
United States Patent (19)
Lipovski

54)

(75)

73

21
22

(63)

51
52)
(58

56)

SYSTEM AND METHOD FOR SEARCHINGA
DATA BASE USINGA CONTENT
SEARCHABLE MEMORY

Inventor: G. Jack Lipovski, Austin, Tex.

Assignee: Board of Regents, the University of
Texas System, Austin, Tex.

Appl. No.: 987,008
Filed: Dec. 7, 1992

Related U.S. Application Data

Continuation-in-part of Ser. No. 577,991, Sep. 5, 1990, Pat.
No. 5,184.325, which is a continuation-in-part of Ser. No.
321.847, Mar. 10, 1989, Pat. No. 4,989,180.
Int. Cl. G06F 7/02
U.S. Cl. 395/606; 395/433; 395/435
Field of Search 395/425, 600,

395/606, 433. 435: 364/900 MS. 724.19;
379/221, 284. 411: 382/10

References Cited

U.S. PATENT DOCUMENTS

3,508,220 4/1970 Stampler 365/50
3,810,108 5/1974 Krewson et al. ... 365/125
3,997,882 12/1976 Goyal .. 365,49
4,065,756 12/1977 Panigrahi 36.5/49
4,172.282 10/1979 Aichelmann et al. 395,433
4,185.323 1/1980 Johnson et al. 365/.222
4,232,376 11/1980 Dion et al. 365/.222
4277.833 7/1981 Chambers 36.5/555
4,277,838 7/1981 Chambers 36.5/222
4.450,520 5/1984 Hollaar et al. ... 395/885
4,507,748 3/1985 Cotton 364/749
4.590,465 5/1986 Fuchs 395/8
4.598,400 7/1986 Hillis 370/400
4,636,982 1/1987 Takemae et al. ... 36.5/149
4,646,306 2/1987 Davis et al. 371/492
4,677,592 6/1987 Sakurai et al. ... 365/.222
4,701,879 10/1987 Scarr ... 365/49
4,70622 11/1987 Satoh et al. 365/.222
4,709,327 11/1987 Hills et al. 395/384
4,710,935 12/1987 Kim et al. 371A9.2

RAS

i

YE

USOO5758148A

11 Patent Number: 5,758,148
45 Date of Patent: May 26, 1998

4,716,552 12/1987 Maltiel et al. 365/.222
4,718,041 1/1988 Baglee et al........ 365/85.22
4,747,072 5/1988 Robinson et al. 395/428
4,748,439 5/1988 Robinson et al. .. 340/146.2
4,749,887 6/1988 Sanwo et al. 326/55
4,775,810 10/1988 Suzuki et al. 326/55
4,782.459 1/1988 Johnston 364,724.19
4,783,649 11/1988 Fuchs et al. 365/189
4,794.559 12/1988 Greenberger 365/49

(List continued on next page.)
OTHER PUBLICATIONS

Bush, "As We May Think." Atlantic Monthly, pp. 101-108
(Jul. 1947).

(List continued on next page.)
Primary Examiner Tod R. Swann
Assistant Examiner-J. Peikari
Attorney, Agent, or Firm-Louis J. Hoffman
57) ABSTRACT

A dynamic storage device requires periodic refresh and
includes logical operation circuitry within the refresh cir
cuitry. The individual storage positions of the storage device
are periodically read by a refresh amplifier, and then a
logical operation is performed on the refresh data before the
data reapplied to the write amplifier, That operation allows
implementation of associative database searching by cycli
cally executing "data compare" and other logical operations
within the refresh circuitry. A system of content searching
may be implemented in any storage device, dynamic or not,
in which a comparand may be matched with any of a
plurality of subunits of a word, and a storage bit is used to
identify any words in which a mismatch occurs. Upon
recognizing a match, the device can be commanded (a) to
output the word or a selected portion (which may be
different than the matched portion), (b) to move a selected
portion of the word to a different location in the word, or (c)
to alter the bits of the word or a selected portion. Arithmeti
cal operations may be implemented through such alterations
after matching. Off-chip storage systems of use with such
devices are also disclosed.

68 Claims, 15 Drawing Sheets

- - - - - - - - - - - - - -

CAS

: IRAS Control CAS Corto WEC iO -t Dalain
Circu? Circuit Data out

|
- ROW Decode 1
RO. Address suffer

: 1st - -

- - - - - - - - - - --------- Address Bus 1s

5,758,148
Page 2

U.S. PATENT DOCUMENTS

4,799,192 1/1989 Wade et al. 36.5/49
4.831585 5/1989 Wade et al. 365,49
4,833,642 5/1989 Ooi .. 365/49
4,835,733 5/1989 Powell 395/421.08
4,882,699 ll/1989 Evensen 379,284
4.931,994 6/1990 Matsui et al. ... 36.5/189.01
4,989,180 1/1991 Lipovski 36.5/18907
4,991.136 2/1991 Mihara 365/49
5,073,864 12/1991 Methvin et al. 364f715.11
5214,715 5/1993 Carpenter et al. 382/15
5,285.41 2/1994 McAulay 365/49

OTHER PUBLICATIONS

Lee, "Intercommunicating Cells, Basis for a Distributed
Logic Computer." Proc.. FJCC. pp. 130-136 (1962).
Lee et al. "A Content Addressable Distributed Logic
Memory with Applications to Information Retrieval." Pro
ceedings of the IEEE, vol. 51. pp. 924-932 (Jun. 1963).
Crane et al., "Bulk Processing in Distributed Logic
Memory," IEEETC. vol. EC-14, pp. 186-196 (Apr. 1965).
Slotnick, "Logic Per Track Devices." Advances in Comput
ers, pp. 291-296 (1971).
Batcher, "The Flip Network in Staran." Proc 1976 Int, Conf.
on Parallel Processing, pp. 65-71 (Aug. 1976).
Lipovski. “Architectural Features of CASSM: A Context
Addressed Segment Sequential Memory." Proceedings of
the 5th ISCA, pp. 31-38 (Apr. 3-5, 1978).

Bray et al., "Data Base Computers.” pp. 106-120 (D.C.
Heath & Co. 1979).
Hollaar, “Text Retrieval Computers." Computer, vol. 12.
No. 3, pp. 40-52 (1979).
Fuchs et al., "Developing Pixel-Planes, A Smart Memory
Based Raster Graphics System," 1982 Conference on
Advanced Research in VLSI, pp. 371-380 (MIT Jan. 27.
1982).

IC Memories Data Book. pp. 356-363 (Hitachi Mar. 1987).
Hodges et al. "Dynamic Read-Write Memories.” Analysis
and Design of Digital Integrated Circuits, Sec. 9.3, pp.
372-380 (McGraw-Hill, 2nd ed. 1988).
Lineback, "SEEQ's 512-KBIT Flash EEPROMS Support
In-System Programming on 12-v Supply” (1988).
Johnson, "Design and Analysis of Fault-Tolerant Digital
Systems," pp. 63-65 (Addison-Wesley 1989).
Robinson, "Chameleon: A Pattern Matching Memory Sys
tem.” Technical Report HPL-SAL-89-24 (Hewlett Packard
Co. Apr. 19, 1989).
Lipovski, G.J., "A Four Megabit Dynamic Systolic Asso
ciative Memory Chip." Dept. of Elec. and Computer Engr.,
Univ. of Texas, Austin, Texas (Sep. 4, 1990).

U.S. Patent May 26, 1998 Sheet 1 of 15 5,758,148

Fig.
(Prior Art)

U.S. Patent May 26, 1998 Sheet 2 of 15 5,758,148

Comparator

U.S. Patent May 26, 1998 Sheet 3 of 15 5,758,148

CAS

26
- /

10 10 10

Data Out

12
26

10 10

13 - Played ROW Decoder

ROW Address Buffer

U.S. Patent May 26, 1998 Sheet 4 of 15 5,758,148

DRAM Subaray ... DRAM subarray
NNNNNN N

SikNNNéilk ŠNNSE
Word Cell || |

2 || | :

Fig 6

-(, —C, -CHC -
Req Deny Red Deny Req Deny Req Deny

Fig. 8
Req Deny=0

One node

| -

Deny Deny Deny Deny Req Deny Data Write Req Deny Data Write

Fig. 9 Fig. 10)

5,758,148

|
Ol
E
c

Sheet 5 of 15 U.S. Patent May 26, 1998

SWE

III
III
t|

SSBJpp\/ MOH

5,758,148 Sheet 6 of 15 May 26, 1998 U.S. Patent

5,758,148 Sheet 7 of 15 May 26, 1998 U.S. Patent

MULT-PLATTER
HARD DISK

U.S. Patent May 26, 1998 Sheet 8 of 15 5,758,148

PRIORITY 69
CIRCUIT

MCROCONTROLLER,
DMA CONTROLLER

AND SRAM

MICRO
CONTROLLER

"B"

MICRO
CONTROLLER

ic

U.S. Patent May 26, 1998 Sheet 9 of 15 5,758,148

65 N

MICRO
CONTROLLER

MICRO
CONTROLLER 67

(DISK
CONTROL) 67 BANK

MICRO- IC

in
F.G. 6a O) 'ss

MICRO
CONTROLLER 67

U.S. Patent May 26, 1998 Sheet 11 of 15 5,758,148

F.G. 8
--

LINE MATCH ROUTINE

CHECK NEXT
LINE

COMPARAND
NLINE 2

CLEAR M BITS;
USE NEXT SEARCH
TERMAS COMPARAND;

DESIGNATE SCRATCH BT
FOR TERM

RUNLINE
MATCH ROUTINE

SHIFT M BITS
TO AST LINE
OF DOCUMENT,

CLEAR M BITS; USE SCRATCH USING "O" BTS
BTS FROM DESIGNATED SEARCH

TERMS AS COMPARAND;
DESIGNATE SCRATCH BIT SET SCRATCH

FOR NEXT BOOLEAN PRODUCT BIT IN PLACE
DESIGNATED

RUNLINE
MATCH ROUTINE

CEARM BITS
USE SCRATCH BTS

FROM BOOLEAN PRODUCTS
AS COMPARAND DESIGNATE
MBT FOR RESULT

RUNLINE
MATCH ROUTINE

U.S. Patent May 26, 1998 Sheet 12 of 15 5,758,148

FIRST TERM

THIS CELL

CLEAR MARK
BIT IN
PREVIOUS CELL

SET "M" BITS FOR
LINES IN WHICH
A MARK BIT IS
SET; SHIFT IF
DESIRED

FG. I9

May 26, 1998 Sheet 13 of 15 5,758,148 U.S. Patent

U.S. Patent

C lxxxXXXX
MW OXXXXXXX
C XXXX1XX0
MW OXXXXXX
CNA XXXXXX1
MW XXXXXX0
C lxx0xx0x
CO 40XXXX0X
MW 0xxxxxx
CNA 0xxxxx

CO XXOXX1X
MW lxxxx0x
C x0xx0xx
CO 0xxx0XX
MW 0xxxxxx
CNA 0xxxxx

CO XOXXXX
MW XXXX0XX
C 1XXXXXXX

MW XXXXXXX

stosse This be
C XXXOXX
C0 0XXXXX0
MW 40XXXXXX
CNA 0XXXXX

CO XXX Oxx
MW XXXXXX0
C XXOXXOX
C0 0XXXX0X
MW 0XXXXXIX
CNA 40XXXXX

May 26, 1998 Sheet 14 of 15 5,758,148

lf Carry Set
Clear the Carry
if a) S 1 and b0 S 0
make the Carry 0 an

e

k
(but not if the byte

Was changed in the pre
make Carryl and b0 0.

