
(12) United States Patent
Burger et al.

USO08055881 B2

(10) Patent No.: US 8,055,881 B2

(54) COMPUTING NODES FOR EXECUTING
GROUPS OF INSTRUCTIONS

(75) Inventors: Douglas C. Burger, Austin, TX (US);
Stephen W. Keckler, Austin, TX (US);
Karthikevan Sankaralingam, Austin,
TX (US); Ramadass Nagarajan, Austin,
TX (US)

(73) Assignee: Board of Regents, University of Texas
System, Austin, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 175 days.

(21) Appl. No.: 12/136,645

(22) Filed: Jun. 10, 2008

(65) Prior Publication Data

US 2008/O244230 A1 Oct. 2, 2008

Related U.S. Application Data

(60) Division of application No. 10/829,668, filed on Apr.
22, 2004, now abandoned, which is a continuation of
application No. PCT/US02/34965, filed on Oct. 31,
2002.

(60) Provisional application No. 60/334,764, filed on Oct.
31, 2001.

(51) Int. Cl.
G06F 5/63 (2006.01)

(52) U.S. Cl. ... 712/18
(58) Field of Classification Search None

See application file for complete search history.

(45) Date of Patent: Nov. 8, 2011

(56) References Cited

U.S. PATENT DOCUMENTS

4,814,978 A 3/1989 Dennis T12/201

(Continued)

FOREIGN PATENT DOCUMENTS

EP O4101.05 A2 1, 1991

(Continued)
OTHER PUBLICATIONS

Requa et al. “The Piecewise Data Flow Architecture: Architectural
Concepts”. May 1983, pp. 425-437.*

(Continued)
Primary Examiner — Robert Fennema
(74) Attorney, Agent, or Firm — Schwabe, Williamson &
Wyatt, P.C.
(57) ABSTRACT
A computation node according to various embodiments of the
invention includes at least one input port capable of being
coupled to at least one first other 5 computation node, a first
store coupled to the input port(s) to store input data, a second
store to receive and store instructions, an instruction wakeup
unit to match the input data to the instructions, at least one
execution unit to execute the instructions, using the input data
to produce output data, and at least one output port capable of
being coupled to at least one second other computation node.
The node may also include a router to direct the output data
from the output port(s) to the second other node. A system
according to various embodiments of the invention includes
and external instruction sequencerto fetch a group of instruc
tions, and one or more interconnected, preselected computa
tional nodes. An article according to an embodiment of the
invention includes a medium having instructions which are
capable of causing a machine to partition a program into a
plurality of groups of instructions, assign one or more of the
instruction groups to a plurality of interconnected preselected
computation nodes, load the instruction groups on to the
nodes, and execute the instruction groups as each instruction
in each group receives all necessary associated operands for
execution.

18 Claims, 3 Drawing Sheets

120

Exterial
Instrustic
Sequencer

US 8,055,881 B2
Page 2

U.S. PATENT DOCUMENTS

5,241,635 A 8/1993 Papadopoulos et al. T12/201
5,276,819 A 1/1994 Rau et al. 711,214
6,282,583 B1* 8/2001 Pincus et al. ... 713,375
6,338,129 B1* 1/2002 Pechanek et al. T12/11

FOREIGN PATENT DOCUMENTS

NL 91/00598 11, 1992
WO WO-01 (97.054 A2 12/2001

OTHER PUBLICATIONS

Fisher, Joseph. "Trace Scheduling: A Technique for Global Micro
code Compaction”. Jul. 1981. pp. 478-490.*
Joseph Fisher, “Trace Scheduling: A Technique for Global Micro
code Compaction.” IEEE Transaction on Computer, vol. C30, No. 7
(Jul 1981).
Joseph Requa and James McGraw, “The Piecewise Data Flow Archi
tecture: Architectural Concepts.” IEEE Transactions on Computer,
vol. C32, No. 5 (May 1983).

International Search Report mailed Dec. 29, 2003 in PCT/US02/
34965.

Office Action mailed May 24, 2007 in U.S. Appl. No. 10/829,668.
Office Action mailed Oct. 30, 2007 in U.S. Appl. No. 10/829,668.
Office Action mailed Aug. 26, 2008 in U.S. Appl. No. 10/829,668.
Office Action mailed Mar. 24, 2009 in U.S. Appl. No. 10/829,668.
International Preliminary Reporton Patentability mailed Feb. 9, 2004
in PCT/USO2,34965.

Office Action mailed Oct. 13, 2009 in U.S. Appl. No. 10/829,668.
Office Action, issued in U.S. Appl. No. 10/829,668, mailed Mar, 9.
2010, 28 pages.
Office Action, issued in U.S. Appl. No. 10/829,668, mailed Jul. 23.
2010, 27 pages.
Patterson, D. A. et al., "Computer Architecture: A Quantitative
Approach.” 1990, pp. 146-161, Morgan Kaufmann Publishers, Inc.,
San Francisco, CA.

