
(12) United States Patent
Burger et al.

USOO9021241 B2

(10) Patent No.: US 9,021.241 B2
(45) Date of Patent: Apr. 28, 2015

(54) COMBINED BRANCH TARGET AND
PREDCATE PREDCTION FOR
INSTRUCTION BLOCKS
Inventors: Douglas C. Burger, Redmond, WA

(US); Stephen W. Keckler, Austin, TX
(US)
The Board of Regents of The
University of Texas System, Austin, TX
(US)
Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 38 days.

13/321,807
Jun. 18, 2010
PCT/US2O10/039.162

(75)

(73) Assignee:

Notice: (*)

(21)
(22)
(86)

Appl. No.:
PCT Fled:
PCT NO.:

S371 (c)(1),
(2), (4) Date: Nov. 21, 2011

(87) PCT Pub. No.: WO2011/159309
PCT Pub. Date: Dec. 22, 2011

(65) Prior Publication Data

US 2013/OO8637OA1 Apr. 4, 2013

Int. C.
G06F 9/38
G06F 9/455
U.S. C.
CPC G06F 9/38 (2013.01); G06F 9/3804

(2013.01); G06F 9/455 16 (2013.01)
Field of Classification Search
CPC G06F 9/30072; G06F 9/3842.9/48;

G06F 9/3005; G06F 9/30058
See application file for complete search history.

(51)
(2006.01)
(2006.01)

(52)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

5,903,750 A * 5/1999 Yeh et al. T12/236
6,240,510 B1* 5/2001 Yeh et al. T12/236

(Continued)

105

Program
files

110

Compiler

Blocks of
Code

Combined Branch Target and
Predicate Prediction Components

FOREIGN PATENT DOCUMENTS

JP 2001175473 A 6, 2001
JP 20021494.01 A 5, 2002
JP 20135.00539 A 1, 2013

OTHER PUBLICATIONS

August, D. I. et al., Architectural Support for Compiler—Synthesized
Dynamic Branch Prediction Strategies: Rationale and Initial Results,
IEEE, 1997, p. 84-93.
Simon, B. et al., Incorporating Predicate Information Into Branch
Predictors, Proceedings of the Ninth International Symposium on
High-Performance Computer Architecture, IEEE 2002, 12 pages.
Ranganathan, N. Control Flow Speculation for Distributed Archi
tectures, Dissertation presented to the faculty of the Graduate School
of the University of Texas at Austin, May 2009, 40 pages.
Explicit Data Graph Execution downloaded from http://en.
wikipedia.org/wiki/Explicit Data Graph Execution, retrieved on
Feb. 13, 2013, 5 pages.

(Continued)

Primary Examiner — Kenneth Kim
(74) Attorney, Agent, or Firm — Moritt Hock & Hamroff
LLP; Steven S. Rubin, Esq.

(57) ABSTRACT

Embodiments provide methods, apparatus, systems, and
computer readable media associated with predicting predi
cates and branch targets during execution of programs using
combined branch target and predicate predictions. The pre
dictions may be made using one or more prediction control
flow graphs which represent predicates in instruction blocks
and branches between blocks in a program. The prediction
control flow graphs may be structured as trees such that each
node in the graphs is associated with a predicate instruction,
and each leaf associated with a branch target which jumps to
another block. During execution of a block, a prediction
generator may take a control point history and generate a
prediction. Following the path Suggested by the prediction
through the tree, both predicate values and branch targets may
be predicted. Other embodiments may be described and
claimed.

24 Claims, 10 Drawing Sheets

140 14s

Controloint History

1so

Prediction
Generator

l 55

Combined Prediction

Y 60
Instruction
Predictor

Rurtie Ewiret

US 9,021.241 B2
Page 2

(56)

6,353,883
6,513,109
7,836.289
8.433,885

2003/0023959
2004/0216095
2005/0204348
2006/0090063
2007/0239975
2009/0106541
2010.019 1943

References Cited

U.S. PATENT DOCUMENTS

B1* 3, 2002
B1 1, 2003
B2* 11/2010
B2 * 4, 2013
A1 1, 2003
A1 10, 2004
A1 9, 2005
A1 4, 2006
A1 10, 2007
A1 4, 2009
A1 T/2010

Grochowski et al. T12/240
Gschwind et al.
Tani 712,241
Burger et al. 71.2/239
Park

Horning et al.
Theis
Wang
Mizuno et al.
Bukris

OTHER PUBLICATIONS
Very Long Instruction Word, dowloaded from http://en.wikipedia.
org/wiki/Very long instruction word, retrieved on Feb. 13, 2013,
7 pages.
Mcdonalget al., The Design and Implementation of the TRIPS Pro
totype Chip, dowloaded from http://www.cs.utexas.edu/~trips/talks,
hotchips05.pdf. Aug. 2005, 24 page.
International Search Report for application with application No.
PCT/US 10/39162, dated May 6, 2011, 2pages.
International Written Opinion for application PCT/US 10/39162,
dated May 6, 2011, 7 pages.

* cited by examiner

K

US 9,021.241 B2 U.S. Patent

US 9,021.241 B2 Sheet 2 of 10 Apr. 28, 2015 U.S. Patent

US 9,021.241 B2 Sheet 3 of 10 Apr. 28, 2015 U.S. Patent

&

$ $ $ $ $3

US 9,021.241 B2 Sheet 4 of 10 Apr. 28, 2015 U.S. Patent

! /^ ^

§§§§

U.S. Patent

Fig. 5

Apr. 28, 2015 Sheet 5 of 10

51O
Receive program code

Generate predicated instructions

Generate branch instructions

Generate blockS Of instructions

EnCOde tree information in blocks

540

550

US 9,021.241 B2

500

U.S. Patent Apr. 28, 2015 Sheet 6 of 10 US 9,021.241 B2

Fig. 6

600

610 Retrieve control point history

Generate prediction

Schedule instructions based on
prediction

620

63O

U.S. Patent Apr. 28, 2015 Sheet 7 of 10 US 9,021.241 B2

700

Fig. 7

Generate predicted Generate two Generate four
predicate value for predicted predicate predicted predicate

level in ValueS for level n-1 Values for level n+2

Resolve predicate values

Number of
predicted predicates >=

number in block?

745

YES

Discard extra predicate predictions 750

U.S. Patent Apr. 28, 2015 Sheet 8 of 10 US 9,021.241 B2

800

810 Traverse tree based on combined prediction

Predict predicates based on tree traversal

83O Schedule predicated instructions for execution based on predicted
predicates

840
Predict branch target based on tree leaf at end of traversal

Fetch instructions pointed to by branch target for execution

Fig. 8

US 9,021.241 B2 Sheet 9 of 10 Apr. 28, 2015 U.S. Patent

(066) (s)=OIAECI ©NILINGWOO HEHLO

(L96)
(s).Lºod (!) HETTO HLNOO

X8O/VALEN
096) SEOLAECI NOI LVOINñWWOO

(ZZ6) HETTONLNOO EOVHHELNI TETTY’ Hwa (L/6) HETTO HLNO O (Z96) LINn (!) ?NISSEOorld
OIC n\} (L96) LINn ?NISSE OOH ?

