

US006649631B1

(12) United States Patent

Orme et al.

(10) Patent No.: US 6,649,631 B1

(45) **Date of Patent:** Nov. 18, 2003

(54) COMPOSITIONS AND METHODS FOR TREATING BONE DEFICIT CONDITIONS

(75) Inventors: Mark W. Orme, Seattle, WA (US);
Nand Baindur, Edmonds, WA (US);
Kirk G. Robbins, Rendon, WA (US);
Scott M. Harris, Seattle, WA (US);
Maria Kontoyianni, Seattle, WA (US);
Laurence H. Hurley, Austin, TX (US);
Sean M. Kerwin, Round Rock, TX
(US); Gregory Mundy, San Antonio,
TX (US); Charles Petrie, Woodinville,
WA (US)

WA (US)

(73) Assignees: The Board of Regents of the
University of Texas System, Austin,
TX (US); ZymoGenetics Corporation,
Seattle, WA (US); OsteoScreen, San
Antonio, TX (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/297,188 (22) PCT Filed: Oct. 23, 1997 (86) PCT No.: PCT/US97/18864 § 371 (c)(1), (2), (4) Date: Nov. 19, 1999

(87) PCT Pub. No.: WO98/17267PCT Pub. Date: Apr. 30, 1998

(56) References Cited

U.S. PATENT DOCUMENTS

4,761,471	A 8/1988	Urist 530/840
5,280,040	A 1/1994	Labroo et al 514/442
5,393,306	A 2/1995	Tzikas et al 8/639
5,441,964	A 8/1995	Bryant et al 514/324
5,523,309	A 6/1996	Bryant et al 514/320
5,622,974	A 4/1997	Muehl 514/320

FOREIGN PATENT DOCUMENTS

EP GB	3938561 1161492	5/1991 8/1969
WO	WO90/11366	10/1990
WO	WO92/03125	3/1992
WO	WO93/10113	5/1993
WO	WO93/20859	10/1993
WO	WO95/10513	4/1995
WO	WO95/24211	9/1995
WO	WO96/38590	12/1996
WO	WO97/15308	5/1997

OTHER PUBLICATIONS

"27-Heterocycles," Chemical Abstracts, (1991) 115(1)(Abstract No. 115:8533):833.

"28-Heterocycles Compounds (More than One Hetero Atom)," Chemical Abstracts, (1997) 127(2)(Abstract No. 127:17703)566.

"2–Mammalian Hormones," Chemical Abstracts, (1988) 108(9)(Abstract No. 108:69162):97.

Alberti, G., et al., *Ricerche Sui Coloranti Cationici per Fibra Acrilica*, La Chimica E L'Industria, (1974) 56(7):495–97.

Ayyangar, N.R., et al., *Polycyclic Compounds Part VI Structural Features of C.I. Disperse Yellow 232*, Dyes and Pigments, (1990) 13:301–10.

Hagen, V. et al., "Synthese and Analgetische Wirkung Von 2-Aryliminomethylchinolinen," Die Pharmazie, (1983) 38:437–39 (No English Translation Included).

Harris, S.E., et al., "Effects of Transforming Growth Factor β on Bone Nodule Formation and Expression of Bone Morphogenetic Protein 2, Osteocalcin, Osteopontin, Phosphatase, and Type I Collagen mRNA in Long-Term Cultures of Fetal Rat Calvarial Osteoblasts," J. of Bone and Mineral Research, (1994) 9(6):855–863.

Irving, H.M.N.H. et al., "Studies with Dithizone Part XXI. A Novel Bicyclic Oxidation Product of Dithizone," Anal. Chim. Acta, (1970) 49:261–266.

Jordan, V.C., et al., "Effects of Anti-Estrogens on Bone in Castrated and Intact Female Rats," Breast Cancer Res. Treat., 1987, 10: 31-5.

Kandeel, M.M., "Synthesis of 4'–Nitrophenyl–2–Aminobenzthiazol–6–YL Sulfides and 4'–Nitrophenyl–2–Aminobenthiazol–6–YL Sulfides Containing Dithiocarbamate," Phosphorus, Sulfur, Silicon, (1990) 48:149–55.

Kaneko, C., et al., "Nucleophilic Substitution Reactions of 2–Chloropyridine with Polymethylenediols Using Phase–Transfer Catalysis: Selective Formation of Mono–or Diethers," Synthesis, (1982) 5:465–66.

Kawato, T., et al., "Selectivity of Nucleophilic Substitution on 3–Substituted 2,6–Dichloropyridines with Alkoxide. Pyridinophane Preparation," Heterocycles, (1990) 31(6):1097–104.

(List continued on next page.)

Primary Examiner—Jane Fan

(74) Attorney, Agent, or Firm-Morrison & Foerster, LLP

(57) ABSTRACT

Compounds containing two aromatic systems covalently linked through a linker containing one or more atoms, or "linker" defined as including a covalent bond per se so as to space the aromatic systems at a distance 1.5–15 Å, are effective in treating conditions associated with bone deficits. The compounds can be administered to vertebrate subjects alone or in combination with additional agents that promote bone growth or that inhibit bone resorption. They can be screened for activity prior to administration by assessing their ability to effect the transcription of a reporter gene coupled to a promoter associated with a bone morphogenetic protein and/or their ability to stimulate calvarial growth in model animal systems.

6 Claims, 177 Drawing Sheets

OTHER PUBLICATIONS

Kim, S., et al., "Preparation of Multivesicular Liposomes," Biochimica Biophysica Acta, (1983) 728:339:348.

Kimmel, D.B., et al., "The Effect of Recombinant Human (1–84) or Synthetic Human (1–34) Parathyroid Hormone on the Skeleton of Adult Osteopenic Ovariectomized Rats," Endocrinology, (1993) 132(4):1577–84.

Ksander, G.A., et al., "Exogenous Transforming Growth Factor–Beta 2 Enhances Connective Tissue Formation and Wound Strength in Guinea Pig Dermal Wounds Healing by Secondary Intent," Ann. Surg., (1990) 211(3):288–94.

Laval–Jeantet, A.–M., et al., "Dual–Energy X–Ray Absorptiometry of the Calcaneus: Comparison with Vertebral Dual–Energy X–Ray Absorptiometry and Quantitative Computed Tomography," Calcif. Tissue Intl., (1995) 56:14–8.

Leserman, L.D., et al., "Targeting to Cells of Fluorescent Liposomes Covalently Coupled with Monoclonal Antibody or Protein A," Nature, (1980) 288:602–604.

Lugovkin, B. P.; Zh Obshch Khim (1972) 42:966–69 (No English Translation Included).

Mayer, L.D., et al., "Vesicles of Variable Sizes Produced by a Rapid Extrusion Procedure," Biochimica et Biophysica Acta, (1986) 858:161–8.

McDonald, W. S., et al., "An Unusual Bicyclic Oxidation Product of Dithizone," Chemical Communications, (1969) 392–3.

Morimoto, T., et al., "Decarboxylation Reactions. VI. Reactions of α -Arylmethyleneamino-Sustituted Derivatives of Pyridine, Quinoline, and Isoquinoline with Trichloroacetic Anhydride," Chem. Pharm. Bull., (1977) 25(7):1607–9.

Mundy, G.R., "Cytokines and Growth Factors in the Regulation of Bone Remodeling," J. Bone and Mineral Research, (1993) 8(Supplement 2):S505–S510.

Mundy, G.R., "Regulation of Bone Formation by Bone Morphogenetic Proteins—and Other Growth Factors," Clinical Orthopaedics and Related Research, (1996) 324:24–8. Olson, F., et al., "Preparation of Liposomes of Defined Size Distribution by Extrusion through Polycarbonate Membranes," Biochimica et Biophysica Acta, (1979) 557:9–23. Renault, J., et al., "Chimie Organique," C. R. Acad. SC. Paris, Serie C (1975) 280:1041–43.

Salem, M.A.I., et al., "Synthesis of Some New 2–[2–(Chlorobenzoyl) Vinyl]–4H–3, 1–Quinazolin–4–one Derivatives," Egypt J. Chem., (1984) 27(6):779–87.

Sampath, T.K., et al., "Isolation of Osteogenin, an Extracellular Matrix-Associated, Bone-Inductive Protein, by Heparin Affinity Chromatography, "4Proc. Natl. Acad. Sci. USA, (1987)84:7109–13.

Schwarz, W., et al., "Potentielle Antiöstrogene Vom Typ des 1,2–Diphenyl–1–but–1–ens," Arch. Pharm., (1991) 324(4):223–9.

Stein, G.S., et al., "Bone Cell Differentiation: A Functionally Coupled Relationship Between Expression of Cell–Growth–and Tissue–Specific Genes," Current Opinion in Cell Biology (1990) 2:1018–27.

Szoka, F., et al., "Procedure for Preparation of Liposomes with Large Internal Aqueous Space and High Capture by Reverse–Phase Evaporation," Proc. Natl. Acad. Sci. USA, (1978) 75(9):4194–8.

Tencer, A.F., et al., "The Effect of Local Controlled Release of Sodium Fluoride on the Stimulation of Bone Growth," J. Biomed. Mat. Res., (1989) 23: 571–89.

Urist, M.R., "Bone: Formation by Autoinduction," Science, (1965) 150:893-9.

Watts, C.K.W., et al., Studies on the Ligand Specificity and Potential Identify of Microsomal Antiestrogen–Binding Sites, Mol. Pharmacol., 1987, 31:541–51.

Wozney, J.M., "The Bone Morphogenetic Protein Family and Osteogenesis," Molecular Reproduction and Development (1992) 32:160–7.

Wozney, J.M., et al., "Novel Regulators of Bone Formation: Molecular Clones and Activities," Science (1988) 242:1528–1534.

Zamboni, R., et al., "Development of a Novel Series of Styrylquinoline Compounds as High–Affinity Leukotriene D_4 Receptor Antagonists: Synthetic and Structure–Activity Studies Leading to the Discovery of (\pm) –3–[[[3–[2-(7–Chloro–2–quinolinyl)–(E)–ethenyl]phenyl] [[3–(dimethylamino)–3–oxopropyl]thio]methyl]thio]propi-

onic Acid," J. Med. Chem., (1992) 35:3832–44.

Ar ¹ - linker 1.5 - 15A	(1)	
Ar ¹	Ar 2	
contains 5-membered heterocycle	substituted or unsubsituted benzene	II-A
contains 5-membered heterocycle	substituted or unsubstituted naphthalene	II-B
contains 5-membered heterocycle	contains 6-membered heterocycle	II-C
contains 5-membered heterocycle	contains 5-membered heterocycle	II-D
contains 6-membered heterocycle	substituted or unsubstituted benzene	II-E
contains 6-membered heterocycle	substituted or unsubstituted naphthalene	II-F
contains 6-membered heterocycle	contains 6—membered heterocycle	II-G
substituted or unsubstituted naphthalene	substituted or unsubstituted benzene	II-H
substituted or unsubstituted naphthalene	substituted or unsubstituted naphthalene	III
substituted or unsubstituted benzene	substituted or unsubstituted benzene	IIJ

FIG. I

	-C9 CELLS		10/1/96				
5x 10	3 CELLS/WELL						
	Mu	READ 1	READ 2	AVERAGE	INDUCTION	AVE-BASAL	%MAX
0S-8		0.21	0.22	0.22	0.18	-0.99	-17.90
	31.250	3.96	4.44	4.20	3,49	3.00	54.26
	9.766	6.99	6.46	6.72	5.59	5.52	100.00
	3.052	4.62	4.88	4.75	3.95	3,55	64,22
	0.954	3.13	3.16	3.14	2.61	1.94	35.12
	0.298	2.75	2.59	2.67	2.22	1.47	26.58
	0.093	2.10	2.04	2.07	1.72	0.87	15.77
	0.029	1.56	1.71	1.63	1.36	0.43 0.23	7.60
	0.0091	1.45	1.42	1,44	1.19		4.21
	0.0028	1.28	1.37	1.33	1.10	0.12	2.25
	0.0000	1.32	1.30	1.31			
	0.0000	1.20	1.00	1.10			
		AVERAGE BA	SAL	1.20			
% MAX	100.00 — 80.00 — 60.00 — 40.00 — 20.00 —						 0S−8
8%	80.00 - 60.00 - 40.00 -	0.01	0.10	1	.00	10.00	◆- 0S-8 100.00

FIG. 2

NNC#	MOL.WEIGHT	CONCENTE	RATION	%RESPONSE	
N.					
ľ		Ì			
50-0194	430.33			1	
50-0194	+50.55	100.00	uM	-19.190	
		31.25		32.450	
		9.77	uМ	-14.240	
		3.05		-11.330	
		953,67		-12.790	
		298.02		-13,450	
		93.13		-12.290	
		29.10		-9.440 -6.450	
		9,09 2.84		-8.130	
		888.18		-3.320	
1 ~ ~				1 3.323	
NY THE					
N D			·	1	
50-0195	275,36				
50-0195		100.00		-4.630	
		31.25		16.790	
	-	9.77 3.05		62.830 102.720	
		953.67		60.860	
	ļ	298.02		32,450	
		93.13		19.340	
		29.10		17.220	
		9.09	nM	5.640	
		2.84		4.840	
		888.18	рМ	5.640	
1	- [
O_NTO				1	
50-0196	276.30	400.00	<u> </u>	1	
50-0196		100.00		-16.210	
	+	31.25 9.77		-8.560 11.620	
	<u> </u>	3.05	i uM	27.790	
		953.67		18.390	
		298.02		6.230	
		93.13	nM	12.420	
		29.10		12.630	
		9,09	nM (6.590	
		2.84	l nM	7.970	
		888.18	В рМ	5.060	

FIG. 3

NNC#	MOLWEIGHT	CONCENT	DATION	%RESPONSE	
-	MOLITEIGHT	CONCENT	I	16RESPUNSE	
N N					
l N					
·					
50-0194	430.33				
50-0194	130.00	100.00	иМ	-19.190	
		31.25		32.450	
		9.77		-14.240	
		3.05	uM	-11.330	
		953,67		-12.790	
		298.02		-13.450	
		93.13	nM	-12.290	
		29.10		-9,440	
·		9,09	nM	-6.450	
	_	2.84 888.18	nM	-8.130 -3.320	
	1	888.18	рм	-5.320	
NO WAS					
N					
50-0195	275.36				
50-0195	273.30	100.00	иM	-4.630	
		31.25		16.790	
		9.77		62.830	
		3.05		102.720	
		953.67		60.860	
		298.02		32.450	
		93.13	nM	19.340	
		29.10	nM	17.220	
		9.09	nM	5.640	
		2.84		4.840	
		888.18	рМ	5.640	
· •					
<u> </u>					
0 ~ 0			ł		
			1		
50-0196	276.30				
50-0196		100.00		-16.210	
		31.25		-8.560	
		9.77		11.620	
	_	3.05		27.790	
		953.67		18,390	
		298.02		6,230	
		93.13		12.420	
		29.10		12.630	
	 	9.09	InM InM	6.590	
		2.84 888.18	InM	7.970 5.060	-
<u> </u>		000.10	15	1 3.000	

FIG. 3A

Sheet 5 of 175

	Sheet 5 of 175				
			Γ		
	1				
			ļ		
l l					
W ~					
ı					
50-0197 50-0197	274.37				
30-0197		100.00		-18.250	
		31.25 9.77		-14.980	
		3.05		4.040 93.790	
	 	953.67		205.530	
		298.02		242,920	
		93.13		195.890	
		29,10		115.320	
		9.09		85.630	
		2.84	nM	54.380	
u u		888.18	рМ	33,180	
S					
59-0008	254.32				
	1		1		
, N , J ,	1		ļ		
N			ļ		
59-0019	59-0019	400.00	ļ		
59-0019		100.00		-22.240	
	 	31.25 9.77	UM	-22.670	
	+	3.05		-17.470 74.490	
		953.67		198.080	
	†	298.02		258.340	
	<u> </u>	93.13		225.350	
		29.10		75.220	
		9.09		24.030	
		2.84	пM	34.480	
		888.18	рМ	-3.740	
	1				
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			1		
CI					
59-0020	266.73				
59-0020		100.00		-16.510	
	 	31.25	luM 	-16.040	
	 	9.77		-0.270	
	 	3.05	JuM I-V	96.490	
	 	953.67	INM	153.320	
	 	298.02 93.13	IIIM	110.240	
		ყე. I ე	LIM	60.030	

FIG. 3B

Nov. 18, 2003

29.10 nM	37.870
9.09 nM	24.820
2.84 nM	20.500
888.18 pM	13.310

FIG. 3C

N CI				
59-0021 F	284.72			
59-0021	1 2011/2	100.00	uM	-16.310
		31.25		-12.850
		9.77		84.130
		3.05	uM	89.940
		953.67		65,750
		298.02		33.940
		93.13		22.560
		29,10		25.020
		9.09 2.84	nM .	13.910 33.270
		888.18	nM nM	15.500
ı		220.10	F-11	
Ň				
S				
59-0022	266,37	400.00		7.050
59-0022		100.00		7.250
		31.25		-2.070
		9.77		-0.270
		3.05		4.390
		953.67 298.02	nM	3.060 -1.800
	- 	93.13	nM	-0.200
		29.10		-3.270
		9.09		1.130
		2.84	nM	2.590
		888.18	pМ	2.460
			†	
OHO				
" 📉				
59-0023	239.28			
59-0023	203.20	100.00	uM	-12.720
		31.25		33.140
		9.77		56.500
		3.05	uМ	29.550
		953.67	nM	25.360
		298.02	InM	15.700
		93.13		7.380
		29.10		9.710
		9.09 2.84	InM InV	1.000 4.520
		2.04 888.18	InM	-0.010
		000.10	75.M	1 0.010

FIG. 3D

59-0024	220.28				
39-0024	220.28	*****			
N N					
50 0005					
59-0025	224.31	400.00		05.500	
59-0025		100.00		-25.590	
		31.25		14.150	
		9.77		50.690	
		3.05		57.880	
		953.67		38.900	.,
		298.02		28.530	
		93.13	nM	19.660	
		29.10		17.490	
		9.09	nM	-0.600	_
		2.84	InM	-4.190	_
		888.18	рм	4.670	
50 0026	049.00				
59-0026 59-0026	248.29	100.00	uM —	חדם חר_	
103-0020	 			-29.830	
	 	31.25		-9.440	
		9.77		10.470	
		3.05		46.220	
		953,67	nM	107.760	
		298.02	INM - V	86.720	
		93,13	INM	36.850	ļ
		29.10	InM	26.720	
	 	9.09	InM	8.520	
		2.84	IUM	-1.240	
		888.18	ľhw	4.020	L

FIG. 3E

NH					
H 59-0027	250.30				
59-0027 59-0027	200.00	100.00	uM	89,810	
		31.25		54.670	
		9.77		44.940	
		3.05		23.780	
		953.67		8.380	
		298.02		6.330	
		93.13	nM	7.360	
		29.10		3.380	
		9.09		-1.620	
		2.84	nM	-3.670	
	 	888.18	nM	-0.720	
	995 99				
59-0028 59-0028	226.28	100.00		00.750	
33-0020	-	100.00	uM u	-26.750	
		31.25	UM	-16.740 29.550	
	+	9.77	UM.		
		3.05		100.580	
	- 	953.67		54.940	
		298.02	nM 	31.340	
		93.13		7.500	
		29.10		7.500	
		9.09	nM	7.880	
		2.84	nM	3.140	
	1	888.18	[pM	4.670	

FIG. 3F

					
		:			
59-0029	249.27				
59-0029	 	100.00		-15.160	
	ļ	31.25		41.940	
	_	9.77		36,630	
		3.05		7.120	
		953.67		21.880	
		298.02		15.540	
		93.13		1.810	
		29.10		1.370	
		9.09		12.140	
		2.84	nM	-4.230	
		888.18	рΜ	9.040	
N N			,		
N N I					ŀ
50 00704					
59-0030A	233.28	400.00			
59-0030A		100.00		-27.970	
		31.25		-22.830	
		9.77		-5.420	
		3.05		57.280	
		953.67	nM	72.620	
		298.02	nM	53.000	
	 	93.13		29.990	
		29.10		14.630	
	<u> </u>	9.09		3.870	
		2.84		6.970	
		888.18	рм	1.810	
					i
			l		
			ļ	}	
" []					Ī
59-0031	231.30		ł	1	
59-0031		100.00	иM	-25.790	
		31.25	uM	-17.810	
		9.77	uM	20.840	
		3.05	uM	87.380	
		953.67		49.320	
		298.02		43.110	
		93.13		29.530	
		29.10		1.810	
		9.09		1.220	
		2.84	nM	-0.550	
		888.18	pМ	4.160	
L			ш		

FIG. 3G

				Т	_
		1			
		ŀ			
		l			
50,0070	248.29	İ			
59-0032 59-0032	240.29	100.00	пM	-7.780	
39-0032		31.25		40.750	
		9.77		42.820	\neg
		3.05		25.700	
		953.67		31.170	
		298.02		34.410	
		93.13		3.570	
	-	29.10		4.320	
		9.09		-10.000	
		2.84	nM	5.650	
		888.18	рМ	11.990	
Н					- 1
N N	1				1
1 " 8 6					Į
59-0033	248.29				
59-0033	270.23	100.00	uM	-28.180	
		31.25		-11.590	
		9.77		55.300	
	 	3.05		49.710	
		953.67		47.410	
		298.02		0.250	
	1	93.13	nM	7.980	
		29.10		-8.940	
		9.09		-7.630	
		2.84	nM	-0.400	
		888.18	рМ	-5.980	
		-			
- N					
	1				
NAME OF THE PARTY					
" "					
59-0034	268.34		 	1 00 51	
59-0034		100.00	luM	-28.51	
		31.25	JuM	24	
		9.77	UM	73.58	
		3.05	Mul M	37.91	
		953.67	nM	20.09 16.87	
		298.02 93,13	nM	16.8/	
		93,13	3 nM	15.23	
		29.10) InM	28.83	
		9.09	9 n M	9.08	
		2.84	nM P	23.02	
		888.18	рірм	-0.32	

FIG. 3H

			T		
₩ I					
" 0 [] .					
N N	204 70				
59-0035	291.36	100.00		-14.92	
59-0035		31.25		29.17	
		9.77	uM uM	15.87	
		3.05		18.8	
		953.67		3.88	
		298.02		6.15	
		93.13	nM	3.22	
		29.10		-10.03	\neg
		9.09		15.58	
		2.84		-3.56	
		888.18		-7.13	
			· -		
	1				1
~ W \ \ \ \]				-
0					
59-0036	262.31				
59-0036		100.00		-0.98	
		31.25		-3.25	
		9.77		-4.54	
		3.05		-1.95	
		953.67		0.32	
		298.02		-6.49	
		93.13		-17.19	
		29.10		-0.66	
		9.09	nM	-5.52	
		2.84		-9.4	
		888.18	рМ	-16.53	
OH O					
l ĭ' i [i]					
			ł		
			1		
I NO					
59-0037	308.00				
59-0037	- 555.56	100.00) luM	-10.69	
03 0007		31.2		-11.99	
	-		7 uM	-10.03	
		3.0	5 uM	-19.11	
		953.6	7 lnM	-9.4	
	 	298.0	2 nM	2.27	
		93.1	3 nM	-2.9	
		29.1	0 nM	-10.69	
		9.0	9 nM	2.59	
			41	0.00	
		2.8	4 nM	0.66 -2.59	

FIG. 3I

			····	
9				
		1		
ro. 0070	004.70			
59-0038 59-0038	291.36	100.00	11M	-23.430
39-0036		31.25		-8.390
		9.77		-0.100
		. 3.05		-2.860
		953.67		-2.240
		298.02		3.900
		93.13		6.350
		29.10		1.150
		9.09		6.960
		2.84		-4.390
		888.18		-0.380
^				
O L				
ОН				
N I				
1 2 1/11 / 1			1	
50,0070	710.75			
59-0039 59-0039	312.35	100.00	uM	14.170
23-0023		31.25		7.620
		9.77		1.940
		3.05		-3.140
		953.67	nM	-7.770
		298.02	nM	-5.980
		93.13		-8.820
		29.10		-2.390
		9.09		-16.580
		2.84	nM	-4.480
		888.18		-0.450
	1			
)N				
59-0040	290.37			
59-0040		100.00		-20.400
		31.25) uM	-17.310 -8.110
	 	9.7		32.180
			5 uM	36.180
	 	953.67		17.440
	-	298.02	Z INM	
		93.1.		2.040
	1	29.10		10.350
	-		9 nM	6.070 6.960
	 	2.8	4 nM	13.440
		888.1	о Юм	13.440

FIG. 3J

1 5		ļ		
HŅ				
		ĺ		
		İ		
CI				
L Apr			ĺ	
59-0041	501,90	ļ		
59-0041	001100	100.00	uM	-18.37
		31.25		-17.33
		9.77	uM	-5.11
		3.05		3.31
		953.67		-0.77
		298.02		-1.56
		93.13		3.55
		29.10		-11.24 0.25
	 	9.09 2.84		-0.27
	-	888.18		2.02
0	 	000.10	P	2.02
O II .				
I N				
" "	204.70			
59-0042	281,36	100.00	uM	163.51
59-0042	-	31.25		-7.67
	 	9.77		9.41
	 	3.05		0.75
	+	953.67		6.11
	+	298.02	nM	3.82
		93.13	пМ	2.54
	1	29.10		4.07
		9.09	nM	-9.73
		2.84		-0.02
		888.18	рМ	18.37
о н о			-	
O N				
	1		<u> </u>	
	000.00			
59-0043	280.29	100.00	1	20.66
59-0043	 	31.25		7.4
	+		7 uM	-1.29
			ouM	-2.31
		953.6		1.54
		298.02	2 nM	-0.79
		93.1	3 nM	1.52
		29.10	O nM	2.79
	-		9 nM	-0.27
		2.8	4 nM	8.92
		888.1	8 pM	-4.34

FIG. 3K

					
Br				į	1
		1		ĺ	
[1		i	
NH			1		
,					
59-0044	341,21			į	}
59-0044	J+1,21	100.00	uM .	7.38	
33 0011		31.25		11.72	
		9.77	uМ	12.49	
		3.05	uМ	-0.52	
		953.67		0.5	
		298.02		6.11	
		93.13	nM	-1.54	
		29.10	nM	19.14	
		9.09		7.13	
		2.84		-2.06	
	·	888.18		5.84	
0 > >0H					
1					
				İ	
N	007.77				-
59-0045 H 59-0045	283.33	100.00	IIM I	52.37	64.460
59-0045		31.25		148.43	192.960
		9.77		204.47	422.540
		3.05		280.3	437.020
		953.67		254.82	410.890
		298.02		218.21	266.090
		93.13	nM	196.98	183.730
	1	29.10		96.06	80.440
		9.09		67.35	55.530
		2.84		52.99	44.160
			}		
	1				
` ` ` ` ` `				,	
CI 59-0046	389.37				
59-0046	1 000.07	100.00) uM	79.33	
05 00 10	 	31.25	i uM	2.24	
		9.77	7 uM	-1.67	
		3.05		-6.18	
		953.67		0.001	
		298.02	2 nM	-3.63	
		93.13	3 nM	-0.84	
		29.10	Mn C	-8.42	
		9.09	9 nM	3.92	
			4 nM	0.3	1
1		888.18		5.61	

FIG. 3L

					
- N		ļ			
				1	
NA NA					
59-0047	303.37			Į.	
59-0047	303.37	100.00	uM	-6.73	
00 0017		31.25		10.38	
		9.77		-6.16	
		3.05		-1.39	
		953.67		-10.11	
		298.02		-4.49	
		93.13		-7.28	
		29.10		-12.34	
		9.09	nM	-3.08	***************************************
		2.84	nM	-2.26	
		888.18	рМ	-5.34	
				1	
N () N	. :				
0 0					
59-0048	384.50				
59-0048		100.00	uM	-6.73	
		31.25		0.27	
		9.77		-5.61	
		3.05		-2.26	
		953.67		-12.89	
		298.02	nM	-1.69	
		93.13		-4.77	
		29.10		-8.14	
		9.09	nM	-3.92	
		2.84		-11.2	
		888.18	рм	-4.77	
				ļ	
l					
59-0049	251.29				
59-0049	201.20	100.00	uM	4.49	
		31.25		0	
		9.77	'luM	-4.77	
		3.05	uM	1.96	
		953.67	nM	8.69	
		298.02	: nM	-5.04	
		93.13	i nM	-2.24	
		29.10) nM	1.69	
		9.09	nM	-4.49	
		2.84	l]nM	2.24	
	<u> </u>	888.18	ГрМ	-0.3	

FIG. 3M

	T				
		·			
	1				
50 0050	303.36				
59-0050 59-0050	303.50	100.00	uM	45.79	\neg
33-0030	1	31.25		10.02	
	1	9.77		11.29	
	1	3.05		-4.68	
		953.67		-6.92	
		298.02	nM	-5.65	
		93,13	nM	1.69	
		29.10	nM	-7.57	
		9.09	nM	-12.05	
		2,84	nM	-13.63	_
		888.18	pM	5.2	\dashv
Ch2s-CO					
	054.75				
59-0051	251,35	100.00	I.M	32.36	\neg
59-0051	 	31.25		-18.42	\dashv
	 	9.77		-0.55	
	 	3.05		-13.94	
	+	953.67		-12.02	
		298.02	nM	-14.59	
		93.1.	3 nM	-7.55	
		29.10		-11.4	
			9 nM	-14.91	
		2.84	1 nM	-10.74	
		888.18	3 рМ	-20.03	

FIG. 3N

	· · · - · · · · · · · · · · · · · ·				
CI CI					
Cl					
59-0052	393.28	400.00			
59-0052		100.00		-21.62	
		31.25	uM	-13.32 -21.31	
		9.77 3.05		-11.08	
		953.67		-20.66	
		298.02		-17.14	
		93.13	nM	-16.49	
		29.10		-11.4	
		9.09		-10.74	
		2.84	lnM l	-11.08	
		888.18	рМ	-14.59	
Ĭ					
59-0053	354.41				
59-0053		100.00	uM .	-17.14	
		31.25	SluM	-21.31	
		9.77	⁷ uM	-9.47	
	ļ	3.05	uM	-11.08 -0.83	
		953.67 298.02	nM	-0.03	
	 	298.02	InM	-11.4 -9.47	
	 	93.13	O nu	-9.47 -19.72	
	-	29.10	J INM	-18.45	
		9,0	9 nM	_10.40	
	 	888.18	4 nM	-10.09 -2.76	
	1	1 000.10	יואלו ר	-2./0]	

FIG. 30

				· · · · · · · · · · · · · · · · · · ·
NH (
	ļ			
9-0054	236.28		<u> </u>	
9-0054		100.00		-20.04
		31.25		-6.95
		9.77		8.3
		3.05		-3.37
		953.67		-2.4
		298,02		-0.99
		93.13 29.10		-0.99 -1.94
		9.09		5.92
	-	2.84		-2.17
		888.18	pM	-9.31
Q-OH				
3				
	Į.]	
59-0055 HO 0	425.51			
59-0055	120.01	100.00	uM	-13.76
05 -0000		31.25		-9.51
		9.77		-2.02
		3.05		3.24
		953.67		-6.27
		298.02		-4.05
		93.13	nM	-1.62
		29.10	nM	-7.49
		9,09	n <u>M</u>	-7.09
		2.84	nM	-3.04
			1	
O. J. OH				
No*			1	
		İ		
1				
59-0056	512.34			
59-0056		100.0		-1.42
			5 uM	-4.87
			7 uM	0.18
		3.0	5 uM	3.84
		953.6	/ InM	-5.07
		298.0	2 nM	-7.29 0.001
		93.1	3 nM	-4.25
	 		0 nM 9 nM	-1.02
	<u> </u>	9.0	4 nM	-3.85
		2.8	4 nM	-3.85

