
(12) United States Patent
Song et al.

USOO9038O39B2

(10) Patent No.: US 9,038,039 B2
(45) Date of Patent: May 19, 2015

(54) APPARATUS AND METHOD FOR
ACCELERATINGUAVA TRANSLATON

(75) Inventors: Hyo-jung Song, Seoul (KR); Ciji Isen,
Cochin (IN); Lizy K. John, Austin, TX
(US)

(73) Assignees: SAMSUNGELECTRONICS CO.,
LTD., Suwon-si (KR); Board of
Regents, The University of Texas
System, Austin, TX (US)

Notice: (*) Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 171 days.

(21)

(22)

Appl. No.: 13/474,543

Filed: May 17, 2012

(65) Prior Publication Data

US 2012/O233603 A1 Sep. 13, 2012

Related U.S. Application Data
Division of application No. 1 1/965,800, filed on Dec.
28, 2007, now Pat. No. 8,230,407.

(62)

(30) Foreign Application Priority Data

Jun. 4, 2007 (KR) 10-2007-0054663

(51) Int. Cl.
G06F 9/45
G06F 9/44
G06F 9/455
U.S. C.
CPC G06F 9/45516 (2013.01); G06F 9/4552

(2013.01); G06F 9/45508 (2013.01); G06F
9/45504 (2013.01)

(2006.01)
(2006.01)
(2006.01)

(52)

(58) Field of Classification Search
CPC G06F 9/4552; G06F 9/45508; G06F

9/45504: G06F 9/45516
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

11/2001 Poole
1 1/2002 Blandy et al.

(Continued)

6,314.445 B1
6,481,006 B1

FOREIGN PATENT DOCUMENTS

JP 3-2.71941 A 12/1991
JP 2002-163116 A 6, 2002

(Continued)

OTHER PUBLICATIONS

Joseph A. Bank, Parameterized Types for Java, 1997, pp. 1-14.*
(Continued)

Primary Examiner — Thuy Dao
Assistant Examiner — Mongbao Nguyen
(74) Attorney, Agent, or Firm — Sughrue Mion, PLLC

(57) ABSTRACT

An apparatus and method for accelerating Java translation are
provided. The apparatus includes a lookup table which stores
an lookup table having arrangements of bytecodes and native
codes corresponding to the bytecodes, a decoder which gen
erates pointer to the native code corresponding to the feed
bytecode in the lookup table, a parameterized bytecode pro
cessing unit which detects parameterized bytecode among the
feedbytecode, and generating pointer to native code required
for constant embedding in the lookup table, a constant
embedding unit which embeds constants into the native code
with the pointer generated by the parameterized bytecode
processing unit, and a native code buffer which stores the
native code generated by the decoder or the constant embed
ding unit.

9 Claims, 5 Drawing Sheets

S1

se

s

S23

EPA
E.

St.

Esi Ei

s25

SEEE

SS

St.
Er

US 9,038,039 B2
Page 2

(56) References Cited FOREIGN PATENT DOCUMENTS

U.S. PATENT DOCUMENTS JP 2003-202994 A T 2003
JP 2003-337709 A 11, 2003

6,965,984 B2 11/2005 Seal et al. KR 2001-0104687 A 11, 2001
7,225,438 B2* 5/2007 Hostetter et al. T17,148 KR 10-2004-0034620 A 4/2004
7,725,879 B2 5/2010 Romanovskiy ck KR 10-2006-01-10971 A 10, 2006 7,725,883 B1 5/2010 Nylander et al. 717/139
8,683,453 B2 * 3/2014 Patel et al. ... 717/139 WO 00,34844 A2 6, 2000
8,769,508 B2* 7/2014 Patel 717/139 WO O3,O14921 A1 2/2003