096) SEO IAEO] LºndLÍTO

HETTO HLNO O EOVHHELNI/Sng
096) sn? W HOWEW (G?6) HETTO HINOO Å HOWEWN

.

OG6) SEOLAECI EÐV&OLS OZ6) A HOWEW WELSÅS

006) BOIAEC] ©NIL^dWOO

L– –J

US 9,021.241 B2 Sheet 10 of 10 Apr. 28, 2015 U.S. Patent

US 9,021,241 B2
1.

COMBINED BRANCHTARGET AND
PREDCATE PREDICTION FOR

INSTRUCTION BLOCKS

CROSS REFERENCE TO RELATED 5
APPLICATIONS

This application is a national stage filing under 35 U.S.C.
S371 of PCT Application No. PCT/US2010/39162, filed on
Jun. 18, 2010. 10

BACKGROUND

Various techniques are available to improve dynamic pre
diction of conditional computer instructions during execu- 15
tion. Prediction of conditional instructions is often used to
better select future instructions whose execution may be
dependent on the outcome of the conditional instructions, or
to accelerate execution of those future instructions. Among
prediction techniques, branch prediction and predication are 20
Sometimes used. Branch prediction is often used when con
ditional instructions in a program are compiled to lead to two
possible branching locations (or “targets’). Branch target
prediction, used in branch predictors, may also be used to
identify a nonconditional jump target. In this technique, a 25
history of branch choices taken before execution of the cur
rent conditional instruction may be examined to predict that
one branch or the other should be scheduled for execution.

In predication, sets of instructions associated with a con
ditional instruction are compiled to be associated with a 30
predicate value. Such as a Boolean value, and this predicate is
typically evaluated separately. In this technique, two sets of
instructions (based on the value of the conditional) are sepa
rately evaluated and results from those instructions whose
associated predicate value was not the result after evaluation 35
may be thrown away or discarded. Predicate values may
themselves be predicted. Such as by operating a prediction
technique using a history of predicate values as input.

Current systems which use these techniques, and in par
ticular systems which organize instructions into instruction 40
blocks, suffer from difficulties, however. The use of branch
prediction alone, both when predicting either results of
branches or jump targets, fails to provide a facility for con
temporaneous prediction of control instructions within
blocks of instructions, which often takes the form of predica- 45
tion. Predication, conversely, is not Suited to jumps across
block boundaries. Existing predication techniques, which
may serialize predicate predications, Suffer from additional
overhead as instructions with later predicates are forced to
wait for earlier-occurring predicates. In systems which 50
attempt to combine the techniques, the use of branch predic
tion and predicate prediction requires multiple data structures
and introduces substantial execution overhead. Furthermore,
in current systems, branches are predicted between blocks
without knowledge of intervening predicates; these branches, 55
which are predicted with a more sparse instruction history,
can Suffer from poor prediction accuracy.

SUMMARY
60

In one embodiment, a computer-implemented method for
execution-time prediction of computer instructions may
include generating, on a computing device, a combined predi
cate and branch target prediction based at least in part on an
control point history; executing, on the computing device, 65
one or more predicted predicated instructions based at least in
part on the combined predicate and branch target prediction.

2
The method may further include proceeding with execution
on the computing device at a predicted branch target location
based at least in part on the combined predicate and branch
target prediction.

In another embodiment, a system for predictive runtime
execution of computer instructions may include one or more
computer processors, and a combined prediction generator
which is configured to accept a history of predicates and/or
branches as input and to generate a combined predicate and
branch target prediction based on the accepted history, in
response to operation by the one or more processors. The
system may also include an instruction fetch and execution
control configured to control the one or more processors, in
response to operation by the one or more processors, to
execute one or more predicated instructions based on pre
dicted predicate values obtained from the combined predicate
and branch target prediction, and to proceed with execution of
fetched instructions at a predicted branch target location. The
predicted branch target location may be based at least in part
on the predicted predicate values.

In another embodiment, an article of manufacture may
include a tangible computer-readable medium and a plurality
of computer-executable instructions which are stored on the
tangible computer-readable medium. The computer-execut
able instructions, in response to execution by an apparatus,
may cause the apparatus to perform operations for scheduling
instructions to execute for a first block of code having predi
cated instructions and one or more branch targets. The opera
tions may include identifying a combined predicate and
branch target prediction based at least in part on one or more
instructions which have been previously executed. The pre
diction may include one or more predicted predicate values
for the predicated instructions in the first block of code. The
operations may also include executing, on the computing
device, one or more predicted predicated instructions out of
the predicated instructions in the block based at least in part
on the predicted predicate values. The operations may also
include predicting a predicted branch target location pointing
to a second block of code, based on the predicted predicated
instructions, and continuing execution with the second block
of code.
The foregoing Summary is illustrative only and is not

intended to be in any way limiting. In addition to the illustra
tive aspects, embodiments, and features described above, fur
ther aspects, embodiments, and features will become appar
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of selected components
of a combined branch target and predicate prediction system,

FIG. 2 illustrates a block diagram of instruction prediction
based on combined branch target and predicate prediction,

FIG. 3 illustrates a block diagram of successive levels of
generation of blocks of instructions from program code,

FIG. 4 illustrates a block diagram of prediction control
flow graphs for code blocks,

FIG. 5 illustrates a process for generating programs which
utilize the combined branch target and predicate prediction,

FIG. 6 illustrates a process for predicting branch targets
and predicates using combined branch target and predicate
prediction,

FIG. 7 illustrates a process for generating a combined
branch target and predicate prediction,

FIG. 8 illustrates a process for scheduling instructions
based on combined branch target and predicate prediction,

US 9,021,241 B2
3

FIG. 9 illustrates an example computing device configured
to practice various aspects of the earlier described methods,

FIG. 10 illustrates an example article of manufacture hav
ing instructions configured to enable an apparatus to practice
various aspects of the earlier described methods, all ranged in
accordance with various embodiments of the present disclo
SUC.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a parthereof. In the
drawings, similar symbols typically identify similar compo
nents, unless context dictates otherwise. The illustrative
embodiments described in the detailed description, drawings,
and claims are not meant to be limiting. Other embodiments
may be utilized, and other changes may be made, without
departing from the spirit or scope of the Subject matter pre
sented herein. It will be readily understood that the aspects of
the present disclosure, as generally described herein, and
illustrated in the Figures, can be arranged, Substituted, com
bined, separated, and designed in a wide variety of different
configurations, all of which are explicitly contemplated
herein.