* cited by examiner

U.S. Patent Nov. 8, 2011 Sheet 1 of 3 US 8,055,881 B2

134 (110

ty

X

External NADD1 INST1)
Instruction
Sequencer

144

102

US 8,055,881 B2 U.S. Patent

(EHE), #

§§ No.

U.S. Patent Nov. 8, 2011 Sheet 3 of 3 US 8,055,881 B2

31

321 551

PARTONING PARTION USING
PROGRAM COMPER OR MAPPER

351 355

ASSIGNING SENDING
GROUP(S) ISTATIC INSTRUCTIONS

56

SENDING
SET(S)

341

LOADING
GROUP(S)

345 365

EXECUTNG MATCHING INSTRUCTIONS
GROUP(S) DYNAMIC) AND OPERANDS

37

GENERATING
WAKEUP

375

ROUTING
DATA

J81 385

DEECNG COMMITTING
TERMINATION DAA

FIG. 35

US 8,055,881 B2
1.

COMPUTING NODES FOR EXECUTING
GROUPS OF INSTRUCTIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a divisional application of co
pending U.S. patent application Ser. No. 10/829,668, entitled
“A Scalable Processing Architecture.” filed Apr. 22, 2004,
which is incorporated by reference herein. The present appli
cation claims priority benefits to U.S. patent application Ser.
No. 10/829,668 under 35 U.S.C. S.121. U.S. patent applica
tion Ser. No. 10/829,668 is a continuation under 35 U.S.C.
111(a) of PCT/US02/34965 filed on Oct. 31, 2002 and pub
lished in English on May 8, 2003 which claims priority under
35 U.S.C. 119 (e) of U.S. Provisional Application Ser. No.
60/334,764 filed on Oct. 31, 2001 which is incorporated
herein by reference.

TECHNICAL FIELD

Embodiments of the invention relate to apparatus, systems,
articles, and methods for data processing using distributed
computational elements.

BACKGROUND OF THE INVENTION

The performance of conventional microarchitectures, mea
sured in Instructions Per Cycle (IPC), has improved by
approximately 50-60% per year. This growth has typically
been achieved by increasing the number of transistors on a
chip and/or increasing the instruction cycle clock speed.
However, these results will not continue to scale with respect
to future technologies (90 nanometers and below), because
fundamental pipelining limits and wire delays bind Such
architectures to their data communications systems.

Instruction-Level Parallelism (ILP), which can describe
methods of using multiple transistors, also refers to a process
where multiple instructions are executed in parallel, and con
stitutes yet another path to greater computational perfor
mance. One approach to increasing the use of ILP is via
conventional SuperScalar processor cores that detect parallel
ism at run-time. The amount of ILP that can be detected is
limited by the issue window, the complexity of which grows
as square of the number of entries. Conventional SuperScalar
architectures also rely on frequently accessed global struc
tures, slowing down the system clock or increasing the depth
of the pipeline.

Another approach to the implementation of parallel pro
cessing is taken by VLIW machines, where ILP analysis is
performed at compile time. Instruction scheduling is done by
the compiler, orchestrating the flow of execution in a static
manner. However, this approach works well only for statisti
cally predictable codes, and Suffers when dynamic events
occur—a run-time stall in one function unit, or a cache miss,
forces the entire machine to stall, since all functional units are
synchronized. Thus, there is a need for new computational
architectures that capitalize on the transistor miniaturization
trend while overcoming communications bottlenecks.

SUMMARY OF THE INVENTION

The apparatus, systems, and methods described herein pro
vide a simplified approach to increasing the amount of ILP
that can be applied to programs, taking advantage of multiple,
interconnected, and possibly identical computation nodes.
The essence of the approach involves scheduling instructions

10

15

25

30

35

40

45

50

55

60

65

2
statically for execution across specially preselected, intercon
nected nodes, and then issuing the instructions dynamically
for execution.
A computation node according to various embodiments of

the invention includes an input port capable of being coupled
to at least one first other computation node, a first store to
store input data, a second store to receive and store instruc
tions, an instruction wakeup unit to match input data to
instructions, at least one execution unit to execute the instruc
tions and produce output data from the input data, and an
output port capable of being coupled to at least one second
other computation node. The node may also include a router
to direct the output data from the output port to the second
other node. A system according to various embodiments of
the invention can include one or more interconnected, prese
lected computation nodes and an external instruction
sequencer (coupled to the second store in the nodes) to fetch
instruction groups.
An article according to an embodiment of the invention

includes a medium having instructions capable of causing a
machine to partition a program into a plurality of groups of
instructions, assign one or more of the instruction groups to a
plurality of interconnected, preselected computation nodes,
load the instruction groups on to the nodes, and execute the
instruction groups as each instruction in each group receives
all necessary associated operands for execution.