8

WOUS instruct On)

if Carry is 1 and all is 0 and bl is 0
or if carry is 0 andal is 1 and bl is 0
make Carry and bill
lf a S and b is 1 (but not if the byte
Was Changed in the previous instruction)

Or Carry is 1, all is 0, and bl is
nake carry 1, mid carry l, and bl
if Carry S 1, a2 is 0, and b2 is
Or carry is 0, a2 is 1 and b2 is
make Carry O and b2
f carry S 0, a2 is 1, and b2 is 1 (but not if
the byte Was changed in the previous instruction)

Or Carry S 1, a2 is 0, and b2 S 1
Anake £ary 1 and b2 0 lf carry is l (after the COImpare), read the byte

having b5, bl. b3, as a 4, as into SenSe amps
Write l in Carry Of the newly read byte (this
transfers the previously Computed Carry to this byte)

gln, similar Operations on bits 5, 4 and 5.
if Carry S. 1, as is 0, and b3 is 0
Or Carry is 0, a3 sil, and b3 is l
make Carry 0 and b3
f Carry is 0, as S 1, and b5 S 1 (but not if the
bvte Was changed in the previous instruction)

Or if Carry is l, a3 S 0, and b3 is l
make Eary and D5 0 lf Carry S 1, a 4 is 0, and b.l. iS 0
Or Carry S 0, b is l, and all is 0
lake Carry O and b)
f carry is 0, all is , and b4 is 1 (but not if the
byte Was changed in the previOuS instruct On)

FIG. 2a

U.S. Patent May 26, 1998 Sheet 15 of 15 5,758,148

CO XX0XX1X Or Carry is 1, at S 0, and b4 S 1
MW 11XXXX0X make Carry Mid Carry 1, and bl O
C lx0xx0XX if Carry S 1, ab is 0, and b5 S O
CO 40x1XXOXX Or Carry S 0, as S 1, and D5 is 0
MW 40XXXXXX make Carry O and b4 1. CNA 0XXXXX if Carry S 0, as S 1, and b5 S 1 (but not if the byte Was Changed in the previOuS instruction)
CO lx0XXXX Of Carry S l, as S 0, and b5 is
MW lxXXX0XX make Eary 1 and b5 0 C lxXXXXXX if Carry S 1 (after the Cornpare), read the byte

having b8, b7, b6, a 5, a7, a6 into Sense amps
MW 41XXXXXXX Write 1 in Carry Of the newly read byte (this transfers the previously COTiputed Carry to this byte)
' This begins Similar operations on bits 6, 7 and 8.
C 1XXX0XX0 if Carry is 1, a0 is 0, and b5 S 0
C0 0XXXXX0 Or Carry S 0, a6 S l, and b6 S 1
MW 0XXXXXXl make Carry 0 and b6 l CNA 40XXXXX1 if carry is 0, a6 S l, and b6 S 1 (but not if the byte was changed in the previOuS instruct On)
CO lxxx0XX Or if Carry is 1, a6 S 0, and b6 S l
MW 1XXXXXX0 make Carry 1 and b8 O
C XXOXXOX if carry is , a7 S O, and b1 is 0
C0 0xxlxxOx Or Carry S 0, b7 is l, and a/ is 0
MW OXXXXX1X make Carry 0 and b7 CNA 0XXXX1X if is 0, a7 is l, and b7 is 1 (but not if the byte

Was Changed in the preWOUS in Struct On)
CO lxx0XX1X or carry is l, a? is 0, and b7 is l
MW illxXXXOX make Carry l, mid Carry l, and b2 O
C XOXXOXX if Carry S 1, a8 is 0, and b8 S O
CO 40XXX0XX Or Carry is 0, a8 S 1 , and b8 S O
MW 0XXXXXX make Carry 0 and b8 l CNA 0x1XXXX if Carry is 0, a8 is l, and b8 S 1 (but not if the byte WaS Changed in the previous instruction)
CO lix0XXXX Or Carry is l, a3 is 0, and b8 iS 1
MW lxxxx0xx make carry l and b8 O

FIG. 2b

5,758,148
1

SYSTEM AND METHOD FOR SEARCHINGA
DATA BASE USING A CONTENT

SEARCHABLE MEMORY

This is a continuation-in-part of application Ser. No.
577,991, filed Sep. 5, 1990, now U.S. Pat. No. 5.184325.
which is a continuation-in-part of application Ser. No.
321,847 filed Mar. 10, 1989, now U.S. Pat. No. 4,989,180.
This application is related to PCT/US93/11820.

FIELD OF INVENTION

The invention relates to refreshable dynamic associative
memory storage devices and systems incorporating such
devices.

BACKGROUND OF THE INVENTION

Referring to FIG. 1. a schematic of a typical construction
of a dynamic random access memory (DRAM) is shown.
During the write mode, data to be written into the DRAM is
applied to the input and amplified by write amplifier WR.
Switches S2 and S3 are open, switches S1 and S4 are closed.
and capacitor C is either charged or discharged according to
the status of the input data, and amplified by write amplifier
WR. During the read mode, switches S1, S3 and S4 are
open, and switch S2 is closed so that the voltage on capacitor
C is compared to a reference voltage Vref by read amplifier
RE. According to the difference determined by read ampli
fier RE, either a binary "one" or "zero" is transmitted to the
output of the DRAM. When in the data-hold mode, all the
switches S1, S2, S3 and S4 remain open so that the stored
charged remains in capacitor C. However, due to the
unavoidable presence of leakage resistance R, the capacitor
charge will gradually dissipate. To compensate for this, a
process called refreshing must be periodically used in the
DRAM. To achieve refreshing, all three switches S1, S2 and
S3 are closed, switch S4 is open, and the binary state
detected by read amplifier RE is amplified by write amplifier
WR and reapplied to storage capacitor C. Switches S3 and
S4 thus form a multiplexer which selects either input data or
refresh data for application to write amplifier WR. The
dashed line in FIG. 1 represents the boundary of an inte
grated circuit chip. Elements within the dashed line are
typically integrated on a single chip.

In practice, a DRAM includes a great number of storage
capacitors Carranged in matrix of array form along with row
decoder and column decoder circuitry. The storage elements
of the array must be periodically refreshed, and are typically
refreshed on a row-by-row basis. The row decoder and
column decoder circuitry, as well as the read amplifiers and
write amplifiers, are typically integrated within the same
semiconductor chip with the individual storage elements of
the array. FIG. 2 is a block diagram of a type HM 511000
dynamic RAM available from Hitachi America. Ltd., which
includes eight 128k memory cell arrays 10 connected
through read/write amplifiers 11 to I/O bus 12. Individual
rows and columns of the cell arrays 10 are selected by row
decoder 13 and column decoder 14, under control of address
data contained on address bus 15 via row address buffer 16
and column address buffer 17, and under control of row
access strobe signal RAS, and column access strobe signal,
CAS. Reading and writing is controlled by read/write input,
WE, and serial input and output data is buffered in I/O buffer
18. Once again, elements within the dashed line in FIG.2 are
integrated together on a single chip.
When logical operations are required to be performed on

data stored in a DRAM, data must be read from the desired

5

O

5

20

25

30

35

45

50

55

65

2
storage elements of the array and applied to the single-bit
serial output of the DRAM for application to logic circuitry
external to the integrated circuit chip. After the logic func
tion is performed, the result is applied to the single-bit input
of the DRAM for buffering and storage in desired storage
elements of the array. Such operation of a dynamic RAM is
found. for example, in single-instruction-multiple
datastream (SIMD) computers wherein a single logical
operation is performed on a plurality of data elements. Such
SIMD operations may be performed cyclically in order to
trade off cost for speed. During cyclic operation, the same
operation is performed in one or more data cells, and within
each data cell, the operation is performed identically on one
or more data words which are processed sequentially.
However, as mentioned above, periodic refreshing of the
dynamic RAM is necessary in order to avoid dissipation of
the data indicating charge on the storage capacitor. This
refreshing is generally interleaved with any logical opera
tions performed on the data, which necessarily limits the
speed at which cyclic logical operations can be performed
on data stored in a dynamic RAM.

SUMMARY OF THE INVENTION

The present invention avoids the drawbacks of the prior
art by incorporating logic circuitry within the refresh cir
cuitry of a dynamic RAM which allows performance of
cyclic logical operations on stored volatile data concurrent
with the periodic refresh of the volatile data. Thus, all data
being refreshed is processed by a simple logical unit in the
refresh circuit. This combination of refresh with logical
operation eliminates the need for a separate refresh cycle by
performing the logical operation during the refresh cycle,
and greatly improves the cyclic processing speed of logical
operations performed on stored data.
The present invention has particular application in data

base or associative systems wherein all stored data is
accessed and tested, for example, when conducting data
string searches. In such a database searching system, a data
comparator is inserted into the refreshing loop, and is used
to compare target data with data being cyclically refreshed
in order to simultaneously perform data refresh and target
data searching.
The inventive memory circuit can be used as a buffer for

other, non-volatile storage devices, such as hard disks.
thereby allowing parallel searching of the stored data.

BRIEF DESCRIPTION OF THE DRAWENGS
FIGS. 1 and 2 are schematic representations of prior art

dynamic random access memories.
FIG. 3 is a dynamic random access memory employing

logic in refresh circuitry, according to the present invention.
FIG. 4 is a dynamic random access memory employing

search logic in the refresh circuitry, according to the present
invention.

FIG. 5 is a block diagram of a one-megabit dynamic
random access memory employing logic in refresh circuitry
according to the present invention.

FIG. 6 is another block diagram of a dynamic random
access memory employing logic in refresh circuitry accord
ing to another embodiment of the present invention.

FIG. 7 is a detailed block diagram of a word cell of FIG.
6.

FIG. 8 is a chain priority circuit usable in the present
invention.

FIG. 9 is a priority tree circuit usable in the present
invention.

5,758,148
3

FIG. 10 is a node in a data bus and priority tree usable in
the present invention.

FIG. 11 is a block diagram of a module of a system
according to the present invention that uses several dynamic
associative addressable memories as disk buffer.

FIG. 12 is an example block diagram of an embodiment
of the module of FIG. 11.

FIG. 13 is an example timing diagram for the transfer of
data from disk to memory in the embodiment shown in FIG.
12.

FIG. 14 is an example block diagram showing the bus
contacts of the system in a particular state.

FIG. 15 is a block diagram illustrating a portion of the
circuitry of FIG. 12, including principally the portion that
relates to searching data in the memory of the invention.

FIGS. 16a and 16b illustrate three alternative systems,
each of which contains several modules that can consist of
the embodiment of FIG. 12 or another system in accordance
with the invention, arranged with alternative connecting
mechanisms.

FIG. 17 is a diagram illustrating one possible storage
structure within the memory of the invention.

FIG. 18 is an example flowchart illustrating a programfor
implementing a Boolean search using the embodiment of the
invention described in F.G. 17.

FIG. 19 is an example flowchart illustrating a program for
implementing a string search using the embodiment of the
invention described in FIG. 17.

FIG. 20 is an example flowchart illustrating a program for
implementing a proximity search using the embodiment of
the invention described in F.G. 17.

FIG. 21 is a sample program illustrating an efficient way
of performing Boolean arithmetic in the memory of the
invention.

DETALED DESCRIPTION OF THE
PREFERRED EMBODMENT

Referring to FIG. 3, a one megabit volatile memory
employing logic-in-refresh according to the present inven
tion is disclosed. The memory is organized within the chip
as a 512-row, 2048 bit-per-row memory in which an entire
2048-bit row is read, one after another, in each refresh cycle.
The refresh row unit length might be different from the
length of the associative memory word unit that can be
searched or output as a unit. Either the entire 2048-bit row,
or a fraction of the 2048-bit row, can be considered a single
word in an associative memory. For example, referring to
FIG. 3, if an 8-bit byte is chosen as the length of the
associative memory word in a one-megabit memory, 256
cells 19 result, each having a 512-word memory array 20,
8-bits-per-word. Herein, a “word" is a unit of data that is
considered by the user as a whole, a "row" refers to a unit
of data read or written as a whole, and a "byte" is that portion
of a row contained in a word.