The disclosure is drawn, interalia, to methods, apparatus,
systems, and computer readable media related to prediction
of predicates and branch targets using combined branch target
and predicate prediction.

Described embodiments include techniques, methods,
apparatus, and articles of manufacture which may be associ
ated with using a combined structure for both branch target
and predicate predictions to expedite execution of a program
by a computing device. In various embodiments, these pre
dictions may be made in block-atomic architectures, or in
other architectures which divide programs into predicated
basic blocks of instructions. In other embodiments, the tech
niques described herein may be utilized in other architectures
that mix branches and predicates. In various embodiments,
the predictions may be made using one or more control flow
graphs which represent predicates in instruction blocks and
branches between blocks. During compilation, the program
may be divided into blocks and the one or more prediction
control flow graphs created to be associated with each block.
The prediction control flow graphs may be structured as trees
Such that each node in the graphs is associated with a predi
cate, each edge with a predicated instruction, and each leaf
associated with a control instruction which jumps to another
block. Then, during execution of a block, a prediction gen
erator may take a control point history, such as a history of the
last n predicates, and generate a prediction. The prediction
may, in various embodiments, be generated as a set of predi
cate values for various levels of the control flow graph—as
such, the prediction may include predictions for the block's
predicate instructions.
An instruction fetch and execution control, by using these

predicted predicate values, may predict and schedule predi
cated instructions for execution according to a traversal of the
tree to determine to which predicates the predictions apply.
Described embodiments may also utilize the control flow
graph Such that traversal of the graph along the predicted
predicate values leads to a leaf, and therefore a branch target.
In various embodiments, branch targets may refer to condi
tional and/or unconditional branches which generate target
instruction addresses. By performing this traversal, the
instruction fetch and execution control may predict the
branch target, and therefore the next code block to be
executed. As such, embodiments described herein may com

10

15

25

30

35

40

45

50

55

60

65

4
bine prediction of predicates and branch targets through the
use of a generation of a single, merged prediction. This may
provide lower power and/or higher prediction accuracy com
pared with prior art systems and techniques.

In various embodiments, prediction generation may be
made more efficient through use of parallel prediction gen
eration techniques. The parallel prediction generation may be
performed by generating a predicate value for a first predicate
level based on a control point history, while also contempo
raneously generating possible values for lower levels. After a
suitable number of levels have been operated on, values from
higher levels may be used to narrow down the possible values
for lower-levels.
As an example, assume the prediction generator has a 10

predicate control point history length and is tasked with pre
dicting three levels of predicates for a block. The prediction
generator, in various embodiments, may do a lookup using a
10-bit history for the first prediction. Simultaneously, the
prediction generator may perform two lookups using the most
recent 9 bit history, along with the two possibilities for the
result of the first lookup, to get a second level predicate value.
Similarly, the prediction generator may perform four lookups
for the third value. After this contemporaneous generation,
the prediction generator may then select particular lower
level results based on the higher-level results and discard the
rest. While this technique may require more lookups of pre
diction values than a sequentialized generation system, in
scenarios where generation of individual predicate values has
a long latency, this parallelized technique may provide for
speed increases.

FIG. 1 illustrates a block diagram of selected components
of a combined branch target and predicate prediction system
in accordance with various embodiments. In the illustration
of FIG. 1, a compiler 110 may receive one or more program
files 105 for compilation into one or more executable pro
grams. In various embodiments, the compiler 110 may oper
ate to produce one or more blocks of executable code (here
inafter, also referred to simply as “code'), such as a block
120, which may have associated with them control flow
graphs that represent predicated instructions, such as a pre
diction control flow graph 125, as well as branches which
connect the graphs, such as a branch 129. In various embodi
ments, these blocks may be atomic blocks.

These blocks of code may then be executed in a runtime
environment 140, which may be configured to perform pre
dictions of predicate values and branch targets using the com
bined branch target and predicate predictions, to be described
in more detail below. As illustrated, a prediction generator
150, to be executed as part of the runtime environment 140
may be configured to operate on control point histories. Such
as a control point history 145, to generate the combined
branch target and predicate predictions, such as a combined
prediction 155. In various embodiments, these instruction
histories may include combinations of past predicate values,
past branch target values, or both. In various embodiments,
the prediction generator 150 may be implemented, in whole
or in part, as a lookup table, which looks up one or more
prediction values based on a control point history. Addition
ally, the prediction generator 150 may perform one or more
parallelized lookups (or other predicate value generation
techniques) in order to improve performance of prediction
generation.
The generated combined prediction 155 may then be used

by an instruction fetch and execution control 160, along with
information about a block of instructions 157, to mark predi
cated instructions for execution as well as to predict branch
targets to schedule execution of branched blocks of code. In

US 9,021,241 B2
5

various embodiments, the instruction fetch and execution
control 160 may comprise an instruction scheduler for sched
uling predicated instructions based on the combined predic
tion 155. In various embodiments, the instruction fetch and
execution control 160 may comprise fetch control logic to
predict a target based on the combined prediction 155 and to
fetch an instruction for execution based on that target. Spe
cific examples of this prediction generation and instruction
prediction will be further described below. In various embodi
ments, the runtime environment 140 may be provided by a
runtime manager or other appropriate Software, which itself
may be generated by the compiler 110.

FIG. 2 illustrates a block diagram of instruction prediction
based on combined branch target and predicate predictions in
accordance with various embodiments. As shown, for the
illustrated embodiments, execution of a program may take the
form of execution of one or more predicated instructions such
as a predicated instruction 200, which leads to branch targets
Such as a branch target 210. These branch targets then indicate
a next block of instructions that should be executed, along
with the associated predicated instructions. In various
embodiments, the combined branch target and predicate pre
dictions utilized hereinare, for a block of instructions, able to
predict values for an entire block's worth of predicate values
as well as a branch target out of the block. This set of predic
tions is illustrated by the example instructions and targets
within the area bounded by the dotted line 220. The example
instructions and targets include three predicted predicate val
ues (the three shaded circles), followed by a branch target (the
shaded triangle). Particular techniques for performing these
predictions are described below.

FIG. 3 illustrates a block diagram of successive levels of
generation of blocks of instructions from program code in
accordance with various embodiments. Portion (a) of FIG. 3
illustrates an example C-style code Snippet. The Snippet con
tains conditionals, such as “if (x>0) that leads to two possi
bilities, instructions: 1) “y++’ and 2) “y--'. The code also
contains explicit branching instructions, such as "goto B2.
These branching instructions indicate that a branch should be
taken, if that branching instruction is executed.