This Summary is intended to provide an exemplary over
view of the subject matter further described hereinbelow. It is
not intended to provide an exhaustive or exclusive explana
tion of various embodiments of the invention. The Detailed
Description which follows is included to provide further
information about such embodiments.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of an apparatus
according to an embodiment of the invention;

FIG. 2 is a schematic block diagram of a system according
to an embodiment of the invention; and

FIG. 3 is a flow diagram illustrating a method according to
an embodiment of the invention.

DETAILED DESCRIPTION

In the following detailed description of various embodi
ments of the invention, information with respect to making
and using the various embodiments, including a best mode of
practicing such embodiments, is provided. Thus, reference is
made to the accompanying drawings which form a part
hereof, and in which are shown by way of illustration, and not
of limitation, specific embodiments in which the invention
may be practiced. In the drawings, like numerals describe
Substantially similar components throughout the several
views. The embodiments illustrated are described in suffi
cient detail to enable those skilled in the art to practice the
teachings disclosed herein. Other embodiments may be uti
lized and derived therefrom, such that electrical, structural,
and logical Substitutions and changes may be made without
departing from the scope of this disclosure. The following
detailed description, therefore, is not to be taken in a limiting
sense, and the scope of various embodiments of the invention
is defined only by the appended claims, along with the full
range of equivalents to which Such claims are entitled.

Herein a new architecture is disclosed that takes into con
sideration the technology constraints of wire delays and pipe
lining limits. Instructions are scheduled Statically for execu
tion on a computation Substrate, and then issued dynamically.

US 8,055,881 B2
3

The computation Substrate can be configured as a two- (or
more) dimensional grid of computation nodes communica
tively coupled via an interconnection network. A compiler
partitions the program into a sequence of blocks (e.g., basic
blocks or hyperblocks), performs renaming of temporaries,
and schedules instructions in a block to nodes in the grid.
Instruction traces generated at run-time can also be used
instead of (or in addition to) blocks generated by the compiler.
In either case, blocks and/or traces are fetched one at a time
and their instructions are assigned or mapped to the compu
tation nodes en masse. Execution proceeds in a dataflow
fashion, with each instruction sending its results directly to
other instructions that use them. A set of interfaces are used by
the computation Substrate to access external data.

FIG. 1 is a schematic block diagram of an apparatus
according to an embodiment of the invention. The apparatus
100, such as a computation node 100 includes one or more
input ports 102 capable of being communicatively coupled
(in Some embodiments by using transport channels 104) to at
least one Substantially simultaneously preselected computa
tion node 110. The input ports 102 receive input data 112,
such as operands OP1, OP2, OP3, OP4,..., OPn1,..., OPn2
112.
As used herein, the term "substantially simultaneously pre

selected” means, with respect to a computation node 100 (i.e.,
an executing node), that the mapping of an instruction to the
executing node was determined prior to fetching the instruc
tion, and at about the same time as the nodes (i.e., one or more
producer nodes) providing the input data to be used or con
Sumed by the mapped instruction at the executing node, as
well as the nodes (i.e., one or more consumer nodes) consum
ing any output data provided by the executing node as a result
of executing the mapped instruction, were also determined.
Further, as used herein, a “group of instructions' means some
selected number of instructions, contiguous in program order,
assigned as a group to a plurality of nodes prior to any single
instruction in the group being fetched. It should be noted that
individual instructions included in a selected group of instruc
tion are typically, although not always, mapped to a corre
sponding number of specific nodes in order to minimize the
physical distance traveled by operands included in a critical
path associated with the group. Mapping can also, or in addi
tion, be accomplished so as to minimize the execution asso
ciated with a particular group of instructions.
The node 100 includes a first store 116, which may have

one or more memory locations, coupled to the input port(s)
102 to store the input data 112. Thus the first store 116 can be
used to retain one or more operands or elements of input data
112. In addition, the node 100 can include a second store 118,
also comprising one or more memory locations, coupled to an
external instruction sequencer 120. The second store 118
receives and stores one or more instructions INST1,
INST2, . . . , INSTn 122 from the external instruction
sequencer 120. As used here, the term “external” means, with
respect to the instruction sequencer 120, that the sequencer
120 is not located within any of the computation nodes 100,
110, 140 to which it can pass instructions 122. One or more
instructions 122 can be included in an instruction group 123.
The node 100 also includes an instruction wakeup unit 124

to match the input data 112 to the instruction 122, and at least
one execution unit 126 to execute the instructions 122 passed
to the execution unit 126 by the wakeup unit 124 using the
input data 112 and the instructions 122 to produce output data
130. The execution unit 126 can include one or more arith
metic logic units, floating point units, memory address units,
branch units, or any combination of these units.

