagg ggagtaat tatggaaga tgaacaat 780 aaggetttee aatgeegg taegaagg ggatgaaga eettaga thatgtaga tgaacaaat 780 aaggettee aageeegga acaataace gg	aaatccaagt	gtatgtctat	tgccagtgct	gctaactgga	tctggggttt	cttgattagt	1440	
tgtatggtt tegettaett ttagtgett teettegte eagaaacta aggttataa 1560 ttagaagaag ttaatgatat gtageegaa ggtgtetee eaggaaate agetteetig 1620 gtteeagtae eagagtggt egetgaetae aaegetgae acetaatgea tgatgaeeaa 1680 ceatttaea agagttigt tageaggaaa taa 1713 <210> SEQ ID NO 34 <211> LENGTH: 1644 <212> TPF: DNA <213> ORGNISM: Debaryomydes hansenii <400> SEQUENCE: 34 atgggttaeg aagataaatt agtegeteet gettgaeg atgeacaat e ttagaaaet ttaggaega a etteetig ataeteetee tageetgae ttatteetee eggetaget 240 ttteggaatg ataeteete tageetgaeg teetigget teegaaaata estaatae 180 tteetaaae etageetge tteetigge getgetate aaeteetee tageggetee 420 atgggatteg gettette getgetget getgetate aaeteetee tageggetee 420 stetteggaa tateeteete teetigge getgetate aaeteetee tageggetee 420 stetteggaag attaeteete teetigge getgetate ateeteetee tageggetee 420 stetteggaag attaeteete teetigge getgetate ateeteetee tagegeteetee 420 stetteggeteeteeteeteeteeteeteeteeteeteete	ttcttcaccc	catttattac	tggtgccatc	aacttctact	acggttacgt	tttcatgggc	1500	
ttagaagaag ttaatgatat gtacgeegaa ggtgttetae eatggaaate agetteetig 1620 gtteegatat eeaagagag egetgaetae aeegetgatg aeetaatgee tgatgaeeaa 1680 ceatttaea agagttigtt tageaggaaa taa 1713 <210> SEQ ID NO 34 c211> LEINETTH: 1644 c212> TYES INN c213> ORGANISM: Debaryomyces hansenii <400> SEQUENCE: 34 atgggttaeg aagataaatt agtggeteet getttaaagt ttagaaaett tttggaeaag 60 aeteeaaaa etaatagt tttigttatt geteggatt eatgaeaata eattaaatae 180 tteeataae etageaeae eatgeeatg ttattaett eggetagaag ateategtta 300 atggtatgg ggttteeg gtggtgtgg getgetate aateategte ttagggtet 420 geteeagtt atgggeteg attageeteet agaaagatea gaggttaat tgggggetet 420 geteeagtt atggeetge tteetteet agaagatea gaggttaat tgggggetet 420 geteeagtt atggeetge tteetteet agaagatea gaggttaat tgggggetet 420 geteeagtt atggeetge etteetteet agaagatea gaggttaat tgggggetet 420 geteeagtt atggeetge tteetteet agaaagatea gaggttaat tgggggetet 420 geteeagtt atggeetge etteetteet agaaagatea gaggttaat tgggggetet 420 gettegatte tegttegg getgeteet aateategt taacaaggt 660 tteetgagaag atgetgaata tgtegtgee gageetaa taatgaga acaaggtta 670 atgggaag atgetgaata tgtegtee aagaagatea gaggttaat tgggggetet 480 tteataaeg ggtegeate etteagagt gettggggt taecaagegt 660 taetgggaag atgetgaata tgtegtee aagaagatea gaagataa eaagagata 720 eeagatgtt taatggaag ttegtgaaat agggaacaa ttatgtaga tgaacaact 780 aaggettee eatgeegg ttageaat aggagaaaa tatggaga tgaagaagat 940 tgttgggee aageetgga acaattaac ggtatgaata ettggaga ttaateggt 940 tgttgggee aageetgge acaattaac ggtatgaata ttatggaga tgaacaate 440 setteggeetg aageetgga acaattaac ggtatgaata ttatggaga ttaatatgt 900 tgttgggeete aageetgge ttaegaaggt gatgeetaatt tggtegetg tteedatea 960	tgtatggttt	tcgcttactt	ttacgtcttt	ttcttcgttc	cagaaactaa	aggtttatca	1560	
gttccagtat ccaagagag ogotgagata aagotgagt acctaatgat tgagacaa 1680 ccatttaca agagttgtt tagcaggaa taa 1713 SEQ ID NO 34 SEQ ID NO 34 SEQ ID NO 34 SEQUENCE: 34 atgggttacg aagataaatt agtggctcct gotttaagt ttagaaactt ttgggacaag foo actccaaaat totataatgt tttgtgtatt gotogatt catgatcct ogggtgtag ttdggtattg atatccatc tatgtotta ttattgggg atgacaaat acttaaataa 180 tttcaataac ctagoacaac catgcaatog tttattactt oggotaggt tatgggttac gotgcaattg tattoggecg tttatttot ggtttggg ttggttogg tcaaaatca 180 tttattagg oggtttcg gdgtgtgg gotgctatc aatcattg ttgggggt 120 tttttggat caatagte ttotttgg tggtggt gotgctatt aatcatge ttaaaata 180 dtggtatgg ggttttcg gdgtgtgg gotgctatt aatcatge taaaatca 180 ggtcaattg tattoggecg tttattet ggtttggg ttggttggg ttggtttgg 120 tttattaacg gdgtcgaa attagctcci agaagatca gaggttaat tggggggtt 120 120 120 120 120 120 120 120	ttagaagaag	ttaatgatat	gtacgccgaa	ggtgttctac	catggaaatc	agcttcctgg	1620	
catttaa agagttgt tagaagaa taa 1713 	gttccagtat	ccaagagagg	cgctgactac	aacgctgatg	acctaatgca	tgatgaccaa	1680	
<210> SEQ ID NO 34 <211> LENGTH: 1644 <212> TYPE: DNA <213> ORGANISM: Debaryomyces hansenii <400> SEQUENCE: 34 atgggttacg aagataaatt agtggctcct gctttaaagt ttagaaactt tttggacaag 60 actccaaata tctataatgt ttttgttatt gctcgatt catgtactc cgggttgatg 120 tttggtattg atactcatc tatgtctta tttattgggg atgacaaata cattaaatac 180 ttccataaac ctagcacaac catgcaatcg tttattactt cggctatgt tttgggtca 240 ttttttggat caatatgtc ttctttgtg tccgaaccat ttggcagaag atcatcgtta 300 atggtatgtg ggttttctg gtggtgtgg gctgctatt aatcatcg tcaaaatcaa 360 gcgcaattga ttatcggcg ttttattct ggtttggt ttggttcgg ttcatcagtt 420 ttttattaacg gtgtcgcat ctggagatt agaagatca gaggtttaat tggggggtct 480 tttattaacg gtgtcgcatc cttcagagt gctggggt tacaaatcat accaggtta 540 tttattaacg gtgtcgcatc cttcagagt gctggggt tacaaatcat accaggtta 660 tactgggaag atgctgaata tgttgttgc aagatccaag ctaagggtaa cagagaagat 720 ccagatgtt taattgaaat gctgaaatt aaggaacaaa ttatgtaga tgaacacatc 780 aaggctttca catatgctg tttgttcca aagaagata tattggaga tgaacacatc 780 aaggctttca catatgctg tttgttcca agaaggtaa tattggaga tgaacacatc 780 aaggctttca catatgcgg tttgttcca agaaggtaa tattggtag ttaattggt 900 tgttgggct aagcctggca acaattaacc ggtatgaata ctttgatgta ttatattgtt 900 tgttgggct aagcctggca ttagg ggtggagg gatgctaatt tggttgcag ttccatcaa 960	ccattttaca	agagtttgtt	tagcaggaaa	taa			1713	
<400> SEQUENCE: 34 atgggttacg aagataaatt agtggctcct gctttaaagt ttagaaactt tttggacaag 60 actccaaata tctataatgt tttgttatt gctctgatt catgtatcc cgggttgatg 120 tttggtattg atactcatc tatgtcttta tttattgggg atgacaaata cattaaatac 180 ttccataaac ctagcacaac catgcaatcg tttattactt cggctatgtc tttgggttca 240 ttttttggat caatatgttc ttcttttgt tccgaaccat ttggcagag atcatcgtta 300 adggtatgtg ggttttctg gtggtgtgg gctgctatc aatcatcgc tcaaaatcaa 360 gcgcaattga ttatcggccg tttattct ggtttggtg ttggttcgg ttcatcagtt 420 tttcaattac ctgcaccac catgcaatcg gttggg gtggtgg gcgctattc atcatgtcg tcaacagt 420 gctccagttt atggatctga attagctcct agaaagatca gaggtttaat tgggggtct 420 tttattaacg gtgtcgcatc ctccagagtt gcttggggt tacaaatcat accaggttta 600 gtttggatc ttggttgtt cttattcca gaatccag ctaagggtaa cagagagaa 720 ccagatgtt taattgaaat gtctgaaatt aggaacaaa ttatgtaga tgaacacatc 780 aaggctttca catatgctga ttggtcaca acaattaacc ggtatgaat cttggagt ttattattgtt 900 tgttgggcc aagccgg ttacgaggt gatgtagat cttggtgtag tgctgctagt tattattgtt 900	<210> SEQ <211> LENG <212> TYPE <213> ORGA	ID NO 34 TH: 1644 : DNA NISM: Debary	yomyces han:	senii				
atgggttacgaagataaattagtggctcctgctttaaagtttagaaactttttggacaag60actccaaatatctataatgtttttgttattgctctgatttcatgtatcccgggttgatg120tttggtattgatactcatctatgtctttatttattggggatgacaaatacattaaatac180ttccataaacctagcacaaccatgcaatcgtttattacttcggctatgtctttggggtca240tttttggatcaatatgttcttctttgggtcggtatgcttgggagagatcatcgtta300atggtatggggttttcggtgtgtgggctgctattcaacactcgtaaaatca360gcgcaattgttatcggccgtttattattggtggttgggctgttcgtcaaaatca420gctccagttatggatctgaattagctcctagaagatcagaggtttaattgggggtct420gctccagttatggatctgaattagctcctagaagatcagaggtttaattgggggtct420gtttcaatccctgtcacttgggtatctaatcatgtcdtacacagt460tttataacggtgtgcgcatccttcagagtgcttggggttaaacaaggt660ttatgggagaatgctgaattgtgttgccaagaacaaattatgtagatgaacacatc780aaggctttctaattgaaagctgtagaataagaagatattatatgt900400tgtgggccaagcctggcaacattaaccggtatgaatttgttgtgt960	<400> SEQU	ENCE: 34						
actccaaata tetaatagt tittigttatt getetgatti eatgtatete egggttgatg120titiggtattig atateteate tatigtettia titatigggg atgacaaata cattaaatae180titeeataaae etageacaae eatgeaateig tittattaett eggetatge tittigggttea240tittitiggat eaatatigtte tietittiggi teegaaceat tiggeagaag ateateigtta300atggtatigg gigttteeg gigtiggi getigetatee aateateige teaaaateaa360geegeaattiga tateeggeeg tittatteet gigtittiggi tiggitteegi teaateagtta420geteesagtti atggateesa attagetee agaagatea gaggttaat tigggggetet480tittattaaeg gigtegeese etteesagti geetiggigti geetiggigti taeaaatea accaggitta540tittattaaeg gigtegeate etteesagti geetiggigti taeaaatea accaggitta600gettiggatee tiggittigti etteesagate gaagatea etagggtaae etagagaagat720ceagatigti taategaaat gittigtee aagaagataa tateggaae etgaacaatee780aaggeettee etaategees etteesaatae eggatagaa etategeteigi etaaacaagi etaategees840tittiggggeese aagaeteese eggatagaata ettegatae etgataeteigi etaateigi etaateigi etaateigi etae900tigtigggeese aagaeteese eggataaa etteese etteese960	atgggttacg	aagataaatt	agtggctcct	gctttaaagt	ttagaaactt	tttggacaag	60	
tttggtattg atateteate tatgtetta tttattgggg atgacaaata eattaaatae 180 tteeataaae etageacaae eatgeaateg tttatteet eggetatgte tttgggttea 240 tttttggat eaatatgtte ttetttgg teegaaceat ttggeagaag ateategtta 300 atggtatgtg ggtttteeg gtgtgtgg getgetate aateatege teaaaateaa 360 gegeaattga ttateggeeg ttttattee ggtttgggt ttggtteegg teeateagtt 420 geteeagtt atggateega attageteet agaaagatea gaggttaat tgggggteet 480 ttteattee etggeagt gggtatetta ateatgtee tataetegta tggegggtee 540 tttattaaeg gtgtegeate etteagagt gettggggt taeaaateat aceaggtta 600 gttttgatee ttggttgtt etteattee gaateeeag etaagggtaa eagagaagat 720 eeagatgtt taattgaaat gtetgaaatt aaggaacaaa ttatgtaga tgaacaaeta 780 aaggeettee eatageegg ttegtaete agaagtaa etteggaae tgttaetget 840 tgttgggee aageeegg acaattaee ggtatgaata etteggaae tgttaetget 900 tgttgggee aageeegg ttaegaagt gatgetaat tggttgea teatattgtt 900	actccaaata	tctataatgt	ttttgttatt	gctctgattt	catgtatctc	cgggttgatg	120	
ttccataaa ctagcacaa catgcaateg tttattactt eggctatgte tttggggtea 240 tttttggat caatatgte ttetttgg teegaaceat ttggeagaag ateategtta 300 atggtatgtg ggtttteeg gtgtgtgg getgetate aateatege teaaaateaa 360 gegeaattga ttateggeeg tttattee ggtttggtg ttggtttegg tteateagtt 420 getceagttt atggatega attagetee agaaagatea gaggtttaat tggggggetet 480 ttteaattee etgeeaett gggtatetta ateatgtee ataetegta tggttggaat 540 tttattaaeg gtgtegeae etteagagt gettggggt taeaaateaa aceaggtta 600 gttttgatee ttggttgtt etteattee gaateteea gatggtage taaaeaaggt 660 taetgggaag atgeegaata tgttgttee aagaaeaa ttatgetaga tgaaeaaet 720 ceagatgtt taattgaaa gteegaaat agggaata tattgagaae tgtaeetge 840 tgttgggete aageetgge acaattaaee ggtatgaata etteggtga ttaattgtt 900 tgttgggete aageetgge acaattaaee ggtatgaata etteggtga ttaattgtte 900	tttggtattg	atatctcatc	tatgtcttta	tttattgggg	atgacaaata	cattaaatac	180	
tttttggat caatagtte ttetttgg teegaaceat ttggeagaag atcategtta300atggtatgt ggttttetg gtgtgtgg getgetatte accatege teaaaateaa360gegeaattga ttateggeeg ttttattet ggtttggt ttggtttegg tteateagtt420geteeagtt atggatega attageteet agaaagatea gaggtttaat tggggggett480ttteaattet etgteaett gggtatetta ateatgttet ataetegtta tggtttgaat540tttattaaeg gtgtegeate etteagagt gettggggt taeaaateat accaggttta600getttgatee ttggttgtt etttattee gaateee gaageteage etaagegaagat720ccagatgtt taattgaaat gtetgaaatt aaggaacaa ttatgetaga tgaacaete780aaggeettea eaategee accattaee ggtatgaata ettegagate ttatattgt900tgttgggete aageetgge accaattaaee ggtatgaata ettegatga ttaattgte900tatgttttee aaatggeeg ttaegaagt gatgetaat tggttgetag tteeateag960	ttccataaac	ctagcacaac	catgcaatcg	tttattactt	cggctatgtc	tttgggttca	240	
atggtatgtgggtttttetggctgctatteaateatetgeteaaateaa360gcgcaattgattateggecgttttattetggttttggtgttggttteggtteateagtt420gctccagttatggatetgaattageteetagaaagateagaggtttaattgggggtett480ttteaattetctgtcactttgggtatettaateatgttetataetgtta540tttattaacggtgtgegeateetteagagtgettggggtttaeaaateataceaggttta600gtttgateettggttgtttettatteeagatggtgtagetaeaaaggt660taetgggaagatgetggaatatgttgttgeeaagaagataetaggggtaa720ccagatgtttaattgaaatgtetgaaataaggaacaaatattgaaa780aaggeetteecatatgeegatettgtteeeagaagatatattgaaae840tgttggggetaageeegaacaattaaceggtatgaataettgatege900tatgtttteeaaggeeggttacgaagggatgetaattggttgetag960	ttttttggat	caatatgttc	ttcttttgtg	tccgaaccat	ttggcagaag	atcatcgtta	300	
gcgcaattga ttatcggccg ttttatttctggttttggtg ttggtttcgg ttcatcagtt420gctccagttt atggatctga attagctcctagaaagatca gaggtttaat tgggggtctt480tttcaattct ctgtcacttt gggtatctta atcatgttct atactgtta tggtttgaat540tttattaacg gtgtcgcatc cttcagagtt gcttggggtt tacaaatcat accaggttta600gttttgatcc ttggttgttt ctttattcca gaatctccta gatggttagc taaacaaggt660tactgggaag atgctgaata tgttgttgcc aagatccaag ctaagggtaa cagagaagat720ccagatgttt taattgaaat gtctgaaatt aaggaacaaa ttatgttaga tgaacacatc780aaggctttca catatgctga tttgttcact aagaagtata tattgagaac tgttactgct840tgttggggct aagcctggca acaattaacc ggtatgaata ctttgatgta ttatattgtt900tatgttttcc aaatggccgg ttacgaaggt gatgctaatt tggttgctag ttccattcaa960	atggtatgtg	ggtttttctg	gtgtgttggt	gctgctattc	aatcatctgc	tcaaaatcaa	360	
gctccagtttatggatctgaattagctcctagaaagatcagaggtttaattgggggtctt480tttcaattctctgtcactttgggtatcttaatcatgttctatatctgttatggtttgaat540tttattaacggtgtcgcatccttcagagttgcttggggtttacaaatcataccaggttta600gtttgatccttggttgtttcttattccagaatgttagctaaacaaggt660tactgggaagatgctgaatatgttgttgccaagaacaaactaggggtaacagaagaagat720ccagatgttttaattgaaatgtctgaaattaaggaacaaattatgttagatgaacacatc780aaggctttcacatatgctgattgttgtcactaagaagtatatattgaagaactgttactgct840tgttgggctcaagcctggcaacaattaaccggtatgaatacttgatgta900tatgttttccaatggccggttacgaaggtgatgctaatttggttgctagtccattcaa960	gcgcaattga	ttatcggccg	ttttatttct	ggttttggtg	ttggtttcgg	ttcatcagtt	420	
tttcaattet etgteaetti gggtatetta ateatgttet atatetgtta tggtttgaat 540 tttattaaeg gtgtegeate etteagagti gettggggtt taeaaateat aceaggttta 600 gttttgatee ttggttgttt etttatteea gaateteeta gatggttage taaaeaaggt 660 taetgggaag atgetgaata tgttgttgee aagateeaag etaagggtaa eagagaagaat 720 eeagatgttt taattgaaat gtetgaaatt aaggaaeaaa ttatgttaga tgaaeaeate 780 aaggetttea eatatgetga tttgtteeet aagaagtata tattgagaae tgttaetgeet 840 tgttggggete aageetggea acaattaaee ggtatgaata etttgatgta ttaattgtt 900 tatgttttee aaatggeegg ttaegaaggt gatgetaatt tggttgetag tteeatteaa 960	gctccagttt	atggatctga	attageteet	agaaagatca	gaggtttaat	tgggggtctt	480	
tttattaacg gtgtcgcate etteagagtt gettggggtt taeaaateat accaggttta 600 gttttgatee ttggttgttt etttatteea gaateteeta gatggttage taaacaaggt 660 taetgggaag atgetgaata tgttgttgee aagateeaag etaagggtaa cagagaagat 720 eeagatgttt taattgaaat gtetgaaatt aaggaacaaa ttatgttaga tgaacacate 780 aaggetttea eatatgetga tttgtteeet aagaagtata tattgagaae tgttaetget 840 tgttgggete aageetggea acaattaace ggtatgaata etttgatgta ttatattgtt 900 tatgttttee aaatggeegg ttaegaaggt gatgetaatt tggttgetag tteeatteaa 960	tttcaattct	ctgtcacttt	gggtatctta	atcatgttct	atatctgtta	tggtttgaat	540	
gttttgatee ttggttgttt etttatteea gaateteeta gatggttage taaacaaggt 660 taetgggaag atgetgaata tgttgttgee aagateeaag etaagggtaa eagagaagaa 720 eeagatgttt taattgaaat gtetgaaatt aaggaacaaa ttatgttaga tgaacacate 780 aaggetttee eatatgetga tttgtteeet aagaagtata tattgagaae tgttaetgeet 840 tgttggggete aageetggea acaattaace ggtatgaata etttgatgta ttatattgtt 900 tatgttttee aaatggeegg ttaegaaggt gatgetaatt tggttgetag tteeatteaa 960	tttattaacg	gtgtcgcatc	cttcagagtt	gcttggggtt	tacaaatcat	accaggttta	600	
tactgggaag atgetgaata tgttgttgee aagateeaag etaagggtaa cagagaagat 720 ceagatgttt taattgaaat gtetgaaatt aaggaacaaa ttatgttaga tgaacacate 780 aaggetttea catatgetga tttgtteaet aagaagtata tattgagaae tgttaetget 840 tgttgggete aageetggea acaattaace ggtatgaata etttgatgta ttatattgtt 900 tatgttttee aaatggeegg ttaegaaggt gatgetaatt tggttgetag tteeatteaa 960	gttttgatcc	ttggttgttt	ctttattcca	gaatctccta	gatggttagc	taaacaaggt	660	
ccagatgttt taattgaaat gtctgaaatt aaggaacaaa ttatgttaga tgaacacatc 780 aaggctttca catatgctga tttgttcact aagaagtata tattgagaac tgttactgct 840 tgttgggctc aagcctggca acaattaacc ggtatgaata ctttgatgta ttatattgtt 900 tatgttttcc aaatggccgg ttacgaaggt gatgctaatt tggttgctag ttccattcaa 960	tactgggaag	atgctgaata	tgttgttgcc	aagatccaag	ctaagggtaa	cagagaagat	720	
aaggetttea eatatgetga titgtteaet aagaagtata tattgagaae tgttaetget 840 tgttgggete aageetggea acaattaaee ggtatgaata etttgatgta tiatattgtt 900 tatgtttee aaatggeegg tiaegaaggt gatgetaatt tggttgetag tieeatteaa 960	ccagatgttt	taattgaaat	gtctgaaatt	aaggaacaaa	ttatgttaga	tgaacacatc	780	
tgttgggctc aagcetggca acaattaace ggtatgaata etttgatgta ttatattgtt 900 tatgttttee aaatggeegg ttaegaaggt gatgetaatt tggttgetag tteeatteaa 960	aaggetttea	catatgctga	tttgttcact	aagaagtata	tattgagaac	tgttactgct	840	
tatgttttcc aaatggccgg ttacgaaggt gatgctaatt tggttgctag ttccattcaa 960	tgttgggctc	aagcctggca	acaattaacc	ggtatgaata	ctttgatgta	ttatattgtt	900	
	tatgttttcc	aaatggccgg	ttacgaaggt	gatgctaatt	tggttgctag	ttccattcaa	960	
tactgtetta acaetggtat gaceatteee geattataet teatggataa gettggtaga 1020		acactoctat	gaccatteec	gcattatact	tcatggataa	acttaataaa	1020	