Portion (b) of FIG. 3, illustrates intermediate representa
tion of the code after compilation. In particular, portion 3(b)
illustrates how the conditional statements in the block have
been represented as predicated instructions. Thus, in the illus
trated example, the result of the “if (x>0) conditional dis
cussed above has been represented as a predicate p0 at the line
“Pgt p0, ro, 0” In this line, the value in registerro is compared
to see if the value is greater than 0, and the true-or-false result
of that comparison is held as the value of predicate p0.

Next, are two possible instructions that depend on this
predicate. The first is the “add tsp0>r1, 1’ instruction, which
is an add operation that is predicated on the value of p0 and is
executed if p0 is “true.” Similarly, “sub f-p0>r1, 1” subtracts
1 from the r1 register if the p0 predicate takes a value of false.
In other words, the techniques and systems described herein
provide predicted values for predicates like p0, which allow
one of the predicated instructions to be scheduled before the
actual value of the predicate is known, thereby potentially
speeding up execution of the block.

Portion (c) of FIG.3 illustrates an example set of blocks of
instructions which may be generated by a compiler, such as
the compiler 110, from the intermediate representation of
portion (b). As illustrated, in particular by Block1, each block
may contain a branched set of predicated instructions that
leads to the branches; which, in turn, instruct the execution to
jump to another block. Thus, when Block1 is executed, one
more predicated instructions are performed, and then a

10

15

25

30

35

40

45

50

55

60

65

6
branch to another block is taken. If branch B3 is taken, execu
tion jumps to Block3. In various embodiments, branches may
cause a block to be executed again, e.g., branch B1, which
begins execution of Block1 anew. As described herein, in
various embodiments, the blocks of instructions have associ
ated with them prediction control flow graphs. The prediction
control flow graphs allow an instruction fetch and execution
control to predict not only which predicated instructions
should be predicted and scheduled for execution within a
block, but also which branches are likely to be taken and
therefore with which blocks execution should proceed upon
exit of a currently-executing block.

FIG. 4 illustrates a block diagram of prediction control
flow graphs for code blocks in accordance with various
embodiments. As discussed, in various embodiments, the
compiler may be configured to generate, for a block, a pre
diction control flow graph which indicates predicated instruc
tions as well as branch targets for the particular block of
instructions. As illustrated, the prediction control flow graph
may be implemented as a tree which represents predicates by
nodes, such as nodes p0, p1, and p5 of graph 410, and which
represents branch targets as leaves, such as branch targets
b100, b101, and b110. Additionally, the edges in the tree may
represent predicted instructions—thus, if the value of predi
cate p0 is “True” the instruction represented by the edge from
p0->p4 may be executed. As discussed herein, techniques
described herein utilize these prediction control-flow graphs
to predict both predicate values and branch targets by gener
ating a combined branch target and predicate prediction
which identifies a set of prediction values. By following the
values through the graph, the runtime environment 140, and
in particular the instruction fetch and execution control 160,
can identify a) which predicated instructions are likely to be
needed for execution, and b) what their values are. Addition
ally, by following the path, the instruction fetch and execution
control 160 can identify a branch target for scheduling of a
next block of instructions. A given control flow graph may
contain paths of different lengths depending on the internal
structure of a block. Thus, in various embodiments, the
instruction fetch and execution control 160 may follow the
path to its end at a leaf node, while in some embodiments, the
instruction fetch and execution control 160 may predict a
branch target based on a non-terminated following of the
path, or a following of the path past its actual end.

In various embodiments, the prediction control flow graph
may contain different paths for every predicate value, such as
in graph 410, which branches at every predicate. In some
scenarios, however, a block may not branch on a particular
predicate. Such as in graph 420, where, regardless of the value
of p0, control for the block represented by the graph will next
depend on the value of p1. This does not, however, mean that
the same instruction will be executed in the block, as there are
different edges 423 and 425 in the tree. Each of the different
edges 423 and 425 may represent a different predicated
instruction. Additionally, while the value of p0 may not be
completely determinative of future instructions, in various
embodiments, the value may still correlate with particular
future predicate or branch target values. Thus, the value of p0
may still be maintained in a control point history for predic
tion generation. An example of this can be seen in the code
discussed above with respect to FIG. 3, where execution in
Block1 proceeded to predicate p1 regardless of which value
predicate p0 took. Also, in various embodiments the predic
tion control flow graphs may have associated with them infor
mation about the shape of the graph, such as the number of
levels in the graph or a degree of branching. This shape

US 9,021,241 B2
7

information may be useful in performing prediction genera
tion, and in particular parallelized prediction generation.

FIG. 5 illustrates a process 500 for generating programs
which utilize the combined branch target and predicate pre
diction in accordance with various embodiments. As illus
trated, process 500 may start at operation(s) 510 (“Receive
program code). At operation(s) 510, program code to com
pile may be received, such as by the compiler 110. As dis
cussed above, in various embodiments, the program code
may include one or more code files, and may be implemented
in a variety of known computing languages. Additionally, in
various embodiments, the program code may have one or
more instructions or information that aid the compiler in
generating code which utilizes the prediction techniques
described herein. While, for the sake of ease of description,
the activities of process 500 are described with reference to a
single compiler, such as compiler 110, in alternative embodi
ments, one or more compilers or other code analysis modules
may be utilized to perform these activities.

From operation(s) 510, process 500 may proceed to opera
tion(s) 520 ("Generate predicated instructions'). At
operation(s) 520, the compiler may generate predicated
instructions, such as, for example, the instructions discussed
above with respect to FIG.3. As discussed above, these predi
cated instructions may be generated at least in part through
the compiler 110 identifying conditional statements and gen
erating predicates based on these statements. From
operation(s) 520, process 500 may proceed to operation(s)
530 (“Generate branch instructions'). At operation(s) 530,
the compiler 110 may generate branch instructions, for
example, the instructions discussed above with respect to
FIG. 3. From operation(s) 530, process 500 may proceed to
operation(s) 540 (“Generate block instructions'). At opera
tion(s) 540, the compiler 110 may generate blocks of instruc
tions for purposes of prediction. In various embodiments, the
compiler may generate branch instructions and/or generate
blocks on the basis of explicit jump calls, like those illustrated
above. In other embodiments, the compiler may identify
blocks present in the original program code and generate
branches between these identified blocks even where no jump
was originally coded. The blocks may be explicitly identified,
Such as in the example shown in FIG.3, or may be recognized
by the compiler as set of instructions which are likely to be
executed as a unit.