2003/006 1254 A1 3f2003 Lindwer et al. 709/1
2004/0015896 A1 1/2004 Dorman et al. OTHER PUBLICATIONS
2004/0153996 A1* 8/2004 Boykinet al. 717.118
2004/0205712 A1* 10, 2004 Holzle et al. 717.118
2004/0210865 A1 10, 2004 Shimura Shigeru Chiba, An Easyse Toolkit for Efficient Java Bytecode
2004/0236927 A1 11, 2004 Irie et al. Translators, 2003, pp. 1-12.
2005/0240907 A1* 10, 2005 Renouf 717/136 School of Informatics, University of Edinburgh, CS1Bh Lecture
2006/01300 16 A1* 6/2006 Wagner 717.136 Note 7. Compilation I: Java Byte Code, 2003, pp. 1-8.*
2006/0143597 A1* 6/2006 Alalufetal. 717/136 Ole Agesen. Adding Tvroe Parameterization to the Java Language
2006/0200801 A1 9, 2006 Patel et al. gesen, gaing typ guage,
2006/0206874 A1* 9, 2006 Klein 717/136 1997, pp. 1-11.
2006/0253847 A1 1 1/2006 Romanovskiy Communication dated Nov. 6, 2012, issued by the Japanese Patent
2007/0088831 A1 4/2007 Pallamreddy et al. Office in counterpart Japanese Patent Application No. 2008-067034.
58785 A. ck 358, s tal 717/136 Communication, dated Apr. 22, 2014, issued by the Korean Intellec elling et al. 2008/01341.58 A1* 6, 2008 Salz et al. ... 717,148 tual Property Office in counterpart Korean Application No. 10-2007
2008/0148246 A1* 6/2008 Lagergren ... 717/148 0054663.
2009/0089749 A1* 4/2009 Day et al. ... 717.118
2009/0172652 A1* 7/2009 Simon et al. T17,148 * cited by examiner

U.S. Patent May 19, 2015 Sheet 1 of 5 US 9,038,039 B2

FIG. 1

Six
initian

A
SFFER

BYTECat LOOKEPIABLE

STS
ERBES Y

sists
six
SESS

S$

i

U.S. Patent May 19, 2015 Sheet 2 of 5

FIG 2

S210

EES BYEE

S220

S230

parattriti sy"
X if

S240

EMBED constant to invoxED NATIVE
S250

S

SS

trus are is
SER

US 9,038,039 B2

U.S. Patent May 19, 2015 Sheet 3 of 5 US 9,038,039 B2

aFEEE. BYTECODE SERE
NguFEgg-1

Si Y
NTERPRETER /

16ESN
YECOE EXIS i (Kupern
NBEl

U.S. Patent May 19, 2015 Sheet 4 of 5 US 9,038,039 B2

voxEary cope invoke Native cope
S ES

is Y: SCE

U.S. Patent May 19, 2015 Sheet 5 of 5 US 9,038,039 B2

Six is
S.

EBE, CONSTAN TO KEY
SS:

u 4

S:

US 9,038,039 B2
1.

APPARATUS AND METHOD FOR
ACCELERATINGUAVA TRANSLATON

CROSS-REFERENCE TO RELATED
APPLICATION

This is a divisional of U.S. application Ser. No. 1 1/965,800,
now allowed, which claims priority from Korean Patent
Application No. 10-2007-0054663 filed on Jun. 4, 2007 in the
Korean Intellectual Property Office, the disclosure of which is
incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention
Apparatuses and methods consistent with the present

invention relate to accelerating Java translation, by which
optimized bytecode can be generated.

2. Description of the Related Art
Java is an object-orientated programming language devel

oped by Sun MicroSystems, Inc., which has several signifi
cant advantages over related art programming languages,
including platform independence, sandbox model Security
and code compaction. Java code is Small, simple and portable
across platforms and operating systems.

In related art programming languages, the source code of a
program is sent to a compiler which translates the program
into machine code or processor instructions, which include
native instructions. For example, an instruction compiled for
the x86 system can only be executed by the x86 system only.

However, the Java compiler takes a Java program and gen
erates bytecodes. Bytecodes are instructions that look like
machine code, but are not specific to any processor. To
execute Java bytecode, a Java Virtual Machine is necessary.
The Java Virtual Machine interprets Java bytecode and

converts it to equivalent native code. Since bytecode is not
specific to any processor, programs in bytecode can run on
any architecture as long the Java Virtual Machine is available.
One disadvantage of Java bytecode is a slow execution

speed. System-specific programs that run directly on the
hardware for which they are compiled run significantly faster
than Java bytecode, which must be processed by the Java
Virtual Machine. The processor must both convert the Java
bytecodes into native instructions in the Java Virtual Machine
and execute the native instructions.