171

-continued

agaccagttt	tattaactgg	ggctgcattc	atgatggctt	ggcaattcgc	cgttggtgga	1080
ttattggcaa	cttacagtgt	tgataaccct	atcagtgaaa	ccgtcagaat	tcaaattcca	1140
gaagaacatg	gcaaggccgc	caaagctgtc	attgcttgct	gttatttatt	cgttgtttct	1200
ttcgcttgta	gttggggtgt	ttgtatttgg	gtttactgtg	ctgaagtctg	gggtgatagt	1260
gcttcaagac	aaagaggtgc	tgctcttacc	acttctgtta	attggatttt	caatttcgcc	1320
attgctatgt	tcactccaag	tgctttcaag	aacattactt	ggaagactta	catggtcttc	1380
gctacattct	gtggttgtat	gtttatccat	gtcttcttct	tcttcccaga	aactaagggt	1440
aagagattgg	aagaaattgg	tcaaatgtgg	gccgaaggtg	taccagcttg	gaagtctgct	1500
tcttggcaac	catctattcc	aatcgtgtcc	gataatgaat	tacataacaa	gatgaagatt	1560
gaccataatg	aagataactt	attaaattct	tcttcacatt	ctgaagtatc	ccaagagaag	1620
ggcgatactt	ctcacatgac	ttaa				1644

<210> SEQ ID NO 35 <211> LENGTH: 1638 <212> TYPE: DNA <213> ORGANISM: Debaryomyces hansenii

<400> SEQUENCE: 35

atgggatatg aagaaaagtt ggtcgcacca gctctaaaac taagattatt cttagataaa 60 120 cttccaaaca tttataatat ttatqtcatt qctactattt cqtqtatttc qqqqttqatq ttcggtatcg acatttcatc gatgtcggcg ttccttagta atgacgctta ccttaaatat 180 240 tttggtaccc ctgaacctga tatgcaagga ttcattactg ctgctatgtc tcttgggtca ttetttgggt etettgeate ggeattttgt teagageeat ttggtagaag agetteattg 300 ttgctttgtg gattcttttg gtctgttggg gctgcaattc aatcttcatc acagaatgtc 360 gcccagttaa ttattggtcg ttttatttct ggttttggaa ttggtttcgg ctcatctgtg 420 gcacccgtgt atggatcaga gttggcacct agaaaaatta gagggttaat tggtggtctt 480 ttccaacttt cagttacctt aggtattttg attatgttct atatctgtta cgggttaggt 540 aaaatccaag ccgtcggctc attcagaact gcgtggggtt tgcaaattat cccaggattg 600 atottaatac ttggatgttt ctttattoca gaatcacota gatggttago caaacagaac 660 tactgggaag aggcggagga cattgtcgct agagtccaag ctaaaggtaa cagagaagac 720 cctgaagtat taattgaaat ggctgaaatt agagaccaga ttctgacgtt agacaaagtt 780 aagtotttta ottatattga tttattcaaa aagaagtato ttottagaac tgtaacggca 840 atatttgctc aaatttggca acaattaaca ggtatgaaca ccttaatgta ttatattgtc 900 960 tattgtatca attttgccat gactattcct gcattgtact taatggataa ggtcggtagg 1020 agaccagtgt tgttaactgg agctgcgctc atgatggcct ggcaatttgc tatagggggc 1080 ttgcttgcca cttatgctga acccaccgat atttttgggg gtaataatac cgttaaaatc 1140 agtateceag aagatgaate teetgeegee aaggetgtta ttgeatgttg ttaettatte 1200 gttgtttcat ttgcgtctac ttggggtgtt ggtatctggg tttactgtgc tgaagtctgg 1260 ggtgatagtg cctcaagaca aagaggtgcg tgtgttgcaa ctgctggtaa ttggattttt 1320 aatttegeaa ttgeaatgtt cacteegeac gettteagta etattaettg gaaaacatae 1380 atgatttttg ctactttctg tgcatgtatg tttcttcatg ttttcttctt tttccctgaa 1440

174

1	73
	. 1.2

-continued

actaagggta	aaagattgga	agaaattggt	caaatgtggg	acgagcatgt	tccagcttgg	1500	
aagtetgett	cgtggcaacc	acacgtacca	ctcgtttcag	ataatgaaat	acacgggaag	1560	
atggattctg	cgcatgatga	acattcatct	cgttcggagt	ctactggaga	aaaggtggtc	1620	
gcagatcaca	ttgcttga					1638	
<210> SEQ : <211> LENG <212> TYPE <213> ORGAN	ID NO 36 TH: 1638 : DNA NISM: Debary	yomyces han:	senii				
<400> SEQUI	ENCE: 36						
atgggatacg	aagataaatt	actagggcca	gccttaaagt	ttagaaactt	cttggacaaa	60	
tttccgaaca	tccataatgt	ctatattgtt	gttggtattt	cttgtatatc	tggtatgatg	120	
tttggcattg	atatttcttc	aatgtcttta	ttcattggag	atgataaata	tttagactat	180	
ttcaattcac	cagattctac	acttcaaggg	tttattacag	catccatgtc	tttagggtct	240	
ttetttgggg	ccttattttc	cgcatttata	tcagaacctt	tcggtagaag	aatgtcgttg	300	
atgttctgtg	cattttttg	gtgtgttgga	gctgccattc	aatcatcgtc	acagaacgtc	360	
gtccagttaa	ttataggtcg	ttttatttct	ggttttggtg	ttggatttgg	atcctcagta	420	
gccccagttt	atggtacaga	attggcacca	agaaaaataa	gaggattaat	tggtggatta	480	
tttcagcttt	cggtcacttt	gggaattttg	gttatgttct	atgtttgtta	tgcattacat	540	
tatatcaatg	gtgtggcttc	ttttagatta	tettgggggt	tacaaatagt	tcctggtctt	600	
cttttgttca	ttggctgttt	tttcatccct	gaatcaccta	gatggttagc	aaagcaaggc	660	
tgttgggagg	aggctgaata	cattgtggca	atgattcagg	ccaaaggcaa	tagggaagat	720	
cccgatgtca	tgattgagat	tactgagatc	aaagatcaaa	ttttgacaga	ggaaaatatt	780	
aaggctttca	cttatgcaga	tttattcaag	cgcaaatatc	tccttagaac	tgtcaccgca	840	
acatttgctc	aaatatggca	acaattaacg	ggtatgaata	cattaatgta	ttatattgtt	900	
tatgtttttg	atatggctgg	ctatcagggc	gatgcaaatt	taattgcatc	ttcaattcaa	960	
tacgttcttt	ttttcgttat	gactgcccct	tcattatatt	taatggataa	acttggtaga	1020	
aggcccattt	tgttaagcgg	tgctgcattc	atgatgatat	ggcaattcgc	agtcggtggt	1080	
ttgctttcca	cttatgctga	gcccaccaat	gatgttggtg	gaaatgatac	tgtcagatta	1140	
aggatcccag	ctgataactc	aaccgctgcc	aagggtgtaa	ttgcatgttg	ctatttgttt	1200	
gttgtatcat	ttgcatatag	ttggggtgtt	tgtatctgga	tgtattgtgc	tgaagtttgg	1260	
ggtgatagcg	cctcaagaca	aagagggggcc	tgttttacaa	cttcagctaa	ttggattttt	1320	
aacttcgcga	tcgcaatgtt	taccccctct	gcgttcaaaa	acattacttg	gaaaacatac	1380	
atgatttttg	ctacgttctg	cggttgtatg	ttccttcacg	tatttttctt	tttcccagaa	1440	
actaaaggta	aaagattgga	ggaaattggc	caaatgtggg	atgaaggaat	tccagcatgg	1500	
agaacagccg	catgggagcc	atctattcca	ttcttatctg	ataatgactt	gcgtgaaaag	1560	
ctagaagtaa	aacacgtcga	agattcaaac	tccagtaatt	cggatgctga	aaagcctagt	1620	
gctgtccata	ttgcttag					1638	