From operation(s) 540, process 500 may proceed to opera
tion(s) 550 (“Encode tree information in blocks”). At opera
tion(s) 550, the compiler may encode tree information (or
approximate tree information) for the prediction control flow
graphs in the respective headers of the block of instructions
associated with those prediction control flow graphs. For
example, as mentioned above, the tree may represent the
number of predicates on various paths between the root and
various unconditional jumps as leaves. In such a tree, predi
cates would used in the block as nodes, predicate results/
values as edges, and branch targets as leaves. In other embodi
ments, the compiler may encode information related to tree
depth or the shape of a tree, so that, during prediction gen
eration, the prediction generator 150 may more easily gener
ate a proper-length prediction.

FIG. 6 illustrates a process 600 for predicting branch tar
gets and predicates using combined branch target and predi
cate predictions in accordance with various embodiments.
For the illustrated embodiments, the process 600 may be
performed on a per-block basis, even though the illustrated
example shows predictions for only a single block. In alter
nate embodiments, prediction may be performed on multiple
blocks as needed during execution.

10

15

25

30

35

40

45

50

55

60

65

8
Accordingly, for the embodiments, process 600 may start

with operation(s) 610 (“Retrieve control point history'). At
operation(s) 610, the runtime environment 140, in particular,
the prediction generator 150, may retrieve a control point
history. In various embodiments, the control point history
may include a history of predicate values which have been
evaluated in the past; the history may take the form of a binary
string and/or have a pre-defined length. An example may be
the control point history 145 illustrated in FIG.1. In various
embodiments, the control point history may also include one
or more records of branch targets taken.
From operation(s) 610, the process 600 may proceed to

operation(s) 620 ("Generate prediction”). At operation(s)
620, the prediction generator 150 may use the control point
history 145 to generate a prediction, Such as the combined
prediction 155, for use in scheduling instructions. Particular
embodiments of this activity are described below with refer
ence to FIG. 7. From operation(s) 620, process 600 may
proceed to operation(s) 630. At operation(s) 630, the instruc
tion fetch and execution control 160, using the combined
prediction 155 and the block information 157, may schedule
instructions for execution. Particular embodiments of this
activity are described below with reference to FIG.8.

FIG. 7 illustrates a process 700 for generating a combined
branch target and predicate prediction in accordance with
various embodiments. Similar to the discussion above with
respect to FIG. 6, process 700 may be performed on a per
block basis; the illustrated example thus shows predictions
for a single block. The illustrated example shows a parallel
ized technique for efficiently generating combined predic
tions. In various embodiments, not illustrated, however the
prediction generator 150 may generate a prediction one value
at a time by inputting the control point history, such as into a
lookup table, receiving a predicate value. The prediction gen
erator 150 may then proceed with a second lookup using all
but the oldest value in the control point history, along with the
freshly-generated predicate value to look up the next predi
cate value, and so on. The lookup may continue until enough
values have been found that a combined branch target and
predicate prediction for the block is generated.
As illustrated, process 700 may start at operation(s) 710

(“Generate predicted predicated value for level n”). At opera
tion(s) 710, the prediction generator 150 may generate a
predicted predicate value for a level n. As discussed above,
this may be performed using various generation methods,
including a lookup table. From operation(s) 710, process 700
may proceed to operation(s) 720 ("Generate two predicted
predicated values for level n+1). At operation(s) 720, the
prediction generator 150 may generate two predicted predi
cate values for level n+1, using both possible predicate values
for level n in the control point history. As illustrated, the
action of this block may be performed in parallel with the
action of operation(s) 710, as it does not immediately rely on
the result of operation(s) 710. From operation(s) 720, process
700 may proceed to operation(s) 730 ("Generate four pre
dicted predicated values for level n+2'). At operation(s) 720,
a similar action may be performed, where the prediction
generator generates four predicted predicate values for level
n+2. The four predicted predicate values for level n+2 may be
generated using all of the possible values for the results of
operation(s) 710 and 720.

Following is an example for generating a combined branch
target and predicate prediction in accordance with the
described embodiments. If the prediction generator is oper
ating on instruction histories of length 5, with a current con
trol point history of 11011, at the operation(s) 710, the pre
diction generator 150 may look up a predicted value for level

US 9,021,241 B2

in using the history 11011. Simultaneously (or at least con
temporaneously) with that operation, the prediction generator
150 may also perform lookups for level n+1 using instruction
histories 10110 and 10111. The instruction histories may
represent the four most-recent history values in the history.
Additionally, the instruction histories may be associated with
two possible outcomes from the generation operation(s) at
operation(s) 710. Similarly, at operation(s) 730, lookups may
be performed using histories 01100, 01101, 01110, and
O1111.
From operation(s) 710, 720 or 730, process 700 may pro

ceed to operation(s) 740 (“Resolve predicate values”). At
operation(s) 740, after the results of operation(s) 710, 720,
and 730 are known, the predicate values may be resolved.
Thus, if the value from operation(s) 710 was determined to be
0, then the result from operation(s) 720 which used 10110 as
input may be maintained. Other result from operation(s) 720
may be discarded. Similarly, one result may be taken from
operation(s) 730. It should be recognized that, while the illus
trated example utilizes three levels of parallel predicate pre
diction, in alternative embodiments, different numbers of
levels may be used.

From operation(s) 740, process 700 may proceed to opera
tion(s) 745 (“Number of predicted predicates greater than or
equal to the number of blocks”). At operation(s) 745, the
prediction generator 150 may determine if a prediction has
been made for at least every predicate in the current block of
instructions. If not, process 700 may return to operations 710,
720, and 730, and proceeds with n-n+3. If predictions have
been made for every predicate in the block, then at
operation(s) 750 (“Discard extra predicate predictions'). At
operation(s) 750, the extra predictions may be discarded. For
example, using the three-level parallelized prediction dis
cussed above, if there are five levels of predicates in the block,
the process may perform two iterations of the loop, and gen
erate six predicted predicate values. The sixth value may then
be discarded. Additionally, in some embodiments, if blocks
contain unbalanced trees (or other complex tree shapes) in
their prediction control flow graph, the prediction generator
150 may be configured to generate enough predicted predi
cate values to fill the longest path in a given tree. As a result,
the prediction generator 150 may avoid or reduce spending
computational resources looking at potentially-complex tree
descriptors. This may also result in the discarding of predicate
predictions at operation(s) 750.