According to the present invention, each cell 19 includes
logic circuitry. Such as comparator 21, to operate on the data
as it is sequentially and cyclically read out, refreshed and
written backinto memory. During a refresh operation, a 9-bit
counter, either external or internal to the chip, provides 512
consecutive row addresses, one address per memory refresh
cycle. Thus, all words of each cell 19 of the memory are read
in 512 memory refresh cycles and are searched during that
time. For one mode of operation, the bottom byte of each
cell 19 is logically linked to the top byte of the next cell 19
within a single chip by bus 22. In another mode of operation,

O

15

25

30

35

45

50

55

65

4
each word, as a sequence of 512 bytes, is considered
separately. Elements within the dashed line are integrated
together in a single semiconductor material integrated circuit
chip. A plurality of chips can be cascaded by logically
linking the bottom word of the last cell in one chip to the top
of the next cell in the neighboring chip by bus 23.
The configuration of each cell 19 is shown in more detail

in FIG. 4. Referring to FIG. 4, data stored in each byte can
be, for example, ASCII characters in text streams, which are
each 7 bits wide together with a mark bit, which is the 8th
bit. Initially, all mark bits are cleared, and are subsequently
set and cleared to mark the results of a search. Each byte is
sequentially read by the 8-bit wide read amplifier, RE, and
the 7 data bits are applied to comparator 21 where the read
7-bit byte is compared with the 7-bit comparand stored in
comparand register 24. A comparand is loaded into com
parand register 24 through I/O bus 12.
The output of read amplifier, RE. is also applied to

multiplexer 25 along with data from I/O buffer 18 through
I/O bus 12. The output of multiplexer 25 is applied to 8-bit
write amplifier, WR, along with the single-bit (mark bit)
output of comparator 21. Read amplifier, RE, is also con
nected to I/O bus 12 in a known manner through tri-state
buffers, or the like, to enable outputting of data. Thus,
according to the present invention, comparator 21 and
comparand register 24 are added to the preexisting refresh
circuitry of a DRAM illustrated schematically in FIG. 1
(note that switches S3 and S4 illustrate the function of
multiplexer 25). All components are integrated on the same
semiconductor material integrated circuit chip.

In operation, to search-and-mark byte, a byte-wide com
parand is simultaneously broadcast to all cells 19, and stored
in respective comparand registers 24. Then, the 512 bytes in
memory array 20 of each cell 19 are each cyclically read,
refreshed and rewritten. The 8th bit of each byte stores the
result of any match with the comparand in comparand
register 24. The results of the match are stored in 8th bit of
the next byte in memory array 20 adjacent and below the one
that the comparand matches. This is repeated for all 512
bytes in each cell 19. The result of a search on the last byte
of a cell is effectively stored in the first byte of the adjacent
cell through bus 22.

If all mark bits are cleared, and the comparand searches
for a 7-bit character and a zero as the 8th bit, an uncon
strained search for a character is done. If the comparand
searches for a character and a "1" in the 8th bit, a search for
the character will then match the comparand only if the
previous byte stored in memory array 20 matched the
previous comparand searched. Thus, a string of characters
can be searched for, one character in each successive refresh
operation.
A variation of this operation is to continue to mark bytes

in memory until a match is found. In this variation, once the
8th bit (mark bit) of a byte has been set, as bytes continue
to rotate through the refresh circuitry, the 8th bit of all
subsequent bytes are set until a match for the next com
parand (for example, an end-of-text character) is found. This
variation is used to mark the remainder of a target string of
characters, once a character within the target string is found,
and facilitates output of or rewriting the target string.
The output of the result of a search from a single cell can

simply be read out as the character into I/O buffer 18 if the
8th bit is set. As a byte passes the refresh logic, if the 8th bit
is set, the byte is presented by read amplifier, RE, to I/O
buffer 18, and the 8th bit will then be cleared. In a multiple
cell system, if two cells have the 8th bit set in the same word

5,758,148
5

in each cell, a priority circuit connected to the cells will
prevent all but one of the outputs from feeding I/O buffer 18,
and clearing the 8th bit. Only one byte will be output at a
time, and remaining bytes will be output in later refresh
cycles.

After power is applied, a means to fill memory with
identical bytes is used to empty the memory. To fill an empty
memory with a string of characters, a ripple priority mecha
nism can be used to modify the basic search and match
mechanism so that only the first byte that satisfies the search
part is modified, but no other bytes that satisfy the search are
altered. Within a single cell, a flip-flop is set as the bytes in
the cell are being searched, and is cleared after a successful
search is detected. The byte is modified in a successful
search only if the flop-flop output is "1". One byte can be
written in each refresh cycle by this means. In a multiple cell
system, a ripple priority circuit is also used between cells.
The priority circuit causes all flip-flops except the flip-flop
in the prior cell to be cleared. This prioritized context
addressing mechanism is needed to fill memory with differ
ent data in each byte.
The above-disclosed additional search logic can be easily

implemented in existing dynamic random access memories
by using preexisting memory cells, row decoders, read
amplifiers, write amplifiers and multiplexers but removing
the column decoders and inserting search logic including the
comparator and comparand register into the read/write cir
cuits. If this is done. for example in the Hitachi HM511000
(a one-megabit DRAM), the entire memory can be read,
searched and rewritten in approximately 60 microseconds
(the time required to refresh the entire memory). Such a
memory is shown in FIG. S and illustrates placement of
search logic 26. If a system incorporates a number of
memory chips, and a string of characters is searched, the
time required to search all data in memory will remain 60
microseconds per character searched.

Although content search and update, input and output are
the logical operations herein disclosed, it will be understood
that other logical techniques can also be implemented. For
example, the various techniques used for searching and
updating a database, such a relational database, as disclosed
in "Architectural Features of CASSM: A Context Addressed
Segment Sequential Memory.” Proc. 5th ISCA, pp 31-38,
April 1978, authored by the present inventor, and related
work on the CASSM system cited in that paper, can be
implemented. Other modifications, additions, or deletions
can also be made without departing from the scope of the
invention. For example, the present invention is equally
applicable to memories, only a portion of which is dynamic
memory.
The invention thus allows associative searching of a

dynamic memory integrated circuit with a redesign of only
a small part (removing column decoders, and adding com
parators and comparand registers to the refresh circuitry) of
a preexisting chip memory. This results in low development
cost, little if any increase in manufacturing cost, and utili
zation of existing DRAM facilities without the need for
extensive retooling. Use of the invention will allow asso
ciative searching of very large data bases stored entirely in
fast dynamic memory with very little increase in cost over
an unmodified dynamic random access memory.

FIGS. 6 and 7 illustrate the organization of a semicon
ductor chip incorporating another embodiment of the present
invention. As mentioned above, it is important to only
slightly modify the architecture of an existing DRAM chip
(FIG. 1), keeping the memory array intact, so that the cost

15

20

25

30

35

45

50

55

6
of modifying the design of an existing DRAM chip to
produce the present invention will be small relative to the
cost of designing a full chip.

Referring to FIG. 6, in a refresh operation, one column is
refreshed sequentially, one bit after another, using one sense
amplifier. The data in the column, stored in column cells 27,
are collected together in groups of four pairs of column cells
each to form word cells 28. Thirty-two word cells are
arranged within a pair of existing DRAM subarrays 29, and
the chip includes eight pairs 29 of DRAM subarrays. Thus,
in a one-megabit memory, each column cell includes 512
bits.
As explained above, in a refresh operation, one column is

refreshed sequentially, one bit after another, by one sense
amplifier. For simplicity, as shown in FIG. 6. the eight
column cells 27 forming each word cell 28 can be consid
ered as four columns in each of two neighboring DRAM
subarrays, thereby forming the four-column. two-row rect
angle shown to read or write one byte at a time. Of course,
any number of column cells per word cell can be used.
Connecting each of the column cells is a data bus 31.

Referring to FIG. 7, a detailed block diagram of a word
cell used in FIG. 6 is shown. In FIG. 7. eight identically
configured column cells 27 are presented. For clarity, only
the upper left column cell 27 in FIG. 7 is described.
However, it is understood that each of the other seven
column cells in FIG. 7 are configured identically. Each
column cell 27 includes a mask flip-flop 32 including
storage capacitor 33 which stores a mask bit for each refresh
cycle. Also included in each column cell 27 is a physical 512
bit memory subarray 34 and dedicated sense amplifier 36. In
this embodiment, each column cell 27 also includes a four
transistor comparator 30. The output of each word cell is
commonly connected in a wire-OR configuration to a dual
rank (master slave) set-clear match flip-flop 37 which
includes two NOR gates 38 and 39 whose inputs are set and
clear inputs of flip-flop 37. Capacitor 41 within flip-flop 37
is the slave of dual-rankflip-flop 37.
As noted earlier, a refresh cycle is a period of time

required to refresh one bit of one column with one sense
amplifier, and is performed simultaneously for each column
in the memory. A refresh cycle is divided into a row address
strobe time (TRAS), where row address strobe is asserted,
and a column address strobe time (TCAS), where column
address strobe is asserted. TCAS is distinct from and after
TRAS. Also as noted earlier, a refresh operation is the period
of time required to refresh all bits within a single column.

According to the present invention, during TRAS, a mask
is sent on data bus 31 and is stored in mask flip-flop 32, and
during TCAS. data is sent on data line 31. This is directly
analogous to the time-multiplexing of row address and
column address in a convention DRAM. In a refresh
operation, the large (4096-bit) data and mask values are
time-multiplexed on 8-bit data bus 31. For example, if in a
refresh operation, the data value is a 4096 hexadecimal bit
value of the form, for example, 1234. . . . and the mask value
is a 4096 hexadecimal bit value, for example. 5678 . . . , then
in the first refresh cycle in the refresh operation, hexadeci
mal 56 is sent during TRAS, and hexadecimal 12 is sent
during TCAS. In the second refresh cycle of the refresh
operation, hexadecimal 78 is sent during TRAS, and hexa
decimal 34 is sent during TCAS, and so forth. In all, 512
pairs of bytes are sent sequentially as they are used to search
or write data as it is being refreshed inside each word cell.
In a write step, the pair of bits sent in the same position in
the data and mask bytes during TCAS and TRAS will be

5,758,148
7

"10" when the comparand value is a "0." "11" when the
comparand value is a "1" and "00" when the comparand
value is a "don't care." In a compare step, however, in order
to reduce comparator logic, the pair of bits sent during
TCAS and TRAS will be "01" when the comparand value is
a "0." "10" when the comparand value is a “1,” and "00"
when the comparand value is a "don't care.”

According to the present invention, when the circuitry of
FIG. 7 is added to the refresh circuitry of a DRAM, an
associative memory structure is presented that allows the
associative searching of data within the memory as it is
being refreshed.

Specifically, a No-op instruction, which does nothing but
refresh the memory for one refresh operation, is accom
plished by amplifying data with sense amplifier 36 and
writing that data back into the memory cell 34 without
modification. No data go to or from data bus 31.