FIG. 3P

Nov. 18, 2003

N			
, N			
7-37-N			
59-0057 NTN			
59-0057	100.00 uM	-24.150	
	31.25 uM	-24.300	
	9.77 uM	-5.980	
	3.05 uM	-11.500	
	953.67 nM	-13.000	
	298.02 nM	-6.280	
	93.13 nM		
	29.10 nM		
	9.09 nM		
	2.84 nM	-16.290	
N			
ofts!N			
.0, ~ .2, .N, ~ ~)			
59-0058			
59-0058	100.00 uM	4.170	
	31.25 uM	7.620	
	9.77 uM	-1.790	
	3.05 uM	-7.320	
	953.67 nM	-1.940	
	298.02 nM	-6.870	
	93.13 nM		
	29.10 nM		
	9.09 nM	-5.080	
	2.84 nM	1 -12.400	
N- N- >-CI			
LS S N N S -CI			
3 3 4 7 5	i i		
п			
59-0059			
59-0059	100.00 uk		
	31.25 uA		
	9.77 uN		
	3.05 uk	u 0.150	
	953,67 nA	d 6.010	
	298.02 nl	√ <u>-1.910</u>	
	93.13 nk	v -1.760	
	29.10 nk	vi -9.100	
	9.09 nl	м -8.220	
	2.84 nA	M -5.720	

FIG. 3Q

		-	
N-W			1
N-N SSS			
OH			
59-0060 011 59-0060	100.00 uM	A -4.250	
39-0000	31.25 uk		
	9.77 uk		
	3.05 uk		
	953.67 nk		······································
	298.02 nk		
	93.13 nk		-
	29.10 nk		
	9.09 nA		
	2.84 n		
N N N HO			
NENEW			
H0 /			
59-0061			
59-0061	100.00 ul		
	31.25 ul		
	9.77 u		
	3.05 u		
	953.67 n		
	298.02 n 93.13 n		
	29.10 n		
	9.09 n 2.84 n		
	2.04 [1]	M -4.560	
\ \			
NH N-N			
N,'''' N-(`]			
N 5-V			
\ \			
0			
59-0062	100.00	17.040	
59-0062	100.00		
	31.25		
	9.77		
	3.05		
	953.67		
	298.02		1
	93.13		
	29.10	NM 3.230	<u>'L</u>

FIG. 3R

	1 0.00	latt.	8.070
	9.09	nM	0.440
	2.01	, illar	0.770
∕~`c			
A A A	·		
H			
59-0063			
59-0063	100.00	иМ	-2.510
	31.25	L	-6.130
		uM	-8.950
	3.05		-8.020
	953.67		-8.010
	298.02		-2.520
	93.13	nM	-5.810
	29.10		-3.450
	9.09		-4.390
	2.84	nM	-6.280
N			
- N '	1	İ	
59-0064			
59-0064	100.00	uM	-23.090
	31.25	uM	-21.040
	9.77		78.400
	3.05		155.220
	953.67		113.120
	298.02		30.640
	93.13	nM	15.240
	29.10	nM	22.150
	9.09		-0.770
	2.84	nM	4.410
_			
S-C		1	
N-N-N-			
OH μ →			
59-0065			
59-0065	100.00		-2.030
	31.05		-2.980
		⁷ uM	-15.240
	3.05		-15.400
	953.67		-15.240
	298.02		-10.520
	93.13	3 nM	-13.830
	29.10) nM	-5.810
			
	9.09	3 InM	-3.620

FIG. 3S

					
H ₂ N					
59-0066					
59-0066		100.00		10.060	
		31.25		2.680	
		9.77		10.850	
		3.05		14.610	
		953.67	nM - V	0.950	_
		298.02 93.13	nM nV	3.780 1.730	
		29.10		-2.820	
					\dashv
		9.09 2.84	nM	-2.820 -3.920	—
		2.04	11/1	-3.320	\dashv
					- 1
ando					
H 59–0067					
59-0067		100.00	uM	-24.040	\neg
		31.25		-24.890	
		9.77		-1.450	\dashv
		3.05		60.900	\neg
		953.67		133.860	\neg
		298.02	nM	75.330	\neg
		93.13	nM	28.760	\neg
		29.10	nM	20.070	
		9.09	nM	4.980	
		2.84	nM	4.450	
Su so					
Н 59-0068					
59-0068		100.00		-22.130	
		31.25	uM	-7.880	
		9.77	uM	93.900	
		3.05	uM	81.060	
		953.67	пM	22.330	
		298.02	InM	17.300]
		93.13	nM	8.460]
		29.10		-3.530	
		9.09	nM	-4.230	
	1	2.84	InM	-6.140	

FIG. 3T

			
H0 0.			
[
. 0			1
59-0069			
59-0069	100.00		
	31.25		
	9.77		
	3.05		
	953.67		
	298.02	nM -3.710	
	93.13		
	29.10		
	9.09	nM -7.180	
	2.84	nM -4.750	<u>'</u>
			1
N 0 - N			
			1
l s H			1
59-0070			}
59-0070	100.00	uM -25.930	
	31.25		
	9.77	uM 36.060	
	3.05		
	953.67		
	298.02		
	93.13		
	29.10	nM 7.760	
	9.09	nM 7.590	
	2.84		
_ N			
HULL			
V	ļ		
59-0071			
59-0071	100.00	uM -18.65	<u></u>
00 0071	31.25		
	9.77		
	3.05		ōl –
	953.67	nM 76.07	ol
	298.02	nM 31.26	0
	93.13		o
	29,10		0 1
	9.09		
	2.84		
<u></u>			

FIG. 3U

			-	
N S				
S. H 0				
59-0072 59-0072				
59-0072	100.00		-19.750	
	31.25	υM	-18.650	
	9.77		-18.430	
	3.05	иМ	-15.770	
	953.67		9.970	
	298.02		74.740	
	93.13		175.430	
	29.10	nM	213.580	
	9.09	nM	164.320	
	2.84	nM	119.100	
	888.18	pМ	60.770	
F				
F				
- N N N F				
]	
F				
F				
50_0073			1	
59-0073 59-0073	100.00	uM	-3.010	
00 00,0	31.25		-4.830	
	9.77	uM	-9.660	
	3.05		-4.680	
	953.67		-6.500	
	298.02		-2.510	
	93.13		7.140	
	29.10		0.97	
	9.09		-5.5	
	2.84	nM	5.3	
F CI CI F	2.01		9.5	
			1 1	
L F /=N H / N=\				
' ' <u> </u>			1	
l c⊢∕¯¹\̈>				
59-0074 F F				
			1	
59-0074	100.00		-2.85	
	31.25	uM	2.14	
	9.77	uM	-4.85	
	3.05		-3.5	
	953.67		-4.85	
	298.02	лM	9.95	
	93.13		4.47	
	29.10	лM	-8	
	9.09	nM	-4.17	
1	2.84	lnM	6.97	

FIG. 3V

E OI CI			
F N N N F			
F+N N N F F=N H N F O CI-N H			
0			
CI—N=U			
100 0070			
59-0075	100.00 uM	-0.68	
	31.25 uM	-10.16	
	9.77 uM	-5.35	
	3.05 uM	-6.5	
	953,67 nM	1 -0.851	
	298.02 nM 93.13 nM	5.97	
	93.13 nM	0.97	
	29.10 nM	-2.35	
	9.09 nM 2.84 nM	0.32	
	2.04 INM	10.47	
			ł
E CI CI =			
F CI CI F F N N N F			
F L _OH F			Ī
	,		
59-0076			
59-0076 59-0076	100.00 uM	-19.12	
	31.25 uM		
	9.77 uM	10.63	
	3.05 uM	22.43	
	953.67 nM	19.93	····
	298.02 nM	3.47	
	93.13 nM	19.93	
	29.10 nM		
	9.09 nM	14.28	
	2.84 nM	11.3	
F. CI			
1 7 1			
FEW N N F			
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
59-0077 CI F	100.00	- - 00.00	
59-0077	100.00 uM		
	31.25 uM		
	9.77 uM	-10.58 -11.96	
	3.05 uM		
	953.67 nM 298.02 nM		
	93.13 nM		
	29.10 nM		
	9.09 nM		
	2.84 nM		
L	1 2.01 111111	17.7	

FIG. 3W

NEN A	1			ļ.	
					İ
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	İ				
59-0078 I					
59-0078		100.00		-26.540	
·		31.25		-22.560	
		9.77		71.530	
	_	3.05		207.960	
		953.67	nM	379.230	
		298.02	nM	241.460	
		93.13		136.100	
		29.10		84.020	
		9.09	nM	50.350	
		2.84	nM	56.600	
		888.18	рМ	92.520	
					ļ
59-0079					
59-0079		100.00		-34.980	
		31.25		-21.390	
		9.77		37.200	
		3.05		122.580	
		953.67		69.010	
		298.02		64.000	
		93.13		46.490	
		29.10		30.310	
		9.09	nM	33.490	
		2.84	n <u>M</u>	29.760	
					ļ
◇ 0 0				[1
				į į	1
H 🗸			1		
59-0080		100.00	ļ., ———	5 700	
59-0080		100.00		5.390	
		31.25		5.560	
		9.77		6,440	
		3.05		2.440	
		953.67		-5.030	
		298.02	nM .	7.660	
		93.13		-3.630	
		29.10		3.650	
		9.09	lnM	1.050	
		2.84	nM	6.940	
000					
1 H 🗸 '					
59-0081					
	<u></u>		·		

FIG. 3X

50 0001			·
59-0081	100.00	uM	62.840
	31.25		11.300
	9.77		-8.670
	3.05	uM_	2.440
	953.67		-5.200
	298.02 93.13	nM	-2.080
	29.10		1.220
	9.09		-2.250
	2.84	nM nM	1.050
	2.04	1100	-3.300
н			
N. I	1 1		
S	1		
50 0080			
59-0082 59-0082			
J3-000Z	100.00	uM	111.79
	31.25	uM	62.68
	9.77		32.36
	3.05	υM	9.11
	953.67	nM	-10.62
	298.02	n <u>M</u>	-1.86
	93.13		-6.89
	29.10		-3.91
	9.09	n <u>M</u>	2.22
	2.84	пм	16.36
SNN			
50,0007			
59-0083			
59-0083	100.00		48.93
	31.25	<u>uM</u>	40.91
	9.77		25.85
	3.05		17.85
<u> </u>	953.67		8.55
	298.02		3.9
	93.13	<u>nm</u>	2.05
	29.10		7.99
	9.09	nM - M	-3.91
	2.84	пм	3.35
59-0084 OH	[[
59-0084	100.00	uM -	77 670
<u> </u>	31.25		37.670
	9.77	uM	26.050
	3.05	nM	9.210 10.070
	1 0.00]	UIN .	10.070

FIG. 3Y

	953.67	nM	21.700
	298.02	nM	5.900
	93.13		4.870
	29.10	nM	-10.920
	9.09 2.84	nM	10.080
	2.84	InM	-2.080
ÖLLOH		Ì	
50 0005			
59-0085 59-0085	100.00	1.	
33-0003	100.00		17.070
	31.25		41.890
	9.77	uM	18.500
	3.05		20.340
	953.67		22.490
	298.02	nM 	8.090
	93.13 29.10		11.790 1.240
			-0.760
	9.09 2.84	nM nM	5.940
	2.04	TIM	3.940
l M			
ОН			
) VOII	1		
59-0086			
59-0086	100.00	uМ	30.750
	31.25		31.190
	9.77		14.790
	3.05		13.500
	953.67		14.080
	298.02		3.940
	93.13		9.370
	29.10		-2.610
	9.09		-5.040
	2.84	nM	1.530
NHa			
$0 \sim NH_2$			
- Ö			
59-0087			
59-0087	100.00		10.660
	31.25		11.080
	9.77	uM_	3.100
	3.05		-1.320
	953.67		17.070
	298.02	nM	7.950
	93.13	nM	-4.460
	29.10 9.09 2.84	nM	4.510
	2,09	<u>nm</u>	-0.470 9.660
	2,041	1111/1	1 9.0001

FIG. 3Z

NH2			
59-0088			
59-0088	100.00		
	31.25		
	9.77		
	3.05		
	953.67		
	298.02	nM	
	93.13		
	29.10	nM	
	9.09	nM	
	2.84	nM	
I N X []			
· ~			
59-0089			
59-0089	100.00	uM 60.09	
	31.25		
	9.77	uM 65.85	
	3.05		
	953.67		
	298.02	nM 18.42	
	93.13	nM 6.33	
	29.10	nM 13.58	
	9.09		
	2.84	nM -5.77	
A A A		0	
) ~ N			
59-0090			
59-0090	100.00	uM 32.77	,
	31.25	V 517 1	
	9.77		
	3.05	uM 41.3	
	953.67	nM 9.8	
	298.02	nM -1.76	
	298.02 93.13	nM 3.53	
	29.10 9,09 2.84	nM 2.95	
	9.09	nM 2.95	
	2.84	nM 7.8	4
]
59-0091			
59-0091	100.00		
192-0031	100.00	uM 0.26	
1	31.25	uM 13.54	·

FIG. 3AA

	9.77		95.94
	3.05		87.71
	953.67		44.17
	298.02		38.26
	93.13		23.87
	29.10		21.65
	9.09	nM	10.95
	2.84	nM	20.92
59-0092			
59-0092	100.00	uM	-11.56
	31.25		17.84
	9.77		50.19
	3.05	иM	25.84
	953.67		14.4
	298.02		6.77
	93.13	nM	8.62
	29.10		2.22
	9.09		8.38
	2.84	nM n	0.00
	2.04	1111	
59-0093			
59-0093	100.00	иM	-11.67
	31.25		15.02
	9.77		35.44
	3.05		29.89
	953.67		22.88
	298.02		19.56
	93.13		5.18
	29.10		7.39
	9.09		4.56
	2.84		5.9
	2.04	14401	J.5
59-0094			·
59-0094	100.00		-17.69
	31.25		45.15
	9.77	υM	24.97
	3.05		19.81
	953.67		9.35
	298.02	nΜ	1.36
	93.13		9.24
	29.10	nM	-0.48
	9.09 2.84	InM	6.16
t	2.84	InM	1.61

FIG. 3BB

HO0				
NO FO				
i N				
'' 0				
59-0095				
59-0095	100.00	uM		44.7
	31.25			47.61
	9.77			12.78
	3.05			21.49
	953.67			15.01
	298.02	nM		10.22
	93.13	nM		13.98
	29.10			20.31
	9.09	nM		10.9
	2.84	пM		9.21
HO0				
М				
, , ,				
59-0096				
59-0096	100.00	пM		413.05
	31.25			287.23
	9.77	uM.		137.38
	3.05	uM		78.5
	953.67			49.13
	298.02			50.68
	93.13	nM		47.95
	29.10			26.28
	9.09	nM		18.75
	2.84	nM		22.17
1000				
HO 0				
n s				
ïl	·			
59-0097				
59-0097	100.00	Mu		77.47
	31.25			201.9
	9.77			160.93
	3.05	uМ		61.44
	953.67	nM		47.78
	298.02 93.13	nΜ		51.54
	93.13	nM		34.64
	29.10 9.09 2.84	nM		43.18
	9.09	nM nM		39.91 27.13
	2.04	1141	<u>l</u>	4/,13

FIG. 3CC

H0 \ 0				
		1 1		
N N N		1 1		
н 0				
59-0098				
59-0098	100.00			-1.38
	31.25			186.89
	9.77 3.05			221.7 164.69
	953.67			96.94
	298.02			68.25
	93.13	nM		57
	29.10			51.88
	9.09			41.29
	2.84	пМ		33.43
a N				
			ļ	
		1	ĺ	
"		1		
Ϊ		1		
59-0099				
59-0099	100.00		13.040	
	31.25	uM	56.880	
	9.77		119.340	
	3.05	Mul	237.420	
· · · · · · · · · · · · · · · · · · ·	953.67		285.440 164.610	
	298.02 93.13		123.300	-
	29.10		69.240	
	9.09		44.500	
	2.84	l nV	47.390	
	2.0	1	17.000	
∧ N				
N I				
H CI		ŀ		
59-0100				
59-0100	100.00	l _{uu}	-10.020	
33-0100	31.25		-10.730	
· · · · · · · · · · · · · · · · · · ·		7 uM	30.340	
	3.7	5 uM	114.410	
	953.67	7 nM	77.540	
	298.02	2 nM	40.290	
	93.13	3 lnM	35.730	
	29.10	O nM	28.290 17.480	
	29.10 9.09 2.8	9 inM	17.480 11.470	
	2.8	+ IUW	11.4/0	
F. T.				
		1		
HN N-				
\ / \-/				
59-0101	100.0	1.00	00 370	
59-0101	100.0	о јим	26.370	

FIG. 3DD

		31.25	иM	12.440
		9.77		-0.780
		3.05	uМ	10.280
		953.67	nM	2.110
		298.02	nМ	7.860
		93.13		1.140
		29.10		2.820
	ļ.,	9.09	nM	4.150
	 	2.84	nM	5.590
N H				
60,0100				
59-0102 59-0102	284.34	100.00		
J3-010Z	 	100.00		-24.350
		31.25		-11.140
		9.77		63.540
	ļ.,	3.05		121.320
		953.67		79.530
		298.02		72.460
		93.13		66.290
		29.10		45.690 27.260
		9.09 2.84		42.330
	 	888.18	nM	33.430
59-0103 O O'S	313.38			
	0.000	100.00	uM	-29.69
		31.25		-29.53
		9.77		-28.22
		3.05		-27.72
		953.67		-5.58
		298.02		54.15
		93.13		170.95
		29.10	nМ	222.87
		9.09		210.39
		2.84	nM	203.4
		0.80	nM	114.55
TN N O O				
59-0104	297.31	400.00		
	 	100.00		-29.84
	 	31.25		-26.72
	 	9.77	uM 	-29.2
	 	3.05	uM 	-27.05 24.37
	 	953.67 298.02	nM nM	196.42
	 -	296.02 93.13	nM nM	213.89
	<u> </u>	30.10	II IM	1 410.03

FIG. 3EE

	·				
		29.10		220.04	
		9.09	nM	245.42	
		2.84		182.45	
		0.80	nM	119.55	
N. 0					
N N N					
H 11 -0-					
59-0105	267.29				
		100.00		-25.72	
		31.25	uM	-15.89	
		9.77		31.7	
		3.05		54.17	
		953.67	nΜ	53.67	
		298.02	nM	41.35	
	ļ <u></u>	93.13	nM	44.5	
		29.10		39.02	
		9.09		25.38	
		2.84		31.7	
		0.80	nM	18.05	
N. 0					
N H T TO					
590106 H 0	007.74				
139-0100	297.31				
		100.00		-14.05	
		31.25		223.52	
		9.77	uM	202.58	
		3.05	uM	107.73	
		953.67	nM	71.3	
		298.02	nM	44.84	
		93.13		26.54	
	 	29.10		23.05	
	ļ	9.09		27.87	
	 	2.84	nM	12.23	
		0.80	лм	11.4	
H00					
l 🚫 " ~S~					
					ļ
" 0 0					
59-0107	332.38				
		100.00		48.55	
		31.25		22.87	
		9.77		7.19	
		3.05		0.65	
		953.67	nM	11.12	
	ļ <u></u>	298.02	nM	-3.92	
	<u> </u>	93.13		1.09	
L	L	29.10	nM	-15.69	

FIG. 3FF

		9.09	nM	-11.32
		2.84		-2.62
110		0.80	nM	-16.11
H0 \ 0				
10 0				
59-0108	316.31		ļ	
		100.00		227.73
		31.25		96.02
		9.77		58.57
		3.05		37.23
		953.67	nM	18.94
	+	298.02		25.68
		93.13		-4.8
	+	29.10		2.62
		9.0 <u>9</u> 2.84	nM nM	-4.8 3.92
		0.80		4.14
			1111	7,13
HO ~0			1	
N. M. M. O.			•	
н о				
50 0100				
59-0109	316,31			
		100.00		43.12
		31.25	uM	27.64
		9.77	uM	5.89
	 	3.05		6.32
	 	953.67		13.51
	+	298.02 93.13	nM nV	7.85
	 	29.10		3.71
	<u> </u>	9.09		5.01
	 	2.84	nM	-4.58
		0.80	пM	6.98
HOO		7,000		
~ 0	1			
]			
l , L	1			
n 0				
59-0110	286.29			
		100.00	uМ	65.11
		31.25		67.05
		9.77	uМ	35.27
		3.05	uМ	25.26
		953.67	nM	27.01
		298.02	nM	15.24

FIG. 3GG

		93.13		10.68
		29.10		5.89
		9.09	nM	5.45
		2.84		10.24
		0.80	nM	4.14
H O				
H ₂ N OH				
2				
59-0111	152.15			
		100.00	uM	23.360
		31.25	uM	22.330
		9.77		12.260
		3.05	uМ	5.390
		953.67	nM	2.190
		298.02	nM	1.230
		93.13	nM	2.430
		29.10		6.350
		9.09		4.350
		2.84	nM	4.350
		0.80	nM	3.230
59-0112	149.19			
		100.00		2.670
		31.25		4.670
		9.77	uM	2.750
		3.05		3.790
		953.67		4.270
		298.02	n <u>M</u>	1.150
		93,13	nM	9.630
		29.10		0.920
	- 	9.09	nM	0.510
		2.84	nM	12.900
		0.80	пм	2.990
59-0113	274.37			
		100.00		22.010
		31.25	uМ	25.940
		9.77	uM	7.500
		3.05	uM	3.070
		953.67	n <u>M</u>	-0.760
		298.02	n <u>M</u>	-4.690
	 	93.13	uw	-4.790
	+	29.10	nM - ''	5.090
	- -	9.09 2.84	nM nM	0,150 -0,250

FIG. 3HH

Γ			_		
\$ 12]			1	
0=\$=0					
H ₂ N 0	1				
No [‡]			1	1	
59-0114	475.54				
		100.00	uМ	52.030	
	<u> </u>	31.25		36.120	
		9.77		25.840	
		3.05		16.670	
		953.67		12.540	
		298.02	nM	9.420	
		93.13		-1.060	
	-	29.10		2.160	
	-	9.09	InM	-6.000	
		2.84 0.80	INM	2.470	
Cl		Ua.U	IIM	-1.460	
]		
N-N-Y					
59-0115	318.87				
	010.07	100.00	υM	73.700	
		31.25		2.770	
		9.77		-10.430	
		3.05		-12.340	
		953.67		-13.750	
		298.02		-13.960	
		93.13		-11.940	
		29.10		-9.830	
		9.09		-8.820	
		2.84	nΜ	-0.950	
		0.80	nM	-0.050	
M. M.					
O N					
), , , , , , , , , , , , , , , , , , ,					
59-0116	200.70			1	
03 0110	269.30	100.00		74 700	
		100.00 31,25	uM u	31.380	
				109.060 231.070	
		9.77 3.05	uM uM	240.670	
		953,67	nU	132.020	
		298.02	nM nM	75.820	·
		93.13	nM	53.250	
		29.10	nM	47.500	
		29.10 9.09 2.84	nM	39.440 42.170	
		2.84	nM	42.170	
		0.80	nM	31.180	
I S N					
59-0117	268.38				
		100.00	ıМ	-68.520	
	t	100,00	uiti	00.020	

FIG. 3II

		31.25	uM	-7.450
		9.77	uM	111.630
		3.05		64.340
		953.67	nM	4.740
		298.02	nM	-19.270
		93.13		-26.660
		29.10		-28.880
		9.09 2.84		-42.180 -41.300
	† · · · · · · · · · · · · · · · · · · ·	0.80		-39.220
0	t	0.00	HIM	-J9.220
N N N N N N N N N N N N N N N N N N N				
F0 0118	717.70			
59-0118 ⁰	313.36	400.00	1	07.470
	 	100.00		-67.170
		31.25		-56.580
	 	9.77		-58.060
		3.05		-55.720
	 	953.67	nM	-48.200
	 	298.02 93.13		-50.300
	 	29.10		-33.310
	 	9.09		-47.340 -49.310
		2.84		-56.200
		0.80		-57.310
OH OH				
59-0119	314.34			
		100.00	uM	167.500
		31.25	uM	-29.240
		9.77		-57.800
		3.05		-52.030
		953.67		-54.240
		298.02	nM	-53.870
		93.13		-38.110
		29.10		-55,100
	 	9.09	n <u>M</u>	-52.270
	 	2.84	nM	-53.500
>		0.80	nM	-43.650
0H0 OH 0 OH				
59-0120	504.49			
	301175	100.00	иM	-82.790
		31.25	uM	-80.470
	 	9.77		-66.800
	 	3.05	nM	-50.790
		953,67	nM	-54.240
	 	298.02 93.13	nM	-45.250
		9313	nM	-50.660

FIG. 3JJ

		29.10		-50.300
		9.09	nM	-50.300
		2.84		-50.300
		0.80	nM	-43.280
N				
]
59-0121	245.29			
		100.00		-79.690
		31.25		-75.590
		9.77		25.650
		3.05		94.850
		953.67		43.910
		298.02		-1.800
		93.13		-4.150
		29.10		-22.050
		9.09		-31.110
		2.84	nM	-26.760
		0.80	nΜ	-28.270
NH NH				
59-0122	333.39			
		100.00	uM	-19.050
		31.25		-12.080
		9.77		-7.610
		3.05		25.210
	<u> </u>	953.67		83.580
		298.02		87.220
		93.13		63.890
		29.10		42.680
	ļ	9.09		45.320
		2.84		37.780
		0.80	n <u>M</u>	27.030
-N-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-				
59-0123	347.42			
	377.72	100.00	uM.	74.470
		31.25		34.430 34.710
	-	9.77		38.620
		3.05		55.100
		953.67		51.900
		298.02		41.410
		93.13		29.970
		29.10		13.760
		9,09		17.120
	, ,	34 (144)	DM:	[[] [] [] [] []
		2.84		13.480

FIG. 3KK

\ \(\bigcirc \)					
	1			1 1	
0~0	1				
59-0124	350.44				
		100.00	uM	56.640	
		31.25		81.500	
		9.77	uM	145.880	
		3.05	uМ	135.830	
		953.67		268.990	
		298.02	nM	224.290	
		93.13		134.850	
		29.10	nM	91.690	
		9.09	nM	80.390	
		2.84	nM	63.060	
		0.80	nM	51.460	
۰۵؍					
/=< `					
S-					
N N					
∕~\N					
HO N				1 1	
1.0 × N					
_					
ÓН					
59-0125	770 45			1	
39-0123	372.45	100.00			
	<u> </u>	100.00		-6.780	
		31.25		67.530	
		9.77	uM	54.120	
		3.05		28.700	
		953.67		21.580	
		298.02		22.280	
		93.13		22.700	
		29.10		1.630	
		9.09		15.700	
		2.84	nM	9.840	
		0.80	nM	8.460	

FIG. 3LL

N N					
N					
59-0126					
35-0120	260.30	100.00			
		100.00 31.25	UM	-17.390	
	 	9.77		-13.100 9.270	
		3.05	uM	40.530	
		953.67		21.390	
		298.02		25.660	
		93.13		9.430	
		29.10		6.360	
		9.09	nM	6.510	
		2.84	nM	0.080	
		0.80	nM	3.750	
[]		İ
NH	i			Ī	
N					
]				
N N					
				1	
59-0127	329.41				
0.27	323.71	100.00	.11	00.010	
		31.25		-20.610	
	-	9.77	uM	-21.820 -6.060	
		3.05		-3.900	
		953.67		-8.820	
		298.02		-6.200	
		93.13	nΜ	11.880	
		29.10		1.610	
	<u> </u>	9.09	nM .	3.600	
		2.84 0.80	nM -11	-2.070	
_		0.00	LIM	4.220	
0=(N, NH					
l					
н "У—"					
59-0128 ^{CI}	436.34				
		100.00			
		31.25			
		9.77	uM		
		3.05	uM		
		953.67	nM		
		298.02 93.13	nM nM		
		29.10	nM		
		43.10	1 (1)		

FIG. 3MM

	1				
		9.09	nM		
		2.84			
		0.80	nM		
N CI					
50 0120					
59-0129	277.71				
	ļ	100.00		-20.46	
		31.25	uM	-21.21	
		9.77	Mu	44.36	
	 	3.05		4.38	
		953.67 298.02	Inm	5.9 3.6	
		93.13	nM	2.07	
		29.10			
		9.09		4.22 -0.68	
		<u>9.09</u> 2.84		12.48	
	 	0.80	IIIM	-0.53	
S N					
59-0130	287.34				
	207.54	100.00	αM	4 70	
		31.25	ı M	4.38 8.35	
		9.77	uM	5.91	
		3.05		4.98	
		953.67		0.39	
		298.02	nΜ	8.66	
		93.13	nM	2.85	
		29.10		3.6	
		9.09		4.36	-
		2.84		8.96	
		0.80		24.75	
N N N N N N N N N N N N N N N N N N N					
59-0131 CI CI	331.22				
		100.00		8.75	
		31.25		0.12	
		9.77	uM	-10.38	
		3.05		-6.39	
		953.67		-2.81	
		298.02		1.61	
		93.13		-1.98	
		29.10 9.09	nM nV	-2.59	
		2.84	nM	0.14 -5.77	
		2.041	UM	-5.77	

FIG. 3NN

		0.00	1-11	1 051	
		0.80	пм	-0.5	
				1	
N NIL					
N⊓	[.]				
0~N~0					
				1	
59-0132	313.32			<u> </u>	
		100.00	uМ	-17.1	
		31.25		-14.81	
		9,77	uM	-14.37	
		3.05		-12.92	
		953.67	nM -11	-13.54	
		298.02 93.13	nM .	-10.38	
		29.10	n) i	-3.65 -7.66	
		9.09		-6.18	
		2.84	nM nM	-9.97	———
		0.80		-2.81	
		0.00	TIM	-2.01	
]	
()]	
) (N. N.				1	
0~N~0					
				1	,
		i			
50 0477					
59-0133	327.34	400.00			
		100.00		-16.04	
		31.25		-16,91	
		9.77	uM	-17.31	
		3.05	uM	-16.7	
		953.67	nM -V	-9.34	
		298.02 93.13	nM nM	-12.69 -11.23	
		29.10	nM Min	-17.74	
		9.09	nW	6.02	
		2.84	nM	-4.71	
		0.80	nM	0.55	

FIG. 300

59-0134 357.37 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM	
59-0134 357.37 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM	
59-0134 357.37 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM	
59-0134 357.37 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM	
59-0134 357.37 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM	
59-0134 357.37 100.00 uM	
59-0134 357.37 100.00 uM	
59-0134 357.37 100.00 uM	
59-0134 357.37 100.00 uM	
100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM	
31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM	
9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM	
3,05 uM 953,67 nM 298.02 nM 93.13 nM	
953.67 nM 298.02 nM 93.13 nM	
298.02 nM 93.13 nM	
93.13 nM	
29.10 nM	
9.09 nM 2.84 nM	
2.84 nM	
0.80 nM	
N NH	
0~1~0	
	ļ
N	
59-0135 356.39	
100.00 uM -21.3	
31.25 uM -14.16	
9.77 uM -1.98	 -
3.05 uM 0.97	
953.67 nM 11.68	
298.02 nM -1.13 93.13 nM -1.55	
29.10 nM -2.81	
9.09 lnM 12.11	
2.84 nM -5.75	
2.84 nM -5.75 0.80 nM 4.54	
CI CI	
S, >-(>-vit	
59-0136 0 411.87	
100.00 uM	
31.25 uM 9.77 uM 3.05 uM	
9.77 uM	
3.05 uM	
953.67 nM	

FIG. 3PP

		298.02	nM		
		93.13			
		29.10			
		9.09	nM		
		2.84 0.80	nM nM		
^		0.00	11101	 	
AN A					
CI III					
NO					
59-0137	296.71	100.00			
		100.00			·
		31.25 9.77	uM uM		
	 	3.05	uM uW	 	
		953.67		+	
	 	298.02	nM nM	 	
		93.13			
	1	29.10		 	 · · · · ·
		9.09		 	
		2.84			
		0.80	nМ		
<u> </u>				 	
I N CI	1 1				
N					
0=					
59-0138	340.81				
03 0130	340.01	100.00	иM	-6.91	
		31.25	uM	-12.68	
		9.77		4.59	
		3.05		32.61	
		953.67	nM	19.07	
		298.02	nM	8.18	
		93.13		2.26	
		29.10		12.22	
		9.09	nM	56.42	
		2.84	пМ	7.24	
		0.80	nM	1.63	
				1	
0	1				
59-0139	340.43				
0.0100	340.43	100.00	uM.	45.53	
	1	31.25		44.59	
	 	9.77	uM	53.62	
		3.05		30.42	
	1	95 <u>3,67</u>	nW	28.25	
	-	298.02	uM	20.23	
		93.13		18.6	
	_tt.	30.10	I (IAI	10,01	