There are several techniques for improving the execution
speed of Java bytecode; one is to speed up the Java Virtual
Machine by a technique called “Just-in-Time' (JIT) compil
ing, which, however has disadvantages of a slow execution
speed and a JIT compile overhead.
To overcome these disadvantages, the use of a Java hard

ware accelerator has been proposed. The Java hardware
accelerator converts Java bytecodes into native codes using a
lookup table. That is, the Java hardware accelerator attempts
to speed up the execution speed by converting the Java byte
code into the native code stored in the lookup table.

Even with the Java hardware accelerator, there still exist
problems of additional memory usage and power consump
tion. Accordingly, it is desirable to provide a technique
capable of achieving the minimum memory usage and low
power consumption. What is needed, therefore, is a method
for optimizing the process of converting bytecode into native
code.

SUMMARY OF THE INVENTION

Exemplary embodiments of the present invention over
come the above disadvantages and other disadvantages not

10

15

25

30

35

40

45

50

55

60

65

2
described above. Also, the present invention is not required to
overcome the disadvantages described above, and an exem
plary embodiment of the present invention may not overcome
any of the problems described above.
The present invention provides an apparatus and method

for accelerating Java translation, by which generate native
codes optimized to bytecodes can be generated.

According to an aspect of the present invention, there is
provided an apparatus for accelerating Java translation, the
apparatus including an lookup table having arrangements of
bytecodes and native codes corresponding to the bytecodes, a
decoder generating pointer to the native code corresponding
to the feed bytecode in the lookup table, a parameterized
bytecode processing unit detecting parameterized bytecode
among the feed bytecode, and generating pointer to native
code required for constant embedding in the lookup table, a
constant embedding unit embedding constants into the native
code with the pointer generated by the parameterized byte
code processing unit, and a native code buffer storing the
native code generated by the decoder or the constant embed
ding unit.

According to another aspect of the present invention, there
is provided a method for accelerating Java translation, the
method including determining whether feed bytecode is
parameterized bytecode, invoking native code required for
constant embedding, the native code corresponding to the
parameterized bytecode, detecting key instructions from the
invoked native code, and embedding constants into the iden
tified key instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects of the present invention will
become apparent by describing in detail exemplary embodi
ments thereof with reference to the attached drawings in
which:

FIG. 1 is a diagram illustrating an apparatus for accelerat
ing Java translation according to an exemplary embodiment
of the parent invention;

FIG. 2 is a flow diagram illustrating a method of acceler
ating Java translation according to an exemplary embodiment
of the parent invention;

FIG. 3 is a flow diagram illustrating a process of analyzing
feedbytecode in the method for accelerating Java translation
according to an exemplary embodiment of the parent inven
tion;

FIG. 4 is a flow diagram illustrating a process of invoking
native code by identifying key instructions from parameter
ized bytecode in the method for accelerating Java translation
according to an exemplary embodiment of the parent inven
tion; and

FIG. 5 is a flow diagram illustrating a process of embed
ding constants into the invoked native code in the method of
accelerating Java translation according to an exemplary
embodiment of the parent invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS OF THE INVENTION

Advantages and features of the present invention and meth
ods of accomplishing the same may be understood more
readily by reference to the following detailed description of
exemplary embodiments and the accompanying drawings.
The present invention may, however, be embodied in many
different forms and should not be construed as being limited
to the exemplary embodiments set forth herein. Rather, these
exemplary embodiments are provided so that this disclosure

US 9,038,039 B2
3

will be thorough and complete and will fully convey the
concept of the invention to those skilled in the art, and the
present invention will only be defined by the appended
claims. Like reference numerals refer to like elements
throughout the specification.
An apparatus and method for accelerating Java translation

according to the present invention will be described herein
after with reference to flowchart illustrations of methods
according to exemplary embodiments of the invention.