During a Word Compare instruction, a data and mask
value bit is used for each column, and each column is
searched for all words in all memory chips during one
refresh operation. A match bit for a word is set if for each
column that the mask bit is 1, the data bit is the same as the
bit in the word and column. More specifically, for a Word
Compare instruction, match flip-flop 37 is set to “1” at the
beginning of the refresh operation. In each refresh cycle, the
mask and data are sent, the left bit being sent first during
TRAS and stored in mask flip-flop 32 in each bit cell, with
the right bit being sent during TCAS. If the word has a "0"
and the first bit is a “1,” then match flip-flop 37 is cleared.
If the word has a "1" and the second bit is a “1,” then match
flip-flop 37 is cleared. The control signal Compare is
asserted at the end of the refresh cycle when comparator 30
has stabilized, to clear match flip-flop. 37 if a mismatch is
detected. Data in a cell are refreshed during a Word Compare
instruction.

During a WordWrite instruction, three-input AND gate 42
is utilized. The mask data stored in mask flip-flop 32 and
sensed data are sent during TCAS and are used to rewrite
data in the cell. If in a word cell the Mask and Match bits are
both high, data are rewritten into the cell. Otherwise, data in
the cell are refreshed. During a Word Output instruction.
during TRAS. a high signals is sent on data bus 31 so as to
output all bits. During TCAS, the Word Write instruction is
asserted and data from sense amplifier 36 are applied to data
bus 31 and are also refreshed in the cell.

For the next set of instructions, words are considered
linearly ordered (top to bottom) and prioritized (higher
words are considered to be of higher priority). In addition,
the first of these instructions take advantage of the word
structure mentioned earlier wherein the most significant bit
in a word is a mark bit distinct from the character bits of a
byte.

During a Character Compare instruction, the master of
match flip-flop 37 is initially set and the Word Compare
instruction is executed on the whole byte to clear match
flip-flop 37 if there is a mismatch where the mask bits are
"1.” Then, the slave of match flip-flop 37 is written into the
mark bit (high-order bit) of the next byte using extra
transistor 35 (by delaying the signal from the slave match
flip-flop 37 in one refresh cycle time), and finally, the master
of match flip-flop 37 is copied into the saved flip-flop. Data
are refreshed in a Character Compare step,

In a Word Compare Up instruction, the Word Compare
instruction is executed during each refresh cycle of a refresh
operation. The contents of the match bits are then shifted
upward one bit logically at the end of the refresh operation.

O

5

20

25

30

35

40

45

50

55

65

8
Similarly, a Word Compare Down instruction executes the
Word Compare instruction during each refresh cycle of a
refresh operation, and then, at the end of the refresh
operation, the contents of the match bits are shifted down
ward one bit logically. A Word Compare Prior instruction
executes the Word Compare instruction during each refresh
cycle of a refresh operation, and then clears the match bits
downward from the first one that is set at the end of the
refresh operation.
To execute a Word Output instruction, for the prior word

cell having the match bit set, one refresh operation is used
to output one word, and at the end of each refresh operation,
the match bit of the word ouputted is cleared. The Word
Output instruction is repeated until all match flip-flops are
cleared. To execute a Word Write instruction, for the prior
word cell having the match bit set, for each refresh
operation, a word is written and the match bit is cleared. The
operation is repeated until all match flip-flops are cleared.
A typical instruction begins with the transmission of an

appropriate instruction code on the data lines during a period
of time that the memory executes a No-op cycle. As men
tioned above, during each refresh operation, 512 refresh
cycles occur, and the instruction is executed during each of
the refresh cycles.
The memory requires comparand data to be supplied very

rapidly. Data to and from the memory could be supplied by
a video RAM, or by use of a technique known as "shuttle
memory,” wherein a pair of static RAMs are connected by
multiplexers to the associative memory and a conventional
host computer so that when one is connected to one the other
is connected to the other. As the computer rewrites data in
one static RAM, a fast counter addresses the other to read or
write consecutive words in it to or from the associative
memory during one refresh operation. At the end of the
refresh operation, the pair are exchanged, thus shuttling the
static memories to and from the associative memory and
computer,
To facilitate multiple cell operations, particularly during

execution of the Compare Prior, Write, and Output
instructions, a priority line is required. Priority selection can
be understood in a chain of OR gates, as illustrated in FIG.
8. A request causes a "1" to ripple through the OR gates
leftward, causing any request there to be denied. This
priority chain is implemented according to the preferred
embodiment using a lookahead binary tree for speed and
fault-tolerance. FIG. 9 shows a two-level tree. A deny equals
"O" is put into its root, and Request and Deny of the leaf
nodes are connected to match flip-flops 37 (FIG. 7). The
Compare Prior instruction can clear non-prior (denied)
match flip-flops. The effective match value used in Write and
Output instructions has to be true in only one cell, the prior
cell. Three-input AND gate 42 cancels a match in non-prior
cells in input C1 is asserted.

Apriority networkfor data bus31 is shown in FIG. 10 and
is a binary tree of bidirectional bus drivers controlled by the
priority tree of FIG. 9. The root of the priority tree of FIG.
10 is connected to an external controller having a shuttle
memory, and the leaves are connected to word cells. When
data is sent to the cells, all leaf-ward directed bus drivers are
enabled and all root-ward directed bus drivers are disabled.
When data are collected from the cells, the opposite is true,
The match value determines the prior cell, which outputs
data. Note that the priority tree of FIG. 10 can be used to
guide data in data bus 31.

Referring once again to the circuit of FIG. 7, appearing in
the lower, right-hand corner thereof is a simple error

5,758,148
9

detection circuit, which uses one parity bit for all of the data
bits in a word cell. All of the column cell data lines are
connected and input to exclusive-OR gate 43. At the begin
ning of a refresh operation. dual-rank flip-flops P1 and P3
are initialized to zero, and early in a refresh cycle, flip-flop
P3 is loaded with the exclusive-OR of all eight data bits that
are read from memory along with the old value of P3. Later
in the refresh cycle, flip-flop P1 is loaded with the exclusive
OR of all eight data bits that are written into memory along
with the old value of flip-flop P1. At the end of a refresh
operation, flip-flop P1 contains the parity of all the data bits
that have just been stored in the cell's memory. The output
of flip-flop P1 is stored in flipflop P2. At the end of a refresh
operation, flip-flop P3 contains the parity of all the data bits
that have just been read back from the cell's memory. The
parity computed and stored in flip-flop P2 should match the
parity computed and stored in flip-flop P3. If the computed
parity in P2 differs from the stored parity in P3, there is a
parity error in the data. The error signal is applied to the
master of match flip-flop 37 when the match bit is stored in
the slave of match flip-flop 37 at the end of a refresh
operation.

Faulty cells can be handled by pruning the trees used for
next neighbor connection in the bus. By asserting the fault
line (FIGS. 9 and 10), data bus 31 is pruned to isolate an
error in a subtree, forcing open both tri-state drivers in the
link above the subtree, and the priority tree is pruned in a
node above the faulty tree, forcing a request of "0" into the
rest of the tree.

It is believed that the cost of the modified associative
DRAM chip according to the present invention will be
similar to the cost of current DRAMs. A typical DRAM
sense amplifier has six transistors. and its column address
decoder has four transistors. Removing the column address
decoder, as required by the present invention, and adding
one bit of mask, a comparator, and a parity checking
exclusive-OR gate (together implemented with approxi
mately eleven transistors), slightly increases the sense
amplifier size. According to the present invention, each word
cell has a match flip-flop, parity checking flip-flops, and
associated logic requiring approximately 35 transistors, and
for each word cell there is a node of the priority tree,
requiring approximately six transistors. Amortizing this
word cell logic over the total number of sense amplifiers in
the word cell, on the order of five additional transistors
would be required per sense amplifier. Thus, the present
invention would require approximately 24 transistors per
sense amplifier, thereby only slightly increasing the required
integrated circuit chip area. Moreover, since address pins are
omitted, a chip embodying the present invention could be
packaged in an 18-pin package (VDD, VSS, RAS and CAS
clock and a signal to indicate the start of a refresh operation.
a write signal to control the data bus direction, two shift pins,
request-deny signals. and eight data lines). Thus, according
to the present invention, searching of an associative DRAM
is accomplished using circuitry integrated within the refresh
circuitry on the same integrated circuit chip as the memory
array. That results in highly parallel logical operations being
performed on data in memory cell arrays, in addition to
using the high-bandwidth data paths that exist in refresh
circuitry.
The above-described circuit can be used in a storage

system as a buffer to facilitate the searching of data that are
read from a non-volatile storage device, such as a hard disk.
Use of such a system permits parallel searching. shortening
the time needed to access and locate information that had
been read from the disk. Although the following description

5

10

15

25

30

35

40

45

50

55

65

10
refers to one particular kind of hard-disk system, the inven
tion has equal application with any kind of storage system,
including tape drives. optical storage, other kinds of hard
disks, floppy disks, so-called "flash" memories or any other
kind of non-volatile storage device, presently existing or
later developed, and whether or not buffered with interme
diate volatile storage.

FIG. 11 illustrates a hard-disk embodiment of the storage
system of the invention. Hard disk 51 contains a series of
disk surfaces or platters 51a, 51b, through 51n, on which a
series of heads 53a, 53b, through 53n record data on, and
read data from, tracks and sectors arranged in any known
design. Any number can be used for the subscript "n." One
type of high-capacity disk 51 is the 1.5-gigabyte Winchester
hard drive manufactured by Maxtor Corp., which has n=19
storage surfaces, but drives with greater or lesser capacity or
number of platters and heads are suitable. Switchable bus 61
connects disk drive 51 to computer 65 and memory banks 73
and 75, which are described in more detail below. A second
switchable bus 67 connects computer 65 to memory banks
73 and 75 and is also described below.

Heads 53 are controlled by hard disk controller circuitry
55a, 55b, through 55n, shown in FIG. 12. Controller 55a can
comprise a disk controller of known design, which contains
read-write logic and head-positioning control, often inte
grated onto a single chip. Controller 55a can make DMA
requests and can control a stepper motor or other head
positioning device 57. which may also contain an indexing
sensor. Thus, disk drives of standard design include platters
51, heads 53, controller 55a, and head motor 57.
By contrast, the system of the invention also includes

additional controllers 55b through 55n, each of which is
associated with and controls one of heads 53b through 53ra.
The additional controllers must be capable only of govern
ing the read and write operations of their associated heads.
The positioning and DMA-request functions of a standard
controller are performed in the system of the invention
entirely by controller 55a, and controllers 55b through 55n
act as 'slaves' to the master controller 55a. Controllers 55b
through 55n need not include, therefore, all of the circuitry
of master controller 55a, but it may be economically desire
able to use mass-produced controllers for each of controllers
55, in which case the control signals outputted by controllers
55b through 55n can be disabled or ignored.

In sum, the disk portion of the invention utilizes a
standard disk drive, modified to contain additional control
lers 55b through 55n. Those controllers perform the added
function of reading or writing data in parallel from a
"cylinder," which for the purpose of this patent means the
same track and sector located on the set of all of the platters
51a through 51n.

For purpose of the invention, it is preferable to store data
on the disk in a "striped" fashion, in which adjacent
elements, such as a byte, are recorded on adjacent platters
within a cylinder. For example, byte number one would be
located at a first address on platter one of a cylinder, byte two
would be located at the same address on platter two of the
same cylinder, byte n would be located at the same address
on platter n of the same cylinder, byte n+1 would be located
at the next address on platter one of the cylinder, etc. The
elements can comprise a single bit, several bits, or several
bytes, instead of the single byte of data as described above.
Such "striped" data arrangements take full advantage of the
parallel capabilities of the system of the invention.

FIG. 13 is a timing diagram showing an example timing
for extracting data from disk 51. At the beginning of the

5,758,148
11

cycle, controller 55a positions the head and each of con
trollers 55 read a byte's worth of data and store it in
temporary registers 59a through 59n (shown in FIG. 12) for
an entire cycle. Each byte is then placed on multi-line data
bus 61 sequentially from those registers until the cycle is
complete. Other arrangements are contemplated, including
systems that utilize staggered reads. The process is simply
reversed when the system is used to write data back onto
disk 51.