FIG. 3QQ

	1	00.10	1	
	-	29.10		14.4
		9.09 2.84	nM nV	13.93
	<u> </u>	0.80	nM	18.61 10.05
		0.00	1 1111	10.00
N ₁				
H				
·· cí				
59-0140	289.17			
		100.00	uM	
		31.25		
		9.77	uM	
		3.05	uM	
		953.67	nM	
		298.02	nM	
	 	93.13		
		29.10 9.09		
		9.09 2.84	nM nM	-
		0.80		
△N ¬		0.00	11101	
CI				
0=0-				
59-0141	437.33			
		100.00		-6.76
		31.25		5.69
		9,77		19.85
		3.05	uM	43.96
		953.67		44.73
		298.02 93.13	nM nM	37.12 24.36
	 	29.10		18.6
	-	9.09		26.7
		2.84	nM	15.96
		0.80	nM	7.87
CI N CI				
CI				
59-0142	379.29			
		100.00		9.43
4		31.25	uM	33.72
		9.77	uM	47.33
		3.05	uM	40.19
		953.67	nM	36.53
		298.02 93.13		29.94
	<u>l</u>	30.10	LIM	22.11

FIG. 3RR

		29.10		20.9	
		9.09		19.14	
	ļ	2.84		10.38	
	 	0.80	nM	17.12	
CIN					
cí					
F F					
<u>59-0143 ^{† 1} </u>	447.29				
		100.00	uM	0.4	
		31,25		34.39	
		9.77		42.21	
		3.05		50.57	
		953.67	nM	36.94	
		298.02	nM	27.23	
		93.13	nM	16.99	
		29.10	nM	19.27	
		9.09	лM	14.42	
		2.84		11.33	
		0.80	nM	23.72	
0 S H H0					
59-0144	316.40				
	010110	100.00	uМ	-14.59	
		31.25		-4.44	
		9.77		47.1	
		3.05		53.89	
		953,67		43.11	
		298.02		29.2	
		93.13		18.5	
		29.10		12.9	
		9.09	nM	5.54	
		2.84		3.71	
		0.80	лM	5.87	
NH N F					
NH NH FF					
590145	350.27				
		100.00		435.91	
		31.25		422.15	
		9.77	uM	446.93	
		3.05	uM	434.17	
		953.67	nM	238.34	
944.4.		298.02		45.99	
		93.13	лM	9.22	
		29,10	uM	7.71	
		9.09	nM	0.11	

FIG. 3SS

		2.84	nM	6.27	
		0.80	nM	3.55	
59-0146	246.27				
	210.27	100.00	luŭ.	67.05	
		31.25		-63.05 4.42	
		9.77		-13.73	
		3.05		-16.45	
		953.67		-35.47	
		298.02		-51.25	
		93.13		-50.13	
		29.10		-42.92	
		9.09		- 42.52 -45.64	
		2.84		-56.58	
		0.80	nM	-39.68	
CTS-N-Q					
59-0147	314.36				
	511.00	100.00	i M	-85	
		31.25		-85 -85	
		9.77		-80.29	
		3.05		-41.67	
		953.67		78.69	
		298.02		269.13	
		93.13		323.59	
		29.10		339.88	
		9.09		270.48	
		2.84		245.58	
		0.80	nМ	180.33	
The o					
59-0148					
59-0148	291.35	484 4			
		100.00		-68.38	
		31.25		-36.33	
		9.77	uM	-2.3	
		3.05		12.12	
		953.67		-2.42	
		298.02	nM	-16.21	
		93.13 29.10	nM nM	-30.87	
·		43.10	111VI	-35.58	
	ŀ	a na i	nM :	ולח מד .	l l
		9.09 2.84	nM nM	-39.07 -41.18	

FIG. 3TT

0 🚍 0					
N. M					
[] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			į		
5 H O					
59-0149	329.33				
		100.00		-16.9	
		31.25			
		9.77	иМ	-0.53	
		3.05		15.29	
		953.67	nM	78.78	
		298.02	nM	163.5	
		93.13		223.57	
		29.10		173.93	
		9.09	nM.	122.3	
	ļ ļ	2.84 0.80	nM	98.02	
~ ^		0.60	ITIM	69.06	
Ó, Á, M,					
59-0150	304.39				
		100.00	uМ	63.32	
		31.25	uM	193.32	
		9.77		419.26	
		3.05	uМ	497.21	
		953.67	nM	295.19	
		298.02	nM	193.35	
		93.13		99.46	
		29.10		69.96	
		9.09	nM	59	
		2.84	nM	52.16	
		0.80	nM	48.75	
	1				
l (↑ H					ŀ
I LANGE I					
0 0					
59-0151	278.311]
59-0151		100.00	ūМ	-6.660	
		31,25		16.240	
		9.77		18.300	
		3.05	uM	11.690	
		953.67		8.500	
		298.02	nM	9.070	
		93.13	nM	6.110	
		29.10	nM	5.880	
		9.09	nM	7.700	
		2.84		2.000	
		0.80	пм	1.2:0	

FIG. 3UU

			т		
H					
N					
[59-0152	266.275		1		
59-0152		100.00		-6.890	
		31.25		12.490	
		9.77		21.950	
		3.05		12.820	
		953.67		7.350	
		298.02		4.290	
		93.13		9.750	
		29.10	nM	4.860	
		9.09	nM	1.320	
		2.84	nМ	4.280	
		0.80	nM	4.160	
			1		
CI					
59-0153 59-0153	282.73				
39-0133		100.00		-4.150	
		31.25		-0.390	
		9.77		11.120	
		3.05		14.540	
		953.67		9.520	
		298.02	nM	11.570	
		93.13		-0.160	
		29.10		1.550	
	-	9.09		-0.960	
		2.84		4.730	
		0.80	n <u>M</u>	5.650	
					1
N N					
ö					
E0 0154					- 1
59-0154 59-0154	262.312				
U3-U104		100.00		0.290	
		31.25		24.670	
		9.77	u <u>M</u>	15.680	
		3.05		14.540	
		953.67 298.02		13.170 5.540	_
		93.13		2.690	-
		29.10	nM	-1.190	
		9.09	nM	2.460	
		2.84	nМ	4.170	
		0.80	nM	1.890	
		2.00		1.000	

FIG. 3VV

F						
59-0155 F	316.282					
59-0155		100.00	иM	-2.950	 	
		31.25		1.900	 	
		9.77		-9.450		
		3.05	uM	-0.220		
		953,67		0.690		
		298.02		5,090		
		93.13		-3.250		
		29.10		0.530	 	
		9.09		-1.900	 	
		2.84 0.80		9.480		
		0.00	I IIVI	-1.130	 	
И Т Т Н						
N N N				İ		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
59-0156	333.391					
59-0156	000.001	100.00	uM .	5.840	 	
		31.25		2.050		
		9.77		7.960		
		3.05		6.890		
		953.67	nM	-0.370		
		298.02		-1.880		
		93.13		-3.550		
		29.10		-7.340		
		9,09		-1.590		
		2.84		2.650		
		0.80	nм	2.500		
50 0457	200 700					
59-0157 59-0157	290.366	100.00				
03 0137		100.00		-6.440		
	····-	31.25 9.77		14.920		
		3.05		19.930 11.440		
		953.67	nM	8.570		
		298.02	nM	-7.190		
		93.13	nM	0.080		
		29,10		-0.230		
		9.09	nΜ	-4.460		
		2.84	nM	2.200		
		0.80	nM	9.920		

FIG. 3WW

			1			
0			Ì			
, o	700 777					
59-0158	308.337					
59-0158		100.00		5.980		
		31.25		3.720		
		9.77		16.140		
		3.05		27.060		
		953,67		9.930		
		298.02		11.900		
		93.13		2.810		
		29.10		3.110		
		9.09		0.690		
		2.84 0.80	InM InM	1.900		
		0.00	11101	7.970		
0						
59-0159	308.337					
59-0159	000.007	100.00		0.700		
0.00		100.00		2.790		
		31.25 9.77		13.530		
				4.700		
		3.05 953.67		10.910 2.800		
		298.02		9.710		
		93.13		4.830		
		29.10		0.650		
		9.09		5.900		
		2.84		6.610		
		0.80		6.250		
	j					
N	1				j	1
ÖLJ \	1					1
, N	ļ					1
59-0160	319.408				ł	
59-0160		100.00	uМ	-5.060		
		31.25		-3.390		
		9.77	uM	5.300		
		3.05	uМ	15.910		
		953.67		6.610		
		298.02		11.380		
		93.13	nM	4.460		
		29.10		3.520		
		9.09		4.700		
		2.84	nM	-0.650 7.560		

FIG. 3XX

						T
CI						
S' H OF					1	
59-0196 59-0196	323.201					
59-0196		100.00	uM			
		31.25	иМ			<u> </u>
		9.77	uM			
	ļ	3.05	uM			
		953.67	nM			
	 	298.02	nM	_		
		93.13	Inm			
	 	29.10		- 		
		9,09	INM	- 		
		2.84 0.80	INM			ļ
O CI		0.00	IIM		 	
N O						
CI						
I ✓∕S′ H			1			
59-0197 59-0197	323.201					
59-0197		100.00	uM	T	 	
		31.25	uM			
		9.77	uM			
		3.05	uM			
		953.67	nM			
		298.02	nM		ļ	
		93.13				
		29.10				
		9.09	nM	_		
		2.84 0.80	nM 		 	ļ
		0.80	пм			
	1					
					Ì	
59-0198	261.324]
59-0198	201.021	100.00			 	
		31.25			 	
		9 77	ыM		 	
		3.05 953.67 298.02 93.13	uM	1		
		953.67	nM		† 	
		298.02	n <u>M</u>			
		93.13	nM			
		<u>29.10</u>	nM			
		9.09	nM			
		2.84	nΜ			
		0.80	nM			
0	Ī					
_{50 0.00} し人。/				}		
59-0199	291.35			1		
59-0199	ļ	100.00	uМ			
	l	31.25	uM			

FIG. 3YY

US 6,649,631 B1

		9.77	7 uM		T	T
		3.05	5 uM			
		3.05 953.67	7 nM			
		298.02	2 nM			*
		93.13	3 nM			
		29,10) nM			
		9.09	nM			
		2.84	l nM			
		0,80	nM			
H0 ~0						
0,1					1	
		j				
I WIN I WAY						
59-0200 H 0 0	342.351					
59-0200	012.001	100.00	uM	 		·
		31.25		 	 	
		9.77			 	
		3.05	UM	 	+	
		953.67	nM		 	
		298.02	nM	 	 	
		93.13	nM	<u> </u>	 	
		29.10			 	
		9,09	nM	 	 	
		2.84	nM	 	 	
		0.80	nM		┼──	
HOO		0.00	11111	 	 	
H H O						
59-0201	331.328					
59-0201		100.00	uM		 	
		31.25	uМ			
		9.77	uM			
		3.05	иМ			
		953.67	nM			
		298.02	nM			
		93.13				
		29.10				
<u> </u>		9,09	nΜ			
		2.84 0.80	nM			
		0.80	nM			
	300.336					
59-0202 59-0202	300.336	100.00				ļ
		100.00	uMu			
		31.25	uM U		<u> </u>	
		9.77	UM			
		3.05			·	
		953.67	nM nV			<u> </u>
		298.02 93.13	nM.			
		29.10	nWI			
		<u> </u>	IM		······	

FIG. 3ZZ

		9.09 2.84 0.80	nM		T	T
		2.84	nM			
		0.80	nM			
59-0203	292.338					
59-0203	232.330	100.00	 			
00 0200		100.00	IUM		 	ļ <u>.</u>
		31.25	UM	 		
		9.77 3.05	UM	· 	 	
		953.67	DM DV	 		ļ
		298.02	оМ	 	 -	
		93.13	nM	 	+	
		29.10	οM	 	 	
		9.09	nM	+	 	
		2.84	nM	 	 	
		0.80	nM			<u> </u>
S DO						
59-0204	344.389					
59-0204	377.303	100.00	-11	ļ	· 	
03 0201		100.00	IUM		-	
		31.25	UM	 	<u> </u>	
		9.77	UM	 		
		3.05		 -	<u> </u>	
		953.67	nM	-	ļ	ļ
		298.02		 	 	
		93.13		 		
		29.10			 	
		9,09 2.84	nM -14		 	
		0.80	nM		 	
S H CI		0.00				
<u>59-0205</u>	318.782					
59-0205		100.00	uМ			
		31.25	uМ		1	
		9.77	υM			
		3.05	иM	T		
		953.67	пM			
		298.02	nM			
		93.13	nM			
		29.10	nM			
		9,09	nΜ			
		2.84	пM			
		0.80	nM			

FIG. 3AAA

N = 0						
S' H L NO						
CI' 7_				İ		
59-0206	348.808			1		
59-0206	0.0.000	100.00) uM	 -	+	
		31.25			-	
		9.77		 	 	
		3.05	uM		<u> </u>	
		953.67	nM			
		298.02	nM			T
		93.13				<u> </u>
		29.10	nM			
		9.09	lnM			
		2.84	nM			
		0.80	nM			
N, 0						
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \						
s H L Jo						
" c ₁					1	
F0 0007				İ		
59-0207 59-0207	348.808					
39-0207		100.00				
		31.25				
		9.77				
		3.05		ļ		<u> </u>
		953.67	InM	 .		ļ
		298.02	InM	ļ	ļ	
		93.13		 		<u> </u>
		29.10			<u> </u>	ļ
		9,09			 	ļ
		2.84 0.80	nM			ļ
		0.00	IUM	ļ		ļ <u>.</u>
N 1 ~ -			İ			
	ĺ					
S' H						
	İ					
59-0208	338.307					
59-0208		100.00	uM		1	
		31.25	uM			
		9.77	uМ			
		3.05	uM			
		953.67	nM			
		298.02 93.13	nM			
		93.13	nM			
		29.10	nM			
		9.09	nM			
		2.84 0.80	nM]

FIG. 3BBB

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
					-	
59-0209 OH	247.297				ì	
59-0209		100.00	uM	 	 	
		31.25			 	
		9.77	uM			
		3.05				
		953.67	nM			
		298.02	nM			
		93.13	nM		<u> </u>	
		29.10	nM			
		9.09	nM			
		2.84 0,80	nM nM			
→ N			r (IÁI		·	
					}	
s						
59-0210	297.376					
59-0210	237.370	100.00				
0210		100.00 31.25				
		9,77				
		3.05	uM			
		953.67	nM			
		<u>29</u> 8.02	nM			
		93.13	nM			
		29.10	nM			
		9.09	nM			
		2.84	nM			
		0.80	nM			
0 > 0H					,	
N. I						,
]				•
<u> </u>	298.342					
59-8000		100.00				
		31.25	uM			
		9,77	uM			
		3.05				
		953.67 298.02	nM nV			
		93.13	nM			
		29.10	nM			
		9.09	nM			
		9.09 2.84	nM			
		0.80	nM			
					1	

FIG. 3CCC

0 ⇒ OH						T -
	j					
	İ					
150 and H	055.00-					
59-8001	255.273					
59-8001		100.00	uM			
		31.25				
		9.77	uM			
		3.05	uM			
		953,67	lnM	ļ <u>.</u>		
		298.02	InM	<u> </u>	ļ	
		93.13			ļ <u></u>	
		29.10	nm -v		 	
		9.09 2.84	nM nM	 	 	
		0.80	nM	 	 	
0 > OH				<u> </u>		
NH NH						
N N N N N N N N N N N N N N N N N N N						
[33-0002	302.286					
59-8002		100.00	uM			
		31.25	uM			
		9,77	uM			
		3.05	uМ			
		953.67	nM			
		298.02	nM			
		93.13				
		29.10				
		9.09 2.84	nM	ļ		
		0.80	nM	<u> </u>	ļ	
0. 011		0.00	ПM	 		
O > OH	Ì					
	1					
NH ₂						
59-8003 H	270.288					ĺ
59-8003	270.200	100.00				
		100.00	uM			
		31.25	M			
		9.77	uM u	 -		
		3.05	uM 	 		
		953.67 298.02	nM nM			
		93.13	oM oM			
		29.10	nM			
		9.09	nM			
		2.84	nM			
		0.80	nM			

FIG. 3DDD

59-8004 331.371 59-8004 31.25 LM 9.77 LM 3.05 LM 9.953.67 LM 298.02 LM 9.09 LM 29.10 LM 9.09 LM 29.10 LM 9.09 LM 9.09 LM 9.09 LM 9.09 LM 9.08 LM 9.08 LM 9.37 LM 9.37 LM 9.09 LM 9.09 LM 9.09 LM 9.09 LM 9.09 LM 0.80 LM 0.80 LM 9.37 LM 9.37 LM 9.37 LM 9.37 LM 9.37 LM 9.37 LM 9.37 LM 9.305 LM 9.31 J LM 9.32 LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.32 LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.32 LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.32 LM 9.31 LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.32 LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.32 LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.31 J LM 9.32 LM 9.31 LM 9.31 J LM 9.31 LM 9.31 LM 9.31 LM 9.31 LM 9.31 LM 9.31 LM 9.31 LM 9.31 LM 9.31 LM 9.31 LM 9.31 LM 9.32 LM 9.31 LM 9.31 LM 9.31 LM 9.31 LM 9.31 LM 9.31 LM 9.31							
59-8004 331.371 59-8004 331.371 100.00 uM 3.1.25 uM 9.77 uM 298.02 nM 9.09 nM 2.84 nM 0.80 nM 0.90 nM 9.77 uM 3.05 uM 9.77 uM 3.05 uM 9.77 uM 3.05 uM 9.77 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 3.05 uM 9.71 uM 9.71 uM 3.05 uM 9.71 uM 9.71 uM 9.71 uM 9.71 uM 9.71 uM 9.71 uM 9.71 uM 9.71 uM 9.71 uM 9.71 uM 9.95 nM 9.95 nM 9.95 nM 9.95 nM 9.95 nM 9.95 nM 9.95 nM 9.90 nM	0 ⊘ 0H			T		<u> </u>	
\$9-8004 331.371 100.00 luM 3.125 luM 3.05 luM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.90 nM 298.02 nM 9.77 luM 3.05 luM 9.90 nM 9.91 nM 9.90 nM 9.91 nM 9.91 nM 9.92 nM 9.91 nM 9.92 nM 9.93 nM 9.93 nM 9.93 nM 9.93 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.97 luM 3.05 luM 9.90 nM 9.90 nM 9.91 nM 9.91 nM 9.92 nM 9.93 nM				İ	İ		Ì
\$9-8004 331.371 100.00 luM 3.125 luM 3.05 luM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.90 nM 298.02 nM 9.77 luM 3.05 luM 9.90 nM 9.91 nM 9.90 nM 9.91 nM 9.91 nM 9.92 nM 9.91 nM 9.92 nM 9.93 nM 9.93 nM 9.93 nM 9.93 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.90 nM 9.97 luM 3.05 luM 9.90 nM 9.90 nM 9.91 nM 9.91 nM 9.92 nM 9.93 nM							1
\$9-8004 \$31.371 \$9-8004 \$31.25 uM 9.77 uM 298.02 uM 953.67 nM 298.02 mM 299.326 \$9-8005 \$100.00 uM 29.10 nM 9.09 nM 0.80 nM 0 0.00 uM 299.326 \$9-8005 \$100.00 uM 9.77 uM 9.3.13 nM 299.00 nM 9.3.13 nM 9.3.13 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM			Į		-		
\$9-8004 \$31.371 \$9-8004 \$31.25 uM 9.77 uM 298.02 uM 953.67 nM 298.02 mM 299.326 \$9-8005 \$100.00 uM 29.10 nM 9.09 nM 0.80 nM 0 0.00 uM 299.326 \$9-8005 \$100.00 uM 9.77 uM 9.3.13 nM 299.00 nM 9.3.13 nM 9.3.13 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM 0 0.80 nM		İ	1				
31.25 uM 9.77 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 0.00 nM 299.02 nM 9.77 uM 9.77 uM 9.09 nM	59-8004	331.371			1		1
9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 0.00 uM 3.1.25 uM 93.13 nM 29.10 nM 93.36 nM 0.80 nM	59-8004						
3.05 LM 953.67 nM 298.02 nM 93.13 nM 9.09 nM 9.09 nM 9.09 nM 9.09 nM 9.09 nM 9.71 LM 9.77 LM 9.77 LM 9.77 LM 9.73 LM 9.73 nM 9.73 nM 9.75 LM 9		·	31.25	uM			
953.67 nM 290.02 nM 93.13 nM 29.10 nM 9.09 nM 9.09 nM 0.80 nM							
298.02 nM 93.13 nM 29.10 nM 29.09 nM 2.84 nM 0.80 nM 59-8005 59-8005 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 0.80 nM 0.80 nM 29.10 nM 9.09 nM 9.09 nM 9.09 nM 9.09 nM 9.09 nM 9.77 uM 9.							-
93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 59-8005 100.00 uM 31.25 uM 9.77 uM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 284 nM 0.80 nM 0 ool nm 100.00 uM 100.0			900,6/	InM			-
29.10 nM 9.09 nM 9.09 nM 0.80 nM			03.13	INM	 	_	ļ <u>.</u>
9.09 nM 2.84 nM 0.80 nM 0 OOH 59-8005 59-8005 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 9.09 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 0 OOH 31.25 uM 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006							
2.84 hM 0.80 nM					 		
0.80 nM 59-8005 299.326 59-8005 100.00 uM 31.25 uM 9.77 uM 298.02 nM 299.09 nM 2.84 nM 0.80 nM 0.00 uM 31.25 uM 93.13 nM 93.13 nM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM 99.77 uM 3.05 uM			2.84	nM		 	
59-8005 59-8005 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.284 nM 0.80 nM 953.67 nM 93.77 uM 3.05 uM 9.90 nM			0.80	nM			
59-8005 59-8005 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.284 nM 0.80 nM 953.67 nM 93.77 uM 3.05 uM 9.90 nM	0 ∞ OH	<u>'</u>					
59-8005 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 3284 nM 953.67 nM 953.67 nM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.13 nM 299.00 nM 298.02 nM 93.13 nM 299.00 nM 298.02 nM 93.13 nM 299.00 nM 298.01 nM]			
59-8005 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 3284 nM 953.67 nM 953.67 nM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.13 nM 299.00 nM 298.02 nM 93.13 nM 299.00 nM 298.02 nM 93.13 nM 299.00 nM 298.01 nM							
59-8005 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 3284 nM 953.67 nM 953.67 nM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.13 nM 299.00 nM 298.02 nM 93.13 nM 299.00 nM 298.02 nM 93.13 nM 299.00 nM 298.01 nM		İ			-		
59-8005 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 3284 nM 953.67 nM 953.67 nM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.13 nM 299.00 nM 298.02 nM 93.13 nM 299.00 nM 298.02 nM 93.13 nM 299.00 nM 298.01 nM	I VI TO			1			
59-8005 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 327.38 59-8006 327.38 59-8006 327.38 59-8006 327.38 59-8006 3284 nM 953.67 nM 953.67 nM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.13 nM 299.00 nM 298.02 nM 93.13 nM 299.00 nM 298.02 nM 93.13 nM 299.00 nM 298.01 nM							
31.25 uM 9.77 uM 3.05 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 0.80 nM 0.80 nM 0.9.77 uM 3.05 uM 9.77 uM 9.77 uM 9.77 uM 9.77 uM 9.77 uM 9.77 uM 9.77 uM 9.77 uM 9.78 uM 9.78 uM 9.79 uM 9.70 uM 9.	59-8005	299.326					
9.77 uM 3.05 uM 953,67 nM 298.02 nM 93.13 nM 9.09 nM 2.84 nM 0.80 nM 0.00 uM 31.25 uM 9.77 uM 9.77 uM 9.77 uM 9.77 uM 9.77 uM 9.78 uM 9.78 uM 9.79 uM 9.79 uM 9.79 uM 9.79 uM 9.79 uM 9.79 uM 9.79 uM 9.70 uM 9.70 uM	39-8005						
3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 59-8006 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.13 nM 953.13 nM 953.13 nM 953.13 nM 953.13 nM 953.13 nM					ļ		
953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 59-8006 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.67 nM 298.02 nM 953.67 nM			9.//	uM			
298.02 nM 93.13 nM 29.10 nM 9,09 nM 2.84 nM 0.80 nM 59-8006 327.38 59-8006 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 298.02 nM 93.13 nM 299.00 nM 299.00 nM			3.05 057.07	UM	 	 	
93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM 59-8006 327.38 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 993.13 nM 298.02 nM 993.13 nM 299.01 nM 99.09 nM 284 nM 0.80 nM					 	 	
29.10 nM 9.09 nM 2.84 nM 0.80 nM 59-8006 327.38 59-8006 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 93.13 nM 29.10 nM 99.09 nM 2.84 nM 0.80 nM			93.13	nM	 	-	
9,09 nM 2.84 nM 0.80 nM 59-8006 327.38 59-8006 100.00 uM 31,25 uM 9,77 uM 3.05 uM 953,67 nM 298.02 nM 93.13 nM 29.10 nM 90.90 nM 90.90 nM					 	 	<u> </u>
2.84 nM 0.80 nM 59-8006 327.38 59-8006 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 299.10 nM 9.09 nM 2.84 nM 0.80 nM						 	
59-8006 59-8006 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM			2.84	nM			
59-8006 327.38 59-8006 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM	0. 011		0.80	nΜ			
59-8006 327.38 59-8006 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 93.13 nM 29.10 nM 90.90 nM 90.90 nM 90.80 nM	1 ° 7 OH	İ			ļ		
59-8006 327.38 59-8006 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 93.13 nM 29.10 nM 90.90 nM 90.90 nM 90.80 nM		Ì					
59-8006 327.38 59-8006 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 93.13 nM 29.10 nM 90.90 nM 90.90 nM 90.80 nM							
59-8006 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM	N-1 1- >-0~~	ļ				İ,	
59-8006 100.00 uM 31.25 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM	EQ BOOS	707.70					
31.25 uM 9.77 uM 9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 9.09 nM 2.84 nM 0.80 nM	59-8006	327.38	100.00			ļ	
9.77 uM 3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM	00 0000		100.00	uM v		ļI	
3.05 uM 953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM			01,20	uM_		-	
953.67 nM 298.02 nM 93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM			3.77	uM uM	-		
298.02 nM			953.67	nM			
93.13 nM 29.10 nM 9.09 nM 2.84 nM 0.80 nM			298.02	nM			
29.10 nM 9.09 nM 2.84 nM 0.80 nM			93.13	nM			
9.09 nM 2.84 nM 0.80 nM			29.10	nM			
			9.09	nM			
			2.84	nM			

FIG. 3EEE

0 ⊘ OH]			
1 7 9 11						
						Ì
N F			l l			
50 8007 H	297.354					
59-8007 59-8007	297.354	100.00	 	 	<u> </u>	
3 0007		100.00			<u> </u>	
		31.25 9.77		 -	 	
		3.05		 	 	
		953,67			 	
		298.02	nM	 	 	
		93.13	nM	 		
		29.10		 	1	
		9.09	nM		†	
		2.84	lnM		1	
		0.80	nM			
0 →0H						
				İ		
					İ	
				}		
N			1			
59-8008 ^H S	261.299					
59-8008	201.233	100.00		<u> </u>	 	
00 0000		31.25	um 	 	 	
		9.77	IUM	<u> </u>		
		3,05	uM	 	 	
		953,67			 	<u> </u>
		298.02		 	 	
		93.13	nM			
		29,10				
		9.09	nM		T	
		2.84	nM			
		0.80	nM			
0 ≫ OH						
				l	<u> </u>	
]	ļ		
			}			
N S N				1		
H ~3~\\\					İ	
59-8009 59-8009	289.313					
59-8009		100.00				
		31.25	uM			
		9.77	uM			
		3.05 953.67	uM	ļ		
		955,67	nM		 	
		298.02 93.13	nM nV	 -	-	
		29.10	nM nM	 	 	
		9.09	nM	 	 	ļ
<u> </u>		9.09	UIM	L	1	

FIG. 3FFF

		2.84 0.80	nM			
		0.80	nM			
О≫ОН			1			
						1
0						
N F						
Les assay H	261 200					
59-8010 59-8010	261.299	100.00			-	
39-8010		100.00		 	 	 -
		31,25 9,77	uM 	 	 	
		3.05	uM uM		 	
		953,67			 	
		298.02		 	+	
		93.13	nM		1	
		29.10				
		9.09	nM		1	
		9.09 2.84	nM		1	
		0.80	nM_			
0 > 0H						
				1		
.]						
59-8011	285.299					
59-8011		100.00	uM	†	1	
		31.25		1	†	
		9.77	'uM			
		3.05	uM			
		953,67	nM			
	ĺ	298,02	nM			
		93.13	nM			
		29.10	nM			
		9.09	nM			
	·	2.84	InM			
		0.80	nM			
0≯0H .						
1 700						
	'				1	
O HO						
M ILM						
S OH						
59-8012	294.285					
59-8012		100.00	uM		1	
<u> </u>		31.25	uM		1	
		9,77	'luM			
		3.05	uM	T	1	1
		953,67	/ ald	1		T
	i	298.02	TIIM	1		

FIG. 3GGG

		93.13				
		29,10	nM			
		9.09	nM	ļ	<u> </u>	
		9,09 2.84 0.80	nM			
		0.80	nм	 	 	-
0 √ 0H						
				İ		
59-8013	301.364				<u> </u>	
59-8013		100.00				
		31.25	uM	 	-	
		9.77	uM	ļ		
		3.05				
		953,67	InM		-	ļ
		298.02	IUM		 	ļ
		93.13	INM			
		29.10	nM	-	 	
		9.09 2.84	nM nM	 -	 	
		0.80	nM	 		
0 000						
0 OH						
]	
	,		İ	ŀ		
0	377.396					
59-8014 / 59-8014	377.396	100.00		-		
J3-0014		100.00			-	
		31.25	uM u	 		-
		9.77	UM	ļ		
		3.05			 	
		953.67 298.02	NM		 	
		93.13			 	
		29.10		 	 	
		25.10 0.00	nM	 	 	
		2.84	nM		 	
		9,09 2.84 0.80	nM			
0 > 0H						
">"						
1 \(\sigma \) \(\sigma \)						
6.						
159-8015 \ \	285.299				<u> </u>	
59-8015		100.00	uM			
		31.25	uM			
		9.77	'luM			
<u> </u>		3.05	luM	1		<u> </u>

FIG. 3HHH

· · · · · · · · · · · · · · · · · · ·						
		953.67	nM	<u> </u>		
		298.02	nM			
		93.13	nM			
		29.10	nM			
		9.09				
		2.84	nM			
		0.80	nM		<u> </u>	1
0 ⇒ 0H						
					ļ	
N-W-W						
H - 0- 1						
59-8016	285.299					
59-8016		100.00	иM	 	1	
		31.25		 	 	
		9.77	uM ·	·		
		3.05		 	 	
		953.67	nM	 	· · · · · · · · · · · · · · · · · · ·	
		298.02	LIM	 		
		93.13	nM	+	 	<u> </u>
		29.10	nM	 	 	
		9.09			 	
	· · · · · · · · · · · · · · · · · · ·	2.84		 	 	
		0.80	nM		 	
		0.00	111141	 	ļ	
			 		 	
			 		 	
			 	 	 	