FIG. 8 illustrates a process 800 for scheduling instructions
based on combined branch target and predicate predictions in
accordance with various embodiments. For the embodiments,
process 800 may start at operation(s) 810 (“Traverse tree
based on combined prediction'). At operation(s) 810, the
instruction fetch and execution control 160 may traverse the
tree of the prediction control flow graph based on the com
bined prediction 155. From operation(s) 810, process 800
may proceed to operation(s) 820 (“Predict predicates based
on tree traversal). At operation(s) 820, the instruction fetch
and execution control may predict which predicates will be
evaluated based on the path through the tree. From
operation(s) 820, process 800 may proceed to operation(s)
830 (“Schedule predicated instructions for execution based
on predicted predicates'). From operation(s) 830, the instruc
tion fetch and execution control 160 may schedule predicated
instructions based on these predictions for execution. From
operation(s) 830, process 800 may proceed to operation(s)
840 (“Predict branch target based on tree leaf at end of tra
versal'). From operation(s) 840, the instruction fetch and
execution control may predict a branch target based on the
tree traversal. In various embodiments, the instruction fetch

10

15

25

30

35

40

45

50

55

60

65

10
and execution control may predict the branch target based on
a tree leaf located at the end of the tree traversal, if the
traversal leads to a leaf node; in other embodiments, the
prediction may be based on a non-terminating traversal. From
operation(s) 840, process 800 may proceed to operation(s)
850 (“Schedule code block pointed to by branch target for
execution'). From operation(s) 850, the instruction fetch and
execution control 160 may fetch one or more instructions
pointed to by this branch target for next execution after the
current code block. As discussed above, under process 800, a
single combined prediction, Such as combined prediction
155, may provide sufficient information to schedule both
predicated instructions and branch targets for a block of
instructions. The fetched instructions may be Subsequently
executed.

FIG. 9 is a block diagram illustrating an example comput
ing device configured in accordance with the present disclo
sure. In a basic configuration 901, computing device 900
typically includes one or more processors 910 and system
memory 920. A memory bus 93.0 may be used for communi
cating between the processor 910 and the system memory
92O.

Depending on the desired configuration, processor 910
may be of any type including but not limited to a micropro
cessor (uP), a microcontroller (LLC), a digital signal processor
(DSP), or any combination thereof. Processor 910 may
include one more levels of caching, such as a level one cache
911 and a level two cache 912, a processor core 913, and
registers 914. An example processor core 913 may include an
arithmetic logic unit (ALU), a floating point unit (FPU), a
digital signal processing core (DSP Core), or any combina
tion thereof. An example memory controller 915 may also be
used with the processor 910, or in some implementations the
memory controller 915 may be an internal part of the proces
Sor 910.

Depending on the desired configuration, the system
memory 920 may be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof.
System memory 920 may include an operating system 921,
one or more applications 922, and program data 924. Appli
cation 922 may include programming instructions providing
logic 923 to implement the above-described combined
branch target and predicate prediction generation and instruc
tion prediction. Program Data 924 may include data 925 such
as combined branch target and predicate predictions, control
point history, and code block information.
Computing device 900 may have additional features or

functionality, and additional interfaces to facilitate commu
nications between the basic configuration 901 and any
required devices and interfaces. For example, a bus/interface
controller 940 may be used to facilitate communications
between the basic configuration 901 and one or more data
storage devices 950 via a storage interface bus 941. The data
storage devices 95.0 may be removable storage devices 951,
non-removable storage devices 952, or a combination
thereof. Examples of removable storage and non-removable
storage devices include magnetic disk devices such as flexible
disk drives and hard-disk drives (HDD), optical disc drives
Such as compact disc (CD) drives or digital versatile disc
(DVD) drives, solid state drives (SSD), and tape drives to
name a few. Example computer storage media may include
volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information, such as computer readable instructions, data
structures, program modules, or other data.

US 9,021,241 B2
11

System memory 920, removable storage 951 and non
removable storage 952 are all examples of computer storage
media. Computer storage media includes, but is not limited
to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which may be used to store the desired information
and which may be accessed by computing device 900. Any
such computer storage media may be part of device 900.
Computing device 900 may also include an interface bus

942 for facilitating communication from various interface
devices (e.g., output interfaces, peripheral interfaces, and
communication interfaces) to the basic configuration 901 via
the bus/interface controller 940. Example output devices 960
include a graphics processing unit 961 and an audio process
ing unit 962, which may be configured to communicate to
various external devices such as a display or speakers via one
or more A/V ports 963. Example peripheral interfaces 970
include a serial interface controller971 or a parallel interface
controller 972, which may be configured to communicate
with external devices such as input devices (e.g., keyboard,
mouse, pen, voice input device, touch input device, etc.) or
other peripheral devices (e.g., printer, Scanner, etc.) via one or
more I/O ports 973. An example communication device 980
includes a network controller981, which may be arranged to
facilitate communications with one or more other computing
devices 990 over a network communication link via one or
more communication ports 982.
The network communication link may be one example of a

communication media. Communication media may typically
be embodied by computer readable instructions, data struc
tures, program modules, or other data in a modulated data
signal. Such as a carrier wave or other transport mechanism,
and may include any information delivery media. A "modu
lated data signal” may be a signal that has one or more of its
characteristics set or changed in Such a manner as to encode
information in the signal. By way of example, and not limi
tation, communication media may include wired media Such
as a wired network or direct-wired connection, and wireless
media Such as acoustic, radio frequency (RF), microwave,
infrared (IR) and other wireless media. The term computer
readable media as used herein may include both tangible
storage media and communication media.
Computing device 900 may be implemented as a portion of

a small-form factor portable (or mobile) electronic device
Such as a cell phone, a personal data assistant (PDA), a per
Sonal media player device, a wireless web-watch device, a
personal headset device, an application specific device, or a
hybrid device that include any of the above functions. Com
puting device 900 may also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

Articles of manufacture and/or systems may be employed
to perform one or more methods as disclosed herein. FIG. 10
illustrates a block diagram of an example article of manufac
ture having a computer program product 1000 for metering
usage of components of an integrated circuit, in accordance
with various embodiments of the present disclosure. The
computer program product 1000 may include non-transitory
computer-readable storage medium 1002 and plurality of
programming instructions 1004 stored in the computer-read
able storage medium 1002.