It will be understood that each block of the flowchart illus
trations, and combinations of blocks in the flowchart illustra
tions, can be implemented by computer program instructions.
These computer program instructions can be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to create means for implementing the functions specified in
the flowchart block or blocks.

These computer program instructions may also be stored in
a computer usable or computer-readable memory that can
direct a computer or other programmable data processing
apparatus to function in a particular manner. Such that the
instructions implement the function specified in the flowchart
block or blocks.

The computer program instructions may also be loaded
into a computer or other programmable data processing appa
ratus to cause a series of operational steps to be performed on
the computer or other programmable apparatus to produce a
computer implemented process for implementing the func
tions specified in the flowchart block or blocks.

In addition, each block may represent a module, a segment,
ora portion of code, which may comprise one or more execut
able instructions for implementing the specified logical func
tions. It should also be noted that in other implementations,
the functions noted in the blocks may occur out of the order
noted or in different configurations of hardware and software.
For example, two blocks shown in Succession may, in fact, be
executed Substantially concurrently, or the blocks may some
times be executed in reverse order, depending on the func
tionality involved.

For a better understanding of the present invention, the
following includes definitions of selected terms employed in
the specification.

Bytecode is a compiled form of a Java program. Once a
Java program is converted into a bytecode, the Java program
can be transmitted via a network or executed by a Java virtual
machine.

Native code is a machine language that is executed on a
specific platform. The native code is converted from bytecode
by a virtual machine.

Parameterized bytecode is bytecode having a parameter
value. That is, a bytecode executed depending on a specific
value.
A key instruction is a native instruction into which a con

stant corresponding to the parameter value is to be embedded
in a set of native code corresponding to parameterized byte
code.

FIG. 1 is a diagram illustrating an apparatus for accelerat
ing Java translation according to an exemplary embodiment
of the present invention.
A lookup table unit 110 stores a lookup table including

arrangements of bytecodes and native codes corresponding to
the bytecodes. The native codes may differ depending on a
central processing unit (CPU) used and the native codes cor
responding to the bytecodes constitute a set of one or more
native instructions.

10

15

25

30

35

40

45

50

55

60

65

4
The lookup table stored in the lookup table unit 110 is used

for a decoder 120 or a parameterized bytecode processing
unit 130 to analyze native code corresponding to feedbyte
code.

Since the lookup table 110 does not store all bytecodes, the
decoder 120 preferably, but not necessarily, determines
whether feedbytecode exists in the lookup table 110.
The lookup table unit 110 stores information about key

instructions, that is, native instructions into which constants
are embedded. The information about the stored key instruc
tions is used for a constant embedding unit 140 to identify the
key instructions from the native instructions.

Preferably, but not necessarily, the lookup table unit 110
stores mask pattern of key instructions. The stored mask
pattern of key instructions is used to identify constant embed
ding locations in the constant embedding unit 140 embedding
constants into the native code.
The decoder 120 generates a pointer to the native code

corresponding to the feed bytecode in the lookup table unit
110. The pointer generated in the lookup table unit 110 is
useful for extracting the native instruction set from the lookup
table unit 110.
The decoder 120 determines whether the feed bytecode

exists in the native code buffer 150. If the feedbytecode exists
in the native code buffer 150, the corresponding native code is
returned to the CPU, thereby increasing the processing speed.

In addition, the decoder 120 determines whether the feed
bytecode exists in the lookup table unit 110. The lookup table
stored in the lookup table unit 110 does not include all native
codes corresponding to the feedbytecode. Thus, if the feed
bytecode does not exist in the lookup table, a software inter
preter 160 interprets the bytecode.
The parameterized bytecode processing unit 130 may be

incorporated into the decoder 120.
The parameterized bytecode processing unit 130 detects

parameterized bytecode. If feed bytecode is parameterized
bytecode, the parameterized bytecode processing unit 130
generates a pointer to native code into which constants are
embedded in the lookup table 110. That is, the parameterized
bytecode processing unit 130 invokes native instructions cor
responding to constant versions of the bytecode. Here, the
parameterized bytecode is not converted into native code
having parameter values but into native code having fixed
values.