	L		L		L	1

FIG. 3III

CHEMISTRY	CONCENTRATION		ABA-S
, Дон			
N—————————————————————————————————————			
~\\\"			
51 2220			
51-2229 51-2229	100.00	uM	125.320
	10.00		28.260
210.236	2.00		20.140
	0.40		-9.740
	0.08		-9.710
			1
N-000]]	į
	ļ		
1			
92-3052		 . 	
92-3052	131.056		-9.28
701 516	13.106	· ·	113,80 12.61
381.516	2.621 0.524	1	20.25
	0.105	+-1	24.45
0	0.100		
0 > 0.			
$CL \sim N^{O} \sim$			l
N W			
92-3390	145.010	114	0.05
92-3390	145.012 14.501	LUM	-8.05 31.57
344.798	3 2.900	, 	139.68
311.730	0.580		49.82
	0.116	3	49.82 21.01
, OH			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
S 0			
92-3552			
92-3552 92-3552	214.320	6 uM	108.15
			

FIG. 4A

T	21.433	7	Г	69.74
233.289	4.287	\dashv	F	31.59
200.200	0.857	-	<u> </u>	39.70
	0.171		<u> </u>	18.29
	0.17.1	7	ŀ	
F CI O N CI				
92-6353		_		
92-6353	155.199	1M		
	31.040	_	1	204.14
322.166	15.520			154.94
	3.104			28.09
	1.552			
	0.310			3.53
92-8007 92-8007	181.613 36.323	uM		-16.65 58.65
275.311	18.161	_		142.33
	3.632	_		45.65
	1.816	Ш		
	0.363			4.47
92-8215				
92-8215	165.123	uМ		32,90
	33.025			151.06
302.805	16.512			132.29
	3.302			59,90
	1.651			
	0.330			23.34

FIG. 4B

32.420 157.44 101.04 101.04 3.242 39.02 1.621 0.324 12.78				_	
92-8362 92-8362 92-8362 92-8362 154.647 uM 30.324 12.78 H FF 92-8362 154.647 uM 30.929 30.929 30.929 137.00 323.318 15.465 3.093 1.546 0.309 0.41 Br 92-8372 150.045 uM 92-8372 150.045 uM 92-8372 150.045 uM 92-8372 150.045 uM 92-8372 150.045 uM 92.06 33.001 31.35					
92-8362 92-8362 92-8362 92-8362 154.647 uM 30.324 12.78 H FF 92-8362 154.647 uM 30.929 30.929 30.929 137.00 323.318 15.465 3.093 1.546 0.309 0.41 Br 92-8372 150.045 uM 92-8372 150.045 uM 92-8372 150.045 uM 92-8372 150.045 uM 92-8372 150.045 uM 92.06 33.001 31.35					
92-8362 92-8362 92-8362 92-8362 154.647 uM 30.324 12.78 H FF 92-8362 154.647 uM 30.929 30.929 30.929 137.00 323.318 15.465 3.093 1.546 0.309 0.41 Br 92-8372 150.045 uM 92-8372 150.045 uM 92-8372 150.045 uM 92-8372 150.045 uM 92-8372 150.045 uM 92.06 33.001 31.35	HINCH				
92-8362 92-8362 92-8362 92-8362 154.647 uM 30.324 12,78 H F F 92-8362 154.647 uM 30.929 30.929 323.318 15.465 3.093 1.546 0.309 0.309 0.41 Br 92-8372 150.045 uM 92-8372 150.045 uM 92-8372 150.045 uM 3333.234 15.004 330.009 3333.234 15.004 31.35 0.300 13.20	02_8258				
32.420 157.44 101.04 3.242 101.04 39.02 1.621 12.78 12.78 12.78 136.79 137.00	92-8258	162.102	uМ	ŀ	-16.65
3.242 39.02 1.621 0.324 12.78		32.420		[157.44
1.621 0.324 12.78	308.447	16.210	Ш		
92-8362 92-8362 154.647 uM 30.929 323.318 15.465 3.093 17.34 1,546 0,309 92-8372 92-8372 150.045 uM 333.234 15.004 30.009 134.71 331.35 1,500 0,300 13.20		3.242	\vdash	}	39.02
92-8362 92-8362 154.647 uM 30.929 323.318 15.465 3.093 17.34 1.546 0.309 92-8372 92-8372 150.045 uM 30.009 333.234 15.004 30.009 134.71 33.001 31.35 1.500 0.300 13.20		0.324	Н	}	12.78
92-8362	, 4	0.021		ļ	12,70
92-8362 92-8362 154.647 uM 136.79 30.929 137.00 323.318 15.465 3.093 17.34 1.546 0.309 0.41 Par 92-8372 92-8372 150.045 uM 3333.234 15.004 30.009 134.71 331.35 1,500 0,300 13.20					
92-8362 92-8362 154.647 uM 136.79 30.929 137.00 323.318 15.465 3.093 17.34 1.546 0.309 0.41 Par 92-8372 92-8372 150.045 uM 3333.234 15.004 30.009 134.71 331.35 1,500 0,300 13.20	F, F				
92-8362 92-8362 154.647 uM 136.79 30.929 137.00 323.318 15.465 3.093 17.34 1.546 0.309 0.41 Par 92-8372 92-8372 150.045 uM 3333.234 15.004 30.009 134.71 331.35 1,500 0,300 13.20	NH F				
92-8362					
92-8362	92-8362				
323.318 15.465 3.093 17.34	92-8362	154.647	uМ		136.79
3.093 1,546 0.309 0.41 92-8372 92-8372 150.045 uM 63.76 30.009 134.71 333.234 15.004 3.001 1,500 0.300 13.20					
92-8372 92-8372 92-8372 150.045 uM 30.009 333.234 15.004 3.001 1.500 0.300 13.20	323.318				65.02
92-8372 92-8372 92-8372 150.045 uM 30.009 134.71 333.234 15.004 3.001 1.500 0.300 13.20		3.093	\vdash		17.34
92-8372 92-8372 150.045 uM 30.009 134.71 333.234 15.004 3.001 1.500 0.300 13.20		0.309	\vdash	ļ	0.41
92-8372 92-8372 150.045 uM 30.009 134.71 333.234 15.004 3.001 1.500 0.300 13.20					0.11
92-8372	Br				
92-8372					
92-8372					
92-8372	N. I.				
92-8372	n	,			
30.009 134.71 333.234 15.004 92.06 3.001 31.35 1.500 0.300 13.20	92-83/2	150.045			67.76
333.234 15.004 92.06 3.001 31.35 1.500 0.300 13.20	52-0372		LIMI		
3.001 1.500 0.300 13.20	333.234		T		
0.300					
		1.500			
		0.300	<u> </u>		13.20
	J N Y				
0					
	_ O				
)					
92-9183	92-9183				

FIG. 4C

92-9183	137.568	uМ	1	-22.80
	13.757			16.61
363.457	2.751			101.96
	1.376			
	0.550			58.17
	0.110			38.47
óh N _{OH}				
OH N				1
				i
0, 0, 0,				l
93-0215				
93-0215	182.957	uM		115.230
	18.296			88.110
273.288	3.659	П		20.870
	0.732	П	_	-28.680
	0.146			5.250
N=< C₁				
" H- 0 ~ CI				
N N-P				
0=S				
ĊI		1		
93-0399	474 404			
93-0399	131.491	uM		128.130
700.057	13.149			38.560
380.253	2.630	Ш	!	41.240
	0.526	Ш		-4.910
	0.105			3.910
,				
N-V-V-V				
07 0507				
93-0587 93-0587	222.057	1		178.130
30-0307	222.953			
224.263	22.295	+		60.410 -0.180
224.263	4.459 0.802	\vdash		-3.470
	0.892 0.178	+		-8.460
	0.178	+		-0.400
N TH				
				1
\ \\ \				
93-1327	7,12=			10.000
93-1327	119.764	иM		-42.000
	11.976	\sqcup		119.130
417.487	2.395	\sqcup		67.930
	0.479			8.520

FIG. 4D

	0.096		14.870
N N			
N, M			
H 😂			
07 1740			
93-1340 93-1340	400 570	 	
93-1340	196.576	uM	-31.290
	19.658		127.340
254.355	3.932		35.710
	0.786		37.630
	0.157		7.280
Į Q		·	
}_N 0			
N= S N			i
N S N Br			
💸 🗓			
93-1474			
93-1474 93-1474	145.940	1111	-45.110
	14.594	UNI	
342.607	2.919		110.290 35.080
5,2.007	0.584		100.040
	0.117		109.040 40.130
	0.,17		40.130
,			•
0.			
N			
N N			
			}
			ļ
93-1766			:
93-1766	144.348	uM	
	14.435		
346.366	2.887		
	0.577 0.115		
	0.115		
F			
F,		ŀ	
H ₂ N _N			
NH-			
			· ·
I ✓ ¬N H	İ		İ
93-1866			
93-1866	148.214	uM	75.940
	14.821		173.150

FIG. 4E

O U			
NH			
7-0			
' NH			1
c >	İ		
36			
850-7377			
850-7377 850-7377	131.062	uM]	-50.32
	13,106		68.27
381.498	2.621		116.61
	0.524		61.26
	0.105		25.86
	}		
HN,			
3]
850-7413 ¹ 850-7413			
850-7413	111.964	<u>uM</u>	-40.44
	11.196		-2.55 157.01
446.572	2.239		
	0.448	H	78.73
	0.090		23.91
N/			
HO OH	ļ		
HO NH			
H H N S=0			
			ļ
ОН 0 11 0			
			ļ
			1
050 7440			
850-7449	60.070	1.11	10.40
850-7449	69.938	UM	-42.42 73.70
714.923	6.994	\vdash	73,79 112.16
/14.923		 	75.24
	0.280 0.056	 	26.36
	1 0.000		20,30

FIG. 4F

93-7485 93-7485 93-7485 14.310 28.36 153.04 0.572 0.114 93-7991 93-7991 127.367 uM 12.737 8.95 392.585 2.547 0.102 HN 0 0 0 0 101.513 uM 10.551 105.865 158.65 158.65 166.637				
93-7485	0 H) (
93-7485	NH NH			
93-7485	93-7485			
14.310 349.409 2.862 0.572 74.27 0.114 50.28 93-7991 127.367 uM 12.737 8.95 12.737 8.95 105.51 105.51 0.102 54.26	93-7485	143.099	uM	-42.91
93-7991 93-7991 127.367 uM -16.87 12.737 8.95 392.585 2.547 0.509 47.53 0.102 850-8170 850-8170 101.513 uM -33.79 10.151		14.310		28.36
93-7991 93-7991 127.367 uM -16.87 12.737 8.95 392.585 2.547 0.509 47.53 0.102 850-8170 850-8170 101.513 uM -33.79 10.151	349.409	2.862		153.04
93-7991 93-7991 127.367 uM -16.87 12.737 8.95 392.585 2.547 0.509 47.53 0.102 850-8170 850-8170 101.513 uM -33.79 10.151		0.572		74.27
93-7991 93-7991 127.367 uM -16.87 12.737 8.95 392.585 2.547 105.51 0.509 47.53 0.102 54.26		0.114		50.28
93-7991	NS NS			
12.737 8.95 392.585 2.547 0.509 47.53 0.102 HN 47.53 54.26 850-8170 101.513 uM 10.151 158.65	NH	•		
12.737 8.95 392.585 2.547 0.509 47.53 0.102 HN 47.53 54.26 850-8170 101.513 uM 10.151 158.65	93-7991			
392.585 2.547 105.51 392.585 2.547 105.51 0.509 47.53 0.102 54.26	93-7991	127.367	uM	-16.87
850-8170 850-8170 850-8170 101.513 uM 10.151 158.65		12.737		
850-8170 850-8170 850-8170 101.513 uM 10.151 158.65	392.585	2.547	П	105.51
850-8170 850-8170 101.513 uM 10.151 158.65		0.509		47.53
850-8170 850-8170 101.513 uM 10.151 158.65		0.102		54.26
850-8170 850-8170 101.513 uM 10.151 158.65				
850-8170 850-8170 101.513 uM -33.79 10.151 158.65				
850-8170 101.513 uM -33.79 10.151 158.65	S			
850-8170 101.513 uM -33.79 10.151 158.65	850-8170			
10.151 158.65	850-8170	101.513	uM	-33.79
400 55 0 070		10.151	П	158.65
[1 92.55 2.030 126.27	492.55	2.030		126.27
0.406 43.05		0.406		43.05
0.061 50.00				

FIG. 4G

S H			
850-8205 850-8205	104 479	_	-39.52
830-8203	104.478 u 10.448	₩ ⊦	51.18
478.57	2.090	1	163.82
	0.418		106.06
OUTDAL	0.084	- -	73.68
CHIRAL			
S NH NH			
850-8241			
850-8241	82.279 u	M I	-2.07
	8.226		181.77
607.685	1.646	-	118.23
	0.329 0.066		66.73 36,14
\$ H N N N N N N N N N N N N N N N N N N	0.000		50,14
850-8278 850-8278	139.101 u	<u> </u>	-40.09
	13.910	"	39.00
359.451	2.782 0.556	_]	182.38
	0.556	_ [122.84
	0.111	-	78,90
SN H-O			
850-8367			

FIG. 4H

850-8387	122.392 uM	-17.06
	12.239	130.31
408.523	2.448	129.75
100020	0.490	62.69
	0.098	40.74
OH COH	0.000	40.74
H0 H =0		
HN		
<u>}=</u> N		
S		
850-8459		
850-8459	87.921 uM	-21.13
	8.792	11.30
568.692	1.758	131.92
	0.352	71.13
	0.070	58.55
		00.00
Ö N—		
s		
<u> </u>		
850-8613		
850-8613	151.319 uM	-26.05
	15.132	85.55
330.428	3.026	381.37
	0.605	255.32
	0.121	122.93
H 0 050 X		
00 000		
		}
850-8637		
850-8637	85.518 uM	-25.17
	8.552	33.35
584.673	1.710	122.49
304.073	0.342	57.19
	0.068	37.42
	0.0001	57.42

FIG. 4I

0 N=0 0 N O HN			
850-8889 850-8889	448.457	111.493 uM 11.149 2.230 0.446	-17.470 142.970 74.150 21.010
S CI		0.089	8.530
850-8964 850-8964	525.454	95.156 uM 9.516 1.903 0.381 0.076	-30.92 44.99 126.29 49.84 44.99
HNO			
850-9071 850-9071		109.998 uM	-24.620
	454.552	11.000 2.200 0.440	84.120 149.030 54.540

FIG. 4J

	0.000	
	0.088	23.540
H 0-N		
S. T. N.		
">3		
HN CI		
850-9106		
850-9106	100.000 L	ıM −15.710
	10.000	99.820
499.999	2.000 0.400	111.960 74.500
	0.080	23.150
Н	0.000	23.130
$N - \left(\begin{array}{c} \\ \\ \end{array}\right) - \left(\begin{array}{c} \\ \end{array}\right) - \left(\begin{array}{c} \\ \\ \end{array}\right) - \left(\begin{array}{c} \\ \\ \end{array}\right) - \left(\begin{array}{c} \\ \\ \end{array}\right) - \left(\begin{array}{c} \\ \end{array}\right) - \left(\begin{array}{c} \\ \end{array}\right) - \left(\begin{array}{c} \\ \end{array}\right) - \left(\begin{array}{c} \\ \end{array}\right) - \left(\begin{array}{c} \\ \end{array}$		
H S		
050-9142	DE 506	
850-9142	85.596 u 8.560	
584.138	1.712	165,770
301,130	0.342	66.650 27.780
	0.068	0.670
	5,656	0.070
0 0 S'		
H		
0 1		
850-9179		
850-9179	105.357	JM -24.630
	10.536	105.200
474.579	2.107	89.280
	0.421	46.110
	0.064	19.160
,		
н]	
s. IIII.		
OH OH		
H0'		
850-9212		
850-9212	92.139 (JM -26.580
	9.214	40.900
542.657	1.843	111.690
	0.369	76.950
	0.074	30.840

FIG. 4K

-15.82 15.82 130.71

91.11 69.05

-24.650 83.140 168.810 45.470 9.740

-19.800 112.990 122.730

43.520 33.140

	·	
850-9287 850-9287 339.744	147.170 14.717 2.943 0.589 0.118	uM
HO, N.	0,110	
но		
850-9356		
850-9356	99.506	uМ
	9.951	
502.482	1.990	
	0.396	
	0.080	
HO OH OH OH OH NH		
850-9467		
850-9467	120.646	111
3707	120.646	uM
414.436	12.065	
717,430	2.413	
	0.483 0.097	
	0,097	

FIG. 4L

r			
F		į	
1	}		
NH O			
OHN			
	ŀ		
34			
850-9576			
850-9576	111.724 u	<u>, </u>	-27.43
000 0070	11,172	"	90.56
447.532	2.234		101.61
	0.447	7	44.90
	0.089		19.93
0 CI.			
	1		
0 Cl 895-0262			
895-0262	166.019 u	ıM	-19.1
	33.204		12.6 148.2
301.169	16.602		148.2
	3.320		-2.2
	0.332	_	- 3.0
_			
Ò			
	1]	
	1		
	İ		
N N			
1 ~/		}	
		Ì	
895-0268			L
895-0268	128.383	Mu	-18.8
	25.677		40.2 169.9
369.458	12.836	_	169.9
	2.568		195.2
	0.257		14.0

FIG. 4M

S S					
N					
895-0594	-				
895-0594		120.896	uM		-21.63
		12.090			25.89
413	.58	2.418			122.10
		0.484			75.32
		0.097	\Box		39.42
N CO CO					
895-0857					
895-0857		159.026	ιιМ		-30.46
	i	15.903			146,74
314	.407	3.181	П		74.54
		0.636			25.82
		0.127			3.66
0-	- -0'				
895-0964					,
895-0964		162,655	uM		-31.06
		16.265 3.253 0.651 0.130	\perp		325.06
30	7.393	3.253	\sqcup		87.51
		0.651	-		-31.06 325.06 87.51 40.39 16.03
		0.130	1	l	10.03

FIG. 4N

R95-1161 895-1161 327.602	15.263 3.053	uM	-5.51 109.31 56.06
	0.611	-	29,49
	0.122		24.71
N-N			
895-1420 H			
895-1420	220.965	uM	-19.47
	22.097		110.90
226.279	4.419	П	49.94
	0.884	П	33,65
	0.177	\vdash	20.06
	U.177	\vdash	20.00
895-1679	}		
895-1679	180,910	шМ	-30,36
030 1073		la ivi	111.72
276.383	18.091	-	102.83
270.383	3.618		
	0.724 0.145	\vdash	18.01 0.44
	0.140	\vdash	0.44
N-N-N-OH			
895-1691			
895-1691	182,992	1,14	_16.00
033-1031	102,992	UIVI	-16.29 50.84
273.34	18.292	+	105.70
2/3.34	3.658	لــــــــــــــــــــــــــــــــــــــ	105.70

FIG. 40

		0.732		60.23
		0.146		23.42
		l		
N-N -N				
H W				
l N				
895-1754	1			
895-1754		194.295 u	М	-31.44
		19.430		132.78
	257.341	3.886	7	75.39
		0.777	-	39.30
		0.155	-	16.19
		0.100	-	10.13
I N	1		i	
			1	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
895-1888				
895-1888		212.504 u	M	-33.65
		21.250		29.75
	235.286	4.250		148.84
		0.850		73.77
		0.170	_	28.14
			_	20.14
				}
	İ			
N-N				1
H				
895-2474				
895-2474		184.952 u	м	-20.74
		18.495		128.69
	270.335	3.699	-	66.37
	2.0.003	0.740	-	43.27
			-	
		0.148	4	19.44
,			_	
	-	j		
, ОН				
No of		İ		
That				
-A				
	ŀ			
895-2475				
895-2475		162.159 ul	йl	265.41
		16.216	Ħ	287.86
	308.337	3.243	┨	227.34
	200.007	0.649	4	65.40
		0.130	\dashv	
L		0.130	1	28.96

FIG. 4P

0 =		
N-OH		-
1895-2544		
895-2544	189.186 uM	17.53
	18.919	136.50
264.284	3.784	59.15
	0.757 0.151	24.75
	0.131	11.86
ROS 7447		
895-3113 895-3113	400.007	
033 3113	160.067 uM	-22.22
312.372	16.007 3.201	224.52
012.072	0.640	68.46 43.36
	0.128	30.56
		00.00
200 2700		
895-3306 895-3306		
093-3300	172.170 uM	-23.24
290.41	17.217	38.63
290.41	3.443 0.689	333.10 164.63
	0.136	64.33
	0.150	04.33
H ₀		
HN'		
895-3810		
895-3810 895-3810	196.973 uM	89.79
	19.897	106.75
251.289	3.979	73.78
	0.796	33.45
	0.159	16.86

FIG. 4Q

NH ₂			
1 9 6			
805_3846 CI			
030-0040			
895-3846	193.267	uM	
259 700	19.327		
258.708		-	
	0.773 0.155		
	0.133		
N-]		
N-N H			
			1
__~\ <u>\</u> ~			
895-4642 OH			
895-4642	176 477		ļ
	176.473	ıw.	<u> </u>
283.331	17.647 3.529		4
200.001	0:706		3
	0.141		1
0	.		
0 1 0			
		1	
NH. 0			
NH ₂ 0			
-			
895-4843 895-4843			
093-4043	159.581	M	
313.312	15.958		11
313.312	3.192		1
	0.638 0.128	\dashv	
	0.120		
,			
CI N			
\ /			
805_5185 S—S			
895-5185 895-5185		_	
555 5105	162.433 u	M	=
707 001	16.243	4	21
307.821	3.249		10
	0.650 0.130	\dashv	4
	0.1301	J	

FIG. 4R

OH N N		
"		
895-5960 895-5960	107.740 14	10.03
093-3900	103.348 uM 10.335	-10.03 156.04
483.796	2.067	62.07
	0.413 0.083	34.47 7.24
H		
s T		
NH NH		
895-6353 895-6353	167.555 uM	-10.45
	16.755	21.59
298.408	3.351 0.670	101.77
	0.134	· 54.91 24.15
C1 \rightarrow N H	1	
0~11~11~0		
'' /		
895-6643		
895-6643	145.862 uM	100.09
342.786	14.586 2.917	74.25 16.86
012700	0.583	-0.89
	0.117	-7.94
γ		
o S S		
895-7828	194 077	35.46
895-7828	184.973 uM 18.497	-32.44 -29.24
270.31	3.699	85.15
	0.740 0.148	125.64 -30.80
<u> </u>	0,140	

FIG. 4S

N N H		
895-7985 895-7985 223.279	223.935 uM 22.394 4.479 0.896 0.179	122.070 3.900 -7.790 5.520 -2.270
895-7997 895-7997 283.349	176.461 uM 17.646 3.529 0.706	
Br N= Br	0.141	
895-8053 895-8053 372.03	134.398 uM 13.440 2.666 0.538 0.108	
HO OH OH OH OH		
895-8137 895-8137	169.326 uM	

FIG. 4T

895-8286 895-8286 895-8286 895-8286 895-8286 142.765 uM 14.277 40.39 17.85 -10.89 6.58					-	
895-8185 895-8185 219.057 uM 21.906 228.251 4.361 0.175 Br 0.175 Br 142.765 uM 142.21 40.39 350.225 2.855 17.85 -10.89			16.933			
895-8185 895-8185 219.057 uM 21,906 228.251 4.361 0.876 0.175 Br NH-NH-N NH-N 142.21 142.277 40.39 350.225 2.855 17.85 -10.89		295.288	3.387			
895-8185 895-8185 219.057 uM 21.906 228.251 4.361 0.876 0.175 Br 0.175 895-8286 895-8286 142.765 uM 142.21 40.39 350.225 2.855 -10.89			0.677			
895-8185 895-8185 219.057 uM 21.906 228.251 4.361 0.876 0.175 895-8286 895-8286 142.765 uM 142.21 40.39 350.225 2.855 17.85 -10.89			0.135			
895-8185 895-8185 219.057 uM 21.906 228.251 4.361 0.876 0.175 895-8286 895-8286 142.765 uM 142.21 40.39 350.225 2.855 17.85 -10.89						
895-8185 895-8185 219.057 uM 21.906 228.251 4.361 0.876 0.175 Br O H NH-N H NH-N 350.225 2.855 17.85 -10.89	H					
895-8185 895-8185 219.057 uM 21.906 228.251 4.361 0.876 0.175 Br 0 H NH-N H NH-N 142.21 40.39 350.225 2.855 17.85 -10.89	_N ">					
895-8185 219.057 uM 21.906 228.251 4.361 0.876 0.175 895-8286 895-8286 142.765 uM 14.277 40.39 350.225 2.855 17.85 0.571	0″ 📉					
895-8185 219.057 uM 21.906 228.251 4.361 0.876 0.175 895-8286 895-8286 142.765 uM 142.21 40.39 350.225 2.855 17.85 -10.89	9					
895-8286 895-8286 142.765 uM 142.21 350.225 21.906 21.906 0.876 0.175 142.775 40.39 17.85 0.571	895-8185				ĺ	
21.906 228.251 4.361 0.876 0.175 Br NH-NH-N H NH-N 142.21 40.39 350.225 2.855 0.571 -10.89	895-8185		219.057	uМ	 	
228.251 4.361 0.876 0.175 0.17			21.906			
895-8286 895-8286 895-8286 142.765 uM 14.277 40.39 350.225 2.855 17.85 0.571		228.251	4 361			
895-8286 895-8286 142.765 uM 14.277 40.39 350.225 2.855 17.85 0.571		220.201	0.876			
895-8286 895-8286 142.765 uM 14.277 40.39 350.225 2.855 17.85 0.571			0.070	-		
895-8286 895-8286 142.765 uM 14.277 40.39 350.225 2.855 17.85 0.571 -10.89	Br		0,170	\dashv	-	
895-8286 895-8286 142.765 uM 14.277 40.39 350.225 2.855 17.85 0.571 -10.89		1		- 1		j
895-8286 895-8286 142.765 uM 14.277 40.39 350.225 2.855 17.85 0.571 -10.89	N _N			ļ		
895-8286 895-8286 142.765 uM 14.277 40.39 350.225 2.855 17.85 0.571	H NH-N /	1		-		
895-8286 142.765 uM 142.21 14.277 40.39 350.225 2.855 17.85 0.571 -10.89		İ				
895-8286 142.765 uM 142.21 14.277 40.39 350.225 2.855 17.85 0.571 -10.89	N N				-	
142.77	895-8286					
350.225 14.277 40.39 350.225 2.855 17.85 0.571 -10.89	895-8286		142.765	uM	14	2.210
350.225 2.855 17.85 0.571 -10.89			14.277			
0.571 -10.89		350.225	2.855		-	7.850
1			0.571			
Q H CI N				_	 	6.580
Q H CI N				_		0.000
N CI					j	1
· January N	0 H 0		İ			-
	N. CI]	Ì	
		Ì				
		ľ		1		ļ
				1		Ī
·	/	1	1]
895-8383	895-8383	l		1		ļ
905 9393	895-8383		101 774			
101.77 Tuivi 44.020			10 177	IM	-4	4.020
		260 724		-	<u> </u>	0.480
100:010		200.724		_		
0.767 77.030		 }		_		
0.153 37.630			0.153		37	7.630

FIG. 4U

895-8862 895-8862 301.43	165.876 uM 16.588 3.318 0.664 0.133	54. 159. 113. 41. 38.
CI NH 895-9683 895-9683 440.326	113.552 uM 11.355 2.271 0.454 0.091	-20. 201. 12.
895-9896 895-9896 280.349	178.349 uM 17.835 3.567 0.713 0.143	-29. 0.0 182.8 118.5 42.7

FIG. 4V

	C) N					
	N				ļ	
	Ĥ N-Ñ H					
896-0122	11					
896-0122			190.610	иМ	H	-14.15
			19.061			151.42
	2	62.316	3.812			56.90 19.20
			0.762			19.20
			0.152	Н	-	11.42
		ł				·
	S H CI				İ	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
900 0040	0					
896-0246 896-0246	<u> </u>		454.000	اببا		
030 0240			154.888 15.489	uM	<u> </u>	-17.57
	. 3	22.814	3.096			34.35
		22.017	0.620		-	102.03 46.52
			0.124			20.52
						20.02
	0. H			-		
					İ	
	H	1				
	0	İ			-	İ
	_0'	-				
896-0255						ĺ
896-0255			123.000		ļ	1714
			12.300	LIN	<u> </u>	-17.14 67.75
	40	06.504	2.480		<u> </u>	168.78
			0.492			61.27
			0.098	_		49.97
		<del></del>			-	
				İ	ľ	
	NIK _>	- [				
	) (S					
	N;N N	1			l	
	"H—/MH H					
		1	İ			
			}		.	
	$\mathcal{T}$					
000 0=:=	Cl		j			
896-0345 896-0345				_		
030-0343			107.532 t 10.753	ML		-18.86
		1	10./53		<u> </u>	77.80

FIG. 4W

101.070			<u> </u>	
464.979	2.151	-		8.94
	0.430 0.086	$\vdash$		6.12
A	0.000		<u></u> 3	7.18
N S				
<u>'</u>				
896-0390				
896-0390	128.718	иМ	1	6,90
700	12.872		8	7.23
388.445	2.574			0.25
	0.515	Щ		3.35
	0.103		2	8.25
O H N S S				
000 0575				
896-0535		$\Box$		
896-0535	132.810	uM		0.41
	13.281		7	3.84
376.478	2.656		· · · · · · · · · · · · · · · · · · ·	9.80
	0.531	Ш		2.12
	0.106		3	5.72
D _s				
896-0554			l	
896-0554	121 400	.,,,,	<del> </del>	C 70
000 000 T	121.499	иM	1 -1	6.32
411,527	12.150	$\vdash \vdash$	1 10	5.48 5.43
711,027	2.430	-	11	7.00
	0.486	$\vdash$	1 5	3.88 7.03
	0.097	Ш	2	7.03

FIG. 4X

CI—(_)		
896-0686		
896-0686	101 774	10.00
	191.774 uM 19.177	-19.80
260.724	3.835	176.04 115.02
	0.767	97.67
	0.153	25.27
0 N		
CI H		
N.		
S		
\		
896-0692		
896-0692	131.269 uM	22.78
380.897	13.127 2.625	149.23
380.897	0.525	78.33
	0.105	51.06 46.12
0, H	0.100	40.12
0 N		
H		
N N		
S		
	1	
NH		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
896-0719		
896-0719	91.950 uM	-6.49
	9.195	187.43
543.774	1.839	127.43
	0.366	50.04
	0.074	36.16
Q ÇI		
CI N CI		
896-0773 896-0773		
896-0773	147.228 uM	-13.94
	14.723	175.33
339.609	2.945 0.589	221.91 52.48
	0.589	52.48
	0.118	32.99
		-

FIG. 4Y

			<del></del> -	F	
NH					
SNH	·				
896-0819					
896-0819 896-0819		124.219	uM	-16.20	
		12.422		70.03	
	402.516	2.484		165.79	
		0.497		82.61	
		0.099		49.06	
NH Q N=0					
896-0853					
896-0853		157.546	иM	-27.06	
	317.367	15.755 3.151		75.38	
	317.307	0.630		208.69 33.08	
		0.126	-	32.63	
·				32.03	
S NH 0					
896-0921					
896-0921		174.583	иМ	-19.59	
		17.458		44.07	
	266.397	3.492		103.23	
		0.698		54.02	
		0.140		23.86	