Returning to FIG. 12, computer 65 controls switch 63 to
direct the data on bus 61 to one of two memory banks, Bank
A shown at numeral 73 or BankB shown at numeral 75. Two
memory banks are used in the embodiment shown to allow
the system to fill the second bank with data while computer
65 interrogates the first bank. Although two banks are
shown, the invention can be practiced in a simplified version
with only a single bank or in a more complex version with
more than two banks.

In the embodiment shown, computer 65 contains a
microcontroller, a DMA controller, a suitable non-volatile
program store. and a suitable memory such as a quantity of
static RAM. Those elements are integrated in some devices,
such as the "Business Card Computer" sold by Motorola,
which contains a Motorola 68340, but other devices or
combinations are suitable.
Computer 65 alternates contact between data bus 67a

leading to memory bank A and data bus 67b leading to
memory bank B. The arrangement is illustrated in FIG. 14.
in which the system is illustrated in a particular state. Disk
51 in FIG. 14 is shown filling bank B 75 through bus 61b.
Meanwhile, computer 65 interrogates bankA73 through bus
67a.

Bus control is accomplished by altering the state of a
number of tristate drivers, shown in FIG. 12 as Small
triangles. The following specific parts are suitable: the 244
unidirectional tristate bus driver, the 245 bidirectional
tristate bus driver, and the 373 latch or register with tristate
output. As one memory bank reaches its capacity, computer
65 switches buses 67 to contact the filled bank, flips switch
63 to connect controller 55a to the other bank, and switches
bus 61 to permit data to begin filling the other bank.

FIG. 15 reproduces a portion of the circuitry of FIG. 12,
isolating only one of the memory banks 73 and 75 and its
associated bus, namely the bank and bus in contact with
computer 65 at a particular time. The example illustrated in
FIG. 15 shows computer 65 in contact with bank 73 along
data bus 67a. The other memory bank and bus, and the disk
elements and bus 61 loading it, are omitted in the simplified
version of FG. 15.

Each bank 73 and 75 contains one or more dynamic
associative memory devices ("DAAM”), preferrably as
described in detail in connection with FIGS. 3 through 10,
above, or another form of content-addressable memory, in
which the data may be searched for a match while in the
memory. FIGS. 12 and 15 show four DAAMs per bank,
labeled in FIG. 15 with numerals 69 and 71a through 71c.
In the sample embodiment of FIG. 15, a tree topology
connects the DAAM to implement a look-ahead priority
circuit, where DAAM 69 serves as the root and acts as one
leaf of a tree, with DAAMs 71 as other leaves. The tree
structure has the same purpose and benefits as that used
inside the DAAM chip, described in connection with the
description of FIGS. 7 through 10, above. Also, the priority
circuitry of FIGS. 12 and 15 serves the same function as the
similar circuitry within the chip shown in FIGS. 7 through
10.

O

15

25

35

45

55

65

12
DAAMs 69 and 71 in FIGS. 12 and 15 can be replaced

with a single DAAM device, depending on the access rates
of disk 51 and DAAM 69 and the number of platters 51a
through 51n. In particular, one DAAM chip such as that
shown at numeral 69 can receive data from at most the
number of controllers 55 equal to the integral portion of the
ratio of the bandwidths of DAAM chip 69 to controller 55.
For example, the one-megabit DAAM described above in
connection with FIG.2, which is designed to use the Hitachi
chip as its base, has a cycle time of about 120 nanoseconds
across an eight-bit bus, which results in a bandwidth of 8.3
Mbytes/sec. The controller on the Maxtor hard disk referred
to above can read data at a rate of about 2.0 Mbytes/sec.
Thus, each DAAM chip of the sort identified above can be
fed by at most four controllers of the sort used in that kind
of disk drive. Therefore, the 19-platter Maxtor drive would
require at least five DAAM chips. A DAAM chip that
operates 2.3 times as fast and uses a 16-bit bus. however,
could be fed by all of the 19 platters on the Maxtor drive,
without the need for a second DAAM device in the bank.
There is a second constraint, however, on reducing the

number of DAAM chips, namely the desire to avoid slow
down of the system by having sufficient storage capacity. It
is most efficient to read entire cylinders from the disk at
once, but to do so requires that the bank contain sufficient
storage capacity.

Even if there is sufficient bandwidth available to fill the
DAAMs, unless the DAAMs contain enough capacity, the
system designer would likely wish to add extra DAAMs to
each bank rather than slowing down the reading operations
by reading only part of the cylinder into the bank on each
step. For example, a preferred system design for the above
referenced Maxtor drive would require enough DAAMs in
each bank to store the approximately seven megabits on
each of the drive's cylinders, or eight units of a one-megabit
DAAM. If those DAAMs operated only as fast as the ones
described above using the Hitachi chips, however, the sys
tem would be bandwidth constrained. A preferred system
design would be neither capacity constrained nor bandwidth
constrained, allowing the user to upgrade the disk drive to
one having somewhat faster output speed or somewhat
larger cylinders, without replacing the DAAMs or associ
ated circuitry.

If a number of DAAM chips are used in each bank, the
data on diskS1 can be arranged in a staggered fashion across
disk channels, where each disk channel is defined as one
DAAM chip, the controllers to which it is connected, and the
platters controlled by those controllers. In that alternative
arrangement, data would be arranged with the first byte at a
given position on platter one of a given cylinder, the second
byte at the same position on platter five of the same cylinder.
etc., where the system was arranged with one DAAM chip
69 or 71 controlling four controllers, such as 55a through
SS.
The system of the invention can constitute one of a

number of modules, each of which can contain one of the
modules as illustrated in F.G. 12 or otherwise in accordance
with the system of the invention. FIGS. 16a and b illustrate
several examples of such modular arrangements. In system
81, a larger number of banks containing one or more
DAAMs are arranged in a parallel structure. In system 83 of
FIG. 16a, two computers interrogate one bank of memory
each while the disk fills a third bank. An arbitrary one of the
microcontrollers, there controller "C," also acts as a disk
controller. Any of the microcontrollers can be dynamically
allocated to control the disk, but FIG. 16a shows only one
possible connection, for clarity. Additional computer

5,758,148
13

memory pairs can be added, subject to disk access con
straints. In system 85 of FIG. 16b, a number of computers,
memory banks, and disks use a multistage interconnect
network such as a one or more crossbar Switches to imple
ment buses 61 and 67 in FIG. 12. The interconnection
network can be configured to permit any disk or any
computer to access any memory bank. Any of the micro
controllers can control any of the disks by communicating
through the bus connecting crossbar 67 to crossbar 61.
System 85 can also include a configuration in which the
multistage interconnect network is arranged in a hierarchical
system.
The system of the invention can accomplish standard disk

data and housekeeping operations. Data can be altered by
computer 65 while located in DAAM 69 or 71 and written
back onto disk 51 upon command, using the reverse of the
disk-reading operation described above in connection with
FIGS. 12 and 13. New data can be added to free space at the
“bottom" of any of DAAM 69 or 71, and written to disk 51
at any free space on a cylinder. Data tagged for deletion can
be deleted by sequentially reading and rewriting all of the
data on the disk, such as at an off-hour. As the data are read,
the garbage items are blocked from being placed into
memory by issuing a NOP command to the DAAM when a
tagged item is read from the disk. Next, the contents of the
DAAM are written back onto the disk, overwriting the old
data with only data not tagged for deletion, thereby con
densing the data and deleting the garbage.
The memory of the invention can be readily used for

full-text retrieval operations, particularly although not nec
essarily in conjunction with the disk-based embodiments
shown in FIGS. 12 or 16. In such uses, it is desireable to
arrange the data in a fashion that takes advantage of the
parallel search capabilities of the memory.

Although other systems are possible, FIG. 17 illustrates
an example arrangement of sample data within the memory
of the invention. In the illustrative system, each word of
memory is divided into a series of atoms, each of which
contains one data word, such as an English word, and
associated data. For simplicity and avoiding of terminologi
cal confusion, it is assumed in connection with the descrip
tion of FIG. 17 that each row of memory stores one logical
associative memory "word," although as noted above, that
assumption is not a necessary one. -
The number of atoms in each row is predetermined and set

so as not to fill the entire row with the data, thus setting aside
some additional storage in each row to serve as "scratch"
locations at the end of each row. The example in FIG. 3
shows three atoms per word, but it is both feasible and
desireable to use a greater number of atoms in a wider word.

Each atom contains a fixed number of bits for storing a
data word, called a field, and another fixed number of bits for
storing data associated with the data word in another field.
In the example shown in FIG. 17, the associated data
includes only the position of the word in the document, but
other data can also be stored, some examples of which are
described below.

In the coding system illustrated in FIG. 17, the memory is
loaded by placing a unique code representing the data word
in the first field of the atom, in which the code is determined
from a table that contains all of the English words that are
used in the document. The table can be pre-filled with likely
words and additional words added when a new word is
encountered. Although binary code words, not letter codes
such as ASCII codes, are stored in the memory, the memory
map in FIG. 17 uses letters for ease of display.

15

25

30

35

45

50

55

65

14
As each data word is encountered, the device avoids

loading common "stop” words, such as “a” and "the." A
counter is incremented, however, for all words, including
stop words. For each loaded data word, the contents of the
counter is placed in a field of the atom immediately after the
loaded data word. The location counter is zeroed at the
beginning of each row and copied into a predetermined
scratch data field at the end of each row. In FIG. 17. the
second column in the scratch field to the right of the double
line indicating the start of the scratch data, is reserved for the
number of data words in the row.

Thus, each atom contains both a data word and an
indicator of the position of the word in the data. Because the
count is restarted in each row, the position indicator specifies
the position of the data word relative the beginning of the
row. The scratch field contains the total number of words in
the row. It is also notable that the position indicator and the
counter is different from the memory location, that is the
atom number in the row, because of the deletion of stop
words. In addition, the scratch field containing the total
number of words can differ from the position indicator in the
last atom storing a data word, if there are "stop words" after
the last stored data word. For example. in the second line of
FIG. 17, the last data word, “song," is at position four, but
the stop word "a" follows it, resulting in the row counter
being set at five.

Data words are loaded into the atoms of a row, in the
example of FIG. 17. until the end of the row is reached, the
end of the document is reached, or one of the data word
codes is repeated, whichever comes first, at which point the
device begins filling the next row. The embodiment of FIG.
17 prevents a row from containing more than one occurence
of any data word, which is useful in searches, as shown
below.
A "document” can be defined as desired by the user. In

one system, for example, a new document can be started at
the beginning of each English sentence, and that method is
illustrated in FIG. 17. In other embodiments. it may be
desired to consider documents as actual textblocks, such as
a newspaper article, memo, letter, page, or other unit,
whether of fixed or variable length. In the embodiment of
FIG. 17. a column of scratch data is reserved for a flag
indicating the top of a document, illustrated in FIG. 17 as the
first column to the right of the double line, which contains
a zero for all rows that begin a new document.
The invention contains circuitry, which is described

above, for comparing an associative memory data word with
a comparand during arefresh operation, allowing for parallel
searching of all data in a row. That circuitry can be used to
match any portion of the contents of the atoms in a row. A
related instruction searches for matching data words and, if
a match is found, transfers data located an offset number of
bits away to a specified location. That Compare and Transfer
instruction greatly facilitates searching by locating a data
word in a row, and if it is found, transferring the position of
the data word in the document, relative to the beginning of
the row, to a specified location in scratch.

FIGS. 18 through 20 show several examples of problems
common to database manipulation and full-text retrieval,
illustrating how the invention permits easier or faster solu
tions to those problems.