LENGTH: 1851
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae

<400> SEQUENCE: 37

175

atgaaaaata	tcatttcatt	ggtaagcaag	aagaaggctg	cctcaaaaaa	tgaggataaa	60
aacatttctg	agtcttcaag	agatattgta	aaccaacagg	aggttttcaa	tactgaagat	120
tttgaagaag	ggaaaaagga	tagtgccttt	gagctagacc	acttagagtt	caccaccaat	180
tcagcccagt	taggagattc	tgacgaagat	aacgagaatg	tgattaatga	gatgaacgct	240
actgatgatg	caaatgaagc	taacagcgag	gaaaaaagca	tgactttgaa	gcaggcgttg	300
ctaaaatatc	caaaagcagc	cctgtggtcc	atattagtgt	ctactaccct	ggttatggaa	360
ggttatgata	ccgcactact	gagcgcactg	tatgccctgc	cagtttttca	gagaaaattc	420
ggtactttga	acggggaggg	ttcttacgaa	attacttccc	aatggcagat	tggtttaaac	480
atgtgtgtcc	tttgtggtga	gatgattggt	ttgcaaatca	cgacttatat	ggttgaattt	540
atggggaatc	gttatacgat	gattacagca	cttggtttgt	taactgctta	tatctttatc	600
ctctactact	gtaaaagttt	agctatgatt	gctgtgggac	aaattetete	agctatacca	660
tggggttgtt	tccaaagttt	ggctgttact	tatgcttcgg	aagtttgccc	tttagcatta	720
agatattaca	tgaccagtta	ctccaacatt	tgttggttat	ttggtcaaat	cttcgcctct	780
ggtattatga	aaaactcaca	agagaattta	gggaactccg	acttgggcta	taaattgcca	840
tttgctttac	aatggatttg	gcctgctcct	ttaatgatcg	gtatctttt	cgctcctgag	900
tcgccctggt	ggttggtgag	aaaggatagg	gtcgctgagg	caagaaaatc	tttaagcaga	960
attttgagtg	gtaaaggcgc	cgagaaggac	attcaagttg	atcttacttt	aaagcagatt	1020
gaattgacta	ttgaaaaaga	aagactttta	gcatctaaat	caggatcatt	ctttaattgt	1080
ttcaagggag	ttaatggaag	aagaacgaga	cttgcatgtt	taacttgggt	agctcaaaat	1140
agtagcggtg	ccgttttact	tggttactcg	acatatttt	ttgaaagagc	aggtatggcc	1200
accgacaagg	cgtttacttt	ttctctaatt	cagtactgtc	ttgggttagc	gggtacactt	1260
tgctcctggg	taatatctgg	ccgtgttggt	agatggacaa	tactgaccta	tggtcttgca	1320
tttcaaatgg	tctgcttatt	tattattggt	ggaatgggtt	ttggttctgg	aagcagcgct	1380
agtaatggtg	ccggtggttt	attgctggct	ttatcattct	tttacaatgc	tggtatcggt	1440
gcagttgttt	actgtatcgt	tgctgaaatt	ccatcagcgg	agttgagaac	taagactata	1500
gtgetggeee	gtatttgcta	caatctcatg	gccgttatta	acgctatatt	aacgccctat	1560
atgctaaacg	tgagcgattg	gaactggggt	gccaaaactg	gtctatactg	gggtggtttc	1620
acagcagtca	ctttagcttg	ggtcatcatc	gatctgcctg	agacaactgg	tagaaccttc	1680
agtgaaatta	atgaactttt	caaccaaggg	gttcctgcca	gaaaatttgc	atctactgtg	1740
gttgatccat	tcggaaaggg	aaaaactcaa	catgattcgc	tagctgatga	gagtatcagt	1800
cagtcctcaa	gcataaaaca	gcgagaatta	aatgcagctg	ataaatgtta	a	1851
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI	ID NO 38 TH: 1710 : DNA NISM: Saccha	aromyces cei	revisiae			

atgaaggatt	taaaattatc	gaatttcaaa	ggcaaattta	taagcagaac	cagtcactgg	60
ggacttacgg	gtaagaagtt	gcggtatttc	atcactatcg	catctatgac	gggettetee	120
ctgtttggat	acgaccaagg	gttgatggca	agtctaatta	ctggtaaaca	gttcaactat	180
gaatttccag	caaccaaaga	aaatggcgat	catgacagac	acgcaactgt	agtgcagggc	240

177

-continued

gctacaacct	cctgttatga	attaggttgt	ttcgcaggtt	ctctattcgt	tatgttctgc	300	
ggtgaaagaa	ttggtagaaa	accattaatc	ctgatgggtt	ccgtaataac	catcattggt	360	
gccgttattt	ctacatgcgc	atttcgtggt	tactgggcat	taggccagtt	tatcatcgga	420	
agagtcgtca	ccggtgttgg	aacagggttg	aatacatcta	ctattcccgt	ttggcaatca	480	
gaaatgtcaa	aagctgaaaa	tagagggttg	ctggtcaatt	tagaaggttc	cacaattgct	540	
tttggtacta	tgattgctta	ttggattgat	tttgggttgt	cttataccaa	cagttctgtt	600	
cagtggagat	tccccgtgtc	aatgcaaatc	gtttttgctc	tcttcctgct	tgctttcatg	660	
attaaactac	ctgaatcgcc	acgttggctg	atttctcaaa	gtcgaacaga	agaagctcgc	720	
tacttggtag	gaacactaga	cgacgcggat	ccaaatgatg	aggaagttat	aacagaagtt	780	
gctatgcttc	acgatgctgt	taacaggacc	aaacacgaga	aacattcact	gtcaagtttg	840	
ttctccagag	gcaggtccca	aaatcttcag	agggctttga	ttgcagcttc	aacgcaattt	900	
ttccagcaat	ttactggttg	taacgctgcc	atatactact	ctactgtatt	attcaacaaa	960	
acaattaaat	tagactatag	attatcaatg	atcataggtg	gggtcttcgc	aacaatctac	1020	
gccttatcta	ctattggttc	attttttcta	attgaaaagc	taggtagacg	taagctgttt	1080	
ttattaggtg	ccacaggtca	agcagtttca	ttcacaatta	catttgcatg	cttggtcaaa	1140	
gaaaataaag	aaaacgcaag	aggtgctgcc	gtcggcttat	ttttgttcat	tacattcttt	1200	
ggtttgtctt	tgctatcatt	accatggata	tacccaccag	aaattgcatc	aatgaaagtt	1260	
cgtgcatcaa	caaacgcttt	ctccacatgt	actaattggt	tgtgtaactt	tgcggttgtc	1320	
atgttcaccc	caatatttat	tggacagtcc	ggttggggtt	gctacttatt	ttttgctgtt	1380	
atgaattatt	tatacattcc	agttatcttc	tttttctacc	ctgaaaccgc	cggaagaagt	1440	
ttggaggaaa	tcgacatcat	ctttgctaaa	gcatacgagg	atggcactca	accatggaga	1500	
gttgctaacc	atttgcccaa	gttatcccta	caagaagtcg	aagatcatgc	caatgcattg	1560	
ggctcttatg	acgacgaaat	ggaaaaagag	gactttggtg	aagatagagt	agaagacacc	1620	
tataaccaaa	ttaacggcga	taattcgtct	agttcttcaa	acatcaaaaa	tgaagataca	1680	
gtgaacgata	aagcaaattt	tgagggttga				1710	
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAI	ID NO 39 IH: 1626 : DNA NISM: Saccha	aromyces cei	revisiae				
<400> SEQU	ENCE: 39						
atgtctgaat	tcgctactag	ccgcgttgaa	agtggctctc	aacaaacttc	tatccactct	60	
actccgatag	tgcagaaatt	agagacggat	gaateteeta	ttcaaaccaa	atctgaatac	120	
actaacgctg	aactcccagc	aaagccaatc	gccgcatatt	ggactgttat	ctgtttatgt	180	
ctaatgattg	catttggtgg	gtttgtcttt	ggttgggata	ctggtaccat	ctctggtttt	240	
gttaatcaaa	ccgatttcaa	aagaagattt	ggtcaaatga	aatctgatgg	tacctattat	300	
ctttcggacg	tccggactgg	tttgatcgtt	ggtatcttca	atattggttg	tgcctttggt	360	
gggttaacct	taggacgtct	gggtgatatg	tatggacgta	gaattggttt	gatgtgcgtc	420	
gttctggtat	acatcgttgg	tattgtgatt	caaattgctt	ctagtgacaa	atggtaccaa	480	
tatttcattg	gtagaattat	ctctggtatg	ggtgtcggtg	gtattgctgt	cctatctcca	540	
actttgattt	ccgaaacagc	accaaaacac	attagaggta	cctgtgtttc	tttctatcag	600	
ttaatgatca	ctctaggtat	tttcttaggt	tactgtacca	actatggtac	taaagactac	660	