Preferably, but not necessarily, the parameterized bytecode
processing unit 130 stores a list of parameterized bytecode.
An example of processing a Java bytecode implemented in

an ARM CPU is described in the following. The Java byte
code "ILOAD 10” means that ILOAD needs to load a value
stored in a local variable 10 of the stack. Conventionally, in a
case where ILOAD 10, for example, is feed, a native code
corresponding to ILOAD is generated and a local variable
address is computed.
The conventional native code corresponding to ILOAD is

as follows.
LDRB reg1, reg2.it offset
LDR reg1, reg2+reg3 shift in
STR reg1, reg2+offset
In contrast, since the inventive Java bytecode "ILOAD 10

is a parameterized bytecode, the parameterized bytecode pro
cessing unit 130 generates a pointer necessary in embedding
constants into the native code. That is, for ILOAD 10, a native
instruction corresponding to ILOAD 0 is invoked.

Native code corresponding to ILOAD 0, according to the
present invention, is as follows.
LDR ro,VM 1p, #0
STR r(),IVM sp.h4!

US 9,038,039 B2
5

Compared to the conventional case, according to the
present invention, the number of native instructions converted
from bytecode can be reduced, that is, from three (3) to two
(2), Suggesting that memory usage is reduced and the execu
tion speed is accelerated.

The parameterized bytecode processing unit 130 analyzes
a parameter value of the parameterized bytecode. The param
eter value of the parameterized bytecode should be suitable
for an immediate field in a native instruction. In this example,
since each address has an incremental of 4, the number of
available bits in the immediate field may be read as: 9-2=7. In
this way, only when the parameter value is smaller than 128 is
it encoded as an immediate operand. That is, for ILOAD 10.
since the parameter value, i.e., 10, is Smaller than 128, a native
instruction corresponding to ILOAD 0 is invoked.

If the parameter value is not suitable for an immediate field
in a native instruction, the parameterized bytecode processing
unit 130 generates a pointer required for embedding constants
into the native code according to the conventional manner.
The constant embedding unit 140 embeds constants into

the native code with the pointer generated by the parameter
ized bytecode processing unit 130. Here, the embedded con
stants are values corresponding to parameter values input at
the ends of the native code with the pointer. That is, the
parameter value of the bytecode is encoded into immediate
field of the native code.
The constant embedding unit 140 preferably, but not nec

essarily, performs a function of identifying key instructions
using constants from non-key instructions among the native
instructions. Native code constitutes a set of one or more
native instructions with a pointer generated thereat, and the
constant embedding unit 140 identifies constant embedded
key instructions from the one or more native instructions.
Information about key instructions is preferably, but not nec
essarily, stored in the lookup table 110.

In the above-described example, native instruction codes
corresponding to ILOAD 0 are as follows.
LDR ro,VM 1p, #0
STR r(),IVM sp.h4!
In this example, the key instruction is LDR ro, VM 1p,

#0. Accordingly, when a constant corresponding to the
parameter value, i.e., 10, is embedded into the key instruction,
the key instruction with the constant, i.e., 10, embedded
therein reads as:

As confirmed from the following, the same native code as
the native code conventionally converted from ILOAD 10 is
obtained according to the present invention.
LDRBrOVM ipli1
LDR ro,VM 1 p.ro, LSL #2

The comparison results of conversion processes according
to the conventional manner and the present invention show
that while using the same procedure, the present invention
advantageously reduces the number of native instructions,
e.g., two (2) from three (3) in the case of the conventional
manner. Therefore, the present invention reduces the amount
of memory used, and increases the translation speed.

In addition, it is possible to prevent native code corre
sponding to ILOAD 1, ILOAD 2, and ILOAD 3 from
being stored in the lookup table unit 110. These ILOADs can
be generated at ILOAD 0. In such a manner, a storage space
for ILOAD 1, ILOAD 2, and ILOAD 3 can be saved, so
that additional storage space for other bytecodes can be
secured.