FIG. 4Z

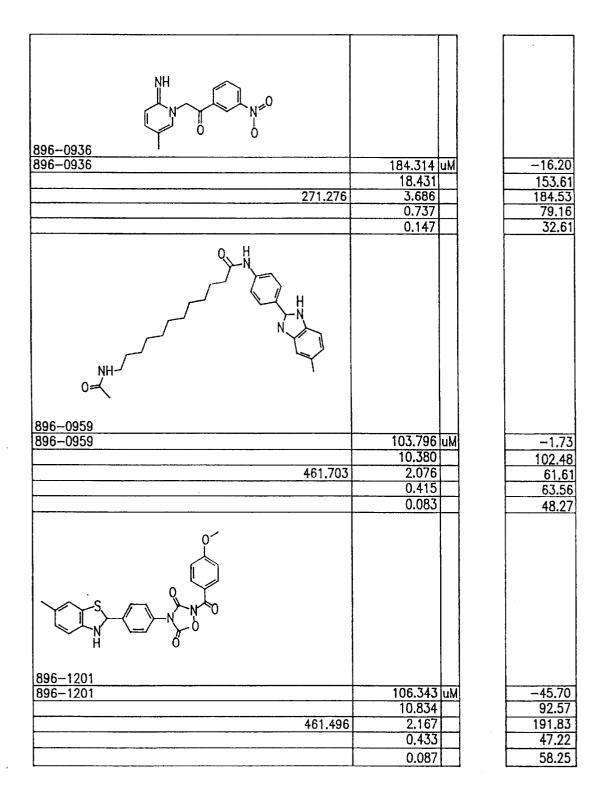



FIG. 4AA

896-1301 896-1301	510.612	97.922 t 9.792 1.958 0.392	<b>X</b>	-24.32 102.49 139.28
896-1349 896-1349		0.078		97.89 23.45
F NH NH F	431.47	115,883 t 11,588 2,318 0,464 0,093	ML.	-39.92 55,08 122,68 67.25 3,39
896-1362 896-1362	560,266	142.749 u 14.275 2.855 0.571 0.114	JM 	1,073.91 1,082.17 884.71 -9.82 -20.37

FIG. 4BB

FIG. 5A

FIG. 5B

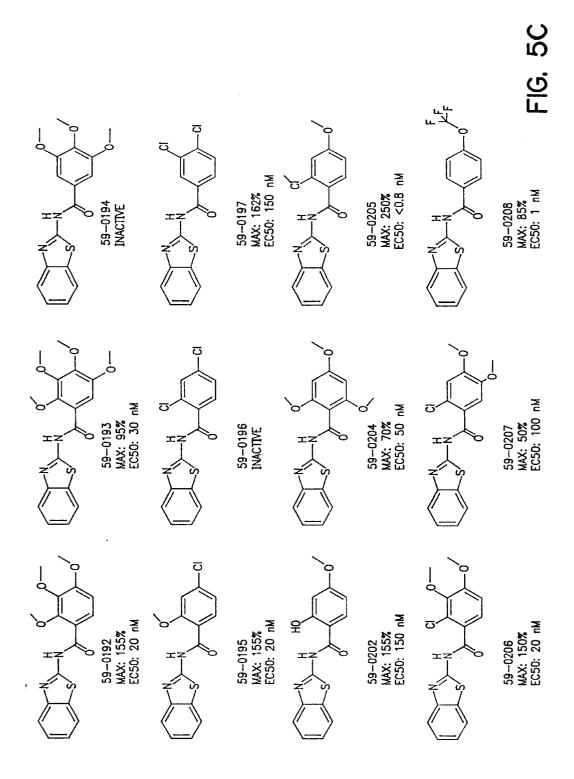



FIG. 6A

FIG. 6B

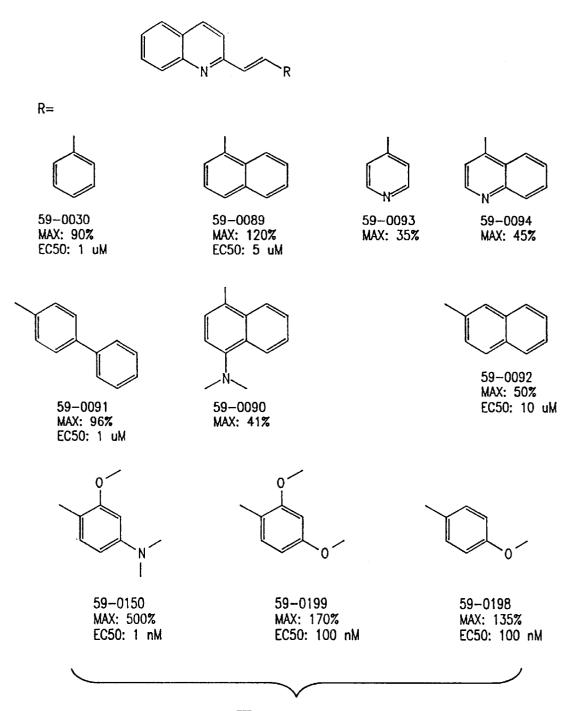



FIG. 6C

59-0145

MAX: 300% EC50:  $0.5 \mu M$ 

Nov. 18, 2003

MAX: 270% EC50:  $5 \mu M$ 

MAX: 180% EC50: 5 μM

59-0483

MAX: 260% EC50:  $3 \mu M$ 

59-0480

MAX: 180% EC50: 5 μM

FIG. 7

FIG. 8B

FIG. 8C

COMPOUND	COMPOUND CLASS	LC50	MAX RESPONSE OF 59-0008	ZGI SCORE IN Ex Vivo ASSAY	OS SCORE IN Ex Vivo ASSAY
59-0364 59-0076 59-0451 59-0472 59-0073 59-0095 59-0471 59-0030 59-0470 59-0450 59-0459 59-0064	P P P P P H P Q P P P Q	0 0 0 0 0 ?? ?? ?? 50 uM 5 uM 5 uM	0 0 0 0 0 0.5x (30 uM) 0.5x (100 uM) .7x (1uM) 1.2x (100 uM) 2.7x (30 uM) 2x (10 uM) 1.5x (? uM)	1 1 1 1 1 1	1+ 1 1,1+

59-0008	Q	1_uM			1
59-0145	Р	300nm	4x9	1+,2-	1+,2-
59-0106	T	300 nM	2x (9 uM)	- · · · · · · · · · · · · · · · · · · ·	1
59-0070	Ť	200 nM	2x (3 uM)		1,1+
59-0097	Н	100 nM?	2x (30 uM)		1+
59-0096	Н	100 nM?	4x (100 uM)	Į	1
59-0116	Н	30 nM	2.5x (3 uM)		1+,2-
59-0210	T	30 nM	2x (3 uM)		1
59-0098	Н	20 nM	2x (9uM)	1+.2+	1+,2+
59-0019	Q	10 nM	2.5x (300 nM)	1+,2+ 1+,2-	1,1+
59-0078	Q	9 nM	4x (1 uM)		'1
59-0045	H	5 nM	4x (1 uM)	1	1 1
50-0197	Q	3 nM	2.5x (300 nM)	1	1+,2-
59-0099	ļ	2 nM?	3x (1 uM)		1,1+
59-0282	Q	1 nM	2x (3 uM)		1+,2-
59-0203	+	+	2x (3uM)	1+,2	2,3
59-0072	T Q	300 pM	2x (uM)	1-1+	1,1+
59-0150	Q	<1 nM	5x (3 úM)	1-2?	1
59-0104	Ţ	<1 nM	2x (uM)	1+,2-	1
59-0103	<u></u>	<1 nM	2x (30 nM)		1,1+
59-0124	1	<1 nM	2.5x (1 uM)		1+,2-
59-0205	Т	<1 nM	2x (2 uM)		1

H=HYDRAZONE/HYDRAZIDE (45) Q=QUINOLINE/QUINOXALINE (197) P=BIS-PYRIDINES (145)

T=BENZOTHIAZOLE (104)

FIG. 9

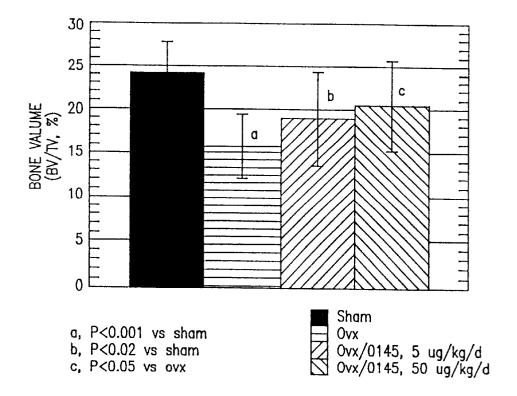



FIG. 10

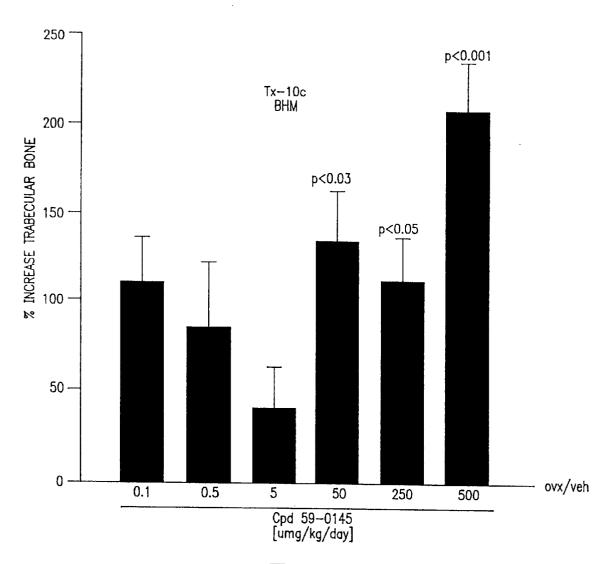



FIG. 11

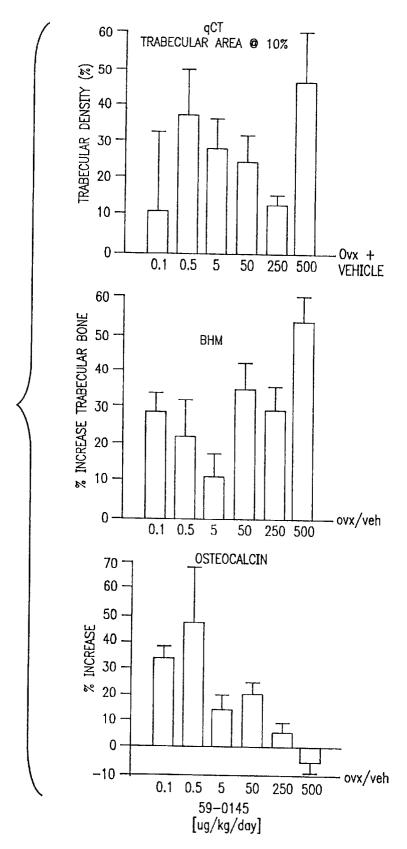



FIG. 12

MOLSTRUCTURE	MOL>NNC	MOL WEIGHT	NUM1
	59-0020	266.732	
₩ N			
CI			-
N Cl	59-0021	284.723	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
F ~ ~	59-0022	266.367	
ÇH ₃	33-0022	200.507	
SIN			
		270.070	
CTOH 0	59-0023	239.276	
N			
M .	59-0008	254.315	
S/N/			
*	59-0024	220.276	
	35-0024	220.270	
~N ~_>			
	59-0025	224.308	
N			
CH ₃			
i Y			
CH3	59-0026	248.29	
	39-0020	240.23	
0	50 0027	250 707	
Ĭ, Ň,	59-0027	250.303	
N N N N N N N N N N N N N N N N N N N			
	E0 0000	000.007	
	59-0028	226.283	
CH ₃			
Î			
CH ₃	50,0000	240 070	
	59-0029	249.272	
I			
🗸			

FIG. I3A

	59-0031	231.3	
CN N'NO	59-0030	233.275	
	59-0032	248.287	
	59-0033	248.287	
OH3 NN SNN	59-0034	268.343	
CH ₃	59-0035	291.356	
Chyno	59-0036	262.314	4
OH O CH3 CH3	59-0037	308	
NC NCH3 CH3	59-0038	241.295	
OH S N	59-0039	312.352	
CH3	59-0040	290.368	
CH3 CH3 N CH3	59-0041	501.902	

FIG. 13B

CH3 N	59-0042	281.36	
	59-0043	280.288	
Pr CH ₃	59-0044	341.21	
O OH CH3	59-0045	283.333	
H ₂ C CH ₃ CI CH ₃ CH ₃	59-0046	389.372	
H ₃ C N-N-	59-0047	303.367	
0 0 0 CH ₃ CH ₃	59-0048	384.501	
	590049	251.29	
CH ₃	59-0050	303.364	
Ch s C	59-0051	251.353	
CI CI CI	590052	393.276	
CI CI	59-0053	354.412	
c _{H2}			FIG. 13C

	59-0054	236.276	
H ₃ C N HO	59-0055	425.508	
Na+ O OH O OH O OO O OO	59-0056	512.341	
CH ₃	59-0102	284,339	
S S N OH2 CH3	59-0057	329.448	
H ₃ C _O CT _S N	59-0058	268.34	
S S N N S CI	59-0059	375.923	

FIG. I3D-I

OH S S CH3	59-0060	301.391	
S N=N=N=1 HO	59-0061	255.3	
N N N S	59-0062	357.44	
S N N	59-0063	255.344	
N CH ₄	59-0064	276.385	

FIG. 13D-2

OH N N	59-0065	254.313	
H ₂ N	59-0066	248.33	
N N-VS	59.0067	254.315	
S S-(T)	59-0068	259.354	
HO OH	59-0069	268.223	
CH ₃	59-0019	275.353	
CH ₃	59-0070	297.38	
CH ₃	59-0071	291.352	

FIG. 13E-1

CH ₃	59-0072	330.431	
F F F	59-0073	376.303	
F CI CI F F F F F F F F F F F F F F F F	59-0074	642.735	
$F \xrightarrow{F} CI \qquad CI \qquad F \\ \downarrow N \qquad N \qquad \downarrow N \qquad \downarrow F$ $CI \qquad CI \qquad N \qquad N \qquad \downarrow N \qquad \downarrow F$	59-0075	616.775	

FIG. 13E-2

	T50 0076 T	463.208	
F CI CI F F OH F	59-0076		
F CI F F	59-0077	445.193	
CH ₃	59-0078	276.341	
	59-0079	231.297	
0.5°0	59-0080	284.338	
O S O I N CH3	59-0081	377.466	
CTSNO CH3	59-0082	222.267	
CINN NC	59-0083	330.414	

FIG. 13F-1

OH OH	59-0084	264.283	
OH OH	59-0085	278.31	
OH OH	59-0086	292.293	
N N NH2	59-0087	291.309	

FIG. 13F-2

NH ₂	59-0088	263.299	
	59-0089	281.357	
CH ₃	29-0090	324.425	
	59-0091	307.394	
	59-0092	281.357	
	59-0093	232.285	
	59-0094	282.345	

FIG. 13G-1

		T	
HO O CH3	59-0095	299.328	
HO O O O O O O O O O O O O O O O O O O	59-0096	313.355	
HO O N-NT N CH3 CH3	59-0097	330.41	
HO CH ₃	59-0098	325.366	-
CH ₃	59-0099	280.393	

FIG. 13G-2

CINCI	59-0100	254.719	
F F F	59-0101	230.232	
CH ₃	59-0103	313.379	
CH ₃	59-0104	297.312	
CLN N CH3	59-0105	267.287	
0 CH3	59-0106	297.312	
HO O CH3	59-0107	332.378	
HO O CH ₃	59-0108	316.311	

FIG. 13H-1

HO O CH ₃	59-0109	316.311	
H0 0 CH3	59-0110	286.286	
H ₂ N-N OH	59-0111	152.152	
O CH ₃	59-0112	149.192	

FIG. 13H-2

CH ₃	59-0113	274.365	
H ₂ N N _d O CH ₃	59-0114	475.548	
$\begin{array}{c} \text{CI} \\ \text{H}_2\text{C} \\ \text{H}_2\text{C} \\ \text{N} \end{array} \begin{array}{c} \text{H}_2\text{C} \\ \text{S} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \end{array}$	29-0115	318.87	
O OH CH3	59-0116	269.302	
H ₃ 0 CH ₃ CH ₃	59-0117	268.382	
0 H ₂ Q N	59-0118	313.354	
H ₂ 0 - 0 - CH ₃ O - CH ₃	59-0119	314.335	

FIG. 13 I-1

$\begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	59-0120	504.485	
N N N N N N N N N N N N N N N N N N N	59-0121	245.284	
H ₂ 0 N O O	59-0122	333.389	
H ₂ C N N N N N N N N N N N N N N N N N N N	59-0123	347.416	
H ₂ 0 N O O	59-0124	350.44	

FIG. 13 I-2

Nov. 18, 2003

HO OH	59-0125	372.447	
	59-0126	260.295	
ÇН3 Н3С-№ ОН	59-0127	329.405	
$H_3C$ $N$ $N$ $N$ $N$ $CI$	59-0128	436.34	
CI	59-0129	277.713	
N N N N N N N N N N N N N N N N N N N	59-0130	287.345	
N CI CI	59-0131	331.225	

FIG. 13J-1

	59-0132	313.315	
N N CH ₃	59-0133	327.342	
O CH ₃	59-0134	357.367	
NNN ONNO H ₂ O-N-CH ₃	59-0135	356.383	
CI OH O	59-0136	411.868	

FIG. 13J-2

CI N HO	59-0137	296.712
O CH ₃	59-0138	340.808
O CH ₃	59-0139	340.424
CI CI	59-0140	289.164
$0 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$	59-0141	437.324
CI	59-0142	3/9.288
CI P F F	59-0143	447.285

FIG. 13K-I

HO CH3	59-0144	316.404
P F N N N F F	59-0145	350.265
(I) N TO-(I)	59-0146	246.268
N N O CH ₃	59-0147	314.364
N-CH3 CH3	59-0148	291.352

FIG. 13K-2

S O CH3	59-0149	329.335	
O CH ₃ CH ₃	59-0150	304.391	
O CH3	59-0151	278.31	
N N N N F	59-0152	266.274	
O CI	59-0153	282.729	
CH3	59-0154	262.311	
N N F F F	59-0155	316.281	

FIG. 13L-1

<u></u>	,		
	59-0156	333.389	
CH ₃	59-0157	290.364	
H ₃ C O CH ₃	59-0158	308.335	
0-CH ₃	59-0159	308.335	
CH ₃	59-0160	319.406	

FIG. 13L-2

US 6,649,631 B1

	-   =	001 5-51	
H ₂ O-N-OH ₂	59-0161	291.352	
	59-0162	287.321	
	59-0163	249.272	
	59-0164	299.332	
	59-0165	250.26	
O CH3	59-0166	270.334	
	59-0167	263.299	

FIG. I3M-I

 <del></del>	· · · · · · · · · · · · · · · · · · ·	
59-0168	269.346	
59-0169	288.309	
59-0170	250.26	
59-0171	238.249	
59-0172	306.32	

FIG. I3M-2

	59-0173	299.332	
N N CH3	59-0174	279.298	
N-S N N-S N	59-0175	306.348	
TIN NTS	59-0176	256.288	
	59-0177	251.248	
ONN	59-0178	239.237	
	59-0179	257.292	

FIG. I3N-I

	59-0180	417.487	
CH ₃	59-0181	313.358	
	59-0182	288.309	
O N N			
T N N S	59-0183	305.36	
	59-0184	252.272	

FIG. 13N-2

~~			
	59-0185	345.444	
CTN CNFF	59-0186	374.362	
O CH3	59-0187	383.494	
CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	59-0188	616.784	
O S O CH3  S O CH3  CH3	59-0189	490.579	
0 0 CH ₃ 0 CH ₃ 0 CH ₃ 0 CH ₃ 0 CH ₃	59-0190	550.631	
0-NCH 0-CH3 N-N-0-CH3 N-0-CH3 N-0-CH3	59-0191	584.605	
CH ₃ C CH ₃	59-0192	344.389	
CH ₃ O-CH ₃ CH ₃	59-0193	344,389	
CLN N CH3	59-0194	344.389	
- ⁰ -сн _з	T T		FIG. 130-1

au	T $T$	<b>-</b>	- +
CH ₃	59-0195	318.783	
CIN CILL CI	59-0196	323.202	

FIG. 130-2

CI CI CI	59-0197	323.202	
CTN CH3	59-0198	261.323	
O CH3	59-0199	291.348	
HO VO CH3	59-0200	342.349	
H0	59-0201	331.326	
N HO CH ₃	59-0202	300.337	
0 CH ₃	59-0203	292.336	

FIG. 13P-1

	59-0204	344.389		
() Thy N >= \				
CH ₃				
CH ₃	E0 000E	740 707	<del></del>	
	59-0205	318.783		
CH ₃				
	59-0206	348.809		
CI O-CH ₃				
	59-0207	348.809		
CI O-CH3				
	59-0208	336.308		
O F F S				

FIG. 13P-2

•			
OH	59-0209	247.296	
CH ₂	59-0210	297.376	
CH ₂	29-0211	264.326	
0—CH ₃	59-0212	314.364	
CTS CH3	59-0213	294.333	
CI CH3 CH3	59-0214	348.809	
SN OCH3	59-0215	340.401	

FIG. 13Q-1

CH ₃	59-0216	264.304	
H ₂ C CH ₃ CH ₃	59-0217	278.331	
H ₂ C N O CH ₃	59-0218	292.357	
$H_2N$ $H_2O$	59-0219	329.379	
HO CH ₃	59-0220	300.312	

FIG. 13Q-2

HO CH3	59-0221	283.329	
HO O CH ₃ N CH ₃	59-0222	309.367	
HO TO OH	59-0223	284.27	
HO CH ₃ N-N CH ₃ CH ₃ H ₂ C CH ₃	590224	330.338	
HO O OH	59-0225	256.26	
HO O O O O O O O O O O O O O O O O O O	59-0226	285.258	
N-CH ₃	59-0227	296.396	

FIG. 13R-1

CH ₃ CH ₃	59-0228	269.346
CH ₃	59-0229	239.32
0 N O CH3	59-0230	284.317
H ₂ N	59-0231	318.399
CH ₃ CH ₃ CH ₃	59-0232	269.35

FIG. 13R-2

Nov. 18, 2003

	59-0233	232.285	
CH ₃	59-0234	281.31	
CH3	59-0235	251.284	
CH ₃	59-0236	280.325	
0-CH ₃	59-0237	328.39	
CH3 CH3	59-0238	340.401	
HO O CH3	59-0239	330.338	
HO CH ₃	59-0240	347.393	

FIG. 13S-I

	,		 
CI N O OH	59-0241	344.753	
O, O S N N N	59-0242	291.286	
O-N F N P O OH	59-0243	455.334	
H ₂ C CI	59-0244	414.935	

FIG. 13S-2

59-0245	419.887	
59-0246	675.856	
59-0247	333.385	
59-0248	247.296	
59-0249	298.297	
59-0250	332.742	
59-0251	386.426	
59-0252	361.376	
	59-0246  59-0247  59-0248  59-0250  59-0251	59-0246       675.856         59-0247       333.385         59-0248       247.296         59-0249       298.297         59-0250       332.742         59-0251       386.426

FIG. 13T-1

$CI$ $S$ $N$ $O$ $CH_3$ $CH_3$ $CH_3$	59-0253	348.809	
$H_2C$ $N$ $N$ $O$ $CH_3$ $CH_3$ $CH_3$	59-0254	328.39	
$H_2$ C-S-N-N-O-CH ₃ $CH_3$ $CH_3$	59-0255	376.455	
HO N O CH ₃ CH ₃ CH ₃	59-0256	361.376	

FIG. 13T-2

CI CH3  CH3  CH3	59-0257	348.809	
$H_2C$ $O$ $CH_3$ $O$ $CH_3$ $O$ $CH_3$	59-0258	344.389	
P CH ₃ CH ₃ CH ₃	59-0259	332.354	
H ₂ C-0 CH ₃ CH ₃	59-0260	344.389	
CH ₃	59-0261	364.423	
F O CH ₃	59-0262	398.36	,
CH ₃	59-0263	368.455	

FIG. 13U-1

CI S O CH ₃ CH ₃	59-0264	383.254	
Br S O CH ₃	59-0265	393.26	
H ₂ C S O CH ₃	59-0266	328.39	
CH ₃	59-0267	364.423	
$H_2C$ $O$ $CH_3$ $O$ $CH_3$ $O$ $CH_3$	59-0268	358.416	

FIG. 13U-2

$\begin{array}{c c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	59-0269	342,417	
CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	59-0270	328.39	
HO O CH3 0 - CH3 0 - CH3	59-0271	360.364	
HO O CH ₃	59-0272	381.838	
$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	59-0273	345.445	
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	59-0274	329.379	
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	59-0275	328.39	

FIG. 13V-1

HO TING OCH3	59-0276	358.373	
CH ₃	59-0279	327.406	
HO O CH3 CH3 O CH3 O CH3	59-0277	372.375	
HO CH3 0 CH3 0 -CH3	59-0278	372.375	
CH ₃ CH ₃ CH ₃ CH ₃	590280	394.352	

FIG. 13V-2

CH ₃ CH ₃ CH ₃	59-0281	310.419	
CH ₃ CH ₃ CH ₃	59-0282	305.379	
N-N OCH3	59-0283	306.367	
CH ₃ CH ₃ CH ₃	59-0284	305.379	
N-N o'CH3 O'CH3	59-0285	393.324	
CH ₃	590286	292.336	
CH ₃	590287	306.32	

FIG. I3W-I

CH ₃	59-0288	276.357	
HO O CI	59-0289	351.188	
HO TO CI	59-0290	351,188	
HO CH ₃	59-0291	342.349	
$HO \longrightarrow O$ $CH_3$ $O-CH_3$ $O-CH_3$	59-0292	372.375	

FIG. 13W-2

HO O CH3	59-0293	342.349	
HO O F	59-0294	318.278	
$HO \downarrow O$ $N-N \downarrow O$ $O-OH_2$	59-0295	312.323	
HO O CI	59-0296	316.743	
HO O O O O O O O O O O O O O O O O O O	59-0297	329.31	:
HO TO OH	59-0298	298.297	
	59-0299	304.308	

FIG. 13X-1

	59-0300	236.269	
	59-0301	326.35	
CI N CH ₃	59-0302	285.733	
O CH ₃	59-0303	275.31	
H ₂ 0 0 P P N D Br F F	59-0304	469.178	

FIG. 13X-2

CI TIN OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STAT	59-0305	340.789	
H ₃ C CH ₃	59-0306	308.403	
H ₂ O N S O	59-0307	300.38	
F N CH ₃	59-0308	304.27	
$H_3C$ $H_3C$ $O$ $O$ $O$ $O$ $O$ $O$ $O$ $O$ $O$ $O$	59-0309	330.406	
H ₂ C H ₂ C N N N F F F	59-0310	368.378	
CI N OH	59-0311	287.705	

FIG. 13Y-1

F CI	59-0313	293.127	
F CI N CI	59-0314	343.134	
CI	59-0315	275.137	
H ₂ C CI	59-0316	303.191	
P CI CI	59-0317	377.579	

FIG. 13Y-2

F N P	59-0318	326.679	
	59-0319	282.345	
	59-0320	206.247	
CI OH	59-0321	256.691	
H ₃ C-0 CH ₃	59-0322	284.745	
Br	59-0323	285.143	
H ₂ C N N N	59-0324	234.301	
CI N CI	59-0312	309.582	

FIG. 13Z-1

	59-0325	424.505	
$H_2$ 0 $O$ 0 $O$ 0 $O$ 0 $O$ 0 $O$ 0 $O$ 0 $O$ 1 $O$ 1 $O$ 1 $O$ 1 $O$ 1 $O$ 2 $O$ 1 $O$ 2 $O$ 3 $O$ 4 $O$ 5 $O$ 6 $O$ 7 $O$ 8 $O$ 9 $O$ 9 $O$ 9 $O$ 9 $O$ 9 $O$ 9 $O$ 9 $O$ 9	59-0326	404.543	
$H_2O$ $O$ $O$ $O$ $O$ $O$ $O$ $O$ $O$ $O$	59-0327	390.517	
$\begin{array}{c} HO \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ OH_2 O \\ $	59-0328	418.57	

FIG. 13Z-2

	59-0329	424.53	
0 OH OH OH			
H ₂ 0 OH ₃			
но			
F	59-0330	411.47	
OH OH			
H ₂ C CH ₃ OH OH O			

FIG. I3AA

	59-0354	421.419	7
0 0 0 0			
0 0 0 0 H ₂ N-S 1 S N			
F N		,	
	59-0342	425.497	
N Y Y TOCH3			
H ₂ C CH ₃ OH OH O			

FIG. I3BB

Nov. 18, 2003

ON N F F	59-0357	351.366	
F F F F F F F F F F F F F F F F F F F	59-0361	364.292	
F P P F	59-0362	376.255	
	59-0363	216.247	
CH3 PF	59-0364	378.318	
	59-0365	216.247	
P P S S S S S P P P	59-0366	384.367	
FF P	59-0367	348.289	

FIG. 13CC

CH ₃ CH ₃ CH ₃	59-0368	311.339	
CH ₃ CH ₃ CH ₃	59-0369	387.437	
CH ₃ CH ₃ CH ₅ CH ₆	59-0370	328.39	
HO-CH ₃ CH ₃ CH ₆	59-0371	372.399	
CH ₃ CH ₃ N O CH ₃ H ₂ 0 CH ₃	59-0372	399.469	
CH ₃ CH ₃ NH ₂	59-0373	299.353	
CH ₃ N N CH ₃	59-0374	255.363	
CH ₃ N N CH ₃ CH ₃	59-0375	261.391	
H ₃ C O OH	59-0376	331.351	
H ₃ O	59-0377	351.408	

FIG. I3DD-I

7	,	7	7	~
ŀ		59-0378	285.389	
	CH3 CH3 CH3			
	0 OH N N S S H ₃ O 0 S O	59-0379	337.379	

FIG. I3DD-2

F P CI CH3	59-0380	408.813	
N N SITTER			
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	59-0381	408.813	
F CI CH3	03 0001	199.0.10	
E P	59-0382	408.813	,
F CI CH3			
CI N N N OH	59-0383	468.699	
CH3 H30 N N O N N O	59-0384	340.405	
H ₃ 0 N N 0	59-0385	334.377	
PF CI N N N N	59-0386	367.761	
FF CI N N N N H ₃ C N CH	59-0387	323.729	-
EE CI NO	59-0388	451.23	

FIG. I3EE-I

T			- 7	
	FF CI NOCI	59-0389	474.268	
	FF CI NO	59-0390	487.284	
	FF CI NO	59-0391	466.245	

FIG. I3EE-2

F CI ON ON ON ON ON ON ON ON ON ON ON ON ON	59-0392	442.78	·
F CI O O O O O O O O O O O O O O O O O O	59-0393	395.767	
F CI N N N N CI	59.0394	393.195	
F CI CH ₃ CH	59-0395	370.804	
F CI CI CI	59-0396	378.18	
F CI H ₂ C O N O O	59-0397	424.808	
F CI N N N B CI	59-0398	414.234	

FIG. 13FF-1

	Teo 0700	500.045	
F CI F F	59-0399	502.245	
F CI CH3  CH3  CH3  CH3  CH3  CH3  CH3  CH3	59-0400	526.388	
F CI CI CI	590401	364.197	
F CI CI CI	59-0402	362.181	
F CI O S CI	59-0403	538.803	

FIG. I3FF-2

F CI O H2C I	59-0404	549.378	
F CI S N CI	59-0405	437.315	
F CI O CH3 CI	59-0406	406.233	
PF CI PN N N N N N N N N N N N N N N N N N N	59-0407	349.699	
FF CI ONO NO NO NO NO NO NO NO NO NO NO NO NO	59-0408	561.868	
FF CI FF F F F F F F F F F F F F F F F F	59-0409	535.821	
N N N N N CH ₃	59-0410	340.428	
FF CI SCI CI	59-0411	464.294	
F CI S S	59-0412	429.849	
F CI O CH3	59-0413	459.874	

FIG. 13GG-1

FF CI N S FF	59-0414	497.846	
PF CI NON I	59-0415	516.905	

FIG. 13GG-2

	1 <b>5 5 6 6</b> 6	151 671	
F CI N CH3	59-0416	454.834	
F CI ON CH3	59-0417	484.86	
N F O F	59-0418	333.268	
N N N N N CI	59-0419	367.761	
F CI HB N OH	59-0420	352.767	
F F CI O	59-0421	539.339	
F F	59-0422	351.253	
N N N N N N N N N N N N N N N N N N N			
F P	59-0423	385.698	
CI P			

FIG. I3HH-I

F CI N N CI N F F F F	59-0424	484.186	
F CI	59-0425	400.186	
F CI N N	59-0426	380.756	
F CI CI CI	59-0427	414.213	

FIG. I3HH-2

	· · · · · · · · · · · · · · · · · · ·		 
F CI N N	59-0428	380.756	
F CI CI N N CH3	59-0429	409.793	
F CI	59.0430	313.669	
F CI CI N N N N N N N N N N N N N N N N N	59-0431	454.859	
F CI CI CH ₃	59-0432	395.767	
CH ₃ CH ₃	590433	407.821	

FIG. 13 II-I

F CI N N F F F F	59-0435	433.738	
F CI N N Br	59-0436	444.637	
CI F F F F F F F F F F F F F F F F F F F	59-0439	525.826	

FIG. 13 II-2

FF CI FF F	59-0440	525.826	
CH ₂ CH ₂	59-0441	311.339	
N N N CI	59-0442	303.704	
N-O-FF	59-0443	337.256	
N N N N N N N N N N N N N N N N N N N	59-0444	269.259	
F F F F	59-0445	404.356	
F F F	59-0446	404.356	
F F F F F F F F	59-0447	352.241	
	59-0448	314.39	

FIG. 13JJ-1

59-0449	394.274	
59-0450	329.281	
59-0451	384.71	
1	59-0450	59-0450 329.281

FIG. 13JJ-2

H ₃ C N N N CH ₃	59-0452	242.324		
	59-0453	214.271		
N N N N N N N N N N N N N N N N N N N	59-0454	264.291		
H ₃ C O NH ₂	59-0455	300.32		
HO N N N OH	59-0056	308.296		
H ₂ C O N N N N O CH ₂	59-0457	330.342		
CH ₂ H ₂ C-N N N N CH ₂ CH ₂	59-0458	300.408		
CH2 CH2 FF	59-0459	364.292		
FF	59-0460	252.238		
FFON	59-0461	266.265		
F CONTO	59-0462	280.292		
FF	59-0463	253.226	FIG.	13Kk

FFQ	59-0464	267.253	
FF NN N N FF	59-0465	363.26	
CH ₃	59-0466	315.352	
	59-0467	212.294	
	59-0468	213.283	
FF N N N N FF	59-0469	378.318	
H ₂ N N N N N N N N N N N N N N N N N N N	59-0470	325.293	
FFF N=N-Q	59-0471	350.261	
FF FF	59-0472	351.249	

FIG. I3LL

	59-0476	350.265	
N N N N	39-0476	330.263	
F1 * F	59-0477	283.256	
FLANNIN	39-0477	285.250	
F F F F F F F F F F F F F F F F F F F	59-0478	351.253	
F N N N N	59-0479	283.256	
F- N-N-N-N	59-0480	332.328	
F N N N	59-0481	363.26	
F N N N P	59-0482	349.277	
N N N FF	59-0483	307.278	
CI CH3 CH3 CI	59-0484	315.246	
OH OH	59-0485	250.3	
PHONON CH3	59-0486	364.292	
ON NO F	59-0487	302.298	
T Et			FIG. 13MN

PORFF FUNNIN	59-0488	486.259		
TSN ON	59-0489	255.3		
N O F	59-0490	322.309		
IN IN KE	59-0491	317.269		
CI N N N CI	590492	283.161		
FUNNNN	59-0493	364.248		
	59-0494	232.285		
C F F F F F F F F F F F F F F F F F F F	59-0495	299.294		
FF F N N N N CH3	59-0496	354.33		
FF N N N O CH3	590497	340.303		
FF	59-0498	282.268		
FF N N N CH3	59-0499	296.294		1
			⊔ F IG.	<b>13NN</b>

X	59-0500	316.713	

FIG. 1300

45

1

## COMPOSITIONS AND METHODS FOR TREATING BONE DEFICIT CONDITIONS

This is a 371 of PCT/US97/18864 Oct. 23, 1997 now WO 98/17267.