179

-continued

tccaattcag	ttcaatggag	agtgcctttg	ggtttgaact	ttgccttcgc	tattttcatg	720
atcgctggta	tgctaatggt	tccagaatct	ccaagattct	tagtcgaaaa	aggcagatac	780
gaagacgcta	aacgttcttt	ggcaaaatct	aacaaagtca	ccattgaaga	tccaagtatt	840
gttgctgaaa	tggatacaat	tatggccaac	gttgaaactg	aaagattagc	cggtaacgct	900
tcttggggtg	agttattctc	caacaaaggt	gctattttac	ctcgtgtgat	tatgggtatt	960
atgattcaat	ccttacaaca	attaactggt	aacaattact	tcttctatta	tggtactact	1020
attttcaacg	ccgtcggtat	gaaagattct	ttccaaactt	ccatcgtttt	aggtatagtc	1080
aacttcgcat	ccactttcgt	ggccttatac	actgttgata	aatttggtcg	tcgtaagtgt	1140
ctattgggtg	gttctgcttc	catggccatt	tgttttgtta	tcttctctac	tgtcggtgtc	1200
acaagcttat	atccaaatgg	taaagatcaa	ccatcttcca	aggetgeegg	taacgtcatg	1260
attgtcttta	cctgtttatt	cattttcttc	ttcgctatta	gttgggcccc	aattgcctac	1320
gttattgttg	ccgaatccta	tcctttgcgt	gtcaaaaatc	gtgctatggc	tattgctgtt	1380
ggtgccaact	ggatttgggg	tttcttgatt	ggtttcttca	ctcccttcat	tacaagtgca	1440
attggatttt	catacgggta	tgtcttcatg	ggctgtttgg	tattttcatt	cttctacgtg	1500
tttttctttg	tctgtgaaac	caagggctta	acattagagg	aagttaatga	aatgtatgtt	1560
gaaggtgtca	aaccatggaa	atctggtagc	tggatctcaa	aagaaaaaag	agtttccgag	1620
gaataa						1626
<210> SEQ 2 <211> LENG <212> TYPE	ID NO 40 TH: 1710 : DNA					
(21)> 01(0A	MISM: Saccha	aromyces cei	revisiae			
<400> SEQU	ENCE: 40	aromyces cei	revisiae			
<400> SEQU	ENCE: 40 gtaaaaccaa	cttgccagaa	gaaccgattt	tcgaagaggc	agaagatgat	60
<400> SEQU atgactgatc ggctgccctt	ENCE: 40 gtaaaaccaa cgatagaaaa	cttgccagaa ttcttcacat	gaaccgattt ctgtcagtac	tcgaagaggc ctacagtgga	agaagatgat ggaaaacaag	60 120
<400> SEQU atgactgatc ggctgccctt gacttttccg	ENCE: 40 gtaaaaccaa cgatagaaaa agtataatgg	cttgccagaa ttcttcacat ggaagaggca	gaaccgattt ctgtcagtac gaggaagttg	tcgaagaggc ctacagtgga ttgttccaga	agaagatgat ggaaaacaag aaagcctgct	60 120 180
<400> SEQU atgactgatc ggctgccctt gacttttccg tcagcctatg	ENCE: 40 gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg	agaagatgat ggaaaacaag aaagcctgct atttatgtcc	60 120 180 240
<400> SEQU atgactgatc ggctgccctt gacttttccg tcagcctatg ggttgggaca	ENCE: 40 gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt	60 120 180 240 300
<pre><400> SEQU: atgactgatc ggctgccctt gacttttccg tcagcctatg ggttgggaca ggtaattata</pre>	ENCE: 40 gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat gccattccaa	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc gaacacttac	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga tacttatcta	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt atgtgagaac	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt tgggttgatt	60 120 180 240 300 360
<400> SEQU atgactgatc ggctgccctt gacttttccg tcagcctatg ggttgggaca ggtaattata gtgtccatct	ENCE: 40 gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat gccattccaa tcaatgtggg	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc gaacacttac aagcgccatt	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga tacttatcta ggctgtcttt	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt atgtgagaac tcttgtctaa	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt tgggttgatt attgggtgat	60 120 180 240 300 360 420
<pre><400> SEQU: atgactgatc ggctgccctt gacttttccg tcagcctatg ggtgggaca ggtaattata gtgtccatct atttacggcc</pre>	ENCE: 40 gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat gccattccaa tcaatgtggg gctgcatggg	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc gaacacttac aagcgccatt tttgattata	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga tacttatcta ggctgtcttt gttattgtcg	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt atgtgagaac tcttgtctaa tttatatggt	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt tgggttgatt attgggtgat tggtattgtc	60 120 180 240 360 420 480
<pre><400> SEQU atgactgatc ggctgccctt gacttttccg tcagcctatg ggttgggaca ggtaattata gtgtccatct atttacggcc attcaaattg</pre>	ENCE: 40 gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat gccattccaa tcaatgtggg gctgcatggg cctctataga	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc gaacacttac aagcgccatt tttgattata taagtggtat	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga tacttatcta ggctgtcttt gttattgtcg cagtattta	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt atgtgagaac tcttgtctaa tttatatggt	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt tgggttgatt attgggtgat tggtattgtc tatcgctggt	60 120 240 300 360 420 480 540
<pre><400> SEQU atgactgatc ggctgccctt gacttttccg tcagcctatg ggtgggaca ggtaattata gtgtccatct atttacggcc attcaaattg ataggtgctg</pre>	ENCE: 40 gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat gccattccaa tcaatgtggg gctgcatggg cctctataga gttccattag	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc gaacacttac aagcgccatt tttgattata taagtggtat	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga tacttatcta ggctgtcttt gttattgtcg cagtattta ccgatgctta	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt atgtgagaac tcttgtctaa tttatatggt ttggaagaat	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt tgggttgatt attgggtgat tggtattgtc tatcgctggt tgcgccaaag	60 120 240 300 360 420 480 540
<pre><400> SEQU atgactgatc ggctgccctt gacttttccg tcagcctatg ggtgggaca ggtaattata gtgtccatct atttacggcc attcaaattg ataggtgctg catatcagag</pre>	ENCE: 40 gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat gccattccaa tcaatgtggg gctgcatggg cctctataga gttccattag	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc gaacacttac aagcgccatt tttgattata taagtggtat tgttcttgcc agcttgttgg	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga tacttatcta ggctgtcttt gttattgtcg cagtattta ccgatgctta caattgatgg	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt atgtgagaac tcttgtctaa tttatatggt ttggaagaat tttcggaaac	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt tgggttgatt attgggtgat tggtattgc tatcgctggt tgcgccaaag aattttcttg	60 120 240 300 360 420 480 540 600
<pre><400> SEQU atgactgatc ggctgccctt gacttttccg tcagcctatg ggtgggaca ggtaattata gtgtccatct atttacggcc attcaaattg ataggtgctg catatcagag ggttattgta</pre>	ENCE: 40 gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat gccattccaa tcaatgtggg gctgcatggg cctctataga gttccattag gtacgttgct ccaattatgg	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc gaacacttac aagcgccatt tttgattata taagtggtat tgttcttgcc agcttgttgg taccaagact	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga tacttatcta ggctgtcttt gttattgtcg cagtattta ccgatgctta caattgatgg tactcgaatt	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt atgtgagaac tcttgtctaa tttatatggt ttggaagaat tttcggaagat ctgactttcgc ctgtccagtg	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt tgggttgatt tgggtatgtc tatcgctggt tgcgccaaag aatttccttg gcgtgttccg	60 120 240 360 420 480 540 600 660 720
<pre><400> SEQU atgactgatc ggctgccctt gacttttccg tcagcctatg ggtgggaca ggtaattata gtgtccatct atttacggcc attcaaattg ataggtgctg catatcagag ggttattgta cttggtctat</pre>	ENCE: 40 gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat gccattccaa tcaatgtggg gctgcatggg gctgcatggg gttccattag gtacgttgct ccaattatgg gttttgcatg	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc gaacacttac aagcgccatt tttgattata taagtggtat tgttcttgcc agcttgttgg taccaagact ggctattatt	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga tacttatcta ggctgtcttt gttattgtcg cagtattta ccgatgctta caattgatgg tactcgaatt atgattgtg	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt atgtgagaac tcttgtctaa tttatatggt ttggaagaat tttcggaagaat ctgactttcgc ctgtccagtg	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt tgggttgatt tgggttgat tggcattgc tatcgctggt tgcgccaaag aattttcttg gcgtgttccg	60 120 240 300 420 480 540 600 660 720 780
<pre><400> SEQU atgactgatc ggctgccctt gacttttccg tcagcctatg ggtgggaca ggtaattata gtgtccatct atttacggcc attcaaattg ataggtgctg catatcagag ggttattgta cttggtctat tctcctcggt</pre>	ISM: SACCHA gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat gccattccaa tcaatgtggg gctgcatggg gctgcatggg gttccattag gtacgttgct ccaattatgg gttttgcatg	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc gaacacttac aagcgccatt tttgattata taagtggtat tgttcttgcc agcttgttgg taccaagact ggctattatt	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga tacttatcta ggctgtcttt gttattgtcg cagtattta ccgatgctta caattgatgg tactcgaatt atgattggtg attgagcaag	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt atgtgagaac tcttgtctaa tttatatggt ttggaagaat tttcggaagat tttcggaagat ctgactttcgc ctgtccagtg gtatgacgtt ctaaagcttc	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt tgggttgatt tgggtattgtc tatcgctggt tgcgccaaag aattttcttg gcgtgttccg tgttccggaa ttttgccaag	60 120 240 360 420 480 540 600 660 720 780 840
<pre><400> SEQU atgactgatc ggctgccctt gacttttccg tcagcctatg ggtgggaca ggtaattata gtgtccatct atttacggcc attcaaattg ataggtgctg catatcagag ggttattgta cttggtctat tcccctcggt tcgaacaagc</pre>	NISM: SACCHA gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat gccattccaa tcaatgtggg gctgcatggg gctgcatggg gttccattag gtacgttgct ccaattatgg gttttgcatg ttttggtgca ttagtgttga	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc gaacacttac aagcgccatt tttgattata taagtggtat tgttcttgcc agcttgttgg taccaagact ggctattatt agtcggtaag cgatcctgct	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga tacttatcta ggctgtcttt gttattgtcg cagtatttta ccgatgctta caattgatgg tactcgaatt atgattgtg gtggttgcag	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt atgtgagaac tcttgtctaa tttatatggt ttggaagaat tttcggaagaat gactttcgc ctgtccagtg gtatgacgtt ctaaagcttc agattgatct	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt tgggttgatt tgggttgatt tgggtattgtc tatcgctggt tgcgccaaag aattttcttg gcgtgttccg tgttccggaa ttttgccaag	60 120 240 300 420 480 540 600 660 720 780 840 900
<pre><400> SEQU atgactgatc ggctgccctt gacttttccg tcagcctatg ggtaggaca ggtaattata gtgtccatct atttacggcc attcaaattg ataggtgctg catatcagag ggttattgta cttggtctat tcccctcggt tcgaacaagc ggtgtggagg</pre>	NISM: SACCHA gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat gccattccaa tcaatgtggg gctgcatggg gctgcatggg gttccattag gtacgttgct ccaattatgg gttttgcatg ttttggtgca ttagtgttga cagaagaagc	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc gaacacttac aagcgccatt tttgattata taagtggtat tgttcttgcc agcttgttgg taccaagact ggctattatt agtcggtaag cgatcctgct aatgggaact	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga tacttatcta ggctgtcttt gttattgtcg cagtattta ccgatgctta caattgatgg tactcgaatt atgattggtg attgagcaag gtggttgcag gcttcatgga	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt atgtgagaac tcttgtctaa tttatatggt ttggaagaat tttcggaagaat ctgacttcgc ctgtccagtg gtatgacgtt ctaaagcttc agattgatct	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt tgggttgatt attgggtgat tggcattgc tatcgctggt gcgtgttccg tgttccggaa ttttgccaag tcttgttgct	60 120 240 300 420 480 540 600 660 720 780 840 900 960
<pre><400> SEQU atgactgatc ggctgccctt gacttttccg tcagcctatg ggtgggaca ggtaattata gtgtccatct atttacggcc attcaaattg ataggtgctg catatcagag ggttattgta cttggtctat tcccctcggt tcgaacaagc ggtgtggagg actaaagttt</pre>	NISM: SACCHA gtaaaaccaa cgatagaaaa agtataatgg ctactgtttc caggtacgat gccattccaa tcaatgtggg gctgcatggg gttccattag gtacgttgct ccaattatgg gttttgcatg ttttggtgca ttagtgttga cagaagaagc ttcaacgttt	cttgccagaa ttcttcacat ggaagaggca tatcatgtgt ttctggtttc gaacacttac aagcgccatt tttgattata taagtggtat tgttcttgcc agcttgttgg taccaagact ggctattatt agtcggtaag cgatcctgct aatgggaact aacgatgaca	gaaccgattt ctgtcagtac gaggaagttg ttatgtatgg gtcaatcaga tacttatcta ggctgtcttt gttattgtcg cagtattta ccgatgctta caattgatgg tactcgaatt atgattggtg gtggttgcag gcttcatgga gctcatgata	tcgaagaggc ctacagtgga ttgttccaga ctttcggtgg ctgattttt atgtgagaac tcttgtctaa tttatatggt ttggaagaat tttcggaagaat gtatgacgtt ctaaagcttc agattgatct aggaattatt	agaagatgat ggaaaacaag aaagcctgct atttatgtcc aagaagattt tgggttgatt tgggttgatt tgggtattgtc tatcgctggt tgcgccaaag aattttcttg gcgtgttccg tgttccggaa ttttgccaag tcttgttgct	60 120 240 300 420 480 540 600 600 720 780 840 900 960 1020

181

-concinded		
tettttgaga etteaattgt ettgggtatt gtgaattttg ettettgett etttteaett	1140	
tattetgttg ataagttggg eegtegtaga tgtettttae ttggageage eaceatgaeg	1200	
gcgtgcatgg ttatttacgc ctccgttggc gtcacaagac tatatccgaa cggtaaaagt	1260	
gaaccatcat ctaaaggtgc tggtaattgt acgattgttt tcacgtgttt ttacattttc	1320	
tgetttteet geacetgggg acetgtatgt tatgtgatta tttetgaaae attteeatta	1380	
agggtgagat ccaagtgtat gtccgttgca acagcggcca acttattgtg ggggttccta	1440	
atcgggtttt tcactccttt tattacttcg gcaattaatt tctactacgg ttacgttttc	1500	
atgggttgct tagcgttttc atatttttac gtctttttct ttgttccaga aacaaaaggt	1560	
ctaactttag aagaagttga tgagatgtgg atggacggtg tattaccttg gaaatctgaa	1620	
teetgggtae cagettetag aagggatggt gattatgata aegaaaaatt aeageatgae	1680	
gagaaaccct tctacaaaag aatgttttag	1710	
<210> SEQ ID NO 41 <211> LENGTH: 1704 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae		
<400> SEQUENCE: 41		
atgtccggtg ttaataatac atccgcaaat gatttatcca ctaccgagtc taactctaac	60	
tcagtagcaa atgcaccatc tgtaaaaact gagcataatg actctaaaaa ctccctcaac	120	
ctggatgcca ctgaaccacc tattgactta cctcaaaaac ccctctctgc atataccacc	180	
gtcgcaatcc tgtgtttgat gattgcattt ggcggcttca tctttggttg ggataccggt	240	
accatttetg gttttgttaa eetttetgat tteateagaa ggtteggtea aaaaaatgae	300	
aagggaacct actacttatc gaaagtaaga atgggtttga tcgtctcaat attcaacatt	360	
ggctgcgcca taggcggaat tgtcttgtca aaagtcggtg atatatatgg tcgtcgtatt	420	
ggattgatta cagttactgc catttacgtt gtaggcatcc taatccaaat aacttccata	480	
aacaagtggt accaatactt cattggaaga attatttetg geetaggagt gggaggeatt	540	
gctgtccttt ccccaatgtt gatatctgaa gttgctccca aacaaatcag aggaaccctg	600	
gtccaattgt accagctgat gtgtacgatg ggtatttttc taggatactg taccaattac	660	
ggtaccaaga actatcacaa cgccactcaa tggagagtcg gccttggtct ttgctttgcc	720	
tggactacat tcatggttag tggaatgatg tttgtaccag aatcaccacg ttacctgatt	780	
gaggttggta aagatgagga agcgaaacgt tcactttcga aatccaacaa agtctcagtc	840	
gacgatccag ccttgttagc agaatatgac actataaagg cgggaatcga acttgaaaag	900	
ctggcaggta acgcatcatg gtctgaacta ctctccacta aaacaaaggt ctttcagcgt	960	
gttctcatgg gagtgatgat ccaatcgctg cagcaattaa ccggtgataa ctacttcttt	1020	
tactacggca ccaccatctt caaatctgtc ggtctaaagg actcctttca gacttcgatc	1080	
attateggtg tggttaattt tttetettea tteatagegg tatacaeeat tgagaggttt	1140	
ggacgccgta cgtgtctatt gtggggtgct gcttctatgc tatgctgctt tgctgtgttt	1200	
gcctccgtcg gtgtgacaaa gttgtggcct caaggaagca gtcaccaaga cattacttct	1260	
cagggcgccg gtaactgtat gattgtgttt actatgttct tcattttttc gttcgccacc	1320	
acttgggcag gcggctgtta cgttattgtc tcagagacgt ttcctcttag ggtcaaatca	1380	
agaggaatgg caatcgcaac agctgcaaac tggatgtggg gtttcctgat tagtttcttt	1440	
accccattca ttaccggggc aatcaacttt tactacqqtt atqtattctt aqqctqtctq	1500	

1	83	
	05	

184

-	con	t	1	n	u	е	a

gtttttgcat	acttttatgt	cttttcttt	gtcccagaaa	caaaaggcct	gacgctggag	1560
gaggtgaata	ctatgtggct	ggaaggtgtg	ccagcatgga	aatcagcctc	atgggtgcca	1620
ccagaaagaa	gaaccgcaga	ttacgatgct	gacgccatag	accatgacga	tagaccaatc	1680
tacaagaggt	tcttttccag	ctaa				1704
<210> SEQ : <211> LENG <212> TYPE <213> ORGAI	ID NO 42 FH: 1641 : DNA NISM: Sacch:	aromyces cei	revisiae			
<400> SEQU	ENCE: 42					
atggttagtt	caagtgtttc	cattttgggg	actagcgcca	aggcatccac	ttctctaagt	60
agaaaggatg	aaattaaact	aacccctgaa	acaagggaag	ctagcttgga	cattccatac	120
aaacccatta	ttgcatactg	gacggtgatg	ggtctctgtc	tgatgattgc	ctttggtgga	180
ttcatttttg	gttgggatac	aggaaccatt	tcagggttta	ttaaccaaac	agatttcaag	240
agaaggtttg	gtgagttaca	aagggacggc	agttttcaac	tatcagatgt	caggacaggg	300
ctaattgtcg	gtatcttcaa	cataggttgt	gctttaggtg	gcctaacgct	gggacgcctg	360
ggcgatattt	atgggcgtaa	aatcggctta	atgtgtgtta	tactggtgta	tgttgttggt	420
atcgtgatcc	agattgcttc	ctctgacaaa	tggtatcaat	attttattgg	tagaattgtt	480
tctggaatgg	gtgttggagg	tgttgctgtg	ctgtcgccaa	ctttgatctc	agaaatttcc	540
ccaaagcacc	taagaggcac	ttgtgtctct	ttttaccagc	taatgattac	ccttggaatt	600
ttcttgggct	actgtaccaa	ttatggtaca	aagaaatatt	caaattcaat	acagtggcgg	660
gttcccttgg	gtttgtgttt	tgcgtgggca	atctttatgg	tgattggaat	ggttatggtt	720
ccggaatcgc	ccagatattt	agtagaaaaa	ggtaagtatg	aagaagctag	aaggtctttg	780
gccaaatcaa	acaaggtcac	agttactgat	ccaggcgttg	tttttgagtt	tgatactata	840
gttgcaaata	tggaattaga	aagggctgtt	ggaaatgcca	gttggcacga	actcttctca	900
aataaaggag	caattctacc	aagggtaata	atgggaatcg	ttatccagtc	actgcaacag	960
cttactggct	gtaattattt	tttctactac	ggcacgacca	ttttcaatgc	tgttggaatg	1020
caagactctt	tcgagacttc	cattgtcctt	ggggctgtta	attttgcttc	tacatttgtt	1080
gcactataca	ttgtggataa	atttgggcgt	cgaaaatgtt	tattgtgggg	gtctgcctcg	1140
atggcaattt	gtttcgtcat	attcgccacc	gttggcgtca	ctagattatg	gccacaaggg	1200
aaagaccaac	cttcttcgca	aagtgctggt	aatgttatga	tcgtttttac	ttgtttcttc	1260
attttctctt	ttgccattac	ttgggctcct	atcgcctatg	tcattgtggc	agaaacttat	1320
ccattaagag	ttaaaaatcg	tgccatggcc	attgcggttg	gtgcgaactg	gatgtggggt	1380
ttcttgattg	gatttttcac	accctttatc	actagatcca	taggattttc	ttatggctat	1440
gttttcatgg	gttgcttaat	cttttcgtac	ttctacgttt	tcttctttgt	ttgcgaaaca	1500
aagggattaa	ctctggagga	agttaatgaa	atgtacgaag	aaagaataaa	gccatggaag	1560
tccggaggtt	ggattcccag	ttctagaaga	acaccacaac	caacaagcag	tacaccatta	1620
gttattgttg	atagtaaata	a				1641

<210> SEQ ID NO 43 <211> LENGTH: 1623 <212> TYPE: DNA <213> ORGANISM: Saccharomyces cerevisiae