FIG. 18 illustrates a flowchart describing a sample pro
gram implementing a Boolean search using the embodiment
of the invention described in FIG. 17. The problem is to
determine if a series of terms (tl . . . tin) are located, in a
predetermined logical relationship, in a document. The

5,758,148
15

relationship may constitute any combination of Boolean
logic, however complex. For example, the user may wish to
query the database to find all documents discussing the
relationship between music and mathematics but not dealing
with computer music, by asking for all documents (whether
sentences or memos) that contain the terms "song" or
"music" and "mathematics" but not the term "computer.”

First, the top of document flag is transferred to a single
flip-flop associated with each row, known as the qualify bit,
which is used to prevent data from being shifted across
document boundaries. Next, the compare instruction is used
to determine if the first search term ("song") is present in
each row. Each row in which the term is located is marked
by setting another flip-flop located adjacent to each row,
known as the match bit "M." Next, the M bits for all rows
are shifted down and combined with the adjacent M bit with
a logical "OR" function, except for those rows in which the
Q bit has been set to indicate the top of the document. The
shift and combine process is reiterated enough times to
exceed the maximum possible number of rows in a
document, after which the M bit of the last row of each
document will contain an indication of whether the term has
been found.
The last-row M bits are transferred to a first scratch bit in

the scratch field. The M bits are cleared, and the process is
repeated for each search term, resulting in additional scratch
bits being set.

Next, the M bits are cleared again, and the scratch bits,
including the top-of-document bit, can be searched with a
mask to determine if all of the terms are present or not, as
specified. In the case of complicated Boolean searches, it
may be necessary to break down the search into parts, in
which the result of each part is stored in a single scratch bit,
and a final comparison is done on the scratch bits set by each
of the several parts. The process may be longer but require
the use of fewer scratch bits. Because any Boolean com
parison can be expressed as the sum of simple Boolean
products, the system can be generalized to any Boolean
expression, however complex.

FIG. 19 illustrates a flowchart describing a sample pro
gram implementing a string search using the embodiment of
the invention described in FIG. 17. A string search repre
sents a database query in which the user wishes to locate a
series of search terms in sequence. To accommodate a string
search, it is useful to structure the memory so as to have each
atom contain, besides the code representing the data word
and the position indicator, a markbit. Such a mark bit would
be associated with each data word, therefore, not only with
each row.
The program searches each atom, according to the meth

ods and using the instructions described above, and sets the
mark bit associated with each atom in which the data word
matches the first search term. Next, the program searches for
all instances in which a data word matches the second search
term and in which the mark bit for the previous atom has
been set. That search can be done with a single instruction.
because of the device's ability to match any sequence of bits,
without regard to whether the bits represent a data word or
the associated data. The previous atom's mark bit is cleared,
regardless of the outcome, but all instances in which the
second search results in a match are marked by setting the
mark bit for the atom in which the second search term has
been found. Finally, the program repeats the process as
described in the second search for the third and all remaining
search terms, which results in mark bits being set only for
the final data words of each instance in which the search
string is located.

15

20

25

35

45

50

55

65

16
FIG. 20 illustrates a flowchart describing a sample pro

gram implementing a proximity search using the embodi
ment of the invention described in FIG. 17. In a proximity
search, it is desired to query the database to locate all
documents in which search terms are located within a
specified distance from each other in the document.

For illustration, the scratch data fields of FIG. 17 are filled
with numbers generated from the case in which the program
in FIG. 20 operates on the data in FIG. 17 during an example
proximity search, which seeks to identify all instances in
which the search term "good" is located within two English
words of the search term "song."

First, the program searches the rows of the memory for a
match to the first search term, here "good,” and places the
positional indicator associated with a match in a scratch
field, shown as the third column in the scratch data of FIG.
17. If no match is found, the first of a five-bit scratch field,
shown in the fifth scratch column in FIG. 17, is set. The
process is repeated for the second search term, here "song."
and the result placed in another scratch field, shown as the
fourth scratch column in FIG. 17. If no match is found, the
second of the five scratch bits is set.

Next, a limit subprocedure is invoked, to do the math
ematics of comparing the two addresses to the limit, which
is in the example, two words. The two numbers are
subtracted, the difference is compared to the limit, and the
third of the five scratch bits is set if the difference is greater
than the limit. Next the difference is compared to the
negative of the limit, because the two terms can qualify for
the search regardless of which one appears first in the
document, and the fourth of the five scratch bits is set if the
difference is less than the negative of the limit. Finally, if all
four scratch bits are unset, a fifth bit is set indicating those
rows in which the proximity search has been satisfied, rows
two and five in F.G. 17.

It is desireable to check for cases in which the two terms
are within the desired proximity across a row boundary, and
the program in FIG. 20 accomplishes that function also. For
all rows other than the top row of a document, which is
indicated by a zero in the first scratch column in FIG. 17, the
following operation is performed: The number of data words
from the row above (col. 2) is added to the location of the
first search term (col. 3), and the location of the second
search term (col. 4) is shifted from the row above. For
clarity, in FIG. 17, the results of that operation are shown in
columns six and seven of data, although the program would
likely reuse columns three and four. The limit test subroutine
described above is then repeated, with the outcome shown in
the five scratch bits shown in the last column of FIG. 17
(although the actual program would reuse column five). The
search thus identifies the rows in which the terms are within
the desired proximity but one of the terms is at or near the
end of the previous row. In FIG. 17, an example is shown for
row three, in which "song" at the end of row two is two
words from the word "good” at the beginning of row three.

Finally, the flowchart of FIG. 20 includes a third routine
in which the data are shifted up, to attempt to locate
instances in which a document row contains the second
search term within the desired proximity from the first
search term in the previous row. A more complex program
could shift the data more than one row in either direction.
thus allowing proximity queries to use a larger separation
distance. The program could use the knowledge of the
number of atoms per line to determine the number of shifts
needed in the worst case, and perform exactly that number
of shifting operations.

5,758.148
17

The proximity search benefits from the layout rule speci
fied above preventing the same data word from appearing
twice on one row. That rule avoids any ambiguities and
allows the program to calculate the distance between two
words in a row with only one operation.
More complex proximity searches can contain a plurality

of search terms, which would require the program to operate
on each pair of terms separately. The complexity of a
proximity search, therefore, increases as the combination of
the number of terms.
The system of the invention, however, permits more

efficient proximity searching by finding the search terms in
data more efficiently and transferring the address to memory
quickly, which can greatly reduce the search time. even if
there were no improvement in the speed of the mathematics
needed to calculate and examine the separation distances.
Prior proximity searching systems spend most of the search
time locating the search terms, rather than verifying that the
located terms satisfy the proximity requirements. The ability
of the invention to shift data matching a selectable criterion
to a fixed non-data-filled memory location within the row
allows uniform row-by-row calculation of desired results.
The system of the invention can handle combinations of

proximity, string, and Boolean searches. For example, one
may wish to look for all documents containing (a) "George
Bush" and (b) “arms" within three words of "hostages" but
(c) not dated after the year 1988 or before the year 1984.
The system illustrated in connection with FIG. 20 can be

adjusted to perform an "inner product" search, in which a
weighting factor is assigned to some defined characteristic
of the data. For example, each atom may include a field
containing a "weight code," designed to express the fre
quency or importance of the data word or some character
istic about it, such as its type (e.g., whether it is a verb, a
noun, etc.). Then, any of the above-described searches is
run, but a "hit" is weighted by some mathematical function
of the weight codes of one or more search term. For
example, locating word A near word B can result in three
points each time, while locating word D at least once in the
document results in two points. Then, a search might request
retrieval of all documents that score more than a selected
number of points (say, ten), or just a selected number of the
highest-scoring, that is "most relevant," documents.

It is useful to store long associative memory words along
a column of dynamic memory, which in a database appli
cation may constitute a grouping of similar data, rather than
along a row of dynamic memory. Row-wise storage.
although straight-forward, requires as many pins as there are
bits in the associative memory word for the data (and
possibly the mask) operand, whereas column-wise organi
zation requires only eight pins for the operand. Much more
importantly, the two storage systems differ in the manner in
which the associative memory is "scanned." Only one data
row at a time can be read into the refresh amplifiers in the
row-wise organization, but each row that has to be searched
must be read one after another. To avoid reading all rows
requires a "page management" scheduler to read only rows
that need to be searched.

Column-wise organization, on the other hand, permits
associative memory word columns to be read or written and
other associative memory word columns to be skipped over
Selectively, which allows the system to utilize the compara
tor logic more efficiently on the data. Each atom in the
column is in the refresh amplifiers at the time the search term
is put on the pins. If the search instruction does not need to
reference the other columns, they can be skipped over and

O

15

25

35

45

50

55

65

18
not be read into the refresh amplifiers. (Of course, they must
be periodically refreshed.) The search instruction can be
sped up, if each column is of the same width, by a factor of
three.
The above word organization is particularly efficient in

databases with common patterns of data. For example, in a
telephone directory database, the first column may contain
all last names, the second column, first names, the third
column addresses, and the fourth column telephone num
bers. The first word of associative memory, therefore. con
tains all last names, but each person remains in a single row
of the memory. That sort of column-wise organization is
more efficient because the memory can avoid searching
columns that are not involved in the search term, in which
there are only "don't care" matches. For example, searching
a 100-row database for "Smith" requires operation only on
one word, not all four columns, and not the 100 searches that
would be required in a row-wise organization. The com
parator hardware is used only to search data that must be
searched and not wasted searching columns that have all
"don't cares." The columns to be skipped can be directly
determined by noting which instruction operand's columns
have only "don't cares."
DAAM instructions usually scan columns of the associa

tive memory, which are rows of the dynamic memory chip,
sequentially (say from left to right), but start the scan at
some fixed column number and continue the scan for a fixed
number of columns. Some instructions scan in that manner
and then jump to another collection of columns to scan them
sequentially, and others scan in the reverse direction. It is
possible to scan all columns, and it is necessary to do that
periodically to refresh all of the memory. The typical
instruction refreshes only part of the memory that is actually
searched, output, or written.
The routines described above include certain arithmetic or

Boolean logic operations, particularly within the associative
memory word. For example, the proximity search described
above in connection with FIGS. 17 and 20 requires subtrac
tion to determine the distance between located search terms.
It is advantageous to implement the following system of
arithmetic operations, particularly in DAAMs that have been
based on DRAMs.
To perform faster arithmetic operations, the preferred

circuit can utilize the following instructions. First, the Com
pare ("C") instruction compares the data, d, with all words
in the associative memory, in parallel, in a bitwise fashion.
A value, m, represents a mask value for conditional com
paring. For each bit that m is not set (not masked), the
corresponding bit position of d is compared to the corre
sponding bit position of each associative memory word. A
match flip-flop for each associate memory word is set if the
compare was true, otherwise the match flip-flop is cleared.
The data, d, and the mask, m, can be of any bit length up to
the maximum word size but must be of equal length.
Comparing starts from the left of the associative memory
words and moves to the right until d (and m) are exhausted.
An alternate form of this instruction (as will all instructions
that have both data and mask) is to express only one opcode
that is a combination of d and m. In this form, the opcode
will show 'x' or '?' wherever the mask would be set
(masked, and therefore, don't cares). For example, if
d=10010110, and m=11000011, the combined opcode would
be 10xxxx10.

Second, the Multiwrite ("MW") instruction writes the
value of d into all associative memory words where the
match flip-flop is set and then clears the match flip-flop.

5,758,148
19

Again, m is a mask value that allows conditional bit writing.
(The terms d and m are as defined as in the Compare
instruction. The d and m values can also be collapsed into a
single opcode as defined above.)