## TECHNICAL FIELD

The invention relates to compositions and methods for use in limiting undesired bone loss in a vertebrate at risk of such bone loss, in treating conditions that are characterized by undesired bone loss or by the need for bone growth, in treating fractures, and in treating cartilage disorders. More specifically, the invention concerns the use of specific classes of compounds identified or characterized by a high throughput screening assay.

## BACKGROUND ART

Bone is not a static tissue. It is subject to constant breakdown and resynthesis in a complex process mediated by osteoblasts, which produce new bone, and osteoclasts, which destroy bone. The activities of these cells are regulated by a large number of cytokines and growth factors, many of which have now been identified and cloned. Mundy has described the current knowledge related to these factors (Mundy, G. R. Clin Orthop 324:24-28, 1996, Mundy, G. R. J Bone Miner Res 8:S505-10, 1993).

Although there is a great deal of information available on the factors which influence the breakdown and resorption of bone, information on growth factors which stimulate the 30 formation of new bone is more limited. Investigators have searched for sources of such activities, and have found that bone tissue itself is a storehouse for factors which have the capacity for stimulating bone cells. Thus, extracts of bovine bone tissue obtained from slaughterhouses contain not only structural proteins which are responsible for maintaining the structural integrity of bone, but also biologically active bone growth factors which can stimulate bone cells to proliferate. Among these latter factors are transforming growth factor β, the heparin-binding growth factors (acidic and basic fibroblast growth factor), the insulin-like growth factors (insulinlike growth factor I and insulin-like growth factor II), and a recently described family of proteins called bone morphogenetic proteins (BMPs). All of these growth factors have effects on other types of cells, as well as on bone cells.

The BMPs are novel factors in the extended transforming growth factor β superfamily. They were first identified by Wozney J. et al. Science (1988) 242:1528-34, using gene cloning techniques, following earlier descriptions characterizing the biological activity in extracts of demineralized bone (Urist M. Science (1965) 150:893-99). Recombinant BMP2 and BMP4 can induce new bone formation when they are injected locally into the subcutaneous tissues of rats (Wozney J. Molec Reprod Dev (1992) 32:160-67). These factors are expressed by normal osteoblasts as they 55 differentiate, and have been shown to stimulate osteoblast differentiation and bone nodule formation in vitro as well as bone formation in vivo (Harris S. et al. J. Bone Miner Res (1994) 9:855-63). This latter property suggests potential usefulness as therapeutic agents in diseases which result in 60

The cells which are responsible for forming bone are osteoblasts. As osteoblasts differentiate from precursors to mature bone-forming cells, they express and secrete a number of enzymes and structural proteins of the bone matrix, 65 including Type-1 collagen, osteocalcin, osteopontin and alkaline phosphatase (Stein G. et al. Curr Opin Cell Biol

(1990) 2:1018–27, Harris S. et al. (1994), supra). They also synthesize a number of growth regulatory peptides which are stored in the bone matrix, and are presumably responsible for normal bone formation. These growth regulatory peptides include the BMPs (Harris S. et at (1994), supra). In studies of primary cultures of fetal rat calvarial osteoblasts, BMPs 1, 2, 3, 4, and 6 are expressed by cultured cells prior to the formation of mineralized bone nodules (Harris S. et al. (1994), supra). Like alkaline phosphatase, osteocalcin and osteopontin, the BMPs are expressed by cultured osteoblasts as they proliferate and differentiate.

Although the BMPs are potent stimulators of bone formation in vitro and in vivo, there are disadvantages to their 15 use as therapeutic agents to enhance bone healing. Receptors for the bone morphogenetic proteins have been identified in many tissues, and the BMPs themselves are expressed in a large variety of tissues in specific temporal and spatial patterns. This suggests that BMPs may have effects on many tissues other than bone, potentially limiting their usefulness as therapeutic agents when administered systemically. Moreover, since they are peptides, they would have to be administered by injection. These disadvantages impose severe limitations to the development of BMPs as therapeu-25 tic agents.

There is a plethora of conditions which are characterized by the need to enhance bone formation. Perhaps the most obvious is the case of bone fractures, where it would be desirable to stimulate bone growth and to hasten and complete bone repair. Agents that enhance bone formation would also be useful in facial reconstruction procedures. Other bone deficit conditions include bone segmental defects, periodontal disease, metastatic bone disease, osteolytic bone disease and conditions where connective tissue repair would be beneficial, such as healing or regeneration of cartilage defects or injury. Also of great significance is the chronic condition of osteoporosis, including age-related osteoporosis and osteoporosis associated with postmenopausal hormone status. Other conditions characterized by the need for bone growth include primary and secondary hyperparathyroidism, disuse osteoporosis, diabetes-related osteoporosis, and glucocorticoid-related osteoporosis. In addition, or alternatively, the compounds of the present invention may modulate metabolism, proliferation and/or differentiation of normal or aberrant cells or tissues.

There are currently no satisfactory pharmaceutical approaches to managing any of these conditions. Bone fractures are still treated exclusively using casts, braces, anchoring devices and other strictly mechanical means. Further bone deterioration associated with postmenopausal osteoporosis has been decreased or prevented with estrogens or bisphosphonates.

U.S. Pat. No. 5,280,040 discloses a class of compounds which are 3,4-diaryl chromans. These compounds can be considered derivatives of 2,3,4 triphenyl butanol, where the hydroxy at the 1-position forms an ether with the ortho position of the phenyl group substituted at the 4-position of the butanol. The parent 3,4-diaryl chromans do not contain nitrogen atoms in the aromatic moieties or their linkers. A preferred compound, centchroman, contains a nitrogen substituent only in one of the substituents on a phenyl moiety. These compounds are disclosed in the '040 patent as useful in the treatment of osteoporosis.

In addition, the PCT application WO97/15308 published May 1, 1997 describes a number of classes of compounds

that are active in the screening assay described below and are useful in treating bone disorders. These compounds, generically, are of the formulae

$$R^{a}_{m}$$
 $X$ 
 $L$ 
 $Ar^{1}$ 

wherein R^a is a non-interfering substituent;

m is an integer of 0-4;

each dotted line represents an optional  $\pi$ -bond;

each Z is independently N, NR, O, S, CR or  $\mathrm{CR}_2$ , where  15 each R is independently H or alkyl (1-6C);

X is O, S, SO or  $SO_2$ ;

L is a flexible linker; and

ring; or:

$$\mathbb{R}^{a}_{n}$$
  $\mathbb{L}$   $\mathbb{L}$   $\mathbb{L}$   $\mathbb{L}$ 

wherein Ra is a non-interfering substituent,

n is an integer of 0 and 5;

L is a flexible linker which does not contain nitrogen or is a constrained linker; and

Ar² is a substituted or unsubstituted phenyl or a substituted or unsubstituted naphthyl.

There remains a need for additional compositions which can ameliorate the effects of abnormalities in bone formation or resorption. The present invention expands the repertoire of compounds useful for limiting or treating bone deficit conditions, and for other uses that should be apparent to those skilled in the art from the teachings herein.

## DISCLOSURE OF THE INVENTION

The invention provides compounds that can be administered as ordinary pharmaceuticals and have the metabolic effect of enhancing bone growth or inhibiting resorption. 45 The compounds of the invention can be identified using an assay for their ability to activate control elements associated with bone anabolic factors. Thus, the invention is directed to methods and compositions for treating bone disorders, which methods and compositions use, as active ingredients, 50 compounds wherein two aromatic systems are coupled so as to be spaced apart from each other by about 1.5 to about 15 Angstroms. The thus-linked systems (including the linker coupling them) preferably include at least one nitrogen

Therefore, the compounds useful in the invention can be described as having the formula Ar¹-linker-Ar², wherein each of Ar¹ and Ar² is independently an aromatic system and the linker portion of the formula spaces Ar¹ and Ar² apart by a distance of approximately 1.5–15 Angstroms. Ar¹, Ar² and 60 the linker may optionally be substituted with non interfering substituents. In the useful compounds, there is preferably at least one nitrogen atom in either AR¹, Ar² and/or the linker, independent of any substituents thereon. Preferably, the compounds of the invention contain at least one additional heteroatom selected from the group consisting of N, S and O, independent of any substituent.

Thus, in one aspect, the invention is directed to a method to treat a condition in a vertebrate animal characterized by a deficiency in, or need for, bone growth replacement and/or an undesirable level of bone resorption, which method comprises administering to a vertebrate subject in need of such treatment an effective amount of certain compounds of the formula:

10

wherein each of Ar¹ and Ar² is independently substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, a substituted or unsubstituted aromatic system containing a 6-membered heterocycle, or a substituted or unsubstituted aromatic system containing a 5-membered heterocycle; and

L is a linker that provides spacing of 1.5–15 Å.

In other aspects, the invention relates to pharmaceutical compositions for use in the method, and to the compounds  $Ar^2$  is a substituted or unsubstituted 6-membered aromatic 20 for use in preparing a medicament for use in the method.

## BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 gives a schematic representation of the compounds used as active ingredients in the methods and compositions of the invention.

FIG. 2 shows the dose response curve for a positive control compound, designated 59-0008.

FIGS. 3 thru 4BB show illustrative compounds of the 30 invention and the results obtained with them in an in vitro test for stimulation of bone growth.

FIGS. 5A, 5B and 5C show structures and results of a screening assay for a group of compounds which varies the parameters of lead compound 59-0072.

FIGS. 6A, 6B and 6C show structures and results of a screening assay for a group of compounds which varies the parameters of lead compound 50-0197.

FIG. 7 shows structures and results of a screening assay for a group of compounds which varies the parameters of lead compound 59-0145.

FIGS. 8A, 8B and 8C show structures and results of a screening assay for a group of compounds which varies the parameters of lead compound 59-0045.

FIG. 9 shows the results in an ex vivo calvarial assay for various compunds of the invention.

FIG. 10 shows the increase in bone volume effected by subcutaneous administration of compound 59-0145 in the OVX in vivo assay.

FIG. 11 is a graphical representation of percent increase in trabecular bone in ovariectomized rats treated with compound 59-0145.

FIG. 12 presents graphs showing results of qCT and bone histomorphometri and serum osteocalcin levels in rats treated with compound 59-0145.

FIG. 13 (A-OO)(41 pages) is a list of compounds used in screening for bone morphogenic activity according to the screening assay set forth herein.

## MODES OF CARRYING OUT THE INVENTION

A rapid throughput screening test for compounds capable of stimulating expression of a reporter gene linked to a BMP promoter (a surrogate for the production of bone morphogenetic factors that are endogenously produced) is described in WO96/38590 published Dec. 5, 1996, the contents of which are incorporated herein by reference. This assay is

also described as a portion of a study of immortalized murine osteoblasts (derived from a mouse expressing a transgene composed of a BMP2 promoter driving expression of T-antigen) in Ghosh-Choudhery, N. et al. Endocrinology (1996) 137:331-39. In this study, the immortalized cells were stably transfected with a plasmid containing a luciferase reporter gene driven by a mouse BMP2 promoter (-2736/114 bp), and responded in a dose-dependent manner to recombinant human BMP2.

Briefly, the assay utilizes cells transformed permanently 10 or transiently with constructs in which the promoter of a bone morphogenetic protein, specifically BMP2 or BMP4, is coupled to a reporter gene, typically luciferase. These transformed cells are then evaluated for the production of the reporter gene product; compounds that activate the BMP promoter will drive production of the reporter protein, which can be readily assayed. Over 40,000 compounds have been subjected to this rapid screening technique, and only a very small percentage are able to elicit a level of production of luciferase 5-fold greater than that produced by vehicle.  20 Compounds that activate the BMP promoter share certain structural characteristics not present in inactive compounds. The active compounds ("BMP promoter-active compounds" or "active compounds") are useful in promoting bone or cartilage growth, and thus in the treatment of vertebrates in 25 need of bone or cartilage growth.

BMP promoter-active compounds can be examined in a variety of other assays that test specificity and toxicity. For instance, nonBMP promoters or response elements can be linked to a reporter gene and inserted into an appropriate host cell. Cytotoxicity can be determined by visual or microscopic examination of BMP promoter- and/or non-BMP promoter-reporter gene-containing cells, for instance. Alternatively, nucleic acid and/or protein synthesis by the cells can be monitored. For in vivo assays, tissues may be removed and examined visually or microscopically, and optionally examined in conjunction with dyes or stains that facilitate histologic examination. In assessing in vivo assay results, it may also be useful to examine biodistribution of the test compound, using conventional medicinal chemistry/ animal model techniques.

As used herein, "limit" or "limiting" and "treat" or "treatment" are interchangeable terms. The terms include a postponement of development of bone deficit symptoms and/or a reduction in the severity of such symptoms that will or are expected to develop. The terms further include ameliorating existing bone or cartilage deficit symptoms, preventing additional symptoms, ameliorating or preventing the underlying metabolic causes of symptoms, preventing or reversing bone resorption and/or encouraging bone growth. Thus, the terms denote that a beneficial result has been conferred on a vertebrate subject with a cartilage, bone or skeletal deficit, or with the potential to develop such deficit.

bone formation to bone resorption, such that, if unmodified, the subject will exhibit less bone than desirable, or the subject's bones will be less intact and coherent than desired. Bone deficit may also result from fracture, from surgical intervention or from dental or periodontal disease. By "cartilage defect" is meant damaged cartilage, less cartilage than desired, or cartilage that is less intact and coherent than desired.

Representative uses of the compounds of the present invention include: repair of bone defects and deficiencies, 65 such as those occuring in closed, open and nonunion fractures; prophylactic use in closed and open fracture reduc-

tion; promotion of bone healing in plastic surgery; stimulation of bone ingrowth into noncemented prosthetic joints and dental implants; elevation of peak bone mass in premenopausal women; treatment of growth deficiencies; treatment of peridontal disease and defects, and other tooth repair processes; increase in bone formation during distraction osteogenesis; and treatment of other skeletal disorders, such as age-related osteoporosis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis or disuse osteoporosis and arthritis. The compounds of the present invention can also be useful in repair of congenital, trauma-induced or surgical resection of bone (for instance, for cancer treatment), and in cosmetic surgery. Further, the compounds of the present invention can be used for limiting or treating cartilage defects or disorders, and may be useful in wound healing or tissue repair.

Bone or cartilage deficit or defect can be treated in vertebrate subjects by administering compounds of the invention which have been identified through suitable screening assays and which exhibit certain structural characteristics. The compositions of the invention may be administered systemically or locally. For systemic use, the compounds herein are formulated for parenteral (e.g., intravenous, subcutaneous, intramuscular, intraperitoneal, intranasal or transdermal) or enteral (e.g., oral or rectal) delivery according to conventional methods. Intravenous administration will be by a series of injections or by continuous infusion over an extended period. Administration by injection or other routes of discretely spaced administration will generally be performed at intervals ranging from weekly to once to three times daily. Alternatively, the compounds disclosed herein may be administered in a cyclical manner (administration of disclosed compound; followed by no administration; followed by administration of disclosed compound, and the like). Treatment will continue until the desired outcome is achieved. In general, pharmaceutical formulations will include a compound of the present invention in combination with a pharmaceutically acceptable vehicle, such as saline, buffered saline, 5% 40 dextrose in water, borate-buffered saline containing trace metals or the like. Formulations may further include one or more excipients, preservatives, solubilizers, buffering agents, albumin to prevent protein loss on vial surfaces, lubricants, fillers, stabilizers, etc. Methods of formulation 45 are well known in the art and are disclosed, for example, in Remington's Pharmaceutical Sciences, Gennaro, ed., Mack Publishing Co., Easton Pa., 1990, which is incorporated herein by reference. Pharmaceutical compositions for use within the present invention can be in the form of sterile, nonpyrogenic liquid solutions or suspensions, coated capsules, suppositories, lyophilized powders, transdermal patches or other forms known in the art. Local administration may be by injection at the site of injury or defect, or by insertion or attachment of a solid carrier at the site, or by By "bone deficit" is meant an imbalance in the ratio of 55 direct, topical application of a viscous liquid. For local administration, the delivery vehicle preferably provides a matrix for the growing bone or cartilage, and more preferably is a vehicle that can be absorbed by the subject without adverse effects.

Delivery of compounds herein to wound sites may be enhanced by the use of controlled-release compositions, such as those described in WIPO publication WO 93/20859, which is incorporated herein by reference in its entirety. Films of this type are particularly useful as coatings for prosthetic devices and surgical implants. The films may, for example, be wrapped around the outer surfaces of surgical screws, rods, pins, plates and the like. Implantable devices

of this type are routinely used in orthopedic surgery. The films can also be used to coat bone filling materials, such as hydroxyapatite blocks, demineralized bone matrix plugs, collagen matrices and the like. In general, a film or device as described herein is applied to the bone at the fracture site. Application is generally by implantation into the bone or attachment to the surface using standard surgical proce-

In addition to the copolymers and carriers noted above, the biodegradable films and matrices may include other 10 active or inert components. Of particular interest are those agents that promote tissue growth or infiltration, such as growth factors. Exemplary growth factors for this purpose include epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factors (TGFs), parathyroid hormone (PTH), leukemia inhibitory factor (LIF), and insulin-like growth factors (IGFs). Agents that promote bone growth, such as bone morphogenetic proteins (U.S. Pat. No. 4,761, 471; PCT Publication WO 90/11366), osteogenin (Sampath  20 et al. Proc. Natl. Acad. Sci. USA (1987) 84:7109-13) and NaF (Tencer et al. J. Biomed. Mat. Res. (1989) 23: 571-89) are also preferred. Biodegradable films or matrices include calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyanhydrides, bone or dermal collagen, pure 25 proteins, extracellular matrix components and combinations thereof. Such biodegradable materials may be used in combination with nonbiodegradable materials, to provide desired mechanical, cosmetic or tissue or matrix interface properties.

Alternative methods for delivery of compounds of the present invention include use of ALZET osmotic minipumps (Alza Corp., Palo Alto, Calif.); sustained release matrix materials such as those disclosed in Wang et al. (PCT Publication WO 90/11366); electrically charged dextran beads, as disclosed in Bao et al. (PCT Publication WO 92/03125); collagen-based delivery systems, for example, as disclosed in Ksander et al. Ann. Surg. (1990) 211(3):288–94; methylcellulose gel systems, as disclosed in Beck et al. J. Bone Min. Res. (1991) 6(11):1257-65; and alginate-based systems, as disclosed in Edelman et al. *Biomaterials* (1991) 12:619-26. Other methods well known in the art for sustained local delivery in bone include porous coated metal protheses that can be impregnated and solid plastic rods with therapeutic compositions incorporated within them.

The compounds of the present invention may also be used in conjunction with agents that inhibit bone resorption. Antiresorptive agents, such as estrogen, bisphosphonates and calcitonin, are preferred for this purpose. More specifically, the compounds disclosed herein may be administered for a period of time (for instance, months to years) sufficient to obtain correction of a bone deficit condition. Once the bone deficit condition has been corrected, the vertebrate can be administered an anti-resorptive compound to maintain the corrected bone condition. Alternatively, the compounds disclosed herein may be adminstered with an anti-resorptive compound in a cyclical manner (administration of disclosed compound, followed by antiresorptive, followed by disclosed compound, and the like).

In additional formulations, conventional preparations such as those described below may be used.

Aqueous suspensions may contain the active ingredient in admixture with pharmacologically acceptable excipients, wetting agents, such as lecithin, lysolethicin or long-chain fatty alcohols. The said aqueous suspensions may also

contain preservatives, coloring agents, flavoring agents and sweetening agents in accordance with industry standards.

Preparations for topical and local application comprise aerosol sprays, lotions, gels and ointments in pharmaceutically appropriate vehicles which may comprise lower aliphatic alcohols, polyglycols such as glycerol, polyethylene glycol, esters of fatty acids, oils and fats, and silicones. The preparations may further comprise antioxidants, such as ascorbic acid or tocopherol, and preservatives, such as p-hydroxybenzoic acid esters.

Parenteral preparations comprise particularly sterile or sterilized products. Injectable compositions may be provided containing the active compound and any of the well known injectable carriers. These may contain salts for regulating the osmotic pressure.

If desired, the osteogenic agents can be incorporated into liposomes by any of the reported methods of preparing liposomes for use in treating various pathogenic conditions. The present compositions may utilize the compounds noted above incorporated in liposomes in order to direct these compounds to macrophages, monocytes, other cells and tissues and organs which take up the liposomal composition. The liposome-incorporated compounds of the invention can be utilized by parenteral administration, to allow for the efficacious use of lower doses of the compounds. Ligands may also be incorporated to further focus the specificity of the liposomes.

Suitable conventional methods of liposome preparation 30 include, but are not limited to, those disclosed by Bangham, A. D. et al. *J Mol Biol* (1965) 23:238–252, Olson, F. et al. Biochim Biophys Acta (1979) 557:9–23, Szoka, F. et al. Proc Natl Acad Sci USA (1978) 75:4194–4198, Mayhew, E. et al. Biochem, Biophys. Acta (1984) 775:169-175, Kim, S. et al. Biochim Biophys Acta (1983) 728:339:348, and Mayer, et al. Biochim Biophys Acta (1986) 858:161-168.

The liposomes may be made from the present compounds in combination with any of the conventional synthetic or natural phospholipid liposome materials including phospho-40 lipids from natural sources such as egg, plant or animal phosphatidylcholine, sources such a s phosphatidylethanolamine, phosphatidylglycerol, sphingomyelin, phosphatidylserine, or phosphatidylinositol. Synthetic phospholipids that may also be used, include, but 45 are not limited to: dimyristoylphosphatidylcholine, dioleoylphosphatidylcholine, dipalmitoylphosphatidylcholine and distearoylphosphatidycholine, and the corresponding synthetic phosphatidylethanolamines and phosphatidylglycerols. Cholesterol or other sterols, cholesterol hemisuccinate, glycolipids, cerebrosides, fatty acids, gangliosides, sphingolipids, 1,2-bis(oleoyloxy)-3-(trimethyl ammonio)propane (DOTAP), N-[1-(2,3-dioleoyl)propyl-N, N,N-trimethylammonium chloride (DOTMA), and other cationic lipids may be incorporated into the liposomes, as is 55 known to those skilled in the art. The relative amounts of phospholipid and additives used in the liposomes may be varied if desired. The preferred ranges are from about 60 to 90 mole percent of the phospholipid; cholesterol, cholesterol hemisuccinate, fatty acids or cationic lipids may be used in amounts ranging from 0 to 50 mole percent. The amounts of the present compounds incorporated into the lipid layer of liposomes can be varied with the concentration of their lipids ranging from about 0.01 to about 50 mole percent.

Using conventional methods, approximately 20 to 30% of comprising suspending agents, such as methyl cellulose; and 65 the compound present in solution can be entrapped in liposomes; thus, approximately 70 to 80% of the active compound is wasted. In contrast, where the compound is

incorporated into liposomes, virtually all of the compound is incorporated into the liposome, and essentially none of the active compound is wasted.

The liposomes with the above formulations may be made still more specific for their intended targets with the incorporation of monoclonal antibodies or other ligands specific for a target. For example, monoclonal antibodies to the BMP receptor may be incorporated into the liposome by linkage to phosphatidylethanolamine (PE) incorporated into the liposome by the method of Leserman, L. et al. *Nature* (1980) 288:602–604.

Veterinary uses of the disclosed compounds are also contemplated. Such uses would include limitation or treatment of bone or cartilage deficits or defects in domestic animals, livestock and thoroughbred horses. The compounds described herein can also modify a target tissue or organ environment, so as to attract bone-forming cells to an environment in need of such cells.

The compounds of the present invention may also be used to stimulate growth of bone-forming cells or their 20 precursors, or to induce differentiation of bone-forming cell precursors, either in vitro or ex vivo. As used herein, the term "precursor cell" refers to a cell that is committed to a differentiation pathway, but that generally does not express markers or function as a mature, fully differentiated cell. As 25 used herein, the term "mesenchymal cells" or "mesenchymal stem cells" refers to pluripotent progenitor cells that are capable of dividing many times, and whose progeny will give rise to skeletal tissues, including cartilage, bone, tendon, ligament, marrow stroma and connective tissue (see 30 A. Caplan J. Orthop. Res. (1991) 9:641–50). As used herein, the term "osteogenic cells" includes osteoblasts and osteoblast precursor cells. More particularly, the disclosed compounds are useful for stimulating a cell population containing marrow mesenchymal cells, thereby increasing the 35 number of osteogenic cells in that cell population. In a preferred method, hematopoietic cells are removed from the cell population, either before or after stimulation with the disclosed compounds. Through practice of such methods, osteogenic cells may be expanded. The expanded osteogenic 40 cells can be infused (or reinfused) into a vertebrate subject in need thereof For instance, a subject's own mesenchymal stem cells can be exposed to compounds of the present invention ex vivo, and the resultant osteogenic cells could be infused or directed to a desired site within the subject, where 45 further proliferation and/or differentiation of the osteogenic cells can occur without immunorejection. Alternatively, the cell population exposed to the disclosed compounds may be immortalized human fetal osteoblastic or osteogenic cells. If such cells are infused or implanted in a vertebrate subject, it 50 may be advantageous to "immunoprotect" these nonself cells, or to immunosuppress (preferably locally) the recipient to enhance transplantation and bone or cartilage repair.

Within the present invention, an "effective amount" of a composition is that amount which produces a statistically 55 significant effect. For example, an "effective amount" for therapeutic uses is the amount of the composition comprising an active compound herein required to provide a clinically significant increase in healing rates in fracture repair; reversal of bone loss in osteoporosis; reversal of cartilage 60 defects or disorders; prevention or delay of onset of osteoporosis; stimulation and/or augmentation of bone formation in fracture nonunions and distraction osteogenesis; increase and/or acceleration of bone growth into prosthetic devices; and repair of dental defects. Such effective amounts 65 will be determined using routine optimization techniques and are dependent on the particular condition to be treated,

10

the condition of the patient, the route of administration, the formulation, and the judgment of the practitioner and other factors evident to those skilled in the art. The dosage required for the compounds of the invention (for example, in osteoporosis where an increase in bone formation is desired) is manifested as a statistically significant difference in bone mass between treatment and control groups. This difference in bone mass may be seen, for example, as a 5-20% or more increase in bone mass in the treatment group. Other measurements of clinically significant increases in healing may include, for example, tests for breaking strength and tension, breaking strength and torsion, 4-point bending, increased connectivity in bone biopsies and other biomechanical tests well known to those skilled in the art. General guidance for treatment regimens is obtained from experiments carried out in animal models of the disease of interest.

The dosage of the compounds of the invention will vary according to the extent and severity of the need for treatment, the activity of the administered compound, the general health of the subject, and other considerations well known to the skilled artisan. Generally, they can be administered to a typical human on a daily basis on an oral dose of about 0.1 mg/kg-1000 mg/kg, and more preferably from about 1 mg/kg to about 200 mg/kg. The parenteral dose will appropriately be 20–100% of the oral dose.

Screening Assays

The osteogenic activity of the compounds used in the methods of the invention can be verified using in vitro screening techniques, such as the assessment of transcription of a reporter gene coupled to a bone morphogenetic protein-associated promoter, as described above, or in alternative assays such as the following:

Technique for Neonatal Mouse Calvarial Assay (In vitro) This assay is similar to that described by Gowen M. & Mundy G. *J Immunol* (1986) 136:2478–82. Briefly, four days after birth, the front and parietal bones of ICR Swiss white mouse pups are removed by microdissection and split along the sagittal suture. The bones are incubated in BGJb medium (Irvine Scientific, Santa Ana, Calif.) plus 0.02% (or lower concentration) β-methylcyclodextrin, wherein the medium also contains test or control substances, at 37° C. in a humidified atmosphere of 5% CO₂ and 95% air for 96 hours.

Following this, the bones are removed from the incubation media and fixed in 10% buffered formalin for 24–48 hours, decalcified in 14% EDTA for 1 week, processed through graded alcohols; and embedded in paraffin wax. Three  $\mu$ m sections of the calvaria are prepared. Representative sections are selected for histomorphometric assessment of bone formation and bone resorption. Bone changes are measured on sections cut 200  $\mu$ m apart. Osteoblasts and osteoclasts are identified by their distinctive morphology.