185

-continued

<400> SEQUI	ENCE: 43					
atgactgctc	agattccgta	tcaacatagc	tcgggataca	tctctcattt	tcacaataat	60
gagcttgatg	caggcagggg	aagggattat	aatgtaacca	ttaagtatct	agatgataaa	120
gaagaaaata	tagaaggcca	agcagcaaag	attagtcaca	atgcgagtct	gcatattccc	180
gttttattgt	gcttggtaat	ctcgcttggt	ggctttattt	ttggatggga	cattggaacc	240
atcggtggaa	tgacaaatat	ggttagcttt	caagaaaaat	ttggcacaac	taatattatc	300
catgacgatg	aaacaatttt	tgtatctact	aagaaactta	ctgatctgca	aataggccta	360
attatcagta	tttttaacat	cagttgtggc	gtaggggctt	taactctgtc	aaaaatcggt	420
gattggattg	gtaggaaagg	tggtatatgg	tttgccttag	tagtgtactg	catcggtata	480
accattcaaa	ttctctccta	tggaaggtgg	tatttttga	cattgggaag	agccgtaacg	540
ggaatcggtg	tgggagtaac	cactgtcttg	gtgccaatgt	ttctctccga	gaattctcca	600
ctaaaaatca	gaggctccat	ggtatctacg	tatcaattga	ttgtaacatt	tggcatacta	660
atgggaaaca	ttttaaattt	catatgcgaa	agatgttata	aagatcctac	acaaaatata	720
gcctggcaat	tgccattgtt	cttgggatac	atttgggcaa	ttataattgg	aatgtcactt	780
gtttacgttc	ctgaatctcc	acagtacttg	gcaaaaatca	aaaatgatgt	gccctctgct	840
aaatactctt	ttgcgaggat	gaatggcatc	cctgcgacgg	atagcatggt	aattgaattc	900
atcgatgatt	tgctggaaaa	taactataat	aatgaggaaa	ctaacaacga	atcaaaaaag	960
caaagcttag	ttaaaagaaa	cacatttgaa	tttattatgg	gaaagccaaa	gttatggttg	1020
agactgatta	ttggtatgat	gataatggca	tttcaacagc	tgtccggaat	aaattatttc	1080
ttttattacg	gaacgtctgt	tttcaaaggt	gtcgggatta	aggatcctta	tattacttca	1140
atcatactgt	caagtgttaa	cttcctttct	acgatattag	gcatatatta	cgtggagaaa	1200
tggggccaca	agacatgttt	attatatggt	tcaacaaatt	tattattta	tatgatgaca	1260
tatgctactg	tggggacatt	tggaagagaa	acggacttct	caaatattgt	tttaattatc	1320
gtgacttgtt	gttttattt	ttggtttgca	ataacattgg	gcccagttac	atttgtacta	1380
gtgtccgaat	tgttccctct	aagaacgagg	gccatatcaa	tggctatttg	cacatttatc	1440
aattggatgt	tcaatttctt	aatatcactt	ttaacaccaa	tgattgtatc	caaaattgat	1500
ttcaaactag	gatacatatt	tgctgcttgc	ctattagcgt	tgataatatt	cagttggata	1560
ctagttcctg	aaacgaggaa	aaagaatgag	caagagatca	ataaaatatt	tgaaccggag	1620
tag						1623
<210> SEQ 3 <211> LENG <212> TYPE <213> ORGAN	ID NO 44 IH: 2067 : DNA NISM: Schef:	fersomyces :	ətipitis			
<400> SEQUI	ENCE: 44					
ctacaagtga	cagtcagtcg	attagacttt	gcatccactt	gagtttgaca	attgatatat	60
tccactagag	acaatgagtg	ctgacgaaaa	agtcgctgct	gccggccagg	acggcttgtt	120
tgaacacaac	agttccactt	cgagcatcga	ggacaagaag	ccctccaaga	gctccgatgt	180
cgattccgtg	aactcgcaat	tagtagacaa	ctcggtagag	ggcaacatct	tgtcccagta	240
caccgaaagt	caggtgatgc	agatgggtag	aagctatgcc	accaagcacg	gcttggaccc	300
agaattgttc	gccaaggcag	ctgctgttgc	cagaactcct	cttggtttca	actccatgcc	360
cttcttgaca	gaggaagaga	aggttggttt	gaatgccgaa	gccactaata	agtggcacat	420

187

-continued

tccacccaga	ttgatcgggg	ttattgcctt	gggttctatg	gccgctgctg	tgcagggtat	480
ggacgaatcg	gtcattaacg	gtgccaactt	gttctacccc	aaggctttcg	gagtcgacac	540
catgcacaat	tcggacttga	ttgaaggttt	gatcaatggt	gctccttacc	tttgctgtgg	600
tattctttcc	tgttggttgt	ctgacgcttg	taaccgtcgt	cttggtagaa	aatggaccat	660
tttctggtgt	tgtgtcattt	ctgccatcac	ctgtgtctgg	caaggtcttg	tcaacaactg	720
gtaccatttg	ttcattgctc	gtttcttcct	tggatttggt	gttggtatca	agtccgccac	780
tgttcctgcc	tactctgccg	aatgtactcc	taaacacatc	agaggttcgt	tagtcatgtt	840
gtggcaattc	ttcacagctg	ttggtattat	gtttggttat	gttgcttcct	tggctttcta	900
caatgtcgga	gatagaggaa	tccattacgg	gttgaactgg	agattgatgc	ttggttcggc	960
cgctattcct	gctgtcatca	tcttgttcca	aattcctttc	gctcctgaat	ctccacgttg	1020
gttaatgggt	aaggacagac	accttgaagc	ctttgagtcc	ttgaagcaat	tgagatacga	1080
agaacttgct	gctgctcgtg	actgtttcta	ccagtacgtc	ttgttagctg	aagaaggttc	1140
ttacaagatc	ccaaccctca	ccagatttaa	ggaaatgttc	accaagagaa	gaaacagaaa	1200
cggtgccatc	ggtgcattta	ttgtcatgtt	catgcaacag	ttctgtggta	tcaacgtcat	1260
tgcttactac	tcttcgtcta	tctttgtcca	atctggtttc	tctcaaactt	ctgctttgat	1320
cgcttcttgg	ggtttcggta	tgcttaactt	cacctttgcc	attcctgcct	tcttcacaat	1380
cgatcgtttc	ggtagaagat	ccttattgtt	ggttaccttc	cccttgatgg	ctattttctt	1440
attgattgcc	ggtttcggtt	tcttgataaa	cgaagaaaca	aactccaagg	gaagattggg	1500
aatgatcatc	atcggtatct	atatgttcac	catctgttac	tcttccggtg	aaggtccagt	1560
tcctttcacc	tactctgccg	aagcetteee	attgtacatc	agagacttgg	gtatgtcttt	1620
tgctactgcc	acctgttgga	ctttcaactt	catcttggcc	ttcacctgga	acagattggt	1680
caatgcattc	acatctactg	gtgccttcgg	cttctacgct	gcttggaaca	tcattggttt	1740
cttcttggtc	ttatggttct	tgccagaaac	caagggcttg	accttggaag	aattggacga	1800
agtcttcgcc	gtttccgccg	tccaacacgc	caagtaccaa	accaagagtt	tgatcaactt	1860
catccaaaga	tacgttttac	gttccaaggt	ggctccattg	cctccattgt	acgaccacca	1920
gagattggct	gtcaccaacc	cagaatggaa	cgacaagcca	gaagtetett	atgtcgagta	1980
ggctccttga	taacacattc	atttatttcc	tctttataat	taatagttaa	cttagttgtt	2040
caattcttca	catcgcctag	atagtaa				2067
<210> SEQ 3 <211> LENG <212> TYPE <213> ORGAI	ID NO 45 TH: 1629 : DNA NISM: Schef:	fersomyces :	stipitis			
<400> SEQU	ENCE: 45					
atgagctacg	aagataaact	cgttcaacct	gccttgaagt	tcaggacctt	cttggacaga	60
cttccaaaca	tttacaatgt	gtacattatt	gcatctattt	cctgtatttc	aggtatgatg	120
ttcggttttg	atatttcatc	tatgtctgct	tttataggtg	aagatgacta	caagaacttt	180
ttcaataatc	caggctcaga	catccaaggt	tttatcactt	cctgtatggc	tttaggttct	240
ttcttcggtt	ccatcgtctc	ttccttcatt	tccgaaccat	ttggtagaag	agcatccttg	300
ttgttgtgtt	cattcttctg	gatggtcggt	gctgctgtac	aatcatcttc	tcaaaacaga	360
gcccaattga	tgatcggacg	tatcatcgct	ggtttcggtg	ttggttttgg	ttcttctgtt	420

189

-continued

gctccagttt acggttccga attggctcca agaaagatta gaggttttgt tggtggtatt	480
ttccaattct gtgttacctt gggtatcttg attatgttct acatttgtta cggtttgcat	540
ttcattaacg gtgttggctc tttcagaatt gcttggggtt tacaaattgt cccaggtttg	600
gttttatttg tcggttgttt ctttattcca gaatccccaa gatggttagc caaacatggt	660
tactgggatg aagcagaatt catcgttgcc caaattcaag ctaagggtaa tagagaagac	720
ccagacgtgt tgattgaaat ctccgaaatc aaggaccaaa ttttgattga agaaaacctc	780
aagagtttcg gttacgttga cttattcacc aagaagtata tcagaagaac tttaactgcc	840
atatttgctc aaatctggca acaattgacc ggtatgaatg tcatgatgta ctatattgtc	900
tacattttca acatggccgg ttactctaac aacgcaaact tggttgcctc ttccatccaa	960
tacgtettga acaetgetge aactgtteea getttgtttt taatggatta eattggtaga	1020
agaagattgt tgattggtgg tgccatcatg atgatgattt tccaatttgg tgttgctggt	1080
atettaggta aataeteegt eeeegtteea ggeggtette eaggtaacee aaetgteace	1140
atccaaatcc cagaagataa caagtcagct gctagaggtg ttattgcttg ttgttactta	1200
ttcgttgtat cattcgctct gagttggggt gtcggtatct gggtctactg ttcagaagtt	1260
tggggtgact ctgcttccag acagagaggt gctgctgttt caactgctgc caactggatt	1320
cttaactttg ctattgccat gtacactcca tcttccttca agaatatcac ctggaagact	1380
tacatcatct acgccgtctt ctgtcttgtt atggcaatcc atgtctactt tggattccca	1440
gaaaccaagg gcaagcgttt ggaagaagtc ggacaaatgt gggacgaaaa tgttcccgca	1500
tggagatett ecagetggea aceaaetgtt ceattgttgt eagatgeega ettggeaeae	1560
aagatggatg tttcccacaa ggaagagcaa tctccagatg ccgagtcaag ttctgaggaa	1620
aagcottaa	1629
<210> SEQ ID NO 46 <211> LENGTH: 1673 <212> TYPE: DNA <213> ORGANISM: Scheffersomyces stipitis	
<400> SEQUENCE: 46	
acaaaaatgg gtttagaaga cagtgctctc ttgcaaaagt acatcaactt cggtgaaaag	60
aaggetggtt ceaceaceat gggtatetgt gttggtttgt tegeageett eggtggtate	120
cttttcggtt atgacactgg taccatctcc ggtatcatgg ccatggacta cgtcactgcc	180
agatteeeat ceaaceacea atettteagt tettetgaat etteeettat tgttteeatt	240
ttgtctgttg gtaccttctt tggttctctt tctgcatctt tcatctccga cagattgggt	300
cgtagattga ctttaatgat ctccaccttg atcatcttca atgtcggtat tatcttgcaa	360
actgcctcta ctagcattcc acttttgtgt gttggtagag ttcttgctgg tcttggtgtt	420
ggteteattt eegetgttat teeattgtae caagetgaaa eagtteeaaa gtggateaga	480
ggtgctgttg tctcctgtta ccaatgggcc attacccttg gtttgttgtt ggctgctgtt	540
gttaaccaag gtacccacaa cagaaatgac tctggttcct acagaatccc aattgctatc	600
caattettgt gggetttgat tttgggaggt ggtatgtgtt tgttgeeaga aaceeeaaga	660
ttctgggttt ctaaaggtga caacgacaga gccaaggact ccttgagaag attqaqaaaq	720
ttqcccctcq accatcccqa cttqattqaa qaatacqaaq aaatcaaqqc taactacqaa	780
tacgaagete aatacggtte aggttettgg agteaagtt ttgetaacaa gaacgagea	840
appagat tagaatag tattagtata constitut official a gallactat	0.0
ayaaayayat tggccatggg tgttggtate caageettge aacaattgae eggtattaae	900
US 9,695,223 B2

191

-continued

tttatcttct	actatggtac	taacttcttc	aagggttctg	gtatcaaaaa	cgaattcctt	960	
atccaaatgg	ccactaacat	tgtcaacttc	ggttctactg	tcccaggtat	tcttttggtt	1020	
gaaattattg	gtagaagaaa	gttgttgttg	ggtggttctg	cagttatgtc	catttctcaa	1080	
ttgattgttg	ctattgtcgg	tgttgccgct	ggtgaaggtt	caacttctgc	caacaagtgt	1140	
ttggttgcct	tcgtttgtat	cttcattgct	gctttcgcag	ccacttgggg	tcctctttgt	1200	
tgggctgtca	ttgccgaatg	ttacccactt	acagttagac	aaaagtccat	ctccttgtgt	1260	
acagcttcca	actggttgtg	gaactggggt	attgcctacg	ctactcctta	catggtcaac	1320	
tccggtccag	gtaacgccaa	cttgggttcc	aaggttttct	tcatctgggg	tggttgtaat	1380	
atcattggtg	gtcttttcgt	gtggtacctt	gtctacgaaa	ctaagggctt	gaccttagaa	1440	
caaatcgatg	aaatgtacga	aaaggttcca	aaggettgge	aatctaccag	attcattcca	1500	
tccgaacatg	cattcactca	accatccgca	gctgcctctg	tctcttctgg	taaggctgaa	1560	
ggtgtttctg	aagttgaaga	agcttctgta	tagatacctc	atgcacatta	atcgacttac	1620	
gtctttatga	attttacttt	ctcctaatat	aatattatgg	ccaattaacg	ttg	1673	
<210> SEQ 1 <211> LENG <212> TYPE <213> ORGAN	ID NO 47 TH: 1650 : DNA NISM: Debary	yomyces han:	senii				
<400> SEQUE	ENCE: 47						
atggctttaa	aaatcttttc	tagaaccaac	actatggggt	taaggggtaa	acgtcttaga	60	
gtaatgttca	ctgtggtggc	tactcttggg	ttctccttat	tcggttacga	tcaaggttta	120	
atgtctggtc	ttattactgg	tgagcaattc	aatgctgaat	tccctccaac	agcaggtaag	180	
jatcactggg	cttctgttaa	tcaaggtgcc	gttaccgcct	gttacgaaat	tggatgtttg	240	
ttggtgctt	tatttgtttt	attctatggt	gataaaacag	gtagaagaat	tttagttgtt	300	
geggttett	tgattattat	tattggtacc	gtcatttcta	ctgcggcatt	tggtccacaa	360	
ggggtttag	gtcagtttgt	tgtcggaaga	gtggttacag	gtgtaggtaa	tggtttgaat	420	
accgctacaa	ttccagtttg	gcaatctgaa	atgtctaaag	ccgaaaacag	aggtettta	480	
gtcaacttcg	aaggttctgt	cattgcagtg	ggtacctttg	ttgcttactg	gatcgatttc	540	
ggattatctt	atgttgatag	ttctgtccaa	tggagattcc	cagttgcttt	ccaagcatta	600	
ttgcaatct	tcttgttatt	tggagctatt	gaaatgccag	aatctccaag	atggatgttc	660	
gctcacgata	tgaaagctga	aggtatggaa	gttttagctg	caatgaaaga	tatttctcca	720	
gatgatgatg	aaatctacgc	agaatatacg	ttcattactg	actcgattaa	gagattcgat	780	
aataaccaag	ccggattcaa	ggaattattc	aaaggtggta	aagagcaata	ctttgctaga	840	
atgataattg	gttcatctgg	tcaatttttc	caacaattta	ctggttgtaa	tgcggcaatt	900	
tattattcta	ccgtgttatt	tgaagatact	attcatttag	aaagaagatt	ggctttgatt	960	
ttaggtggtg	tttttgcaac	cgtctatgcc	ttatccacaa	ttccttcgtt	cttcttggtt	1020	
gatacacttg	gtagaagaaa	cttattctta	attggtgcaa	ttggtcaagc	tatctcattt	1080	
acaattacat	ttgcctgttt	gattccagaa	gatggagaaa	acactcaaga	tgccaaaggt	1140	
getgetgttg	gtcttttctt	gtttattgtc	tttttcggtt	ttactatctt	accaatgcct	1200	
tggatttatc	caccagaaat	caatccaatg	aagacaagaa	ccgtagcttc	agctgtttcc	1260	
acctgtacta	actggttaac	taatttcggg	gttgttatgt	tcaccccaat	tttcattgca	1320	