Third, the Compare-Not-And ("CNA") instruction works
as defined for the Compare instruction with the following
difference: The match flip-flop is set only if (a) the compare
was successful and (b) the value of the match flip-flop was
zero prior to the execution of the CNA instruction. In logical
terms. Match flip-flop=success of compare AND NOT old
Match flip-flop (where NOT means inverse). Again, as with
all instruction, the CNA is performed for each associative
memory word, in parallel.

Fourth, the Compare-Or ("CO") instruction works as
defined for the Compare instruction except that the match
flip-flop is set if it was set previously or if the compare is
successful. In other words, the match flip-flop is not cleared
if the match fails, provided that the match flip-flop was set
prior to the execution of the CO instruction. If the compare
fails and the match flip-flop was not set, the match flip-flop
remains cleared.
The device performs arithmetic operations, such as

addition, comparison, and shifting for multiplication and
division, on numbers obtained from a search such as a
proximity query or inner product query, in a manner that is
more efficient, but less conventional, than normal binary
arithmetic. A typical DRAM has a "page mode" read opera
tion that permits the system to read a whole row from the bit
array storage (which is a column of associative memory in
the embodiment discussed above) into the sense amplifiers.
Using that function allows the arithmetic operations to be
speeded up by about a factor of four by searching and
rewriting data while the data are in the sense amplifiers,
rather than outputting the same data from the bit array each
memory read operation, searching or modifying them, and
then rewriting them back into the bit array storage.

However, to efficiently search and modify the data in the
sense amplifiers, an associative memory word must have all
the bits that will be searched or modified simultaneously
available in the sense amplifiers associated with that word.
It is preferrable, therefore, to arrange the data so a byte-wide
column of the associative memory word is in the eight sense
amplifiers. Although eight amplifiers are used for exemplary
purposes, it is possible to use any number of amplifiers in
each row, as long as there are at least two.

Consider adding two numbers, identified here as two
nine-bit numbers as, a1, a06, aS, a4, a, a2, a1, a0 and b8, b7,
b6, b5, ba, b3, b2 b, b0, where for instance as is the third
least significant bit of the number a. In the rightmost byte of
scratch memory, the data are arranged so as to have, in order,
a carry bit (c), an unused bit, then a2, al., a0 and then b2, b1,
b0. In the second rightmost byte of scratch memory, the bits
are another carry bit, an unused bit, then aS, a4, a3 and then
b5, b4, b3. In the third rightmost byte of scratch memory, the
bits are another carry bit, a carry used during the addition of
bit a7 to b/, which is called "mid carry" and is used to
indicate a two's complement number overflow, then a8. a7.
a6 and then b8, b7, b6. The least significant bit ao is added
to b0, and the result is put into carry c and b0, according to
the series of operations in the program described in FIG. 21,
which illustrates the special treatment of the least significant
bit and most significant bit. The significance of this organi
zation of data is that four of the instructions shown sequen
tially above can be executed in the time it takes to execute
one such instruction if data are read from a row of the bit
array into the sense amplifier, operated on, and then written
back into the row of the bit array.

5

10

15

25

30

35

45

50

55

65

20
Any operation that can be defined in terms of a truth-table

can be implemented using operations C, CO, CNA. and
MW; the rows of the truth table where the result (number b)
or the state (carry c) change are coded into a pair of
instructions, a C instruction is used to identify the input
pattern, and the MW instruction is used to write the changed
pattern. To improve the program's efficiency, if patterns
require the same change, the two instructions C MW and C
MW can be replaced by the instruction sequence C COMW.

It is understood by those skilled in the art that numerous
alternate forms and embodiments of the invention can be
devised without departing from its spirit and scope.

I claim:
1. An information storage and searching apparatus com

prS1ng:
(a) an information-storage device;
(b) at least one electronic memory device, which device

is integrated on a semiconductor chip, electronically
coupled to the storage device, and having a plurality of
multiple-bit word storage locations, wherein each word
storage location consists of a plurality of uniform
length subunits; and

(c) control circuitry structured (i) to control the couplings
between the storage device and the memory device to
transfer information stored in the storage device to the
memory device, and (ii) to pass a comparand to the
memory device;

(d) said memory device having associated with each of
the word storage locations: (i) a comparator circuit
coupled to compare a portion of the comparand, which
portion has length equal to one of the subunits, with
information stored in a selected one of the subunits of
the word, (ii) a refresh circuit structured to periodically
refresh information in each word storage location.
wherein the comparator circuit is electrically connected
to the output of the refresh circuit, so that the com
parator circuit can compare the portion of the com
parand with the selected subunit while the refresh
circuit refreshes the selected subunit, and (iii) a single
bit storage element coupled to the comparator circuit so
as to indicate a mismatch between the comparand
portion and information stored in the selected subunit.

2. The apparatus of claim 1 wherein the information
storage device includes at least one magnetic storage device.

3. The apparatus of claim 1 wherein the information
storage device includes at least one optical storage device.

4. The apparatus of claim 1 wherein the information
storage device includes at least one multiple-platter storage
device.

5. The apparatus of claim 4 wherein the information
storage device includes at least one read head associated
with each platter of the multiple-platter storage device.

6. The apparatus of claim 5 wherein said control circuitry
comprises:

(a) means for enabling the read heads of a plurality of the
platters at the same time;

(b) means for assembling the information read by the
enabled read heads in a predetermined sequence; and

(c) means for transferring the assembled information to
predetermined locations in the memory device,

7. The apparatus of claim 1 wherein the information
storage device includes at least one solid state memory
device.

8. The apparatus of claim 1 wherein the information
storage device includes at least one magnetic tape storage.

9. The apparatus of claim 1 wherein the information
storage device includes at least one flash memory device.

5,758.148
21

10. The apparatus of claim 1 wherein the control circuitry
switches a switchable data bus,

11. The apparatus of claim 1 wherein the control circuitry
includes at least an integrated processor circuit and a pro
gram store containing at least one sequence of instructions.

12. The apparatus of claim 1:
(a) further comprising a plurality of said electronic
memory devices arranged in a plurality of banks;

(b) wherein the control circuitry switches a switchable bus
capable of connecting the information-storage device
to any selected one of the memory banks; and

(c) wherein the control circuitry is coupled to control one
of the memory banks while at least one other memory
bank is coupled to the information-storage device.

13. The apparatus of claim 1 wherein each of said subunits
comprises a byte.

14. The apparatus of claim 1:
(a) wherein said control circuitry is structured to pass to

the memory device a mask having length equal to the
comparand;

(b) wherein said comparator circuit associated with each
of the word storage locations is further coupled to
compare unmasked bits of the comparand portion with
information stored in unmasked bits of the selected
subunit; and

(c) wherein the single-bit storage element is coupled to
the comparison circuit so as to indicate a mismatch
between the unmasked bits of the comparand portion
and the unmasked information stored in the selected
subunit.

15. The apparatus of claim 14 wherein said control
circuitry is structured to pass to the comparator circuits of
the memory device a sequence of portions of the comparand
and portions of the mask, each portion having a length equal
to one of the subunits, for comparison with a sequence of
subunits of the words, and wherein the single-bit storage
element for each word indicates, at any point in the
sequence, a mismatch between any of the unmasked com
parand portions to that point in the sequence and the
information stored in the associated, unmasked subunit of
the word.

16. The apparatus of claim 1 wherein said control cir
cuitry is structured to pass to the comparator circuits of the
memory device a sequence of portions of the comparand,
each portion having a length equal to one of the subunits. for
comparison with a sequence of subunits of the words, and
wherein the single-bit storage element for each word
indicates, at any point in the sequence, a mismatch between
any of the comparand portions to that point in the sequence
and the information stored in the associated subunit of the
word.

17. The apparatus of claim 16 wherein said control
circuitry is structured to cause the memory device to output
in sequence information stored in any selected group of at
least one subunit, from each word storage location that has
a storage element that does not indicate a mismatch when the
sequence is completed.

18. The apparatus of claim 16 wherein said control
circuitry is structured to cause the memory device to transfer
the information stored in any selected group of at least one
subunit, in each word storage location that has a storage
element that does not indicate a mismatch when the
sequence is completed, to another group of at least one
subunit located at a predeterminated relative position.

19. The apparatus of claim 16 wherein said control
circuitry is structured to cause the memory device to alter in

10

15

25

35

45

50

55

65

22
a predetermined fashion the information stored in any
selected group of at least one subunit, in each word storage
location that has a storage element that does not indicate a
mismatch when the sequence is completed.

20. An information storage and Searching apparatus com
prising:

(a) an information-storage device;
(b) at least one electronic memory device integrated on a

semiconductor chip, electronically coupled to the
information-storage device, and comprising:
(i) a multitude of single-bit storage cells distributed
among a plurality of multiple-bit word cells;

(ii) wherein the bit cells of each word cell are arranged
in at least one column comprised of a plurality of bit
cells;

(iii) a plurality of amplifiers on the chip, each column
associated with one of said amplifiers;

(iv) wherein each of the amplifiers may be electrically
coupled to any bit cell in any column with which that
amplifier is associated;

(v) an addressing circuit coupled to each of the ampli
fiers associated with columns of at least one word
cell;

(vi) wherein the addressing circuit controls the cou
pling of the amplifiers to the bit cells of any row of
the associated columns, the bits of each row together
comprising a uniform-length subunit of the word
cell; and

(vii) a comparison circuit on the chip, coupled to the
amplifiers in at least one word cell and having an
output line coupled to the single-bit storage cells,
which comparison circuit is structured to compare a
selected portion of a comparand which portion has
length equal to one of the subunits, with a group of
bits amplified by said amplifiers and to generate an
electrical signal on said output line when the portion
of the comparand does not match the group of bits
amplified from the bit cells in one row of the
columns; and

(c) control circuitry structured (i) to control the couplings
between the storage device and the memory device to
transfer information stored in the storage device to the
memory device, and (ii) to pass the comparand to the
memory device;

(d) said memory device having associated with each of
the word cells a single-bit storage element coupled to
the comparison circuit so as to indicate a mismatch
between the comparand portion and the amplified bits
of the subunit.

21. The apparatus of claim 20 wherein the memory device
comprises at least one associative memory on an integrated
circuit, wherein each of a plurality of word cells has a
comparison circuit and an associated output line, and
wherein the comparison circuits as a whole is structured to
permit simultaneous comparisons between the comparand
and bits from each of the plurality of word cells.

22. The apparatus of claim 20 wherein the comparison
circuit is electrically connected to the output of a refresh
circuit structured to periodically refresh information in each
word cell, so that the comparison circuit can compare the
portion of the comparand with the amplified bits of the
subunit while the refresh circuit refreshes the subunit,

23. The apparatus of claim 20 wherein the control cir
cuitry switches a switchable data bus.

24. The apparatus of claim 20 wherein the control cir
cuitry includes at least an integrated processor circuit and a
program store containing at least one sequence of instruc
tions.

5,758,148
23

25. The apparatus of claim 20 wherein the information
storage device includes at least one magnetic storage device.

26. The apparatus of claim 20 wherein the information
storage device includes at least one optical storage device.

27. The apparatus of claim 20 wherein the information
storage device includes at least one multiple-platter storage
device and at least one read head associated with each platter
of the multiple-platter storage device.

28. The apparatus of claim 27 wherein said control
circuitry comprises:

(a) means for enabling the read heads of a plurality of the
platters at the same time;

(b) means for assembling the information read by the
enabled read heads in a predetermined sequence; and

(c) means for transferring the assembled information to
predetermined locations in the memory device.

29. The apparatus of claim 20 wherein the information
storage device includes at least one solid state memory
device.

30. The apparatus of claim 20 wherein the information
storage device includes at least one magnetic tape storage.

31. The apparatus of claim 20 wherein the information
storage device includes at least one flash memory device.

32. The apparatus of claim 20:
(a) further comprising a plurality of said memory devices

arranged in a plurality of banks;
(b) wherein the control circuitry switches a switchable bus

capable of connecting the information-storage device
to any selected one of the memory banks; and

(c) wherein the control circuitry is coupled to control one
of the memory banks while at least one other memory
bank is coupled to the information-storage device.