In various ones of these embodiments, programming
instructions 1004 may be configured to enable an apparatus,
in response to execution by the apparatus, to perform opera
tions including:

10

15

25

30

35

40

45

50

55

60

65

12
identifying a combined predicate and branch target predic

tion based at least in part on one or more instructions
which have been previously executed, the prediction
comprising one or more predicted predicate values for
the predicated instructions in the first block of code:

executing, on the computing device, one or more predicted
predicated instructions out of the predicated instructions
in the block based at least in part on the predicted predi
cate values;

based on the predicted predicated instructions, predicting a
predicted branch target location pointing to a second
block of code; and

continuing execution with the second block of code.
Computer-readable storage medium 1002 may take a vari

ety of forms including, but not limited to, non-volatile and
persistent memory, such as, but not limited to, compact disc
read-only memory (CDROM) and flash memory.
The herein described subject matter sometimes illustrates

different components or elements contained within, or con
nected with, different other components or elements. It is to
be understood that such depicted architectures are merely
examples, and that in fact many other architectures may be
implemented which achieve the same functionality. In a con
ceptual sense, any arrangement of components to achieve the
same functionality is effectively “associated such that the
desired functionality is achieved. Hence, any two compo
nents herein combined to achieve a particular functionality
may be seen as “associated with each other such that the
desired functionality is achieved, irrespective of architectures
or intermedial components. Likewise, any two components
so associated may also be viewed as being "operably con
nected’, or “operably coupled, to each other to achieve the
desired functionality, and any two components capable of
being so associated may also be viewed as being "operably
couplable', to each other to achieve the desired functionality.
Specific examples of operably couplable include but are not
limited to physically mateable and/or physically interacting
components and/or wirelessly interactable and/or wirelessly
interacting components and/or logically interacting and/or
logically interactable components.

Various aspects of the subject matter described herein are
described using terms commonly employed by those skilled
in the art to convey the substance of their work to others
skilled in the art. However, it should be apparent to those
skilled in the art that alternate implementations may be prac
ticed with only some of the described aspects. For purposes of
explanation, specific numbers, materials, and configurations
are set forth in order to provide a thorough understanding of
the illustrative examples. However, it should be apparent to
one skilled in the art that alternate embodiments may be
practiced without the specific details. In other instances, well
known features are omitted or simplified in order not to
obscure the illustrative embodiments.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art may trans
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

It will be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open’ terms (e.g., the term “including should be inter
preted as “including but not limited to the term “having
should be interpreted as “having at least, the term “includes’
should be interpreted as “includes but is not limited to.” etc.).

US 9,021,241 B2
13

It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of Such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may contain usage of the introductory phrases “at least
one' and “one or more' to introduce claim recitations. How
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles 'a' or “an limits any particular claim containing
Such introduced claim recitation to inventions containing
only one Such recitation, even when the same claim includes
the introductory phrases “one or more' or “at least one' and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an
should typically be interpreted to mean “at least one' or “one
or more'); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci
tation should typically be interpreted to mean at least the
recited number (e.g., the bare recitation of “two recitations.”
without other modifiers, typically means at least two recita
tions, or two or more recitations). Furthermore, in those
instances where a convention analogous to “at least one of A,
B, and e, etc. is used, in general Such a construction is
intended in the sense one having skill in the art would under
stand the convention (e.g., “a system having at least one of A,
B, and C would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and e
together, Band e together, and/or A, B, and C together, etc.).
In those instances where a convention analogous to "at least
one of A, B, or C, etc. is used, in general Such a construction
is intended in the sense one having skill in the art would
understand the convention (e.g., “a system having at least one
of A, B, or C would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and C
together, Band C together, and/or A, B, and C together, etc.).
It will be further understood by those within the art that
virtually any disjunctive word and/or phrase presenting two
or more alternative terms, whether in the description, claims,
or drawings, should be understood to contemplate the possi
bilities of including one of the terms, either of the terms, or
both terms. For example, the phrase “A or B will be under
stood to include the possibilities of “A” or “B” or “A and B.”

Various operations may be described as multiple discrete
operations in turn, in a manner that may be helpful in under
standing embodiments; however, the order of description
should not be construed to imply that these operations are
order dependent. Also, embodiments may have fewer opera
tions than described. A description of multiple discrete opera
tions should not be construed to imply that all operations are
necessary. Also, embodiments may have fewer operations
than described. A description of multiple discrete operations
should not be construed to imply that all operations are nec
essary.

Although certain embodiments have been illustrated and
described herein for purposes of description of the preferred
embodiment, it will be appreciated by those of ordinary skill
in the art that a wide variety of alternate and/or equivalent
embodiments or implementations calculated to achieve the
same purposes may be substituted for the embodiments
shown and described without departing from the scope of the
disclosure. Those with skill in the art will readily appreciate
that embodiments of the disclosure may be implemented in a
very wide variety of ways. This disclosure is intended to cover
any adaptations or variations of the embodiments discussed

10

15

25

30

35

40

45

50

55

60

65

14
herein. Therefore, it is manifestly intended that embodiments
of the disclosure be limited only by the claims and the equiva
lents thereof.
What is claimed is:
1. A computer-implemented method for execution-time

prediction of computer instructions, the method comprising:
generating, on a computing device, a combined prediction

based at least in part on a control point history wherein
the combined prediction comprises one or more predic
tions for predicated instructions and one or more branch
target predictions for branch target instructions, wherein
the combined prediction relates to one or more blocks of
instructions, wherein the control point history was gen
erated at a first time and the combined prediction is
generated at a second time, wherein the control point
history includes one or more past predicate values evalu
ated for past predicated instructions and/or past branch
targets evaluated for past branch target instructions, and
wherein the first time is before the second time;

fetching block instructions for the one or more blocks
based at least in part on the combined prediction;

executing, on the computing device, the one or more pre
dicted predicated instructions based at least in part on
the combined prediction; and

proceeding with execution on the computing device at a
predicted branch target location based at least in part on
the one or more branch target predictions.

2. The method of claim 1, wherein generating the com
bined prediction comprises:

generating one or more predicted predicate values based on
the control point history; and

wherein the block instructions, which correspond to the
one or more predicted predicated instructions, are gen
erated based on the one or more predicted predicate
values.

3. The method of claim 2, wherein proceeding with execu
tion comprises predicting the branch target location based on
the one or more predicted predicate values.

4. The method of claim 3, wherein predicting the branch
target location based on the one or more predicted predicate
values comprises following a path through a prediction con
trol flow graph based at least in part on the one or more
predicted predicate values.

5. The method of claim 4, wherein the computer instruc
tions are in a block atomic architecture, the method further
comprising:

generating, by the computing device, the prediction control
flow graph for a first block of the one or more blocks of
instructions; and

wherein:
predicates in the first block of instructions are repre

sented as nodes in the prediction control flow graph;
and

branch targets are represented as leaves in the prediction
control flow graph.

6. The method of claim 4, wherein following the path
through the prediction control flow graph comprises follow
ing edges between predicates based at least in part on the one
or more predicted predicate values.

7. The method of claim 2, wherein generating the one or
more predicted predicate values comprises generating mul
tiple levels of the one or more predicted predicate values in
parallel.

8. The method of claim 7, wherein generating multiple
levels of the one or more predicted predicate values in parallel
comprises, for a level n and the control point history compris
ing a predicate history of length k:

US 9,021,241 B2
15

generating a predicted predicate value for level n based on
a last k predicates;

generating two predicted predicate values for level n+1
based on a last k-1 predicates and two possible predi
cates for level n; and

resolving which of the two predicted predicate values for
level n+1 should be used based on the predicted predi
cate for level n.