US 9,695,223 B2

194

193

-continued

caaagtacct	ttggatgtta	tttattcttt	gcgcttatga	attatacttt	cattccaatt	1380	
attttcttct	tttatccaga	aactgccggt	cgttccttag	aagagattga	tatcattttc	1440	
gccaaagcac	atgttgacaa	tagattacca	ttcagagttg	cagctactat	gccacgttta	1500	
tctgtcaaag	atattgaaga	atacaatgtt	caattaggtc	ttgatgatga	cttcgataag	1560	
gaacagaatg	aattgcaaga	gaatgcctcc	tccaattcag	aaaaatcacc	tgatgacact	1620	
ccagaaggta	tcttaactcc	taatgcttaa				1650	
<210> SEQ : <211> LENG <212> TYPE <213> ORGAN	ID NO 48 TH: 1650 : DNA NISM: Debary	yomyces han:	senii				
<400> SEQUI	ENCE: 48						
atgtataaaa	tatggtcaaa	aactaacact	atgggactca	gaggtaaacc	tcttagagtt	60	
gccatcacta	tatgctgtac	tattggattt	tcattattcg	gttacgacca	aggattaatg	120	
tcgggaatta	ttactggtaa	acaattcaat	gaggaatttc	cacccactca	cggtacagat	180	
cagcatgcta	ctgttataca	aggtgcagtc	acgtcgtgct	acgagttagg	ctgtttttt	240	
ggtgctttgt	ttgcgttgtt	tcaaggtgat	aagtatggta	gaaggccaat	gattattgtt	300	
ggatctctgc	tcattgtcat	aggtactgtt	attgcagttt	ctgcatttgg	tccgcaatgg	360	
ggattgggcc	aatttgttat	tggtagagtt	atcacaggat	taggtaacgg	catggatacg	420	
gctactattc	cggtgtggca	atcggaaatt	tctaaggcag	aaaatagagg	tcttttggtt	480	
aacttggaag	gttccatggt	tgcggttggg	acatttattg	catattggtt	agattttggg	540	
ttatcatatg	tcgatacttc	agttcagtgg	agattcccag	ttgcttttca	gatagtattt	600	
gctcttttct	tgtttcttgg	cgttgcacaa	ttaccggaat	cacctagatg	gttaattgct	660	
catggcctca	aggatgaagc	tcattatgta	ttggcaactt	taaatgacgt	tgatattgat	720	
gatgagttcg	taattgaaga	aagcgccatt	ataactgatg	gtgtcaatag	atttgccaga	780	
acccaaattg	ggttcaaaga	actattttcc	ggcggcaagc	aacagaactt	cgctagaatg	840	
ataattggtg	catctacaca	attctttcag	caatttactg	gatgtaacgc	ttccatctat	900	
tattcaactg	ttttatttga	aaatagtatt	ggattgaccg	gtaaattgcc	cttaattcta	960	
ggaggtgttt	ttgctaccat	ttatgcttta	tctactattc	catctttctt	cttgattgat	1020	
aggctaggca	gaagagcttt	gtttttgatc	ggtgccaccg	gtcaaggcat	atcattcacc	1080	
atcacttttg	catgcttgat	ccctgataat	ggacaaaata	aggaaacagc	caaaggtgct	1140	
gccgttggta	tcttcttgtt	tatcgttttt	tttgcgttca	ctattttacc	attgccatgg	1200	
atttaccctc	cagaaatcaa	ccccttgaga	acaagaacag	ttgctactgc	ggtatcaaca	1260	
tgtactaatt	ggctaacaaa	ctttgcagtc	gttatgttta	ctcctatttt	tattggtgca	1320	
agtagttatg	gctgttactt	attctttgct	ataatgaatt	tccttttcat	tcctgtcatt	1380	
ttctggtttt	atcccgagac	tgctggtcgt	gagttggaag	agattgatat	tattttcgca	1440	
aaqqcatacq	ttqataataq	actaccatoo	agagttgctg	ctactttacc	acacttgaat	1500	
ttcaaggaag	aagaagaaga	gggaatcaaa	ttaaatettt	atgatgactt	cgaaaadgaa	1560	
acacatassa	atatasagaa	tttatagasa	acatasaact	cadaacatoo	ctcaastcaa	1620	
gcaccigado	alguadaude	under stranger strang	geereagger	cayaayatyy	ullaadiyad	1020	
gccgcttcag	ttaagcctgc	ggaagtttaa				1650	

<210> SEQ ID NO 49 <211> LENGTH: 1980

- (cont	in	ued
			aca

<212> TYPE <213> ORGAN	: DNA NISM: Yarrov	wia lipolyt:	ica				
<400> SEQUI	ENCE: 49						
atggtttttg	gacgagaaaa	agacgactct	gagggtatcg	aacatgtgcc	ctccccccaa	60	
gacaacccgt	cagatcagac	gtcagacatc	atcgctctga	acgagaaggc	ttctaatgaa	120	
catgatgatc	tccccactat	ccccaaaccc	gagggagatg	ccccagtcaa	ctctgaactg	180	
gaccccgaca	atccgctgat	tcgatacagt	cgcgctgagc	tcctcgagat	tgccacccag	240	
tttgcggtgg	ataacgacct	tgccgacaaa	gcggaagcat	tcagaaaggg	cgccctagtg	300	
gcccaagacc	cttccggttt	cgagaacatc	gacatacttg	atgacgacga	cagatactgg	360	
cttaaccgtg	agatcaccaa	taagtgggat	catcccatga	aggtttacta	ccttgttgtg	420	
tgctgctcct	tggctgctgc	tgtccagggt	atggatgaga	ctgttatcaa	cggcgccaac	480	
atcattttcc	ctgctcagtt	tggtatcaag	gaggattccg	gtgttgtgtc	tcgaaagagt	540	
tggctgcttg	gtcttgtcaa	ctctgctcct	tatttgtgtt	gtgcatgcat	ctcgtgctgg	600	
atgactgacc	ctatcaacaa	agtacttggc	cgaaaatgga	cagtgttctg	gacctgtttc	660	
tgggccggag	ccacctgttt	ctggtctggt	ttcgtcaaca	cctggtggca	tctgtttatt	720	
gcccggttct	tcctgggatt	cggtattggt	cccaagtccg	ccacagttcc	cgtgtacgct	780	
gccgagtgtg	ctcctcccag	gattcgaggt	gccatggtta	tgatgtggca	gatgtggact	840	
gcttttggta	tcatgatggg	ctatgttatg	gatcttgcat	tctactacgt	caaggataga	900	
ggaactattg	tcggcctaaa	ttggagactg	atgcttggtt	ctgctttgat	tcctgctctt	960	
ctggtctgta	ttttattgt	caaatgtcct	gagtetecca	gatggcacct	cgctcgagga	1020	
gagatccgaa	agtcgtttga	gtgcatgcga	gaaattcgac	acactgacat	acaagccgct	1080	
cgagatacct	tctacgccca	cgttcttctg	atcgaagaga	acgagatgaa	gaaaggaaag	1140	
aaccgatttg	tggagctctt	taccgttcct	cgaaaccggc	gagcagcctg	ggcttctttc	1200	
attgtcatgt	tcatgcagca	gttctgtggt	atcaatgtta	ttgcctacta	ctcctccaac	1260	
attttcatgg	agtctggttt	tggtgctatc	caagctcttc	tggcttcgtt	tggttttggt	1320	
gctatcaact	ttgtgtttgc	gttgccagct	gtttacacta	tcgacacatt	tggtagacgg	1380	
gcactattac	tggcgacctt	ccctctgatg	gctatattct	tgctatttgc	tggtttctgt	1440	
ttctacattg	gccagaacga	tcccacccac	tctcatgctc	gtgtcggttt	aattgctcta	1500	
ggtatctatc	tcttctcagc	agtttactcc	tgtggagaag	gtccagtgcc	cttcacctac	1560	
tcggctgaag	ccttcccttt	gtacgttcga	gatttgggta	tgtcgtttgc	caccgccgtt	1620	
tgctggctct	ttaattttgt	tctagccgtc	acgtggccct	ctctcctggc	agcetteact	1680	
ccgcagggtg	ccttcggatg	gtatgctgcg	tggaatgttg	tcggattctt	cttggtcctg	1740	
tgtttcttgc	ccgagaccaa	gaacctgact	ctggaagagc	ttgacaaggt	cttcagtgtc	1800	
cccacccgag	tccacatgaa	gtaccagttc	aacgccttca	aaatcaacat	tcagcgaaca	1860	
atattacgaa	aggatgtgcc	caagceteet	ccgctctatg	cccacgaagc	cggtattggt	1920	
ggtacttctc	actggagete	caagcctcag	cccaacgcga	acactgccga	gttcgtttaa	1980	

<210> SEQ ID NO 50 <211> LENGTH: 1587 <212> TYPE: DNA <213> ORGANISM: Scheffersomyces stipitis

<400> SEQUENCE: 50

US 9,695,223 B2

197

-continued

198

atggcatatc ttgattggtt	aacagctaga accaa	acactt tcgggttgag	gggcaagaag	60	
ttgagageet teateactgt	agtggctgtc actgo	ytttct cattattcgg	atatgatcaa	120	
gggttgatgt ccggaattat	tactgctgat caatt	caact ctgagtttcc	cgccactaga	180	
aataacagta ctatccaagg	tgeegteace teete	yttacg agcttggttg	tttctttggt	240	
gctgtgtttg ccttgttaag	aggtgaaaga attgo	yaagaa gacctcttgt	gctttgtggc	300	
tcgcttatta tcatcttggg	aacagttatt tctgt	aaccg ccttccatcc	acactggtca	360	
ttaggtcagt ttgttattgg	tagagttatc actgo	gtattg gtaatggtat	gaatactgcc	420	
accattccag tttggcaatc	ggaaatgtca agago	tgaaa acagaggaag	attggtcaac	480	
ttggaaggtt ccgttgtcgc	tgtgggtaca tgtat	tgeet actggttgga	tttcggtttg	540	
tcttatgtcg acaattcagt	tteetggaga tttee	agttg ctttccaaat	agtgtttgct	600	
tccgttttat ttgtgggaat	gttgcaattg cccga	actete caagatggtt	ggttgctaac	660	
cacagaagag cagaggctct	tcaagtgttg tctgo	tttga aagacttgcc	cgaagacgac	720	
gaagaaattc ttaatgaago	tgaagttatt cagga	aagtg tagacaagtt	tgctggacat	780	
gcttccgtca aggaagtgtt	tactggtggt aagac	ccagc actggcaaag	aatggttatt	840	
ggatccagca cccaattctt	tcagcagttc actgo	yttgta acgctgccat	ttactattcc	900	
actgtcttgt ttcaagacac	tattggttta gaaag	yaagaa tggcattgat	tatcggtggt	960	
gttttcgcaa ctgtctacgc	cattttcaca attcc	tteet tettettggt	cgatactctt	1020	
ggacgtagaa acttgttctt	gattggtgct atggg	gacaag gtattgcatt	cactatcacc	1080	
tttgcctgtt tgattgacga	tactgaaaac aacgo	caagg gtgccgcagt	tggtttattc	1140	
ttgtttattt gtttcttcgc	cttcaccatc ttgcc	attgc catgggtata	cccaccagaa	1200	
atcaatcctt tgagaactag	aactatagct tctgc	aattt ccacttgtac	caactggatc	1260	
tgtaactttg ctgttgttat	gttcacccct gtctt	tgtca ctaacaccag	atggggagcc	1320	
tatetttet ttgetgtgat	gaactteett ttegt	tccta ttattttctt	cttctaccca	1380	
gaaacagctg gaagatcgtt	ggaagaaatc gatat	catct ttgcgaaggc	attcgttgac	1440	
aaaagacagc catggagagt	tgctgcaacc atgcc	aaagt tgtccaacca	cgaaattgaa	1500	
gacgaagcca acagattggg	cttgtttgac gatgg	ytacat tcgacaagga	agcatttgaa	1560	
accaaagaaa acgcatccag	cagetet			1587	
<pre><210> SEQ ID NO 51 <211> LENGTH: 51 <212> TYPE: PRT <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATI</pre>	icial sequence ON: Synthetic pol	.ypeptide			
<400> SEQUENCE: 51					
Lys Phe Arg Asn Phe L 1 5	eu Asp Lys Thr Pr 10	co Asn Ile Tyr As:)	n Val Phe 15		
Val Ile Ala Ser Ile S 20	er Cys Ile Ser Gl 25	y Leu Met Phe Gl. 30	y Ile Asp		
Ile Ser Ser Met Ser L 35	eu Phe Ile Gly As 40	ap Aap Lya Tyr Il 45	e Lys Tyr		
Phe His Lys 50					
<210> SEO ID NO 52					

<211> LENGTH: 51

<212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 52 Lys Leu Arg Leu Phe Leu Asp Lys Leu Pro Asn Ile Tyr Asn Ile Tyr 1 5 10 15 Val Ile Ala Thr Ile Ser Cys Ile Ser Gly Leu Met Phe Gly Ile Asp 25 20 30 Ile Ser Ser Met Ser Ala Phe Leu Ser Asn Asp Ala Tyr Leu Lys Tyr 40 35 Phe Gly Thr 50 <210> SEQ ID NO 53 <211> LENGTH: 51 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 53 Lys Phe Arg As
n Phe Leu Asp Lys Phe Pro As
n Ile His As
n Val Tyr $% \left({{{\rm{A}}_{\rm{B}}}} \right)$ 1 5 10 15 Ile Val Val Gly Ile Ser Cys Ile Ser Gly Met Met Phe Gly Ile Asp 25 20 30 Ile Ser Ser Met Ser Leu Phe Ile Gly Asp Asp Lys Tyr Leu Asp Tyr 35 40 45 Phe Asn Ser 50 <210> SEQ ID NO 54 <211> LENGTH: 51 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 54 Lys Phe Arg Thr Phe Leu Asp Arg Leu Pro Asn Ile Tyr Asn Val Tyr 1 10 5 15 Ile Ile Ala Ser Ile Ser Cys Ile Ser Gly Met Met Phe Gly Phe Asp 20 25 30 Ile Ser Ser Met Ser Ala Phe Ile Gly Phe Asp Asp Tyr Lys Asn Phe 35 40 Phe Asn Asn 50 <210> SEQ ID NO 55 <211> LENGTH: 51 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 55 Ser Leu Asn Lys Phe Leu Asp Lys Phe His Thr Thr Tyr Asn Ile Tyr 5 1 10 15 Val Ile Ala Met Ile Thr Thr Ile Ser Gly Met Met Phe Gly Phe Asp 20 25 30