10

15

25

30

35

40

45

50

55

60

65

6
Preferably, but not necessarily, the constant embedding

unit 140 reads the mask pattern of the key instructions stored
in the lookup table unit 110 for constant embedding. In most
cases, immediate fields are fixed locations of the key instruc
tions. In few cases, however, in which an immediate field is
not at a fixed location of a key instruction, a complicated
procedure may be involved. Accordingly, the mask pattern of
key instructions are stored in the lookup table unit 110, and
the constant embedding unit 140 reads the mask pattern from
the lookup table unit 110 for reference in constant embed
ding.
The native code buffer 150 stores the native code generated

by the decoder 120 or the constant embedding unit 140. The
native code buffer 150 stores the native code and supplies the
same to the CPU.
The native code buffer 150 preferably, but not necessarily,

storesbytecode feed together with the native code. In the case
where the feedbytecode exists in the native code buffer 150,
the corresponding native code is returned to the CPU as per
request by the decoder 120.

Here, various components of the Java translation acceler
ating apparatus according to the present invention may be
implemented as, but are not limited to, Software, hardware or
firmware. Each component may advantageously be config
ured to reside on an addressable storage medium and config
ured to be executed on one or more processors. The function
ality provided for in the components may be combined into
fewer components or further separated into additional com
ponents.

In an alternative exemplary embodiment, the apparatus for
accelerating Java translation may be incorporated into the
CPU.

FIG. 2 is a flow diagram illustrating a method of acceler
ating Java translation according to an exemplary embodiment
of the parent invention.

Bytecode to be converted is feed from the CPU into the
decoder 120 in operation S210.

Then, the decoder 120 analyzes the feedbytecode in opera
tion S220.

After analyzing the feedbytecode, the parameterized byte
code processing unit 130 detects parameterized bytecode
from non-parameterized bytecode, and invokes native code in
operation S230.

Thereafter, the constant embedding unit 140 embeds con
stants into the native code in operation S240.

In operation S250, the native code buffer 150 stores the
native code generated by the decoder 120 or the constant
embedding unit 140. The native code buffer 150 preferably,
but not necessarily, stores the bytecode feed together with the
native code.
The native code buffer 150 sends the native code stored

therein back to the CPU in operation S260.
The method for accelerating Java translation according to

the parent invention will now be described in greater detail
with reference to FIGS. 3 through 5.

FIG. 3 is a flow diagram illustrating a process of analyzing
feedbytecode in the method for accelerating Java translation
according to an exemplary embodiment of the present inven
tion.

In operation S310, the decoder 120 determines whether the
feedbytecode exists in the native code buffer 150. If the feed
bytecode exists in the native code buffer 150, the procedure
goes to operation S260 to return the corresponding native
code to the CPU, thereby improving the processing speed.

In operation S320, the decoder 120 determines whether the
feedbytecode exists in the lookup table unit 110. If the feed
bytecode exists in the lookup table unit 110, the procedure

US 9,038,039 B2
7

goes to operation S230. The lookup table unit 110 does not
include native codes for all the bytecodes. Accordingly, if the
feedbytecode does not exist in the lookup table unit 110, the
software interpreter 160 interprets the bytecode in operation
S330.

FIG. 4 is a flow diagram illustrating a process of invoking
native code by detecting parameterized bytecode in the
method for accelerating Java translation according to an
exemplary embodiment of the parent invention.
The parameterized bytecode processing unit 130 deter

mines whether the feedbytecode is to be parameterized byte
code in operation S410. The parameterized bytecode process
ing unit 130 detects parameterized bytecode by referring to a
list of the parameterized bytecode stored in the lookup table
unit 110.

If the feed bytecode is not parameterized bytecode, a
pointer to native code converted from the feed bytecode
stored in the lookup table unit 110 is generated by the decoder
120. In operation S420, the native code corresponding to the
feedbytecode is invoked.
The parameterized bytecode processing unit 130 analyzes

parameter values of the parameterized bytecode and deter
mines whether the parameterized bytecode is suitable for
immediate fields in the native instructions in operation S430.

If the parameterized bytecode is not suitable for immediate
fields in the native instructions, a pointer to native code cor
responding to the feedbytecode is generated by the param
eterized bytecode processing unit 130 and the procedure goes
to operation S420 to invoke the native code corresponding to
the feedbytecode.