10

15

25

30

35

40

45

50

55

60

65

4
One or more output ports 134 included in the node 100 can

be coupled to at least one Substantially simultaneously pre
selected computation node 140 (in some embodiments, by
using transport channels 104). It should be noted that the
substantially simultaneously preselected nodes 110, 140 can
be similar to or identical to node 100. The node 100 can also
include a router 142 to send or direct the output data 130 from
the output ports 134 to one or more substantially simulta
neously preselected computation nodes 140.
The instructions 122 can include a destination address 144

associated with the Substantially simultaneously preselected
computation node 140. The router 142 is capable of using the
destination address ADD1 144, for example, to direct the
output data 130 to the node 140. Destination addresses 144
can be generated by, among other mechanisms, a compiler
and a run-time trace mapper. In some embodiments, the out
put data 130 can include the destination address ADD1 144
associated with the computation node 140. However, the
router 142 is capable of using the destination address ADD1
144 to direct the output data 130 to the computation node 140,
whether the address ADD1 144 is included in the output data
130, or merely associated with the output data 130.

Similarly, the input data OP1 112 can include, or be asso
ciated with, a destination address ADD1 148 associated with
the computation node 140, such that the router 142 is capable
of using the destination address ADD1 148 to send or direct
the input data OP1112 directly to the computation node 140.
This may occur, for example, if the input data OP1 112 is
ultimately destined for use within the node 140 (i.e., the
consuming node 140), but must pass through the node 100 as
part of the shortest path from the node 110 that produces or
provides it (i.e., the producing or provider node 110). The
node 100 is also capable of routing output data 130 back to
itself along the bypass path 143, Such that an instruction
INSTn 122 can include a destination address ADDn 144
associated with the node 100. The router 142 is then also
capable of using the destination address ADDn 144 to direct
the output data 130 back to the node 100 for use with another
instruction INSTIn 122.
To further enhance the capabilities of the node 100, one or

more of the output ports 134 can be communicatively coupled
to a direct channel 150, which, unlike transport channels 104,
bypasses the router 142 and makes a direct connection
between the execution unit 126 and the node 140. Thus, one
or more of the input ports 102 of the node 140 can be com
municatively coupled to the direct channel 150. Similarly,
one or more of the input ports 102 of the node 100 can be
communicatively coupled to a direct channel 152 which
bypasses the router (not shown) included in the node 110 to
makes a direct connection between the execution unit 126
(not shown) in the node 110 and the node 100.

FIG. 2 is a schematic block diagram of a system according
to an embodiment of the invention. Here a system 260, such as
a processor 260 is shown to include an external instruction
sequencer 220, similar to or identical to the external instruc
tion sequencer 120 (shown in FIG. 1) as well as one or more
nodes 200, similar to or identical to nodes 100, 110, and/or
140 (also shown in FIG. 1), included on a computation sub
strate 261. The external instruction sequencer 220 is used to
fetch one or more groups of instructions, such as the instruc
tion groups GRP1, GRP2, ..., GRPn223. A single group of
instructions may include one or more instructions, such as the
instructions INST1, INST2,..., INSTIn 122 shown in FIG.1.
As seen in FIG. 2, the nodes 200 can be connected in just

about any topology desired. For example, each node 200 can
be connected to each and every other node 200 included in the
system 260. One or more nodes 200 can also be connected to

US 8,055,881 B2
5

just one other node 200, or to some selected number of nodes
200, up to and including all of the nodes 200 included in the
system 260.

Connections between the nodes 200 can be effected via
routers (not shown) included in the nodes 200, and transport
channels 204, which are similar to or identical to transport
channels 104 shown in FIG. 1, and/or direct channels 250,
which are similar to or identical to the direct channels 150,
152 shown in FIG.1. As noted previously, the direct channels
250 include communication connections between selected
nodes 200 that bypass routers (not shown) in the nodes 200, so
that input data and output data can be sent directly from one
node 200 to another node 200 (e.g., from node 262 to node
264) without travelling through a router or other nodes 200. In
most embodiments, however, the input ports of each node 200
are connected to the output ports of at least one other prese
lected node 200, such as a substantially simultaneously pre
selected node 200. Similarly, the output ports of each node
200 are connected to the input ports of at least one other
preselected node 200, such as a substantially simultaneously
preselected node 200. For example, as shown in FIG. 2, the
input ports of node 266 (among other nodes) are connected to
the output ports of Substantially simultaneously preselected
node 262, and the output ports of node 266 (among other
nodes) are connected to the input ports of substantially simul
taneously preselected node 268. In turn, the output ports of
node 268 (among other nodes) are connected to the input
ports of substantially simultaneously preselected node 264.
Almost any coupling topology desired can be addressed by
using the transport channels 204 and the direct channels 250
to connect the nodes 200.