Other auxiliary assays can be used as controls to determine nonBMP promoter-mediated effects of test compounds. For example, mitogenic activity can be measured using screening assays featuring a serum-response element (SRE) as a promoter and a luciferase reporter gene. More specifically, these screening assays can detect signalling through SRE-mediated pathways, such as the protein kinase C pathway. For instance, an osteoblast activator SRE-luciferase screen and an insulin mimetic SRE-luciferase screen are useful for this purpose. Similarly, test compound stimulation of cAMP response element (CRE)-mediated pathways can also be assayed. For instance, cells transfected with receptors for PTH and calcitonin (two bone-active agents) can be used in CRE-luciferase screens to detect

elevated cAMP levels. Thus, the BMP promoter specificity of a test compound can be examined through use of these types of auxiliary assays.

In vivo Assay of Effects of Compounds on Murine Calvarial Bone Growth

Male ICR Swiss white mice, aged 4-6 weeks and weighing 13–26 gm, are employed, using 4–5 mice per group. The calvarial bone growth assay is performed as described in PCT application WO 95/24211. Briefly, the test compound or appropriate control vehicle is injected into the subcutaneous tissue over the right calvaria of normal mice. Typically, the control vehicle is the vehicle in which the compound was solubilized, and is PBS containing 5% DMSO or is PBS containing Tween (2  $\mu$ l/10 ml). The animals are sacrificed on day 14 and bone growth measured by histomorphometry. Bone samples for quantitation are cleaned from adjacent tissues and fixed in 10% buffered formalin for 24-48 hours, decalcified in 14% EDTA for 1-3 weeks, processed through graded alcohols; and embedded in paraffin wax. Three to five  $\mu m$  sections of the calvaria are prepared, and representative sections are selected for histomorphometric assessment of the effects on bone formation and bone resorption. Sections are measured by using a camera lucida attachment to trace directly the microscopic image onto a digitizing plate. Bone changes are measured on sections cut 200 µm apart, over 4 adjacent 1×1 mm fields on both the injected and noninjected sides of the calvaria. New bone is identified by its characteristic woven structure, and osteoclasts and osteoblasts are identified by their distinctive morphology. Histomorphometry software (OsteoMeasure, Osteometrix, Inc., Atlanta) is used to process digitizer input to determine cell counts and measure areas or perimeters.

Additional In Vivo Assays

Lead compounds can be further tested in intact animals using an in vivo, dosing assay. Prototypical dosing may be accomplished by subcutaneous, intraperitoneal or oral administration, and may be performed by injection, sustained release or other delivery techniques. The time period for administration of test compound may vary (for instance, 28 days as well as 35 days may be appropriate). An exemplary, in vivo subcutaneous dosing assay may be conducted as follows:

In a typical study, 70 three-month-old female Sprague-Dawley rats are weight-matched and divided into seven 45 groups, with ten animals in each group. This includes a baseline control group of animals sacrificed at the initiation of the study; a control group administered vehicle only; a PBS-treated control group; and a positive control group administered a compound (nonprotein or protein) known to 50 promote bone growth. Three dosage levels of the compound to be tested are administered to the remaining three groups.

Briefly, test compound, positive control compound, PBS, or vehicle alone is administered subcutaneously once per day for 35 days. All animals are injected with calcein nine 55 days and two days before sacrifice (two injections of calcein administered each designated day). Weekly body weights are determined. At the end of the 35-day cycle, the animals are weighed and bled by orbital or cardiac puncture. Serum calcium, phosphate, osteocalcin, and CBCs are determined. 60 Both leg bones (femur and tibia) and lumbar vertebrae are removed, cleaned of adhering soft tissue, and stored in 70% ethanol for evaluation, as performed by peripheral quantitative computed tomography (pqCT; Ferretti, J. *Bone* (1995) 17:353S–64S), dual energy X-ray absorptiometry (DEXA; 65 Laval-Jeantet A. et al. *Calcif Tissue Intl* (1995) 56:14–18; J. Casez et al. *Bone and Mineral* (1994) 26:61–68) and/or

12

histomorphometry. The effect of test compounds on bone remodeling can thus be evaluated.

Lead compounds also be tested in acute ovariectomized animals (prevention model) using an in vivo dosing assay. Such assays may also include an estrogen-treated group as a control. An exemplary subcutaneous dosing assay is performed as follows:

In a typical study, 80 three-month-old female Sprague-Dawley rats are weight-matched and divided into eight groups, with ten animals in each group. This includes a baseline control group of animals sacrificed at the initiation of the study; three control groups (sham ovariectomized (sham OVX)+vehicle only; ovariectomized (OVX)+vehicle only; PBS-treated OVX); and a control OVX group that is administered a compound known to promote bone growth. Three dosage levels of the compound to be tested are administered to the remaining three groups of OVX animals.

Since ovariectomy (OVX) induces hyperphagia, all OVX animals are pair-fed with sham OVX animals throughout the 35 day study. Briefly, test compound, positive control compound, PBS, or vehicle alone is administered subcutaneously once per day for 35 days. Alternatively, test compound can be formulated in implantable pellets that are implanted for 35 days, or may be administered orally, such as by gastric gavage. All animals, including sham OVX/vehicle and OVX/vehicle groups, are injected intraperitoneally with calcein nine days and two days before sacrifice (two injections of calcein administered each designated day, to ensure proper labeling of newly formed bone). Weekly body weights are determined. At the end of the 35-day cycle, the animals' blood and tissues are processed as described above.

Lead compounds may also be tested in chronic OVX animals (treatment model). An exemplary protocol for treatment of established bone loss in ovariectomized animals that can be used to assess efficacy of anabolic agents may be performed as follows. Briefly, 80 to 100 six month old female, Sprague-Dawley rats are subjected to sham surgery (sham OVX) or ovariectomy (OVX) at time 0, and 10 rats are sacrificed to serve as baseline controls. Body weights are recorded weekly during the experiment. After approximately 6 weeks of bone depletion (42 days), 10 sham OVX and 10 OVX rats are randomly selected for sacrifice as depletion period controls. Of the remaining animals, 10 sham OVX and 10 OVX rats are used as placebo-treated controls. The remaining OVX animals are treated with 3 to 5 doses of test drug for a period of 5 weeks (35 days). As a postitive control, a group of OVX rats can be treated with an agent such as PTH, a known anabolic agent in this model (Kimmel et al. Endocrinology (1993) 132:1577–84). To determine effects on bone formation, the following procedure can be followed. The femurs, tibiae and lumbar vertebrae 1 to 4 are excised and collected. The proximal left and right tibiae are used for pqCT measurements, cancellous bone mineral density (BMD) (gravimetric determination), and histology, while the midshaft of each tibiae is subjected to cortical BMD or histology. The femurs are prepared for pqCT scanning of the midshaft prior to biomechanical testing. With respect to lumbar vertebrae (LV), LV2 are processed for BMD (pqCT may also be performed); LV3 are prepared for undecalcified bone histology; and LV4 are processed for mechanical testing.

Nature of the Compounds Useful in the Invention

All of the compounds of the invention contain two aromatic systems, Ar¹ and AR², spaced apart by a linker at a distance of 1.5–15 Å, and may preferably contain at least one nitrogen atom. A summary of the structural features of the compounds included within the invention is shown in FIG. 1.

As shown, Ar¹ and Ar² may include various preferred embodiments. These are selected from the group consisting of a substituted or unsubstituted aromatic ring system containing a 5-membered heterocycle; a substituted or unsubstituted aromatic ring system containing a six-membered heterocycle; a substituted or unsubstituted naphthalene moiety, and a substituted or unsubstituted benzene moiety. There are 16 possible combinations of these embodiments, if Ar¹ and Ar² are considered distinguishable. As will be clear, however, the designation of one aromatic system as 10 Ar¹ and the other as Ar² is arbitrary; thus there are only ten possible combinations. However, for simplicity, Ar¹ and Ar² are designated separately with the realization that the choice is arbitrarily made. All linkers described herein if not palindromic, are considered to link AR¹ to Ar² or vice-versa 15 whether or not the complementary orientation is explicitly shown (as it is in some cases). Thus, if Ar¹ and Ar² are different and a linker is specified as -CONR-, it is understood that also included is the linker -NRCO - when the designations Ar¹ and Ar² are retained.

The noninterfering substituents on the aromatic system represented by AR¹ and the noninterfering substituents on the aromatic system represented by Ar² are represented in the formulas herein by  $R^a$  and  $R^b$ , respectively. Generally, these substituents can be of wide variety. Among substituents that do not interfere with (and in some instances may be desirable for) the beneficial effect of the compounds of the invention on bone in treated subjects are included alkyl (1-6C, preferably lower alkyl 1-4C), including straight or branched-chain forms thereof, alkenyl (1-6C, preferably 30 1–4C), alkynyl (1–6C, preferably 1–4C), all of which can be straight or branched chains or are aryl (6-10C) or alkylaryl (6-15C) or aryl alkyl (6-15C) and may contain further substituents. R^a and R^b may also include halogens, (e.g. F, Cl, Br and I); siloxy, OR, SR, NR₂, OOCR, COOR, NCOR, 35 NCOOR, and benzoyl, CF₃, OCF₃, SCF₃, N(CF₃)₂, NO, NO₂, CN, SO, SO₂R, SO₃R and the like, wherein R is alkyl (1–6C) or is H. Similarly, these substituents may contain R' as a substitute for R wherein R' is aryl (6-10C) or alkylaryl are in adjacent positions in the aromatic system, they may combine to form a ring. Further, rings may be included in substituents which contain sufficient carbon and heteroatoms to provide this possibility.

overall nature of the system. For example, in compounds of the invention wherein two pyridine rings are linked through a saturated flexible linker, a CF₃ substituent para to the linker in each of the pyridine rings is particularly preferred. In those systems wherein a quinoline is coupled through a 50 flexible conjugated or nonconjugated linker to a phenyl substituent or to a naphthyl substituent, an amino group para to the linker in the phenyl or naphthyl moiety is preferred. Particularly preferred amino groups are dimethylamino and diethylamino. In systems wherein a benzothiazole is coupled 55 to phenyl through a flexible linker, preferred substituents on the phenyl moiety include alkoxy or alkylthio in combination with halo, in particular, chloro. Also preferred is the presence of a diethylamino group in the phenyl moiety para to the position that is coupled to the linker. In general, the presence of a substituent in the phenyl moiety para to the position of joinder to the linker is preferred.

Generally, preferred noninterfering substituents include hydrocarbyl groups of 1-6C, including saturated and unsaturated, linear or branched hydrocarbyl as well as 65 hydrocarbyl groups containing ring systems; halo groups, alkoxy, hydroxy, amino, monoalkyl- and dialkylamino

14

where the alkyl groups are 1-6C, CN, CF₃, OCF₃ and COOR, and the like.

Although the number of  $R^a$  and  $R^b$  may typically be 0–4 (m) or 0-5 (n) depending on the available positions in the aromatic system, preferred embodiments include those wherein the number of  $R^a$  is 0, 1 or 2 and of  $R^b$  is 0, 1, 2 or 3, particularly 1 or 2.

The linker group, L, may be a covalent bond or any group having a valence of at least two and covering a linear distance of from about 1.5 to about 15 Angstroms, including those that contain cyclic moieties, that meet this spatial requirement. Useful linkers are divided, by definition herein, into three general categories: (1) flexible nonconjugating linkers, (2) flexible conjugating linkers, and (3) constrained linkers. The preferred choice of linker will depend on the choices for Ar¹ and Ar².

As defined herein, flexible nonconjugating linkers are those that link only one position of Ar¹ to one position of Ar², and provide only a single covalent bond or a single chain between Ar¹ and Ar². The chain may contain branches, but may not contain  $\pi$ -bonds (except in the branches) or cyclic portions in the chain. The linker atoms in the chain itself rotate freely around single covalent bonds, and thus the linker has more than two degrees of freedom. Particularly useful flexible nonconjugating linkers, besides a covalent bond, are those of the formulas: —NR—, —CR₂—, —Sor —O—, wherein R is H or alkyl (1–6C), more preferably H or lower alkyl (1-4C) and more preferably H. Also contemplated are those of the formulas: -NRCO-, -CONR-,  $-CR_2S-$ ,  $-SCR_2-$ ,  $-OCR_2-$ , -CR₂O-, -NRNR-, -CR₂CR₂-, -NRSO₂-, -SO₂NR-, -CR₂CO-, -COCR₂-, and -NR-NR-CO-CR₂- and its complement -CR₂-CO-NR-NR-, or -NRCR₂CR₂NR- or the thiolated counterparts, and particularly -NHCR2CR2NH-, including the isosteres thereof, such as -NRNRCSNR- and -NRNRCONR—. Also contemplated are those of the formulas:  $-NH(CH_2)_2NH$ —,  $-O(CR_2)_2O$ —, and S(CR₂)₂S—, including the isosteres thereof. The opti-(6-15C) or aryl alkyl (6-15C). Where  $\mathbb{R}^a$  or  $\mathbb{R}^b$  substituents 40 mum choice among flexible nonconjugating linkers is dependent on the nature of Ar¹ and Ar².

Flexible conjugating linkers are those that link only one position of Ar¹ to one position of Ar², but incorporate at least one double or triple bond or one or more cyclic systems in The choice of noninterfering substituents depends on the 45 the chain itself and thus have only two degrees of freedom. A flexible conjugating linker may form a completely conjugated  $\pi$ -bond linking system between Ar¹ and Ar², thus providing for co-planarity of Ar¹ and Ar². Examples of useful flexible conjugating linkers include: —RC=CR—; -N=N-;  $-C\equiv C-;$  -RC=N-; -N=CR-;-NR-N=CR-; -NR-NR-CO-CR=CR- $-N=NCOCR_2-$ ,  $-N=NCSCR_2$ ,  $-N=NCOCR_2CR_2$ , -N=NCONR—, —N=NCSNR—, and the like, where R is H or alkyl (1-6C); preferably H or lower alkyl (1-4C); and more preferably H.

Constrained linkers are those that have more than one point of attachment to either or both AR¹ and Ar² and, thus, generally allow for only one degree of freedom. Constrained linkers most frequently form fused 5- or 6-membered cyclic moieties with Ar¹ and/or Ar² where either Ar¹ or Ar² has at least one substituent appropriately positioned to form a second covalent bond with the linker, e.g., where Ar² is a phenyl group with a reactive, ortho-positioned substituent, or is derivatized to the linker directly at the ortho position. (Although the aromatic moieties should properly be referred to as phenylene or naphthylene in such cases, generally the term "phenyl" or "naphthyl" is used herein to include both monovalent and bivalent forms of these moieties.) Examples of particularly useful constrained linkers include

and the like, where X is O, N, S or CR, and Y is  $CR_2$  or C=0.

In one class of preferred embodiments, Ar¹ is an aromatic system containing a 5-membered heterocycle, of the for- ²⁵ mula:

$$R^{a}_{m}$$
 (1a)
$$R^{a}_{m}$$
 (2a)

wherein Z is S, O, NR or — $CR_2$  in formula (1a) or CR in formula (2a), where each R is independently H or alkyl (1–6C), the dotted line represents an optional  $\pi$ -bond, each  $R^{\alpha}$  is independently a noninterfering substituent as defined above, and m is an integer of 0–4.

In general,  $Ar^2$  is phenyl, naphthyl, or an aromatic system containing a 5- or 6-membered heterocyclic ring. All may be unsubstituted or substituted with noninterfering substituents,  $R^b$ .

When Ar² is an aromatic system containing a sixmembered heterocycle, the formula of said system is preferably:

$$\begin{array}{c} R^{b}{}_{m} & \text{(iii)} \\ \hline \\ Z & Z \\ \hline \\ \text{or} \\ R^{b}{}_{m} & Z = Z \end{array}$$

60

wherein each Z is independently a heteroatom selected from 65 the group consisting of S, O and N; or is CR or CR₂, the dotted lines represent optional  $\pi$ -bonds, each R^b is independently in the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection o

dently a noninterfering substituent, and m is an integer of 0-4, with the proviso that at least one Z must be a heteroatom

Ar2 in these compounds may also have the formula

$$\mathsf{R}^{\mathsf{b}_{\mathsf{n}}} \underbrace{\hspace{1cm}}^{\mathsf{(v)}}$$

where  $\mathbf{R}^b$  is a noninterfering substituent as defined above and n is an integer from 0 to 5.

Similarly, when  $Ar^2$  is naphthyl, it may contain 0-5  $R^b$  substitutions. When  $Ar^2$  is an aromatic system containing a 5-membered heterocycle, preferred forms are those as described for  $AR^1$ .

Thus, in one set of preferred compounds, Ar1 is

$$R^{a}_{m}$$
  $\stackrel{(1a)}{\underbrace{\hspace{1cm}}}$ 

$$R^{a}_{m} \xrightarrow{\qquad \qquad } V$$

30 wherein each R^b is a noninterfering substituent, m is an integer of 0-4, the dotted line represents an optional πbond, and Z is O, S, NR or CR₂ in formula (1) or is CR in formula (2) wherein each R is independently H or alkyl (1-6C).

In one group of these compounds, L is a flexible conju-35 gating or nonconjugating linker. In this group, when Z is NR, Ar² is preferably a substituted or unsubstituted aromatic system containing a 5-membered heterocycle or is

$$R^b_n$$
 ;

wherein  $R^b$  is a noninterfering substituent and n is an integer of 0–5; and/or L is -N=N-, -N=CR-, -RC=CR-, -NRNR-,  $-CR_2NR-$ ,  $-CR_2CR_2-$ , -NRCO- or -CONR- where R is H or alkyl (1–6C); and/or the dotted line represents a  $\pi$  bond.

In these embodiments as well as in alternative embodiments of  $AR^2$ , it is preferred that each  $R^b$  is independently halo, OR, SR,  $NR^2$ , NO,  $NO_2$ ,  $OCF_3$  or  $CF_3$  wherein R is H or alkyl (1–6C), or  $R^b$  comprises an aromatic system.

Preferred compounds in this group are 59-0100, 59-103, 59-104, 59-105 and 59-106 (See FIG. 13).

In another group of these compounds with flexible linkers, Z is S, and Ar² is preferably a substituted or unsubstituted aromatic system containing a 6-membered heterocycle or is of the formula

$$\mathbb{R}^{\mathfrak{b}_{_{\mathbf{1}}}}$$
 , (v)

wherein  $R^b$  is a noninterfering substituent and n is an integer of 0–5; and/or L is -N=N-, -N=CR-, -RC=CR-,

—NRNR—, —CR₂NR—, —CR₂CR₂—, —NRCO— or —CONR— where R is H or alkyl (1–6C), and/or the dotted line represents a  $\pi$  bond.

In such compounds, regardless of the choice of AR², preferred are those compounds wherein each R^b is independently halo, OR, SR, NR², NO, NO₂, OCF₃ or CF₃ wherein R is H or alkyl (1–6C) or R^b comprises an aromatic system.

Both when Z is S and when Z is NR, it is preferred that m is 0 and/or each  $R^b$  is independently OR, SR or halo, where n=2 and at least one  $R^b$  is independently OR or SR and/or L is —NHCO— or —CR=CR—.

Preferred compounds in this group include compounds 59-002, 59-0070, 59-0072, 59-0099, 59-0102, the benzothiazole counterpart of 59-0104, 59-0144, 59-0147, 59-0149, 59-0186, 59-0187, 59-0192, 59-0193, 59-0195, 59-0197, 59-0202, 59-0204, 59-0205, 59-0206, 59-0207, 59-0208, and 59-0210, especially the benzothiazole counterpart of 59-0104 or compounds 59-0147, 59-0205 or ²⁰ 59-0210. (See FIG. **13**)

Z can also be CR,  $CR_2$  or O; here it is also preferred that  $Ar^2$  is

$$\mathbb{R}^{b}_{n}$$
 ,

wherein  $R^b$  is a noninterfering substituent and n is an integer of 0–5, and/or L is —N=N—, —N=CR—, —RC=CR—, —NRNR—, —CR₂NR—, —CR₂CR₂—, —NRCO— or —CONR— where R is H or alkyl (1–6C), and/or the dotted 35 line represents a  $\pi$  bond.

In these compounds, too, it is preferred that each  $R^b$  is independently halo, OR, SR, NR₂, NO, NO₂, OCF₃ or CF₃ wherein R is H or alkyl (1–6C) or  $R^b$  comprises an aromatic system. A preferred compound is 896-5005. (See FIG. 4)

The compounds wherein Ar¹ is 1a or 2a as above may also contain a constrained linker.

In these compounds, preferred Z is S or NR; and/or those wherein L is selected from the group consisting of

o and or 
$$Ar^2$$
 is  $R^b_m$ ,

wherein  $R^b$  is a noninterfering substituent and m is 0-4.

Preferably, each  $R^b$  is independently halo, OR, SR, NR₂, NO, NO₂, OCF₃ or CF₃ wherein R is H or alkyl (1–6C) or  $R^b$  comprises an aromatic system. A preferred compound is 59-0124. (See FIG. 13)

In another group of preferred embodiments,  $Ar^1$  is of the formula

$$\begin{array}{c}
R^{a} \\
\end{array}$$

$$\begin{array}{c}
N \\
Z
\end{array}$$
,

wherein each  $R^a$  is independently a noninterfering substituent or is H and Z is NR, S or O, wherein R is alkyl (1–6C) or H, especially where Z is S and/or wherein  $Ar^2$  is

$$\mathbb{R}^{b_n} \underbrace{\hspace{1cm}}^{(v)}$$

wherein  $R^b$  is a noninterfering substituent and n is an integer of 0–5; and/or L is —N=N—, —N=CR—, —RC=CR—, —NRNR—, —CR₂NR—, —CR₂CR₂—, —NRCO— or —CONR— where R is H or alkyl (1–6C), and/or the dotted line represents a  $\pi$  bond. Especially preferred are those compounds where each  $R^b$  is independently halo, OR, SR, NR₂, NO, NO₂, OCF₃ or CF₃ wherein R is H or alkyl (1–6C) or  $R^b$  comprises an aromatic system.

In another group of compounds, Ar¹ is

$$\mathbb{R}^{a}_{m} \xrightarrow{\hspace*{1cm} Z \hspace*{1cm} Z \hspace*{1cm} }, \hspace*{1cm} (4a)$$

wherein  $R^a$  is a noninterfering substituent, m is an integer of 0–4, each dotted line represents an optional  $\pi$ -bond, each Z is independently N, NR, CR or CR₂, where each R is independently H or alkyl (1–6C) with the proviso that at least one Z is N or NR.

Particularly preferred members of this group are those wherein AR¹ is

$$\mathbb{R}^{a}_{m}$$
 (5a)

especially those wherein Ar² is

50

55

$$R^{b}_{n}$$
 or  $(vi)$ 

$$\stackrel{R^b{}_m}{\underset{N}{\longleftarrow}}\,,$$

wherein each R^b is independently a noninterfering substituent, and n is 0-5 and m is 0-4, and/or L is —N=N—, —RC=CR—, —RC=N—, —NRCO—, —NRCR₂—, —NRCR₂CO—,

(viii)

(ix)

(6a)

—NRNR—, —CR₂CR₂—, —NRCR₂CR₂NR—, —NRCR=CRNR— or —NRCOCR₂NR—.

In general, preferably each  $R^b$  is independently halo, OR, SR, NR₂, NO, NO₂, OCF₃ or CF₃ wherein R is H or alkyl  $_5$  (1–6C) or  $R^b$  comprises an aromatic system.

In an especially preferred group, m is 0, each  $R^b$  is  $NR_2$  or OR and n is 1 or 2, and/or L is —CR—CR—, —N—N— or —NRCO—, especially the compounds of formulas 59-0030, 59-0078, 59-0091, 59-0093, 59-0150, 50-0197, 59-0198, 59-0199 or 59-0480. (See FIG. 13)

Also preferred are those wherein  $Ar^1$  has formula (4a) or (5a) and wherein  $Ar^2$  is substituted or unsubstituted quinolyl or naphthyl of the formula

$$\mathbb{R}^{b_{m}}$$
 or

$$\bigcap^{R^b}_{N} \bigcap^{R^b}_{N} \circ$$

wherein each  $R^b$  is a noninterfering substituent and m is 0-4.

Preferred among these are those wherein L is -N=N-, -RC=CR-, -RC=N-, -NRCO-,  $-NRCR_2-$ ,  $-NRCR_2-$ ,  $-NRCR_2-$ ,  $-NRCR_2-$ , -NRNR-,  $-CR_2CR_2-$ ,  $-NRCR_2CR_2NR-$ , -NRCR=CRNR- or  $-NRCOCR_2NR-$ , and/or wherein each  $R^b$  is independently halo, OR, SR,  $NR_2$ , NO,  $NO_2$ ,  $OCF_3$  or  $CF_3$  wherein R is H or alkyl (1–6C) or  $R^b$  comprises an aromatic system and m is 0, 1 or 2.

The compounds 59-0089, 59-0090, 59-0092 or 59-0094 are particularly preferred.

Ar¹ is also preferably

$$R_m^a$$
 or

-continued

$$\begin{array}{c}
\mathbb{R}^{a_{m}} \\
\mathbb{N} \\
\mathbb{N}
\end{array}$$
(8a)

wherein each  $R^a$  is a noninterfering substituent and m is 0–4, in particular where L is —N=N—, —RC=CR—, —RC=N—, —NRCO—, —NRCR2—, —NRCR2CR2—, —NRCR2CO—, —NRNR—, —CR2CR2—, —NRCR2CR2NR—, —NRCR2CR2NR—, or —NRCOCR2NR—, and/or  $Ar^2$  is

$$\mathbb{R}^{\mathfrak{b}_{\mathfrak{n}}}$$
 , (v)

wherein R^b is a noninterfering substituent and n is an integer of 0–5. Especially preferred are compounds wherein each R^b is independently halo, OR, SR, NR₂, NO, NO₂, OCF₃ or CF₃ wherein R is H or alkyl (1–6C) or R^b comprises an aromatic system, in particular compounds 59-203, 59-285 or 59-286. (See FIG. 13)

When  $Ar^1$  is of formula (4a), L can also be a constrained 30 linker.

In still another preferred set, Ar¹ is

(x)
$$R^{a}_{m} Z = Z$$

$$Z - Z$$

$$Z - Z$$
(9a)

wherein each  $R^a$  is independently a noninterfering substituent, m is an integer of 0–4, each Z is independently N or CR, where R is H or alkyl (1–6C), with the proviso that at least one Z must be N and at least one Z must be CR.

In these compounds, L is preferably a flexible conjugating  $_{45}$  or nonconjugating linker, and/or wherein  ${\rm Ar}^2$  is

$$\mathbb{R}^{b}_{n}$$
 or  $\mathbb{C}^{v}$ 

wherein each R^b is independently a noninterfering substituent, and in (vi) each Z is independently N or CR, where R is H or alkyl (1–6C), with the proviso that at least one Z must be a N and at least one Z must be CR.

(7a) Preferred such compounds have the formula

-continued 
$$R^b_m$$
  $L$   $R^b_n$ 

Preferred L embodiments in this group include -N=N-, -RC=CR-, -RC=N-, -NRCO-,  $-NRCR_2-$ ,  $-NRCR_2CR_2-$ ,  $-NRCR_2CO-$ , -NRNR-,  $-CR_2CR_2-$ ,  $-NRCR_2CR_2NR-$ , 10 -NRCR=CRNR- or  $-NRCOCR_2NR-$ ; preferred for  $R^a$  and  $R^b$  are halo, OR, SR,  $NR_2$ , NO,  $NO_2$ ,  $OCF_3$  or  $CF_3$  wherein R is H or alkyl (1-6C) or  $R^a$  or  $R^b$  comprise aromatic systems and each m and n is independently 0, 1 or 1.

In particular, compounds are preferred where L is  $-NHCR_2CR_2NH$ — and  $R^a$  is  $CF_3$  para to L, especially compounds 59-0145, 59-0450, 59-0459 or 59-0483. (See FIG. 13)

Finally, in another preferred group, Ar¹ is

$$R^a_n$$
 (10a)

wherein each  $R^a$  is a noninterfering substituent, and n is an integer of 0 and 5, and wherein L is a flexible linker that contains at least one nitrogen. In the alternative or in 30 addition,  $Ar^2$  is of the formula

$$R^b_n$$
 (v)

and L is -N=N-, -RC=CR-, -RC=N-, -NRCO-,  $-NRCR_2-$ ,  $-NRCR_2CR_2-$ , -NR  $CR_2CO-$ ,  $-NRNRCR_2CR_2-$ , -NRNRCR=CR-,  $-NRNRCOCR_2-$ , -NRNRCOCR=CR-,  $-NRNRCOCR_2-$ , -NRNRCOCR=CR-, -NRNRCONR-,  $-NRNRCSCR_2-$ , -NRNRCSCR=CR-, -NRNRCONR-, -NRNRCSNR-, -NRNR-,  $-CR_2CR_2-$ ,  $-NRCR_2CR_2NR-$ , -NRCR=CRNR- or  $-NRCOCR_2NR-$ . It is preferred that each  $R^b$  is independently halo, OR, SR,  $NR_2$ , NO,  $NO_2$ ,  $OCF_3$  or  $CF_3$  wherein R is H or alkyl (1–6C) or  $R^b$  comprises an aromatic system.

Especially preferred are those compounds wherein L is -CR = CRCONRNR-, -CR = CRCSNRNR-, 50  $-CR_2CONRNR -CR_2CSNRNR-$ , -NRNRCONR- or -NRNRCSNR- and/or  $R^b$  is -NR2 and n=1 wherein  $R^b$  is in the para position, especially wherein  $R^a$  is -COOR and m is 1; most especially compounds 59-0045, 59-0095, 59-0096, 59-0097 and 59-0098. (See FIG. 13)

As set forth above, several families of preferred embodiments are defined by specifying  $Ar^1$  and  $AR^2$ , and L. In one such family, wherein  $Ar^1$  is an aromatic system containing a 5-membered heterocyclic ring, the compound 59-0072, wherein  $Ar^1$  is unsubstituted benzothiazole, the linker  $(Ar^1 \rightarrow Ar^2)$  is NHCO, and  $Ar^2$  is 2-methoxy-4-methylthiophenyl was used as a lead compound and variations of the structure studied. FIG. 5 shows representative compounds synthesized to analyze the effects of the nature of the linker, various alternatives of  $Ar^1$  wherein Z is O, NR or S, and the effect of substitution on the phenyl moiety, as well as the heterocycle.

FIG. 5 gives the structures of these compounds, along with their maximum activity as compared to 59-0008 at 10  $\mu$ M (the maximum for 59-0008) in the in vitro bone growth stimulation assay as well as the concentration at which 50% of maximum stimulation of the BMP promoter was obtained (EC₅₀). See Example 1 for the details of this assay. The results of this study indicate that the amide linker in 59-0072 can readily be substituted by —CH=CH— and that the substitution on the phenyl ring had advantageous effects in the order: 2-Cl-4-OMe=2,4-di-OMe=2-OMe-4-SMe>>3,4-di-OMe=4-OMe. In general, compounds 59-0205, 59-0104, 59-0107, 59-0210 and 59-0124 have the best activity in the primary screen, but only 59-0124 is active in the ex vivo calvarial assay described in Example 3.

Similar structure/activity relationship studies were conducted for compounds wherein  $Ar^1$  is quinoline. In this study, compound 50-0197, wherein  $Ar^1$  is unsubstituted quinoline, the linker is —CH=CH—, and  $Ar^2$  is p-dimethylaminophenyl was used as a lead compound. The compounds synthesized in this study are shown in FIG. 6, along with their maximum stimulation characteristics and  $EC_{50}$  in the assay of Example 1. The results of these studies showed that quinoxaline analogs are the most active in the assay, followed by quinoline; the linker can most preferably be —CH=CH— or —N=N— as judged by activity in the assay, but —CH=CH— is preferred in vivo due to its lack of toxicity. Preferred substituents on the phenyl ring in Ar² include 2,4—di—OMe; 4-NMe₂-2-OMe, and 4-NMe₂. For the compounds in FIG. 6, 59-0282 and 50-0197 were moderately active and 59-0203 was highly active in the ex vivo calvarial assay described hereinabove as a modification of Gowen, M. and Mundy, G. J Immunol (1986) 136:2478-2482.