200

201

-continued

Val Ser Ser Ile Ser Ala Phe Ile Ser Glu Pro Ser Tyr Arg Arg Phe 35 40 45 Phe Asn Tyr 50 <210> SEQ ID NO 56 <211> LENGTH: 51 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 56 Gln Val Gly Ala Leu Gln His Arg Phe Pro Lys Leu His Asn Pro Tyr 1 5 10 Leu Thr Ala Ala Val Ala Thr Met Gly Gly Leu Leu Phe Gly Phe Asp 25 20 30 Ile Ser Ser Val Ser Ala Phe Val Asp Thr Lys Pro Tyr Lys Glu Tyr 35 40 45 Phe Gly Tyr 50 <210> SEQ ID NO 57 <211> LENGTH: 43 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 57 Met Tyr Lys Val His Asn Pro Tyr Leu Thr Ala Ala Val Ala Thr Met 1 5 10 15 Gly Gly Met Leu Phe Gly Phe Asp Ile Ser Ser Val Ser Ala Phe Val 20 25 30 Gly Phe Asp Asn Tyr Met Asn Tyr Phe Gly His 35 40 <210> SEQ ID NO 58 <211> LENGTH: 52 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 58 Met Gly Arg Ile Thr Asn Pro Tyr Val Leu Thr Ala Leu Ala Cys Thr 1 5 10 Gly Gly Leu Leu Phe Gly Phe Asp Ile Ser Ser Met Ser Ala Ile Ile 20 25 30 Ser Ser Pro Asn Tyr Leu Thr Tyr Phe Gly Pro Lys Asp Leu Thr Val 35 40 45 Glu Cys Pro Asp 50 <210> SEQ ID NO 59 <211> LENGTH: 55 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 59

-continued

Leu Ala Ser Asp Ala Pro Glu Ser Phe Ser Trp Ser Ser Val Ile Leu 1 5 10 15 Pro Phe Ile Phe Pro Ala Leu Gly Gly Leu Leu Phe Gly Tyr Asp Ile 25 20 30 Gly Ala Thr Ser Gly Ala Thr Leu Ser Leu Gln Ser Pro Ala Leu Ser 35 40 45 Gly Thr Thr Trp Phe Asn Phe 50 55 <210> SEQ ID NO 60 <211> LENGTH: 56 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 60 His Val Pro Glu Asn Tyr Ser Val Val Ala Ala Ile Leu Pro Phe Leu 10 5 1 15 Phe Pro Ala Leu Gly Gly Leu Leu Tyr Gly Tyr Glu Ile Gly Ala Thr 25 20 30 Ser Cys Ala Thr Ile Ser Leu Gln Glu Pro Met Thr Leu Leu Ser Tyr 35 40 45 Tyr Ala Val Pro Phe Ser Ala Val 50 55 <210> SEQ ID NO 61 <211> LENGTH: 56 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 61 Leu Asn Ala Glu Ala Thr Asn Lys Trp His Ile Pro Pro Arg Leu Ile 5 15 1 10 Gly Val Ile Ala Leu Gly Ser Met Ala Ala Ala Val Gln Gly Met Asp 20 25 30 Glu Ser Val Ile Asn Gly Ala Asn Leu Phe Tyr Pro Lys Ala Phe Gly 40 35 45 Val Asp Thr Met His Asn Ser Asp 50 55 <210> SEQ ID NO 62 <211> LENGTH: 60 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 62 Leu Asn Arg Phe Ile Thr Asn Lys Trp Asp His Pro Met Lys Val Tyr 1 5 10 15 Tyr Leu Val Val Cys Cys Ser Leu Ala Ala Ala Val Gln Gly Met Asp 25 2.0 30 Glu Thr Val Ile Asn Gly Ala Asn Ile Ile Phe Pro Ala Gln Phe Gly 40 45 35 Ile Lys Glu Asp Ser Gly Val Val Ser Arg Lys Ser 50 55 60

204

<210> SEQ ID NO 63 <211> LENGTH: 55 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 63 Phe Leu Gly Met Arg Gly Ile Lys Leu Asn Trp Ala Ile Gly Phe Ala 10 1 5 15 Ala Ser Ala Gly Phe Leu Leu Phe Gly Tyr Asp Gln Gly Val Leu Gly 20 25 30 25 Ser Leu Tyr Thr Leu Pro Ser Trp Asn Ala Gln Phe Pro Glu Ile Asn 35 40 45 Thr Ala Ala Val Gly Asp Ser 50 <210> SEQ ID NO 64 <211> LENGTH: 53 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEOUENCE: 64 Ala Lys Thr Asn Ser Tyr Leu Gly Leu Arg Gly His Lys Leu Asn Phe 1 5 10 15 Ala Val Ser Cys Phe Ala Gly Val Gly Phe Leu Leu Phe Gly Tyr Asp 20 25 30 Gln Gly Val Met Gly Ser Leu Leu Thr Leu Pro Ser Phe Glu Asn Thr 35 40 45 Phe Pro Ala Met Lys 50 <210> SEQ ID NO 65 <211> LENGTH: 53 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 65 Lys Thr Asn Thr Met Gly Leu Arg Gly Lys Pro Leu Arg Val Ala Ile 1 5 10 Thr Ile Cys Cys Thr Ile Gly Phe Ser Leu Phe Gly Tyr Asp Gln Gly 20 25 30 Leu Met Ser Gly Ile Ile Thr Gly Lys Gln Phe Asn Glu Glu Phe Pro 35 40 45 Pro Thr His Gly Thr 50 <210> SEQ ID NO 66 <211> LENGTH: 53 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 66 Arg Thr Asn Thr Met Gly Leu Arg Gly Lys Arg Leu Arg Val Met Phe 5 1 10 15

Thr Val Val Ala Thr Leu Gly Phe Ser Leu Phe Gly Tyr Asp Gln Gly

-continued

208

20 25 30 Leu Met Ser Gly Leu Ile Thr Gly Glu Gln Phe Asn Ala Glu Phe Pro 35 40 45 Pro Thr Ala Gly Lys 50 <210> SEQ ID NO 67 <211> LENGTH: 51 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 67 Arg Thr Asn Thr Phe Gly Leu Arg Gly Lys Lys Leu Arg Ala Phe Ile 10 1 5 15 Thr Val Val Ala Val Thr Gly Phe Ser Leu Phe Gly Tyr Asp Gln Gly 25 20 30 Leu Met Ser Gly Ile Ile Thr Ala Asp Gln Phe Asn Ser Glu Phe Pro 35 40 45 Ala Thr Arg 50 <210> SEQ ID NO 68 <211> LENGTH: 55 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 68 Arg Thr Ser His Trp Gly Leu Thr Gly Lys Lys Leu Arg Tyr Phe Ile 1 5 10 15 Thr Ile Ala Ser Met Thr Gly Phe Ser Leu Phe Gly Tyr Asp Gln Gly 20 25 30 Leu Met Ala Ser Leu Ile Thr Gly Lys Gln Phe Asn Tyr Phe Phe Pro 35 40 45 Ala Thr Lys Glu Asn Gly Asp 50 55 <210> SEQ ID NO 69 <211> LENGTH: 49 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 69 Ile Asp Val Gly Leu Arg Gly Asn Trp Leu Leu Thr Val Ile Thr Ala 1 5 10 15 Ser Cys Ala Ala Gly Phe Leu Leu Phe Gly Tyr Asp Asn Gly Val Met 20 25 30 Gly Gly Val Val Gly Leu Gly Glu Phe Asn Lys Thr Phe Asn Asn Pro 40 35 45 Asp

<210> SEQ ID NO 70 <211> LENGTH: 44 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE:

<223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 70 Gly Lys Gln Val Ser Tyr Ala Val Thr Phe Thr Cys Glu Leu Ala Phe 10 1 5 15 Ile Leu Phe Gly Ile Glu Gln Gly Ile Ile Gly Asn Leu Ile Asn Asn 20 25 30 Gln Asp Phe Leu Asn Thr Phe Gly Asn Pro Thr Gly 35 40 <210> SEQ ID NO 71 <211> LENGTH: 52 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 71 His Lys Thr Gln Arg Arg Leu Val Gly His Asn Leu Leu Tyr Ser Val 15 1 5 10 Ser Val Phe Leu Ser Ile Gly Gly Val Leu Phe Gly Tyr Asp Gln Gly 25 20 30 Val Met Ser Gly Ile Ile Thr Gly Pro Tyr Phe Lys Ala Tyr Phe Asn 35 40 45 Gln Pro Thr Ser 50 <210> SEQ ID NO 72 <211> LENGTH: 49 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 72 Met Phe Ser Leu Thr Gly Lys Pro Leu Leu Tyr Phe Thr Ser Val Phe 1 5 10 15 Val Ser Leu Gly Val Phe Leu Phe Gly Tyr Asp Gln Gly Val Met Ser 20 25 30 Gly Ile Ile Thr Gly Phe Tyr Phe Lys Phe Tyr Phe His Glu Pro Thr 35 40 45 Arg <210> SEQ ID NO 73 <211> LENGTH: 55 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 73 Val Gly Ala Thr Gly Ala Lys Gly Leu Ile Lys Asn Ala Arg Thr Phe 1 5 10 15 Ala Ile Ala Val Phe Ala Ser Met Gly Gly Leu Ile Tyr Gly Tyr Asn 25 20 30 Gln Gly Met Phe Gly Gln Ile Leu Ser Met His Ser Phe Gln Phe Ala 35 40 45 Ser Gly Val Lys Gly Ile Thr 50 55

<210> SEQ ID NO 74

<211> LENGTH: 56 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 74 Ala Gly Lys Ser Gly Val Ala Gly Leu Val Ala Asn Ser Arg Ser Phe 10 1 5 15 Phe Ile Ala Val Phe Ala Ser Leu Gly Gly Leu Val Tyr Gly Tyr Asn 25 20 30 Gln Gly Met Phe Gly Gln Ile Ser Gly Met Tyr Ser Phe Ser Lys Ala 35 40 45 Ile Gly Val Glu Lys Ile Gln Asp 50 <210> SEQ ID NO 75 <211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 75 Ala His Gly Asn Val Val Thr Ile Met Met Lys Asp Pro Val Val Phe 1 5 10 15 Leu Val Ile Leu Phe Ala Ser Leu Gly Gly Leu Leu Phe Gly Tyr Asp 20 25 30 Gln Gly Val Ile Ser Gly Ile Val Thr Met Glu Ser Phe Gly Ala Lys 35 40 45 Phe Pro Arg Ile Phe Met 50 <210> SEQ ID NO 76 <211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 76 Ala His Gly Asn Val Val Thr Ile Met Met Lys Asp Pro Val Val Phe 1 5 10 15 Leu Val Ile Leu Phe Ala Ser Leu Gly Gly Leu Leu Phe Gly Tyr Asp 20 25 30 Gln Gly Val Ile Ser Gly Ile Val Thr Met Glu Ser Phe Gly Ala Lys 35 40 45 Phe Pro Arg Ile Phe Met 50 <210> SEQ ID NO 77 <211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 77 Ala His Gly Asn Val Val Thr Ile Met Met Lys Asp Pro Val Val Phe 1 5 10 15

Leu Val Ile Leu Phe Ala Ser Leu Gly Gly Leu Leu Phe Gly Tyr Asp

-continued

214

20 25 30 Gln Gly Val Ile Ser Gly Ile Val Thr Met Glu Ser Phe Gly Ala Lys 35 40 45 Phe Pro Arg Ile Phe Met 50 <210> SEQ ID NO 78 <211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 78 Ser Lys Gly Asn Ile Ile Thr Val Met Ser Lys Asp Pro Leu Val Phe 1 5 10 15 Cys Ile Ile Ala Phe Ala Ser Ile Gly Gly Leu Leu Phe Gly Tyr Asp 25 20 30 Gln Gly Val Ile Ser Gly Ile Val Thr Met Glu Ser Phe Ala Ala Lys 35 40 45 Phe Pro Arg Ile Phe Ser 50 <210> SEO ID NO 79 <211> LENGTH: 57 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 79 Pro Ile Glu Ile Pro Lys Lys Pro Met Ser Glu Tyr Val Thr Val Ser 1 5 10 15 Leu Leu Cys Leu Cys Val Ala Phe Gly Gly Phe Met Phe Gly Trp Asp 20 25 30 Thr Gly Thr Ile Ser Gly Phe Val Val Gln Thr Asp Phe Leu Arg Arg 35 40 45 Phe Gly Met Lys His Lys Asp Gly Thr 50 55 <210> SEQ ID NO 80 <211> LENGTH: 58 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 80 Glu Val Val Pro Glu Lys Pro Ala Ser Ala Tyr Ala Thr Val Ser 5 10 15 1 Ile Met Cys Leu Cys Met Ala Phe Gly Gly Phe Met Ser Gly Trp Asp 20 25 30 Thr Gly Thr Ile Ser Gly Phe Val Asn Gln Thr Asp Phe Leu Arg Arg 40 45 35 Phe Gly Asn Tyr Ser His Ser Lys Asn Thr 50 55 <210> SEQ ID NO 81 <211> LENGTH: 57

<212> TYPE: PRT <213> ORGANISM: Artificial sequence

<220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 81 Ala Val Ala Pro Pro Asn Thr Gly Lys Gly Val Tyr Val Thr Val Ser 5 10 15 1 Ile Cys Cys Val Met Val Ala Phe Gly Gly Phe Ile Phe Gly Trp Asp 20 25 30 Thr Gly Thr Ile Ser Gly Phe Val Ala Gln Thr Asp Phe Leu Arg Arg 35 40 45 Phe Gly Met Lys His His Asp Gly Ser 50 55 <210> SEQ ID NO 82 <211> LENGTH: 57 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 82 Val Leu Thr Asn Pro Asn Thr Gly Lys Gly Ala Tyr Val Thr Val Ser 1 5 10 15 Ile Cys Cys Val Met Val Ala Phe Gly Gly Phe Val Phe Gly Trp Asp 20 25 30 Thr Gly Thr Ile Ser Gly Phe Val Ala Gln Thr Asp Phe Leu Arg Arg 35 40 45 Phe Gly Met Lys His Lys Asp Gly Ser 50 55 <210> SEQ ID NO 83 <211> LENGTH: 57 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 83 Val Val Glu Ile Pro Lys Arg Pro Ala Ser Ala Tyr Val Thr Val Ser 5 10 1 15 Ile Met Cys Ile Met Ile Ala Phe Gly Gly Phe Val Phe Gly Trp Asp 25 20 30 Thr Gly Thr Ile Ser Gly Phe Ile Asn Gln Thr Asp Phe Ile Arg Arg 35 40 45 Phe Gly Met Lys His Lys Asp Gly Thr 50 <210> SEQ ID NO 84 <211> LENGTH: 57 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 84 Pro Ile Asp Leu Pro Gln Lys Pro Leu Ser Ala Tyr Thr Thr Val Ala 5 10 1 15 Ile Leu Cys Leu Met Ile Ala Phe Gly Gly Phe Ile Phe Gly Trp Asp 20 25 30 Thr Gly Thr Ile Ser Gly Phe Val Asn Leu Ser Asp Phe Ile Arg Arg 40 35 45