The system 260 can also include a register file 270, a
memory interface 272, stitch logic 273, and a block termina
tion control 274, each communicatively coupled to the nodes
200. In addition, the system 260 can include one or more
memories 276 coupled to the external instruction sequencer
220, as well as to the memory interface 272. The memory 276
can be volatile or nonvolatile, or a combination of these types,
and may include various types of storage devices, such as
Random Access Memory (RAM), Read Only Memory
(ROM), FLASH memory, disk storage, and any other type of
storage device or medium. The memory 276 can comprise an
instruction memory used to store one or more selected groups
of instructions, such as the group of instructions GRP1223.
The register file 270 operates to receive indications 278 to

send operands or input data to be used by instructions within
the nodes 200, and/or to receive data upon completion of an
instruction group, and/or to store values produced in a group
of instructions that are live outside of the group in which the
value is produced. The register file 270 can be coupled to the
block termination control 274, which operates to detect
execution termination of a selected group of instructions,
such as the group of instructions GRP1223. The performance
of the system 260 may be further enhanced by including an
instruction cache C1, C2, ..., Cm 280 for each one of them
rows of nodes 200. It should be noted that, when all of the
consumers of a particular datum reside within the group of
instructions that produce that datum, it is not necessary to
write the datum to a register file.

The stitch logic module 273 is used to accomplish “regis
ter-Stitching”. This can occur when, for example, executing a
first group of instructions produces output data (typically
written to a register), and a second concurrently executing
group of instructions can use the output data so produced as
input data. In this case, the output data can be forward directly
from the first group to the second group via the Stitch logic
module 273.

10

15

25

30

35

40

45

50

55

60

65

6
The nodes 100, 110, 140, 200, 262, 264, 266, 268; input

ports 102: first store 116; second store 118: external instruc
tion sequencer 120; instruction wakeup unit 124; execution
unit 126; output ports 134; router 142; direct channels 150,
152, 250; system 260: register file 270; memory interface
272; stitch logic module 273; block termination control 274;
memory 276; and instruction caches 280 may all be charac
terized as “modules' herein. Such modules may include hard
ware circuitry, and/or one or more processors and/or memory
circuits, software program modules, and/or firmware, and
combinations thereof, as desired by the architect of the nodes
100, 200 and the system 260, and as appropriate for particular
implementations of various embodiments of the invention.
One of ordinary skill in the art will understand that the

apparatus and systems of the present invention can be used in
applications other than for parallel instruction processing,
and thus, embodiments of the invention are not to be so
limited. The illustrations of nodes 100, 200, and a system 260
are intended to provide a general understanding of the struc
ture of various embodiments of the present invention, and are
not intended to serve as a complete description of all the
elements and features of apparatus and systems that might
make use of the structures described herein.

Applications that may include the novel apparatus and
systems of the present invention include electronic circuitry
used in communication and signal processing circuitry,
modems, processor modules, embedded processors, and
application-specific modules, including multilayer, multi
chip modules. Such apparatus and systems may further be
utilized as Sub-components within a variety of electronic
systems, including cellular telephones, personal computers,
dedicated data acquisition systems, and others.

FIG. 3 is a flow diagram illustrating a method according to
an embodiment of the invention. The method 311 may begin
with partitioning a program into a plurality of groups of
instructions at block 321, and continue with assigning one or
more groups of instructions selected from the plurality of
groups of instructions to a plurality of interconnected prese
lected computation nodes, such as the nodes 100, 200 shown
in FIGS. 1 and 2, respectively, at block 331. The nodes 100,
200 in the group of interconnected preselected nodes can be
connected in any topology desired, as noted above.
One or more of the groups in the plurality of instruction

groups can be a basic block, a hyperblock, or a Superblock.
Alternatively, or in addition, one or more of the groups in the
plurality of instruction groups can be an instruction trace
constructed by a hardware trace construction unitat run time.
At block 341, the method 311 may continue with loading

the assigned group(s) of instructions on to the plurality of
interconnected preselected computation nodes, and execut
ing the group(s) of instructions at block 345 as each one of the
instructions in a respective group of instructions receives all
necessary associated operands for execution.

Partitioning the program into groups of instructions can be
performed by a compiler at block 351. Partitioning the pro
gram into groups of instructions can also be performed by a
run-time trace mapper, or a combination of a compiler and a
run-time trace mapper, at block 351.

Loading the assigned group(s) of instructions on to the
plurality of interconnected preselected computation nodes at
block 341 can include sending at least two instructions
selected from the group of instructions from an instruction
sequencer to a selected computation node included in the
plurality of interconnected preselected computation nodes for
storage in a store at block 355. In any case, one or more of the
plurality of groups (including all of the groups) can be stati
cally assigned for execution.