Another group of compounds wherein Ar¹ and Ar² are pyridyl heterocycles was also studied. In this case, compound 59-0145 was used as the lead compound; the linker, the nature of the substituents R^a and R^b were varied. In one instance, a quinolyl residue was substituted for a pyrimidine residue as Ar². Representative compounds used in this study are shown in FIG. 7, along with the data from the screening 40 assay.

Using 59-0145 as a lead, a CF₃ group in one of Ar¹ and Ar² appeared essential; however, one of R^a or R^b could also be NO₂ or CN. The most preferred linker is —NHCH₂CH₂NH—; substitution on the amino groups in L by an alkyl group appeared to reduce activity. Enhanced chain lengths also led to loss of activity.

Preferred compounds in this group, which perform better than 59-0008 in the screening assay, included 59-0450, 59-0459, 59-0480, and 59-0483.

Finally, a series in which Ar¹ is 3-carboxyphenyl was studied using 59-0045 as the lead compound. In 59-0045, L is —NHN=CH— and Ar² is p-dimethylaminophenyl. FIG. 8 shows the compounds synthesized in this series. Under the circumstances of this assay, analogs wherein R^b was, instead of a nitrogen-containing moiety, F, Cl, or OMe were inactive. Preferred compounds in this series are 59-0096 and 59-0098. 59-0098 is very active in the ex vivo calvarial assay described above.

Synthesis of the Compounds Useful in the Invention

Many of the compounds useful in the invention are commercially available and can be synthesized by art-known methods. Those compounds useful in the invention which are new compounds, can similarly be obtained by methods generally known in the art, as described in the Examples below.

The following examples are intended to illustrate, but not to limit, the invention.

Compound 59-0008 used as a standard in the assays, was synthesized according to the procedure of McDonald, W. S., et al. Chem Comm (1969) 392-393; Irving, H. N. N. H. et al. Anal Chim Acta (1970) 49:261-266. Briefly, 10.0 g of dithizone was taken up in 100 ml EtOH and 50 ml AcOH and heated at reflux for 18 h. After cooling, this was diluted first with 100 ml water and then with 50 ml 1N NaOH. This was then further neutralized by the addition of 6 N NaOH to bring the pH to 5.0. This deep purple mixture was then concentrated on a rotavapor to remove organics. Once the liquid had lost all of its purple color, this was filtered to collect the dark precipitate. Purification by flash chromatography (4.5×25.7 cm; EtAc/Hep. (1:4);  $R_f 0.22$ ) followed by recrystalization from EtOH gave 2.15 g (25% yield) of dark purple crystals, mp=184-185° C. ¹H NMR (CDCl₃) 7.90 (d of d, J₁=7.7, J₂=2.2, 2H), 7.64 (hump, 1H), 7.49 (m, 3H), 7.02 (m, 1H), 6.91 (m, 2H), 6.55 (d, J=8.1, 1H). MS (EI) 254 (47, M+), 105 (26), 77 [100], 51 (27). HRMS (EI, M+) 254.0626 (calcd 254.0626182). Anal. Calcd For  $C_{13}H_{10}N_4S$ : C, 61.40; H, 3.96; N, 22.03. Found: C, 61.40; H, 4.20; N, 22.06.

## Example 1

# High Throughput Screening

Several tens of thousands of compounds were tested in the assay system set forth in WO 96/38590, published Dec. 5, 1996, and incorporated herein by reference. The standard positive control was 59-0008 (also denoted "OS8"), which is of the formula:

$$\bigcup_{S} \bigvee_{N=N}^{H} \bigvee_{OS8"}$$

In more detail, the 2T3-BMP-2-LUC cells, a stably transformed osteoblast cell line described in Ghosh-Choudhury et al. Endocrinology (1996) 137:331-39, referenced above, FCS with 1% penicillin/streptomycin and 1% glutamine ("plating medium"), and were split 1:5 once per week. For the assay, the cells were resuspended in a plating medium containing 4% FCS, plated in microtiter plates at a concentration of  $5\times10^3$  cells (in 50  $\mu$ l)/well, and incubated for 24 50 hours at 37° C. in 5% CO₂. To initiate the assay, 50  $\mu$ l of the test compound or the control in DMSO was added at 2× concentration to each well, so that the final volume was 100 μl. The final serum concentration was 2% FCS, and the final was used as a positive control.

The treated cells were incubated for 24 hours at 37° C. and 5% CO₂. The medium was then removed, and the cells were rinsed three times with PBS. After removal of excess PBS, 25  $\mu$ l of 1× cell culture lysing reagent (Promega #E153A) was added to each well and incubated for at least ten minutes. Optionally, the plates/samples could be frozen at this point. To each well was added 50  $\mu$ l of luciferase substrate (Promega #E152A; 10 ml Promega luciferase assay buffer per 7 mg Promega luciferase assay substrate). 65 Luminescence was measured on an automated 96-well luminometer, and was expressed as either picograms of

24

luciferase activity per well or as picograms of luciferase activity per microgram of protein.

In this assay, compound 59-0008 (3-phenylazo-1H-4,1,2benzothiadiazine) exhibited a pattern of reactivity, as shown in FIG. 2. The activity for compound 59-0008 was maximal at a concentration of approximately 3-10  $\mu M$  and, more particularly, at about 3  $\mu$ M, and thus provided a response of approximately 175 light emission units. Accordingly, other tested compounds were evaluated at various concentrations, and these results were compared to the results obtained for 59-0008 at  $10 \,\mu\text{M}$  (which value was normalized to 100). For instance, any tested compound in FIG. 3 and FIG. 4 that showed greater activity than  $10 \,\mu\text{M}$  of 59-0008 would result in a value over 100.

As shown in FIG. 3 (46 sheets) and FIG. 4 (28 sheets), several compounds were found to be particularly effective.

## Example 2

#### In vivo Calvarial Bone Growth Data

Compound 59-0008 was assayed in vivo according to the procedure described previously (see "In vivo Assay of Effects of Compounds on Murine Calvarial Bone Growth", sitpra). As compared to a vehicle control, compound 59-0008 induced a 4-fold increase in width of new calvarial

In another experiment, 5 week old Swiss white mice were injected 3 times a day for 5 days over the calvaria with compound 59-0203 using PBS, 5% DMSO and 0.1% BSA as carrier. The drug was tested at 6 different doses, from 0.1-50 mg/kg/day. Animals were sacrificed 3 weeks after the injections started and calvariae were fixed, decalcified, and processed for histology. Bone histomorphometry measuring total bone area (BA/TV) confirms that FGF, used in every experiment as a positive control, shows an increase in the total bone area with all doses tested, but this increase is only significantly different from control at 1 and 5 mg/kg/day. The invention compound 59-0203 shows consistent increases over the 0.1-50 mg/kg/day range at a somewhat lower level than that obtained with FGF.

Similar results are obtained when new bone width in microns is measured. There was no new bone present in the control group. 59-0203 caused new bone formation at all was employed. The cells were cultured using  $\alpha$ -MEM, 10% 45 doses, with a significant increase at 25–50 mg/kg/day. New bone as percentage of the total bone area was about 45% for the FGF positive control and from about 15% to 30% over the range of 0.1-50 mg/kg/day for 59-0203. There was no new bone present in the negative control.

## Example 3

## Ex vivo Calvarial Bone Growth Assay

A number of compounds, in particular, those studied in DMSO concentration was 1%. Compound 59-0008 (10  $\mu$ M) 55 connection with lead compounds classified as hydrazone/ hydrazides (H) exemplified by 59-0045, benzothiazoles (T) exemplified by 59-0104, bis-pyridines (P) exemplified by 59-0145, and quinolines/quinoxalines (Q) exemplified by 59-0197, were tested in the ex vivo calvarial assay described hereinabove. The results of this assay are shown in FIG. 9. In this assay, histomorphotometry and osteoblast numbers are measured and effects are measured on an arbitrary scale from 1-3: i.e., 1, 1+, 2-, 2, 2+, 3-, 3, wherein 1 denotes "inactive." In this assay, for example, FGF scores 2–3.

> The scores are assigned to bone formation on the ectocranial periosteal surface. The area immediately surrounding midline suture is excluded from analysis.

osteocalcin levels at the time of sacrifice as a percentage increase compared to control group (OVX placebo-treated

60

group).

Toxicity. Cell necrosis, pyknotic nuclei, matrix disintegration.

Score

- A score of "1" is the bone forming activity seen in control cultures containing BGJb media +0.1% bovine serum albumin. The periosteal surface is covered by one layer of osteoblasts (at about 50% of the bone surface, with the remaining 50% being covered by bone lining cells). A score of "1-" is assigned if less than 50% of the periosteal surface is covered by osteoblasts due to inhibitory activity or minor toxicity of the agents being tested. A score of "1+" is given if over 50% of the surface is covered by osteoblasts.
- A moderate increase in bone forming activity. 20-40% of the periosteal surface is covered by up to two layers of osteoblasts. A score of "2-" is given if less than 20% of the surface is covered by two layers and "2+" if more than 40% of the surface is covered by two layers of osteoblasts.
- A score of "3" is the bone forming activity seen in control cultures containing BGJb media +0.1% BSA +10% fetal bovine serum. More than 20% of the periosteal surface is covered by three layers of osteoblasts. The cells appear plump (size can exceed 100  $\mu$ m2). A score of "3-" is given if less than 20% of the periosteal surface is covered by three layers of osteoblasts and or osteoblast size is less than 100 µm2. A score of "3+" has never been observed.

In all samples, toxicity, ectopic new or woven bone formation associated with osteoblasts, and osteoblast size as 25 reflections of relative activity are noted.

The results shown in FIG. 9 represent those obtained when the measurements were made by two different groups. It is clear that a number of compounds tested have activity in this assay. From the results shown in FIG. 9, 59-0073, 59-0030, 59-0070, 59-007, 59-0019, 59-0099, 59-0072 and 59-0103 show at least some indication of activity. 59-150 and 59-0104 showed activity when measured by one group but not the other; similarly, 50-0197 had this pattern. It appears that 59-0098 and 59-0203 are quite active in this 35 assay and 59-0145 shows a consistent moderate activity.

# Example 4

## Stimulation of Bone Growth in Ovariectomized Rats (OVX Assay)

The compound 59-0145 was tested at various concentrations in the OVX assay conducted as described above. The increase in bone volume was measured by two different groups; one group found 5  $\mu$ g/kg/day of 59-0145 gave 21% increase over control whereas the second group found a 71% increase. At 50  $\mu$ g/kg/day, the first group found a 31% increase, and the second a 54% increase.

In another experiment, the lumbar vertebrae were measured and the above dosages of 59-0145 were shown to provide a beneficial effect, as shown in FIG. 10.

In another experiment, 3 month old Sprague Dawley rats were ovariectomized and depleted for six weeks. At the end of the six weeks, treatment was started with subcutaneous 55 mula (1a) or (2a) can be synthesized by the procedures administration of compound 59-0145. The treatment continued for 10 weeks. At the end of the 10 weeks animals were sacrificed, bones were collected for qCT measurements and histology; serum was also collected for osteocalcin determinations.

FIG. 11 shows the percentage increase in trabecular bone (proximal tibia) compared to the placebo-treated group in chronic ovariectomized rats after 10 weeks of treatment. Compound 59-0145 causes significant increase in trabecular bone at doses of 50-500 µg/kg/day.

FIG. 12 shows results of qCT and bone histomorphometry in proximal tibia in the first two panels, as well as serum

Example 5

## Chondrogenic Activity

Compounds 59-008, 59-0102 and 50-0197 were assayed for effects on the differentiation of cartilage cells, as compared to the action of recombinant human BMP-2. Briefly, a mouse clonal chondrogenic cell line, TMC-23, was isolated and cloned from costal cartilage of transgenic mice containing the BMP-2 gene control region driving SV-40 large T-antigen, generated as described in Ghosh-Choudhury et al Endocrinology 137:331-39, 1996. These cells were cultured in DMEM/10% FCS, and were shown to express T-antigen, and also to produce aggreean (toluidine blue staining at pH 1.0) and Type-II collagen (immunostaining) by 7 days after confluence.

For measurement of alkaline phosphatase (ALP) activity, the technique of LF Bonewald et al. J. Biol Chem (1992) 267:8943-49, was employed. Briefly, TMC-23 cells were plated in 96 well microtiter plates in DMEM containing 10% FCS at  $4\times10^3$  cells/well. Two days after plating, the cells were confluent and the medium was replaced with fresh medium containing 10% FCS and different concentrations of compounds or recombinant BMP-2. After an additional 2 or 5 days incubation, the plates were washed twice with PBS, and then lysing solution (0.05% Triton X-100) was added (100 µl/well). The cells were lysed by three freeze-thaw cycles of -70° C. (30 min), followed by 37° C. (30 min with shaking). Twenty microliters of cell lysates were assayed with 80 µl of 5 mM p-nitrophenol phosphate in 1.5 M 2-amino-2-methyl-propanol buffer, pH 10.3 (Sigma ALP kit, Sigma Chemical Co., St. Louis, Mo.) for 10 min at 37° C. The reaction was stopped by the addition of  $100 \mu l$  of 0.5 MNaOH. The spectrophotometric absorbance at 405 nm was compared to that of p-nitrophenol standards to estimate ALP activity in the samples. The protein content of the cell lysates was determined by the Bio-Rad protein assay kit (Bio-Rad, Hercules, Calif.). Specific activity was calculated using these two parameters.

At day 2, compounds 59-0008 ( $10^{-9}$  M), 59-0102 ( $10^{-7}$ M) and 59-0197 (10⁻⁹ M) increased ALP levels approximately 3-, 2- and 2.5-fold, respectively, as compared to the vehicle control. Recombinant BMP2 at 100, 50 or 10 ng/ml-induced ALP levels approximately 10-, 4- or 1.5-fold, respectively, as compared to the vehicle control.

## Example 6

# Synthesis of Exemplary Compounds

A. Compounds of the invention wherein AR¹ is of fordescribed in Dryanska, V. and Ivanov, K. Synthesis (1976) 1:37–8, using the described embodiments of Ar² and the appropriate analogous heterocycle embodied in Ar¹ substituted for the benzothiazole shown. Alternates to the olefin linker described can also be prepared using standard meth-

Compounds of the invention represented by exemplary Compound 59-0234, wherein Z is O, L is —CH—CH—, and Ar² is 2,4-dimethyoxy-phenyl, including Compounds 59-0211 and 59-0233, were prepared according to the following procedure describing synthesis of Compound 59-0234. Briefly, to a N,N-dimethylformamide (DMF) solu-

26

tion of 2-methylbenzoxazole (1 mmol) and 2,4-dimethoxybenzaldehyde (1 mmol) was added lithium t-butoxide (2 mmol). The reaction mixture was heated at 130° C. for 3 h. After cooling to room temperature, the reaction mix was poured into ether and washed several times with water. The organic phase was dried over Na₂SO₄, filtered. and evaporated to dryness. The residue was dissolved in a minimal amount of hot ether and, on standing overnight, the crystalline product was collected by filtration.

B. Exemplary Compound 59-0150 where Ar¹ is of formula 4a was synthesized according to the procedure of Zamboni et al. J Med Chem (1992) 35:3832-44. First, 2-triphenylphosphoniumquinaldine bromide was synthesized as follows. Quinaldine (200 mmols), NBS (200 mmols) and a catalytic amount of benzoyl peroxide (10 mmols) were dissolved in 1 L of anhydrous carbon tetrachloride, and the mixture was stirred under reflux for 72 h. The mixture was cooled to RT and washed with water. The organic layer was drawn off, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to a dark oil. The 20 crude mixture was dissolved in 500 ml of acetonitrile, then triphenylphosphine (200 mmols) was added and the mixture was refluxed under nitrogen overnight. It was then cooled to RT and diluted with anhydrous ether. The precipitated solid was collected by filtration, washed thoroughly with anhydrous ether and dried in vacuo overnight, yielding 25 g of a tan crystalline solid which showed a single spot by TLC (silica gel, 5% MeOH in DCM).

A Wittig reaction was then performed. Briefly, under anhydrous conditions, 0.738 g (1.68 mmol) 30 2-triphenylphosphoniumquinaldine bromide in dry THF was cooled to -78° C. 1.0 ml (2.5 mmol, 2.5 M in hexanes) n-butyl lithium was slowly added, and this was allowed to react for 20 min. 0.301 g (1.68 mmol) 4-(N,Ndimethylamino)-2-methoxybenzaldehyde was then added. 35 After a few minutes, the cold bath was removed, and this was left at ambient temp. for 18 h. The reaction was quenched by the addition of aq. sat. NH₄Cl. This was extracted with EtAc, and the organics washed with additional NH₄Cl, sat. NaHCO₃, and sat. NaCl. This was dried 40 over anhydrous Na2SO4 and the solvent stripped on a rotavapor. After flash chromatography (3.8×18.0 cm; EtAc/ Hep. (1:3);  $R_f$  0.29), 0.135 g (26% yield) of a red solid was obtained, mp=185–187° C. ¹H NMR (CDCl₃) 8.04 (t, J=9.0, 2H), 7.94 (d, J=16.5, 1H), 7.74 (d, J=8.1, 1H), 7.73 (d, J=8.5, 45 1H), 7.66 (t of d,  $J_t$ =7.6,  $J_d$ =1.4, 1H), 7.61 (d, J=8.8, 1H), 7.43 (t of d,  $J_t$ =7.6,  $J_d$ =1.1, 1H), 7.29 (d, J=16.6, 1H), 6.37  $(d \text{ of } d, J_1=8.7, J_2=2.4, 1H), 6.22 (d, J=2.4, 1H), 3.93 (s, 3H),$ 3.03 (s, 6H). Anal. Calcd for C₂₀H₂₀N₂O: C, 78.92; H, 6.62; N, 9.20. Found:

C. Exemplary Compound 59-0209 was synthesized according to the procedure of McOmie, J. F. W.; and West, D. E., Org Synth, Collect Vol V (1973) 412. Under anhydrous conditions, 0.510 g (1.95 mmol) NNC 59-0198 was slowly treated with 0.38 ml (3.9 mmol) BBr₃ in dry CH₂Cl₂ at -78° C. After 15 min, this was allowed to warm to RT. After 2 h, the reaction was re-cooled to -78° C., and was then quenched by the addition of 1.6 ml (12 mmol) TEA in 25 ml MeOH. After 10 min, this was again allowed to warm to ambient temperature. After 1 h, this was concentrated to 60 dryness on a rotavapor, and twice slurred in MeOH and re-stripped. Purification by flash chromatography (3.0×25.6 cm; EtAc/Hep. (1:2);  $R_f$  0.25) gave 0.20 g (41% yield) of a slightly yellow solid, mp=271-272° C. (dec.). ¹H NMR (DMSO-d6) 9.77 (s, 1H), 8.31 (d, J=8.6, 1H), 7.96 (d, J=8.6, 65 1H), 7.92 (d, J=8.3, 1H), 7.82 (d, J=8.6, 1H), 7.74 (d, J=16.6, 1H), 7.72 (t, J=7.6, 1H), 7.58 (d, J=8.6, 2H), 7.53 (t, J=7.6,

1H), 7.26 (d, J=16.5, 1H), 6.83 (d, J=8.6, 2H). Anal. Calcd for C₁₇H₁₃NO: C, 82.57; H, 5.30; N, 5.66. Found:

D. Exemplary Compound 59-0019 was synthesized as follows: to a xylene solution of 2-methylquinoxaline (10 mmol) and 4-dimethylaminobenzaldehyde (10 mmol) was added piperdine (2 ml). The solution was heated at reflux for 1 day, at which time DBU (200  $\mu$ L) was added and reflux continued for another 2 days. The solution was cooled to RT and extracted with 1 M citric acid. The aqueous phase was repeatedly extracted with ether. The organic phases were pooled, dried over Na₂SO₄, filtered and evaporated to dryness. The residue was chromatographed on silica gel. The product was eluted using 8:1:1 dicholormethane:ether: hexane. Fractions containing pure product were pooled and evaporated to dryness. The residue was triturated with ether and filtered to give the desired compound.

E. Exemplary Compound 59-0183 and related Compound 59-0182 were synthesized according to the following procedure. Briefly, quinaldic acid (0.5 mmol) and HATU (0.5 mmol) were dissolved in 2.5 mL of anhydrous DMF in a vial and the solution was stirred at room temperature (RT). Diisopropylethyamine (1 mmol) was added dropwise to the above stirred solution and the mixture was stirred for 15 min. The appropriate amine (0.5 mmol) was then added all at once to the above stirred mixture, and the mixture was stirred overnight at RT. It was then diluted with 25 mL of cold water with vigorous stirring, the precipitate was collected by filtration and washed thoroughly with water several times, and then dried in vacuo overnight. The product was purified by flash column chromatography over silica gel eluting with dichloromethane. The pure product was obtained as a tan powder.

F. Exemplary Compound 59-0209 was synthesized according to the following procedure. Under anhydrous conditions, 0.510 g (1.95 mmol) NNC 59-0198 was slowly treated with 0.38 ml (3.9 mmol) BBr₃ in dry CH₂Cl₂ at -78° C. After 15 min, this was allowed to warm to RT. After 2 h, the reaction was re-cooled to -78° C., and was then quenched by the addition of 1.6 ml (12 mmol) TEA in 25 ml MeOH. After 10 min, this was again allowed to warm to ambient temperature. After 1 h, this was concentrated to dryness on a rotavapor, and twice slurred in MeOH and re-stripped. Purification by flash chromatography (3.0×25.6 cm; EtAc/Hep. (1:2);  $R_f$  0.25) gave 0.20 g (41% yield) of a slightly yellow solid, mp=271-272° C. (dec.). ¹H NMR (DMSO-d6) 9.77 (s, 1H), 8.31 (d, J=8.6, 1H), 7.96 (d, J=8.6, 1H), 7.92 (d, J=8.3, 1H), 7.82 (d, J=8.6, 1H), 7.74 (d, J=16.6, 1H), 7.72 (t, J=7.6, 1H), 7.58 (d, J=8.6, 2H), 7.53 (t, J=7.6, 1H), 7.26 (d, J=16.5, 1H), 6.83 (d, J=8.6, 2H). Anal. Calcd for C₁₇H₁₃NO: C, 82.57; H, 5.30; N, 5.66. Found:

G. Other embodiments wherein AR¹ is of formula (4a) can be synthesized as follows:

- a. Quinoline azo compounds (59-0030 and 59-0078) may be prepared by reaction of 2-aminoquinoline with a nitrosobenzene (Brown, E. V., et al, J Org Chem (1961) 26:2831–33; Brown, E. V. Mass Spectra of Some Phenylazopyridines and Quinolines (1969) 6:571–73);
- b. Azo derivatives may be obtained by reaction of 2-aminoquinolines with aldehydes, Morimoto, T., et al., *Chem Pharm Bull* (1977) 25:1607–09; Renault, J., et al., *Hebd Seances Acad Sci, Ser C* (1975) 280:1041–43; and Lugovkin, B. P.; *Zh Obshch Khim* (1972) 42:966–69.
- c. Imino derivatives may be obtained by reaction of 2-formylquinolines with anilines, Tran Quoc Son, et al, (1983) 21:22–26; Hagen, V. et al. *Pharmazie* (1983)

38:437-39; and Gershuns, A. L., et al., Tr Kom Anal Khim, Akad Nauk SSSR (1969) 17:242-50.

d. Alternatively conjugated linkers can be formed by bromination of the olefin of 50-0197 with Br₂ in AcOH followed by elimination with DBU as set forth in 5 Zamboni et al. *J Med Chem* (1992) 35:3832–44.

H. Analogs having the constrained linker depicted below:

may be synthesized by reference to the methods described in Gorbulenko, N. V. et al. Dokl Akad Nauk Ukr SSR (1991) 5: 117–23, substituting the 6-membered heterocycle for benzothiazole.

depicted below:

may be synthesized by reference to the methods described in the following publications: Chaurasia, M. R. & Sharma, A. J. Acta Cienc Indica Chem (1992) 18:419-22; Kandeel, Maymona M., in Phosphorus, Sulfur, Silicon, Relat Elem (1990) 48:149–55; Salem, M. A. & Soliman, E. A. Egypt J 35 Chem (1985) 27:779-87; Garin, J. et al. Synthesis (1984) 6:520-22, and Ayyangar N. R. et al. Dyes and Pigments (1990) 13:301-10.

I. Exemplary Compound 59-0145 can be synthesized according to the following method. Briefly, a mixture of 2-chloro-5-trifluoromethylpyridine (15 mmol), ethylenediamine (6 mmol), and diisopropylethylamine (18 mmol) was heated at reflux for 18 h. After cooling to room temperature, the solid mass was triturated with dichloromethane. The product was filtered and then suspended in hot EtOAc- 45 :CHCl₃ (50:50, 800 mL) and filtered to remove insoluble material. The volume was reduced to ~200 mL by heating on a steam bath. On standing, crystals of pure product were deposited.

Related compounds may be synthesized by reference to 50 the method described for Compound 59-0145, and by reference to the methods described in the following publications: Tzikas, A.& Carisch, C., U.S. Pat. No. 5,393,306, issued Feb. 28, 1995; Herzig, P.& Andreoli, A., EP 580554, published Jan. 26, 1994; Pohlke, R. & Fischer, W., DE 3938561, published May 23, 1991. Analogs containing the structure O—(CH₂)_n—O may be synthesized by reference to the previous citations, as well as the following publications: Kawato, T. & Newkome, G. Heterocycles (1990) 31:1097-104; Kameko, C. & Momose, Y. Synthesis (1982) 6:465-66; Tomlin, C. D. S. et al., GB 1161492, published Aug. 13, 1969.

J. Exemplary Compound 59-0097 and exemplary Compound 59-0201 were synthesized according to the following general procedure. Briefly, the isothiocyanate or isocyanate 65 (1 mmol) was dissolved in 5 mL of anhydrous DMF in a vial and the solution was stirred at room temperature (RT).

Diisopropylethyamine (2 mmol) was added dropwise to the above stirred solution followed by 3-hydrazinobenzoic acid (1 mmol), and the mixture was stirred overnight at RT. It was then diluted with 50 mL of cold water with vigorous stirring. The precipitate was collected by filtration, washed thoroughly with water several times, and then dried in vacuo overnight. The product was purified by flash column chromatography over silica gel eluting with 5% methanol in dichloromethane. The pure product was obtained as a red to purple powder. The compounds of the invention are produced by substituting for at least one phenyl group the appropriate heterocycle.

K. Compounds of the class represented by exemplary Compound 59-0045 can be synthesized using standard procedures for the synthesis of phenyl hydrazones of aromatic aldehydes, as described in any organic textbook. The synthesis of exemplary Compound 59-0045 may be performed Related, compounds having the constrained linker 20 as follows. Briefly, a suspension of 3-hydrazinobenzoic acid (1 mmol), p-dimethylaminobenzaldehyde (1 mmol), and AcOH (50 µL) in EtOH:H2O (4 mL:1 mL) was heated at 105° C. in a sealed vial for 3 h. After cooling, a bright yellow solid was removed by filtration. The solid was washed with cold MeOH and then with ether to give pure product.

> L. Exemplary Compound 59-0096 and related, exemplary Compounds 59-0098, 59-0095, 59-0107, 59-0108, 59-0109, 59-0110 and 59-0200 may be synthesized according to the following general procedure. Briefly, the appropriate carboxylic acid (1 mmol) and HATU ([O-(7-azabenzotriazol-1-yl)-1,1,3,3-tritetramethyluronium hexafluorophosphate]; 1 mmol) were dissolved in 5 mL of anhydrous DMF in a vial and the solution was stirred at room temperature (RT). Disopropylethyamine (3 mmol) was added dropwise to the above stirred solution and the mixture was stirred for 15 min. 3-Hydrazinobenzoic acid (1 mmol) was then added all at once to the above stirred mixture and the mixture was stirred overnight at RT. It was then diluted with 50 mL of cold water with vigorous stirring and the precipitate was collected by filtration and washed thoroughly with water several times and then dried in vacuo overnight. The product was purified by flash column chromatography over silica gel eluting with 5-10% methanol in dichloromethane. The pure product was obtained as a tan crystalline solid.

> M. Exemplary Compound 59-0097 and exemplary Compound 59-0201 were synthesized according to the following general procedure. Briefly, the isothiocyanate or isocyanate (1 mmol) was dissolved in 5 mL of anhydrous DMF in a vial and the solution was stirred at room temperature (RT). Diisopropylethyamine (2 mmol) was added dropwise to the above stirred solution followed by 3-hydrazinobenzoic acid (1 mmol), and the mixture was stirred overnight at RT. It was then diluted with 50 mL of cold water with vigorous stirring. The precipitate was collected by filtration, washed thoroughly with water several times, and then dried in vacuo overnight. The product was purified by flash column chromatography over silica gel eluting with 5% methanol in dichloromethane. The pure product was obtained as a red to purple powder.

> N. Exemplary Compound 59-0125 where R¹ is methoxy, m is 1, the linker is azo and Ar² is di(2-hydroxyethyl)amino, and related compounds having an azo linker can be prepared in a manner similar to that described by Alberti, G. et al. Chim Ind (Milan) (1974) 56:495-97.

25

O. Exemplary Compound 59-0124 and related, constrained analogs having the structure depicted below:

may be synthesized by reference to the methods described in Gorbulenko, N. V. et al. *Dokl Akad Nauk Ukr SSR* (1991) 5:117–23.

Related, constrained analogs having the structure depicted below:

may be synthesized by reference to the methods described in the following publications: Chaurasia, M. R. & Sharma, A. J. Acta Cienc Indica Chem (1992) 18:419–22; Kandeel, Maymona M., in Phosphorus, Sulfur, Silicon, Relat Elem (1990) 48:149–55; Salem, M. A. & Soliman, E. A. Egypt J Chem (1985) 27:779–87; Garin, J. et al. Synthesis (1984) 6:520–22, or according to the representative procedure described in Ayyangar N. R. et al. Dyes and Pigments (1990) 13:301–10.

What is claimed is:

1. A method to treat a condition in a vertebrate animal characterized by a deficiency in, or need for, bone growth or replacement and/or an undesirable level of bone resorption, which method comprises administering to a vertebrate subject in need of such treatment an effective amount of a compound of the formula (1):

$$Ar^1$$
— $L$ — $Ar^2$ 

wherein AR¹ is

wherein

each  $R^a$  is independently a noninterfering substituent; m is an integer of 0-4;

each Z is independently N or CR, where R is H or alkyl (1–6C), with the proviso that at least one Z must be N and at least one Z must be CR;

L is a flexible conjugating or non-conjugating linker; and wherein Ar² is a substituted or unsubstituted phenyl, substituted or unsubstituted or unsubstituted or unsubstituted aromatic system containing a 6-membered heterocycle or a substituted or unsubstituted aromatic system containing a 5-membered heterocycle.

2. The method of claim 1 wherein Ar² is

$$R^{b}_{n}$$
 or  $R^{b}_{m}$   $Z=Z$   $Z$   $Z$ 

wherein

each R^b is independently a noninterfering substituent, and in (vi) each Z is independently N or CR, where R is H or alkyl (1–6C), with the proviso that at least one Z must be a N and at least one Z must be CR.

3. The method of claim 2 wherein the compound of formula (1) is of the formula

$$R^{a}_{m}$$
 $L$ 
 $R^{b}_{m}$ 
 $R^{b}_{m}$ 
 $R^{b}_{m}$ 

4. The method of claim 3 wherein L is -N=N-, -RC=CR-, -RC=N-, -NRCO-,  $-NRCR_2-$ ,  $-NRCR_2CR_2-$ ,  $-NRCR_2CO-$ , -NRNR-,  $-CR_2CR_2-$ ,  $-NRCR_2CR_2NR-$ , -NRCR=CRNR- or  $-NRCOCR_2NR-$ , and/or

wherein each R^a and R^b is independently halo, OR, SR, NR₂, NO, NO₂, OCF₃ or CF₃ wherein R is H or alkyl (1–6C) or R^b comprises an aromatic system and each m and n is independently 0, 1 or 2.

5. The method of claim 4 wherein L is  $-NHCR_2CR_2NH$ , m is 1 and  $R^a$  is  $CF_3$  para to L.

6. The method of claim 5 wherein the compound of formula (1) is

59-0459

* * * * *