33. The apparatus of claim 20 wherein the bits of each
word cell are arranged in eight columns, so that each of said
subunits comprises a byte.

34. The apparatus of claim 20 wherein said control
circuitry is structured to pass to the comparator circuit of the
memory device a sequence of portions of the comparand,
each portion having a length equal to one of the subunits, for
comparison with a sequence of subunits of the words, and
wherein the single-bit storage element for each word
indicates, at any point in the sequence, a mismatch between
any of the comparand portions to that point in the sequence
and the information stored in the associated subunit of the
word.

35. The apparatus of claim 34 wherein said control
circuitry is structured to cause the memory device to output
in sequence information stored in any selected group of at
least one subunit, from each word cell that has a storage
element that does not indicate a mismatch when the
sequence is completed.

36. The apparatus of claim 34 wherein said control
circuitry is structured to cause the memory device to transfer
the information stored in any selected group of at least one
subunit, in each word cell that has a storage element that
does not indicate a mismatch when the sequence is
completed, to another group of at least one subunit located
at a predeterminated relative position.

37. The apparatus of claim 34 wherein said control
circuitry is structured to cause the memory device to alter in
a predetermined fashion the information stored in any
selected group of at least one subunit, in each word cell that
has a storage element that does not indicate a mismatch
when the sequence is completed.

38. A data storage system comprising:
(a) memory means for storing a plurality of multiple-bit

words in predetermined multiple-bit word storage loca
tions; and

15

25

30

35

45

50

55

60

65

24
(b) means for searching the multiple-bit words stored in

said storage locations for a selected pattern of bits of
data, said pattern containing fewer bits than each of the
words, and for transferring any selected portion of the
data of each of the words containing the matching bit
pattern to a predetermined location in the memory
means relative to the original location of the selected
portion.

39. A data storage device comprising:
(a) dynamic data storage means. integrated on a single

semiconductor chip, for storing a plurality of multiple
bit data words in a plurality of addressable predeter
mined multiple-bit word storage locations, said loca
tions requiring refreshing to retain data, wherein bits of
the words form an array;

(b) addressing circuit means integrated on the chip for
periodically addressing every bit location of the array;

(c) refresh circuit means, integrated on the chip and
randomly connectable by said addressing circuit means
to each of said bit locations, for periodically refreshing
the data stored in each of said bit locations by simul
taneously reading a plurality of bits stored in a word
location that is connected by the addressing circuit
means into a plurality of associated sense amplifiers
and re-writing the contents of said sense amplifiers to
the connected word location; and

(d) logic means, integrated on the chip and electrically
coupled to the sense amplifiers, for comparing. for each
data word, a first subset of bits in the sense amplifiers
to at least one predetermined value, and for setting a
second subset of bits in the sense amplifiers to a
predetermined value.

40. The apparatus of claim 39 wherein the storage means
comprises means for storing a plurality of multiple-bit
words, each in a row of a bit array, and wherein the refresh
circuit means comprises means for refreshing a plurality of
columns of the bit array.

41. The apparatus of claim 39 wherein the refresh circuit
means reads and writes data stored in each of said connected
word locations one byte at a time.

42. A method of storing and content-searching on data
comprising:

(a) storing electronic data in a data storage device;
(b) transferring the data from the data storage device to a

plurality of multiple-bit word storage locations of a
memory circuit, wherein each word storage location
consists of a plurality of uniform-length subunits:

(c) periodically refreshing data stored at each bit location
of the memory circuit; and

(d) searching for a selected data pattern. of any desired
length, by examining data stored in the memory circuit
beginning at each subunit boundary of each of the
plurality of word storage locations and comparing the
stored data with the selected data pattern concurrent
with refreshing, and wherein searching proceeds simul
taneously with respect to all of the plurality of word
storage locations.

43. The method of claim 42 further comprising repeating
(b), (c) and (d) a plurality of times.

44. The method of claim 43:
(a) wherein transferring includes selecting a first of a

plurality of content-searchable memory banks as a
target for the transferred data;

(b) wherein searching includes searching a second of the
memory banks while transferring; and

5,758,148
25

(c) further comprising. after transferring and searching are
completed, switching the first and second memory
banks, so that the next transfer uses the second bank as
a target, and the next search operates on data in the first
bank.

45. The method of claim 42 further comprising generating
a mismatch signal associated with each word for which the
data pattern was not found within the word.

46. The method of claim 45 further comprising outputting
in sequence data stored in any selected group of at least one
subunit of each word storage location for which said mis
match signal is not generated.

47. The method of claim 45 further comprising storing the
mismatch signal in a plurality of bit locations in the memory
circuit, one bit location associated with each word.

48. The method of claim 45 further comprising outputting
the mismatch signal from the memory circuit.

49. The method of claim 42 wherein the uniform-length
subunits consist of single bits.

50. The method of claim 42 wherein the uniform-length
subunits consist of multiple-bit subunits.

51. The method of claim 50 wherein the uniform-length
subunits consist of bytes.

52. The method of claim 50 wherein searching further
comprises applying a mask to the data and searching for the
selected data pattern by examining only unmasked data in
the memory circuit.

53. The method of claim 52 wherein searching comprises:
(a) clearing a plurality of single-bit storage locations, each

one of which is associated with one of the plurality of
words:

(b) in each of the plurality of words, searching for a first
portion of the selected data pattern, which portion has
length equal to one of the subunits, by examining
unmasked data in the memory circuit beginning at each
subunit boundary;

(c) for each word in which the portion of the data pattern
is not found, generating a mismatch signal and storing
the mismatch signal in a single-bit storage location
associated with the word;

(d) for each word in which the portion of the data pattern
is found, marking each subunit matching the portion of
the data pattern; (e) for each word in which the previous
portion of the data pattern was found, searching for a
next portion of the data pattern, which portion has
length equal to one of the subunits, by examining
unmasked data in the memory circuit beginning at the
subunit boundary adjacent to each marked subunit, and
repeating (c) and (d) with respect to said next portion
of the data pattern; and

(f) repeating (e) for each subunit-length portion of the
selected data pattern.

54. A method of storing and manipulating data compris
Ing:

(a) storing a plurality of multiple-bit data words in a
plurality of predetermined multiple-bit word storage
locations;

(b) periodically accessing each of said locations to refresh
the data stored therein by, for each of said locations,
reading a plurality of bits from the associated data word
simultaneously into a set of associated sense amplifiers
and writing bits in the sense amplifiers simultaneously
back into the original locations of the plurality of bits;
and

(c) simultaneously for each data word, after the bits are
read into the sense amplifiers, comparing a first subset

15

20

25

30

35

45

55

65

26
of bits in the sense amplifiers to a predetermined value
and setting a second subset of bits in the sense ampli
fiers to values determined by the results of the com
parison.

55. The method of claim 54 wherein the act of part (c) is
performed a plurality of times, each time with another
predetermined value, while the bits remain in the sense
amplifiers.

56. A method of storing and content-searching on data
comprising:

(a) storing electronic data in a data storage device;
(b) transferring the data from the data storage device to a

plurality of multiple-bit word storage locations of a
memory circuit, wherein each word storage location
consists of a plurality of uniform-length subunits: and

(c) searching for a selected data pattern of any desired
length wherein searching proceeds simultaneously with
respect to all of the plurality of word storage locations,
and wherein searching comprises:
(i) clearing a plurality of single-bit storage locations.

each one of which is associated with one of the
plurality of words;

(ii) in each of the plurality of words, searching for a first
portion of the selected data pattern, which portion
has length equal to one of the subunits, by examining
data in the memory circuit beginning at each subunit
boundary;

(iii) for each word in which the portion of the data
pattern is not found, generating a mismatch signal
and storing the mismatch signal in a single-bit stor
age location associated with the word;

(iv) for each word in which the portion of the data
pattern is found, masking each subunit matching the
portion of the data pattern;

(v) for each word in which the previous portion of the
data pattern was found, searching for a next portion
of the data pattern, which portion has length equal to
one of the subunits, by examining data in the
memory circuit beginning at the subunit boundary
adjacent to each masked subunit, and repeating (iii)
and (iv) with respect to said next portion of the data
pattern; and

(vi) repeating (v) for each subunit-length portion of the
selected data pattern.

57. The method of claim 56 further comprising periodi
cally refreshing data stored at each bit location of the
memory circuit, and wherein searching includes comparing
the refreshed data and the selected data pattern concurrent
with refreshing.

58. The method of claim 56 further comprising repeating
(b) and (c) a plurality of times; wherein transferring includes
selecting a first of a plurality of content-searchable memory
banks as a target for the transferred data; wherein searching
includes searching a second of the memory banks while
transferring; and further comprising, after transferring and
searching are completed, switching the first and second
memory banks, so that the next transfer uses the second bank
as a target, and the next search operates on data in the first
bank.

59. The method of claim 56 further comprising outputting
in sequence data stored in any selected group of at least one
subunit of each word storage location for which said mis
match signal is not generated.

60. The method of claim 56 further comprising outputting
the mismatch signal from the memory circuit.

61. The method of claim 56 wherein the uniform-length
subunits consist of single bits.

5,758,148
27

62. The method of claim 56 wherein the uniform-length
subunits consist of multiple-bit subunits.

63. The method of claim 62 wherein the uniform-length
subunits consist of bytes.

64. An information storage and searching apparatus com
prising:

an information-storage device;
at least one electronic memory device, which device is

integrated on a semiconductor chip, electronically
coupled to the storage device, and having a plurality of
multiple-bit word storage locations, wherein each word
storage location consists of a plurality of uniform
length subunits; and

(c) control circuitry structured (i) to control the couplings
between the storage device and the memory device to
transfer information stored in the storage device to the
memory device, and (ii) to pass to the memory device
a sequence of portions of a comparand, each portion
having a length equal to one of the subunits, for
comparison with a sequence of subunits of the words;

(d) said memory device having associated with each of
the word storage locations: (i) a comparator circuit
coupled to compare each of said portions of the com
parand with said sequence of subunits, and (ii) a
single-bit storage element for each word coupled to the
comparator circuit so as to indicate, at any point in the
sequence. a mismatch between any of the comparand
portions to that point in the sequence and the informa
tion stored in the associated subunit of the Word.

65. The apparatus of claim 64 wherein said control
circuitry is structured to cause the memory device to output
in sequence information stored in any selected group of at

28
least one subunit, from each word storage location that has
a storage element that does not indicate a mismatch when the
sequence is completed.

66. The apparatus of claim 64 wherein said control
5 circuitry is structured to cause the memory device to transfer

the information stored in any selected group of at least one
subunit, in each word storage location that has a storage
element that does not indicate a mismatch when the
sequence is completed to another group of at least one
subunit located at a predeterminated relative position.

67. The apparatus of claim 64 wherein said control
circuitry is structured to cause the memory device to alter in
a predetermined fashion the information stored in any
selected group of at least one subunit, in each word storage
location that has a storage element that does not indicate a
mismatch when the sequence is completed.

68. A method of automatically manipulating data in
storage comprising:

(a) storing a plurality of multiple-bit words in predeter
mined multiple-bit word storage locations of a
memory;

(b) searching the multiple-bit words stored in said storage
locations for a selected pattern of bits of data, said
pattern containing fewer bits than each of the words;
and

(c) transferring any selected portion of the data of each of
the words containing the matching bit pattern to a
predetermined location in the memory relative to the
original location of the selected portion.

O

15

20

30

: : :: * :