US 8,055,881 B2
7

Alternatively, or in addition, loading the assigned group(s)
of instructions on to the plurality of interconnected prese
lected computation nodes at block 341 can include sending
multiple sets of instructions at block 361, Such as sending a
first set of instructions selected from a first group of instruc
tions (selected from a plurality of groups of instructions) from
an instruction sequencer to the plurality of interconnected
preselected computation nodes for storage in a first frame
(included in a first computation node), and sending a second
set of instructions selected from the first group of instructions
from the instruction sequencer to the plurality of intercon
nected preselected computation nodes for storage in a second
frame (included in the first computation node).
As used herein, the term "frame” means a designated set of

buffers spanning a plurality of nodes 100, wherein one buffer
(e.g. selected from the stores 116, 118) of a particular frame
is typically (but not always) included in each node 100 in the
plurality ofnodes 100. Thus, each frame may permitmapping
the same number of instructions as there are nodes 100. Each
group of instructions can span multiple frames, and multiple
groups of instructions can be mapped on to multiple frames.
For example, the number of frames may be selected so as to be
equal to the number of instruction storage locations in the
store 116 and/or store 118. However, the embodiments of the
invention are not so limited.

Assigning one or more groups of instructions to a plurality
of interconnected preselected computation nodes at block
331 can also include assigning a first group of instructions to
a first set of frames included in the plurality of interconnected
preselected computation nodes, assigning a second group of
instructions to a second set of frames included in the plurality
of interconnected preselected computation nodes (wherein
the first group and the second group of instructions are
capable of concurrent execution), and wherein at least one
output datum associated with the first group of instructions is
written to a register file and passed directly to the second
group of instructions for use as an input datum by the second
group of instructions.

Other assignments can be made, including assignments for
other sets of instructions. For example, once assignments for
a third and fourth set of instructions have been made, and
continuing the previous example, loading the assigned
group(s) of instructions on to the plurality of interconnected
preselected computation nodes at block 341 can include send
ing a third set of instructions selected from a second group of
instructions (selected from the plurality of instruction groups)
from an instruction sequencer to the plurality of intercon
nected preselected computation nodes for storage in the first
frame, and sending a fourth set of instructions selected from
the second group of instructions from an instruction
sequencer to the plurality of interconnected preselected com
putation nodes for storage in the second frame.

Executing the group of instructions as each one of the
instructions in the group of instructions receives all necessary
associated operands for execution at block 345 can include
matching at least one instruction selected from the group of
instructions with at least one operand received from another
computation node included in the plurality of interconnected
preselected computation nodes at block 365. In any case, one
or more of the instructions included in at least one of the
plurality of instruction groups (including an entire group or
all of the instruction groups) can be dynamically issued for
execution.
The method may continue with generating one or more

wakeup tokens to reserve one or more output data channels
(e.g., transport channels or direct channels) to connect
selected computation nodes included in the plurality of inter

10

15

25

30

35

40

45

50

55

60

65

8
connected preselected computation nodes at block 371. Gen
erating wakeup tokens may operate to accelerate the wakeup
of one or more corresponding consuming instructions (i.e.,
instructions which receive the data).
The method 311 may continue, at block 375, with routing

one or more output data arising from executing the group of
instructions to one or more consumer nodes (e.g., nodes
coupled to the output ports of the producing or provider
node(s)) included in the plurality of interconnected prese
lected computation nodes, wherein the addresses of the con
Sumer nodes are included in a token associated with at least
one instruction included in the group of instructions. The
method 311 may also include detecting execution termination
of one or more groups of instructions at block 381. If one or
more of the instructions includes an output having architec
turally visible data, the method 311 may conclude with com
mitting the architecturally visible data to a register file and/or
memory at block 385. It should be noted that multiple groups
of instructions can execute concurrently, and that data from
each group is typically (although embodiments of the inven
tion are not so limited) committed to register files and/or
memory in serial fashion with the data from a previously
terminating group being committed prior to data from a later
terminating group.

Referring to the methods just described, it should be clear
that some embodiments of the present invention may also be
realized in the context of computer-executable instructions,
Such as program modules, being executed by a computer.
Generally, program modules may include routines, programs,
objects, components, data structures, etc. that perform par
ticular tasks or implement particular abstract data types. As
such, any of the modules 100, 102, 110, 116, 118, 120, 124,
126, 134, 140, 142, 150, 152, 200, 250, 260, 262, 264, 266,
268, 270, 272, 274, 276, and 280 described herein may
include Software operative on one or more processors to per
form methods according to the teachings of various embodi
ments of the present invention.
One of ordinary skill in the art will understand, upon read