Phe Gly Gln Lys Asn Asp Lys Gly Thr 50 55 <210> SEQ ID NO 85 <211> LENGTH: 57 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 85 Asn Ala Glu Leu Pro Ala Lys Pro Ile Ala Ala Tyr Trp Thr Val Ile 1 5 10 Cys Leu Cys Leu Met Ile Ala Phe Gly Gly Phe Val Phe Gly Trp Asp 25 20 30 Thr Gly Thr Ile Ser Gly Phe Val Asn Gln Thr Asp Phe Lys Arg Arg 35 40 45 Phe Gly Gln Met Lys Ser Asp Gly Thr 50 55 <210> SEQ ID NO 86 <211> LENGTH: 57 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 86 Ser Leu Asp Ile Pro Tyr Lys Pro Ile Ile Ala Tyr Trp Thr Val Met 1 5 10 15 Gly Leu Cys Leu Met Ile Ala Phe Gly Gly Phe Ile Phe Gly Trp Asp 20 25 30 Thr Gly Thr Ile Ser Gly Phe Ile Asn Gln Thr Asp Phe Lys Arg Arg 35 40 45 Phe Gly Glu Leu Gln Arg Asp Gly Ser 50 55 <210> SEQ ID NO 87 <211> LENGTH: 57 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 87 Gln Val Asp Ala Pro Gln Lys Gly Phe Lys Asp Tyr Ile Val Ile Ser 10 1 5 15 Ile Phe Cys Phe Met Val Ala Phe Gly Gly Phe Val Phe Gly Phe Asp 20 25 30 Thr Gly Thr Ile Ser Gly Phe Val Asn Met Ser Asp Phe Lys Asp Arg 35 40 45 Phe Gly Gln His His Ala Asp Gly Thr 50 55 <210> SEQ ID NO 88 <211> LENGTH: 58 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 88

Asn Val Glu Pro Pro Lys Arg Gly Leu Ile Gly Tyr Leu Val Ile Tyr 15 1 5 10 Leu Leu Cys Tyr Pro Ile Ser Phe Gly Gly Phe Leu Pro Gly Trp Asp 25 20 30 Ser Gly Ile Thr Ala Gly Phe Ile Asn Met Asp Asn Phe Lys Met Asn 35 40 45 Phe Gly Ser Tyr Lys His Ser Thr Gly Glu 50 55 <210> SEQ ID NO 89 <211> LENGTH: 58 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 89 Met Val Phe Gln Val Arg Gly Thr Pro Ile Gly Ala Leu Thr Leu Phe 1 5 10 15 Ile Ala Met Leu Ala Ser Met Gly Gly Phe Leu Phe Gly Trp Asp Thr 25 20 30 Gly Gln Ile Ser Gly Leu Thr Gln Met Ala Asp Phe Arg Gln Arg Phe 35 40 45 Ala Thr Val Asp Asn Pro Asp Ala Ile Gly 50 55 <210> SEQ ID NO 90 <211> LENGTH: 60 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 90 Gly Gln Ala Ala Lys Ile Ser His Asn Ala Ser Leu His Ile Pro Val 1 5 10 15 Leu Leu Cys Leu Val Ile Ser Leu Gly Gly Phe Ile Phe Gly Trp Asp 20 25 30 Ile Gly Thr Ile Gly Gly Met Thr Asn Met Val Ser Phe Gln Glu Lys 40 35 45 Phe Gly Thr Thr Asn Ile Ile His Asp Asp Glu Thr 50 55 60 <210> SEQ ID NO 91 <211> LENGTH: 59 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 91 Gly Pro Val Ala Arg Pro Ala Ser Val Lys Gln Ser Leu Pro Ala Ile 10 1 5 15 Leu Val Ala Ala Ala Ser Ala Phe Gly Gly Val Leu Phe Gly Tyr Asp 20 25 30 Thr Gly Thr Ile Ser Gly Leu Ile Val Met Pro Asn Phe Gln Thr Glu 40 35 45 Gly Lys Pro Val Pro Gly Ser Thr Thr Gly Ala 50 55

<210> SEQ ID NO 92 <211> LENGTH: 60 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 92 Gly Pro Val Ala Arg Pro Ala Ser Val Lys Gln Ser Leu Pro Ala Ile 1 5 10 15 Leu Val Ala Ala Ala Ser Ala Phe Gly Gly Val Leu Phe Gly Tyr Asp 25 20 30 Thr Gly Thr Ile Ser Gly Leu Ile Val Met Pro Asn Phe Gln Glu Thr 35 40 45 Phe Gly Lys Pro Val Pro Gly Ser Thr Thr Gly Ala 55 50 60 <210> SEQ ID NO 93 <211> LENGTH: 53 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 93 Phe Val Asn Val Gly Glu Lys Lys Ala Gly Ser Thr Ala Met Ala Ile 1 5 10 15 Ile Val Gly Leu Phe Ala Ala Ser Gly Gly Val Leu Phe Gly Tyr Asp 20 25 30 Thr Gly Thr Ile Ser Gly Val Met Thr Met Asp Tyr Val Leu Ala Arg 35 40 45 Tyr Pro Ser Asn Lys 50 <210> SEQ ID NO 94 <211> LENGTH: 53 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 94 Phe Val Asn Val Gly Glu Lys Lys Ala Gly Ser Thr Ala Met Ala Ile 1 10 Ile Val Gly Leu Phe Ala Ala Ser Gly Gly Val Leu Val Gly Tyr Asp 20 25 Thr Gly Thr Ile Ser Gly Val Met Thr Met Asp Tyr Val Leu Ala Arg 40 45 35 Tyr Pro Ser Asn Lys 50 <210> SEQ ID NO 95 <211> LENGTH: 53 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 95 Phe Val Asn Val Gly Glu Lys Lys Ala Gly Ser Thr Ala Met Ala Ile 5 10 1 15

-continued

224

Ile Val Gly Leu Phe Ala Ala Phe Gly Gly Val Leu Ser Gly Tyr Asp 20 25 30 Thr Gly Thr Ile Ser Gly Val Met Thr Met Asp Tyr Val Leu Ala Arg 45 40 35 Tyr Pro Ser Asn Lys 50 <210> SEQ ID NO 96 <211> LENGTH: 53 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 96 Tyr Val Asn Val Gly Glu Lys Arg Ala Gly Ser Ala Ser Met Gly Ile 1 5 10 15 Phe Val Gly Ala Phe Ala Ala Phe Gly Gly Val Leu Phe Gly Tyr Asp 25 20 30 Thr Gly Thr Ile Ser Gly Ile Met Ala Met Asn Tyr Val Lys Gly Glu 35 40 45 Phe Pro Ala Asn Lys 50 <210> SEQ ID NO 97 <211> LENGTH: 53 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 97 Tyr Val Asn Val Gly Glu Lys Arg Ala Gly Ser Ala Ser Met Gly Ile 15 1 5 10 Phe Val Gly Ala Phe Ala Ala Phe Gly Gly Val Leu Phe Gly Tyr Asp 20 25 30 Thr Gly Thr Ile Ser Gly Ile Met Ala Met Asn Tyr Val Lys Gly Glu 35 40 45 Phe Pro Ala Asn Lys 50 <210> SEQ ID NO 98 <211> LENGTH: 53 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 98 Tyr Ile Asn Phe Gly Glu Lys Lys Ala Gly Ser Thr Thr Met Gly Ile 1 5 10 15 Cys Val Gly Leu Phe Ala Ala Phe Gly Gly Ile Leu Phe Gly Tyr Asp 20 25 30 Thr Gly Thr Ile Ser Gly Ile Met Ala Met Asp Tyr Val Thr Ala Arg 40 45 35 Phe Pro Ser Asn His 50 <210> SEQ ID NO 99 <211> LENGTH: 53

<212> TYPE: PRT

<220> FEATURE:

1

1

1

<400> SEQUENCE: 99

35

Phe Thr Asp Asp Gly

<210> SEQ ID NO 100 <211> LENGTH: 41 <212> TYPE: PRT

<400> SEQUENCE: 100

35

<220> FEATURE:

<210> SEQ ID NO 101 <211> LENGTH: 52 <212> TYPE: PRT

<400> SEQUENCE: 101

20

5

5

20

<220> FEATURE:

50

5

20

<213> ORGANISM: Artificial sequence <223> OTHER INFORMATION: Synthetic polypeptide Ile Ile Asn Arg Gly Glu Lys Pro Glu Gly Ser Ala Phe Met Ala Ala 10 15 Phe Val Ala Val Phe Val Ala Phe Gly Gly Ile Leu Phe Gly Tyr Asp 25 30 Thr Gly Thr Ile Ser Gly Val Met Ala Met Pro Phe Val Lys Lys Thr 40 45 <213> ORGANISM: Artificial sequence <223> OTHER INFORMATION: Synthetic polypeptide Met Ala Ile Ile Val Ala Val Phe Val Ala Phe Gly Gly Leu Leu Tyr 10 15 Gly Tyr Asp Thr Gly Thr Ile Ala Gly Ile Met Thr Met Gly Tyr Val 25 30 Lys Phe His Phe Thr Asp Phe Gly Lys 40 <213> ORGANISM: Artificial sequence <223> OTHER INFORMATION: Synthetic polypeptide Tyr Tyr Lys Lys Met Gln Gln Lys Ser Ser Ser Ser Ser Ala Ile Thr 10 15 Val Gly Leu Val Ala Ala Val Gly Gly Phe Leu Tyr Gly Tyr Asp Thr 25 30

Gly Leu Ile Asn Asp Ile Met Phe Met Thr Tyr Val Lys Asp Asn Phe 40 35

Pro Ala Asn Gly 50

<210> SEQ ID NO 102 <211> LENGTH: 54 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 102 Met Asn Thr Gln Tyr Asn Ser Ser Tyr Ile Phe Ser Ile Thr Leu Val 15 1 5 10 Ala Thr Leu Gly Gly Leu Leu Phe Gly Tyr Asp Thr Ala Val Ile Ser 20 25 30 Gly Thr Val Glu Ser Leu His Thr Val Phe Val Ala Pro Gln Asn Leu 35 40 45 Ser Glu Ser Ala Ala Asn

50

<210> SEQ ID NO 103 <211> LENGTH: 50 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 103 Arg Ser Ile Gly Pro Leu Ile Pro Arg Asn Lys His Leu Phe Tyr Gly 1 5 10 15 Ser Val Leu Met Ser Ile Val His Pro Thr Ile Met Gly Tyr Asp 20 25 Ser Met Met Val Gly Ser Ile Leu Asn Leu Asp Ala Tyr Val Asn Tyr 35 40 Phe His 50 <210> SEQ ID NO 104 <211> LENGTH: 57 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 104 Lys Ser Met Thr Leu Lys Gln Ala Leu Leu Lys Tyr Pro
 Lys Ala Ala 1\$5\$10 \$15\$5 15 Leu Trp Ser Ile Leu Val Ser Thr Thr Leu Val Met Glu Gly Tyr Asp 20 25 30 Thr Ala Leu Leu Ser Ala Leu Tyr Ala Leu Pro Val Phe Gln Arg Lys 35 40 45 Phe Gly Thr Leu Asn Gly Glu Gly Ser 50 55 <210> SEQ ID NO 105 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 105 Gly Gly Leu Ile Phe Gly 1 5 <210> SEQ ID NO 106 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 106 Gly Gly Phe Ile Phe Gly 1 5 <210> SEQ ID NO 107 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide

230

-continued

<400> SEQUENCE: 107 Gly Gly Phe Ile Met Gly 1 5 <210> SEQ ID NO 108 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 108 Gly Phe Phe Ile Met Gly 1 5 <210> SEQ ID NO 109 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 109 Gly Gly Phe Ile Ser Gly 1 5 <210> SEQ ID NO 110 <211> LENGTH: 6 <212> TYPE: PRT
<213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 110 Gly Phe Phe Ile Ser Gly 1 5 <210> SEQ ID NO 111 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 111 Gly Gly Phe Ile Thr Gly 1 5 <210> SEQ ID NO 112 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 112 Gly Phe Phe Ile Thr Gly 1 5 <210> SEQ ID NO 113 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide

<400> SEQUENCE: 113 Gly Gly Phe Leu Met Gly 1 5 <210> SEQ ID NO 114 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 114 Gly Phe Phe Leu Met Gly 1 5 <210> SEQ ID NO 115 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 115 Gly Gly Phe Leu Ser Gly 5 1 <210> SEQ ID NO 116 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 116 Gly Phe Phe Leu Ser Gly 1 5 <210> SEQ ID NO 117 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 117 Gly Gly Phe Leu Thr Gly 1 5 <210> SEQ ID NO 118 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 118 Gly Phe Phe Leu Thr Gly 1 5 <210> SEQ ID NO 119 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 119

-continued

Gly Gly Phe His Met Gly 1 5 <210> SEQ ID NO 120 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 120 Gly Phe Phe His Met Gly 1 5 <210> SEQ ID NO 121 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 121 Gly Gly Phe His Ser Gly 1 5 <210> SEQ ID NO 122 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 122 Gly Phe Phe His Ser Gly 1 5 <210> SEQ ID NO 123 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 123 Gly Gly Phe His Thr Gly 1 5 <210> SEQ ID NO 124 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 124 Gly Phe Phe His Thr Gly 1 5 <210> SEQ ID NO 125 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 125

Gly Gly Leu Val Tyr Gly 1 5

<210> SEQ ID NO 126 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 126 Gly Gly Phe Val Phe Gly 1 5 <210> SEQ ID NO 127 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 127 Gly Gly Arg Pro Thr Gly 1 5 <210> SEQ ID NO 128 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 128 Gly Phe Arg Pro Thr Gly 1 5 <210> SEQ ID NO 129 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 129 Gly Gly Thr Pro Thr Gly 1 5 <210> SEQ ID NO 130 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 130 Gly Phe Thr Pro Thr Gly 1 5

What is claimed is:

1. A recombinant xylose transporter protein comprising a xylose transporter motif sequence and at least one glucose mitigation mutation; wherein said xylose transporter motif sequence corresponds to amino acid residue positions 36, 5 37, 38, 39, 40, and 41 of SEQ ID NO: 1, and wherein the xylose transporter motif comprises the sequence -G-G/F- $X^1-X^2-X^3-G$ -;

237

wherein,

X¹ is D, C, G, H, I, L, or F;

 X^2 is A, D, C, E, G, H, or I; and

X³ is N, C, Q, F, G, L, M, S, T, or P;

and further wherein said glucose mitigation mutation is at a position corresponding to N326, T170, I171, K155, N225, S354, A361, L407, and/or N446 of SEQ ID NO: 1 wherein the xylose transporter protein is at least 95% identical to the ¹⁵ sequence of SEQ ID NO: 1 and has xylose transporter protein activity.

2. The recombinant xylose transporter protein of claim **1**, wherein said xylose transporter motif sequence is G-G-F-I-M-G- (SEQ ID NO:107), -G-F-F-I-M-G- (SEQ ID NO:108), 20 -G-G-F-I-S-G- (SEQ ID NO:109), or -G-F-F-I-S-G- (SEQ ID NO: 110).

3. The recombinant xylose transporter protein of claim **1**, wherein said glucose mitigation mutation is a N326H mutation.

4. The recombinant xylose transporter protein of claim **1**, wherein said glucose mitigation mutation is a N326S mutation.

5. The recombinant xylose transporter protein of claim **1** further comprising an amino acid deletion.

6. The recombinant xylose transporter protein of claim 5, wherein said deletion is within a protein domain corresponding to residue 497-522 of SEQ ID NO: 1.

7. A recombinant yeast cell comprising a recombinant xylose transporter protein of claim 1.

8. The recombinant yeast cell of claim 7, wherein the growth rate of said recombinant yeast cell in a xylose-glucose growth media is at least about 50% of the growth rate of said recombinant yeast cell in a xylose growth media.

9. A nucleic acid encoding the recombinant xylose transporter protein of claim **1**.

* * * * *