The parameterized bytecode processing unit 130 generates
a pointer to the native code that can be used for embedding
constant from lookup table unit 110, and invokes the native
code corresponding to the parameterized bytecode in opera
tion S440. That is, the parameterized bytecode processing
unit 130 invokes the native code corresponding to constant
versions of the bytecode. The parameterized bytecode is not
converted into native code having parameter values but into
native code having fixed values.

FIG. 5 is a flow diagram illustrating a process of embed
ding constants into the invoked native code in the method for
accelerating Java translation according to an exemplary
embodiment of the parent invention.
The constant embedding unit 140 identifies key instruc

tions using constants from the invoked native code in opera
tion S510. The constant embedding unit 140 reads informa
tion about the key instructions from the lookup table unit 110
for reference in constant embedding. Since the native code
having a pointer constitute a set of one or more native instruc
tions, the key instructions with constants embedded therein
can be identified from the native code without constants.
The constant embedding unit 140 loads the mask pattern of

the key instructions stored in the lookup table unit 110 in
operation S520. In most cases, immediate fields are fixed
locations. In few cases where an immediate field is not at a
fixed location, however, a complicated procedure may be
necessary. In this regard, the mask pattern of the key instruc
tions is stored in the lookup table unit 110 so that the constant
embedding unit 140 reads the mask pattern from the lookup
table unit 110 for reference in constant embedding. The con
stant embedding unit 140 embeds constants into the key
instructions in operation S530. Here, the embedded constants
are values corresponding to the parameter values input at the
ends of the native code with the pointer generated thereat.
That is, the parameter value of the bytecode is encoded into
the immediate field of the native code.

10

15

25

30

35

40

45

50

55

60

65

8
The content of the present invention can be applied to not

only the Java language but also other interpreter languages or
virtual machine languages.
The apparatus and method for accelerating Java translation

according to the exemplary embodiments of the present
invention may provide one or more the following advantages.

First, memory usage can be reduced by generating native
code optimized to parameterized bytecode.

Second, translation speed can be accelerated by generating
native code optimized to parameterized bytecode.

Third, Storage space can be reduced by reducing the num
ber of native codes stored in a lookup table.
The effects of the present invention should not be limited to

the foregoing description, and additional effects and advan
tages of the invention will be made more apparent to those
skilled in the art from the spirit and scope of the invention as
defined by the appended claims.

While the present invention has been particularly shown
and described with reference to exemplary embodiments
thereof, it will be understood by those of ordinary skill in the
art that various changes in form and details may be made
therein without departing from the spirit and scope of the
present invention as defined by the following claims. It is
therefore desired that the present exemplary embodiments be
considered in all respects as illustrative and not restrictive,
reference being made to the appended claims rather than the
foregoing description to indicate the scope of the invention.

What is claimed is:
1. A computer-executed method of accelerating Java trans

lation, the method comprising:
determining whether feedbytecode is parameterized byte

code;
invoking native code required for constant embedding, the

native code corresponding to the parameterized byte
code;

identifying key instructions from the invoked native code:
embedding constants into the identified key instructions;

and
if feedbytecode is parameterized bytecode, generating a

pointer to the native code into which constants are
embedded in a lookup table.

2. The method of claim 1, further comprising determining
whether parameter values of the parameterized bytecode are
suitable for immediate fields in native instructions.

3. The method of claim 1, further comprising reading a
mask pattern of the key instructions stored in a lookup table.

4. The method of claim 1, further comprising determining
whether the feedbytecode exists in a native code buffer.

5. The method of claim 1, further comprising determining
whether the feedbytecode exists in a lookup table.

6. The method of claim 1, further comprising storing the
native code with the constants embedded therein in a native
code buffer.

7. The method according to claim 1, wherein the key
instructions comprise native instructions into which a con
stant corresponding to a parameter value is embedded in a
native code corresponding to the parameterized bytecode.

8. The method according to claim 1, wherein the key
instructions are identified from the invoked native code using
constants from the invoked native code.

9. The method according to claim 1, further comprising
reading information about the key instructions from a lookup
table.