ing and comprehending this disclosure, the manner in which
a software program can be launched from a computer read
able medium in a computer-based system to execute the func
tions defined in the software program. One of ordinary skill in
the art will further understand the various programming lan
guages that may be employed to create one or more software
programs designed to implement and perform the methods
disclosed herein. The programs can be structured in an object
orientated format using an object-oriented language such as
Java, Smalltalk, or C++. Alternatively, the programs can be
structured in a procedure-orientated format using a proce
dural language, such as COBOL or C. The software compo
nents may communicate using any of a number of mecha
nisms that are well-known to those skilled in the art. Such as
application program interfaces (API) or interprocess commu
nication techniques such as the Remote Procedure Call
(RPC). However, the teachings of various embodiments of
the present invention are not limited to any particular pro
gramming language or environment.
As is evident from the preceding description, and referring

back to FIGS. 1 and 2, it can be seen that during the operation
of the nodes 100, 200 (as well as the system 260), a processor
or control logic 220 may access Some form of computer
readable media, such as memory 276. Thus, a system 260
having nodes 200 according to an embodiment of the inven
tion may also include a processor 220 coupled to a memory
274, volatile or nonvolatile.
By way of example and not limitation, computer-readable

media may comprise computer storage media and communi

US 8,055,881 B2

cations media. Computer storage media includes Volatile and
non-volatile, removable and non-removable media imple
mented in any method or technology for storage of informa
tion Such as computer-readable instructions, data structures,
program modules or other data. Communications media spe
cifically embodies computer-readable instructions, data
structures, program modules or other data in a modulated data
signal Such as a carrier wave, coded information signal, and/
or other transport mechanism, which includes any informa
tion delivery media. The term “modulated data signal' means
a signal that has one or more of its characteristics set or
changed in Such a manner as to encode information in the
signal. By way of example and not limitation, communica
tions media also includes wired media Such as a wired net
work or direct-wired connections, and wireless media such as
acoustic, optical, radio frequency, infrared and other wireless
media. Combinations of any of the above are also included
within the scope of computer-readable and/or accessible
media.

Thus, it is now easily understood that another embodiment
of the invention may include an article 290 comprising a
machine-accessible medium or memory 276 having associ
ated data, wherein the data, when accessed, results in a
machine performing activities such as partitioning a program
into a plurality of groups of instructions, assigning a group of
instructions selected from the plurality of groups of instruc
tions to a plurality of interconnected preselected computation
nodes, loading the group of instructions to the plurality of
interconnected preselected computation nodes, and execut
ing the group of instructions as each one of the instructions in
the group of instructions receives all necessary associated
operands for execution.
As noted above, other activities may include partitioning

the program into the plurality of groups of instructions, as
performed by a compiler or a run-time trace mapper, stati
cally assigning all of the plurality of groups of instructions for
execution; and dynamically issuing one or more instructions
selected from one or more of the plurality of groups of
instructions for execution. Still further activities can include
generating a wakeup token to reserve an output data channel
to connect selected computation nodes included in the plu
rality of interconnected preselected computation nodes; rout
ing one or more output data arising from executing the group
of instructions to one or more consumer nodes included in the
plurality of interconnected preselected computation nodes,
wherein the address of each one of the consumer nodes is
included in a token associated with at least one instruction
included in the group of instructions; detecting execution
termination of a group of instructions (including an output
having architecturally visible data); and committing the
architecturally visible data to a register file and/or a memory.

Although specific embodiments have been illustrated and
described herein, those of ordinary skill in the art will appre
ciate that any arrangement which is calculated to achieve the
same purpose may be substituted for the specific embodi
ments shown. This disclosure is intended to cover any and all
adaptations or variations of various embodiments of the
present invention. It is to be understood that the above
Detailed Description has been made in an illustrative fashion,
and not a restrictive one. Combinations of the above embodi
ments, and other embodiments not specifically described
herein will be apparent to those of skill in the art upon review
ing the above description. The scope of various embodiments
of the invention includes any other applications in which the
above structures and methods are used. Therefore, the scope
of various embodiments of the invention should be deter

10

15

25

30

35

40

45

50

55

60

65

10
mined with reference to the appended claims, along with the
full range of equivalents to which Such claims are entitled.

It is emphasized that the Abstract is provided to comply
with 37 C.F.R.S 1.72(b) requiring an abstract that will allow
the reader to quickly ascertain the nature of the technical
disclosure. It is submitted with the understanding that it will
not be used to interpret or limit the scope or meaning of the
claims. It should also be noted that in the foregoing Detailed
Description, various features may be grouped together in a
single embodiment for the purpose of streamlining the dis
closure. This method of disclosure is not to be interpreted as
reflecting an intention that the claimed embodiments of the
invention require more features than are expressly recited in
each claim. Rather, as the following claims reflect, inventive
Subject matterlies in less than all features of a single disclosed
embodiment. Thus the following claims are hereby incorpo
rated into the Detailed Description, with each claim standing
on its own as a separate preferred embodiment.
What is claimed is:
1. A first computation node, comprising:
an input port configured to be coupled to a first direct