9. The method of claim 7, wherein generating multiple
levels of the one or more predicted predicate values in parallel
comprises generating predicted predicate values for up-to a
particular number of levels j in a block of instructions.

10. The method of claim 9, wherein, after predicted predi
cate values are generated for a block of instructions compris
ing a number of predicate levels in the block that is greater
thanj, generating multiple levels of the one or more predicted
predicate values in parallel comprises:

repeatedly generating predicted predicate values in mul
tiples of j until the number of predicate levels in the
block is exceeded; and

discarding predicted predicate values beyond the number
of predicate levels in the block.

11. The method of claim 10, wherein generating multiple
levels of the one or more predicted predicate values in parallel
further comprises accessing a stored value associated with the
block of instructions and representing the number of predi
cate levels in the block.

12. The method of claim 2, wherein:
generating the one or more predicted predicate values com

prises performing a lookup of a particular predicted
predicate value based on use of the control point history
as an index.

13. The method of claim 1, wherein the control point his
tory further comprises one or more past predicated instruc
tions which were previously executed during an ongoing
execution by a program.

14. A system for predictive runtime execution of computer
instructions, the system comprising:

one or more computer processors;
a combined prediction generator configured to accept a

history of past predicate values and/or past branch target
predictions as input and to generate a combined predic
tion, based on the accepted history, in response to opera
tion by the one or more processors, wherein the com
bined prediction comprises one or more predictions for
predicate values and one or more branch target predic
tions for branch instructions, wherein the combined pre
diction relates to one or more blocks of instructions;

an instruction fetch and execution control configured to
control the one or more processors, in response to opera
tion by the one or more processors, to:
fetch block instructions for the one or more blocks of

instructions, wherein the block instructions are based
at least in part on the combined prediction;

execute one or more predicted predicated instructions
based on the predicted predicate values obtained from
the combined prediction; and

proceed with execution of fetched instructions at a pre
dicted branch target location, wherein the predicted
branch target location is based at least in part on the
combined prediction.

15. The system of claim 14, wherein the instruction fetch
and execution control is further configured to predict the
branch target location based at least in part on the one or more
predicted predicate values, in response to operation by the
one or more processors.

10

15

25

30

35

40

45

50

55

60

65

16
16. The system of claim 15, further comprising:
a storage medium, coupled to the one or more computer

processors; and
one or more prediction control flow graphs stored on the

storage medium, wherein respective prediction control
flow graphs are configured, for respective blocks of
code, to represent predicates in the blocks of code as
internal nodes and branches to other blocks of code as
leaves.

17. The system of claim 16, wherein the instruction fetch
and execution control is configured to predict the branch
target location by:

traversal of a path through the prediction control flow
graph according to the one or more predicted predicate
values; and

after a leaf is reached by traversal of the path, predict a
location of a code block branched to at the leaf as the
predicted branch target location.

18. The system of claim 14, wherein the combined predic
tion generator is configured to generate the combined predic
tion by use of a history of past predicate values as a lookup
index to identify the one or more predicted predicate values,
in response to operation by the one or more processors.

19. The system of claim 18, wherein the combined predic
tion generator is configured to generate the combined predic
tion by performance of multiple lookups in parallel, in
response to operation by the one or more processors.

20. An article of manufacture, comprising:
a tangible computer-readable medium; and
a plurality of computer-executable instructions stored on

the tangible computer-readable medium, wherein the
computer-executable instructions, in response to execu
tion by an apparatus, cause the apparatus to perform
operations to schedule instructions to execute a first
block of code that includes predicated instructions and
one or more branch targets, the operations including:
identifying a combined prediction based at least in part

on one or more past predicate values, the combined
prediction comprising one or more predictions for
predicate values for the predicated instructions in the
first block of code, and a branch target prediction for
the first block of code, wherein past predicated
instructions corresponding to the past predicate val
ues were executed at a first time and the combined
prediction is identified at a second time, and wherein
the first time is before the second time;

fetching one or more branch instructions based on the
branch target prediction of the combined prediction;

executing one or more predicted predicated instructions
out of the predicated instructions in the first block
based at least in part on the one or more predicted
predicate values;

based at least in part on the branch target prediction or
the one or more branch instructions, predicting a
branch target location that points to a second block of
code; and

continuing execution with the second block of code.
21. The article of claim 20, wherein predicting the branch

target location comprises following a path through a predic
tion control flow graph for the first block of code to identify
the branch target location.

22. The article of claim 21, wherein the operations further
comprise generating, for respective blocks of code in a com
puter program, respective prediction control flow graphs.

US 9,021,241 B2
17

23. The article of claim 20, wherein identifying the com
bined prediction comprises performing a lookup of the one or
more predicted predicate values based on a history of past
predicate values.

24. The article of claim 23, wherein performing the lookup 5
of the one or more predicted predicate values comprises:

performing multiple lookups of potential predicate values
in parallel; and

for potential predicate values at a level n, resolving the
potential predicate values using a particular predicate 10
value at a level n-1.

k k k k k

18

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 9,021,241 B2 Page 1 of 2
APPLICATIONNO. : 13/321807
DATED : April 28, 2015
INVENTOR(S) : Burger et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the title page,

On Page 2, item (56), under “OTHER PUBLICATIONS'', in Column 2,
Line 1, delete “dowloaded and insert -- downloaded --, therefor.

On Page 2, item (56), under “OTHER PUBLICATIONS'', in Column 2,
Line 4, delete “Mcdonalg and insert -- Mcdonald --, therefor.

On Page 2, item (56), under “OTHER PUBLICATIONS'', in Column 2,
Line 5, delete “dowloaded and insert -- downloaded --, therefor.

On Page 2, item (56), under “OTHER PUBLICATIONS'', in Column 2,
Line 6, delete “24 page.” and insert -- 24 pages. --, therefor.

In the drawings,

In the drawing sheets, consisting of Fig. 7, should be deleted to be replaced with the drawing sheet,
consisting of Fig. 7, as shown on the attached page.

In the specification,

In Column 1, Lines 8-9, delete “35 U.S.C. S371 and insert -- 35 U.S.C. S 371 --, therefor.

Signed and Sealed this
Twenty-seventh Day of October, 2015

74-4-04- 2% 4
Michelle K. Lee

Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 2

U.S. Patent Apr. 28, 2015 Sheet 7 of 10 9,021,241 B2

FO

Fig. 7

Generate two
predicted predicate
Wales for ewel n-1

Generate four
predicted predicate
Wallies for leve F-2

Generate predicted
predicate value for

ever

Resolve predicate values

Number of
predicted predicates >.

nimber of backs

745 .

YES
S.O.,