channel to directly couple the first computation node to
a second computation node of a plurality of computation
nodes, to enable the input port to directly receive input
data from the second computation node, wherein the
plurality of computation nodes are directly intercon
nected using direct channels, and preselected to execute
a Subset of a group of instructions partitioned from a
program, and the plurality of preselected computation
nodes include at least the first and second computation
nodes;

a first store configured to receive an instruction from an
external source, and store the instruction, wherein the
first store together with at least a second store of a third
of the computation nodes form a frame of buffers span
ning the plurality of computation nodes to store the
subset of instructions prior to availability of operands of
the subset of instructions;

at least one execution unit configured to execute the
instruction using the input data to produce output data;

a first output port and a second output port configured to be
respectively coupled to a second direct channel and a
third direct channel to directly couple the first computa
tion node to respective ones of the second computation
node and the third computation node, to enable the out
put data to be selectively, but directly, provided to either
the second computation node or the third computation
node, via a corresponding one of the second or third
direct channel, for execution of another one of the subset
of instructions; and

a router coupled with the at least one execution unit to route
the output data to either a third output port or a fourth
output port, for alternative selective provision to either
the second computation node or the third computation
node, via a transport channel, wherein the plurality of
computation nodes are further interconnected via the
transport channel.

2. The first computation node of claim 1, wherein the
instruction includes a destination address associated with the
third computation node, and wherein the router is configured
to use the destination address, when the routeris employed, to
route the output data to the fourth output port for provision to
the third computation node, via the transport channel.

3. The first computation node of claim 2, wherein the
destination address is generated by a mechanism selected
from the group consisting of a compiler and a run-time trace
mapper.

US 8,055,881 B2
11

4. The first computation node of claim 1, wherein the
instruction includes a destination address associated with the
second computation node, and wherein the router is config
ured to use the destination address, when the router is
employed, to route the output data to the third output port for
provision to the second computation node, via the transport
channel.

5. The first computation node of claim 1, wherein the
execution unit comprises at least one calculation module
selected from the group consisting of an arithmetic logic
unit, a floating point unit, a memory address unit, and a
branch unit.

6. The first computation node of claim 1, wherein the first
store is configured to store multiple instructions.

7. The first computation node of claim 1, further compris
ing a third store coupled to the at least one input port to store
the input data.

8. A method, comprising:
loading an instruction of a Subset of instructions of an

assigned group of instructions into a buffer of a first of a
preselected plurality of interconnected computation
nodes having been assigned to execute the group of
instructions, wherein the loading is performed prior to
availability of operands of the subset of instructions,
wherein the buffer is part of a frame of buffers compris
ing Stores disposed on the preselected Subset of inter
connected computation nodes for loading the Subset of
instructions for execution, wherein the group of instruc
tions is selected from a plurality of groups of instruc
tions partitioned from a program:

directly receiving by the first preselected computation
node, an associated operand of the instruction, from a
second of the preselected computation nodes, via a first
direct channel directly coupling the first and second
preselected computation nodes;

executing the instruction using the directly received asso
ciated operand, wherein the execution results in an out
put data; and

selectively, but directly, providing the output data to either
the second computation node via a first output port of the
first computation node, or a third of the preselected
computation nodes via a second output port of the first
computation node, for execution of another one of the
Subset of instructions, wherein the first and second out
put ports are configured to be respectively coupled to a
second direct channel and a third direct channel, directly
and respectively coupling the first computational node
to the second and third computational nodes, wherein
the first computational node further comprises a router
configured to be able to route the output data to either a
third output port or a fourth output port, for alternative
Selective provision to either the second computation
node or the third computation node, via a transport chan
nel, and wherein the plurality of computation nodes are
further interconnected via the transport channel.

9. The method of claim 8, wherein at least one of the
plurality of groups of instructions is a basic block.

10. The method of claim 8, wherein at least one of the
plurality of groups of instructions is a hyperblock.

11. The method of claim 8, wherein at least one of the
plurality of groups of instructions is a Superblock.

12. The method of claim 8, wherein at least one of the
plurality of groups of instructions is an instruction trace con
structed by a hardware trace construction unit at run time.

10

15

25

30

35

40

45

50

55

60

65

12
13. Non-transitory computer-storage medium comprising:
machine executable instructions stored therein, in response

to execution by a first computation node, enables the first
computation node to practice a method comprising:
loading an instruction of a Subset of instructions of an

assigned group of instructions into a buffer of the first
computation node, wherein the group of instructions
is selected from a plurality of groups of instructions
partitioned from a program, wherein the buffer is part
of a frame of buffers comprising stores disposed on a
Subset of interconnected preselected computation
nodes for storing the Subset of instructions, wherein
the subset of instructions is loaded into the frame of
buffers prior to associated operands of the subset of
instructions are available, wherein the subset of inter
connected preselected computation nodes is assigned
to execute the group of instructions and includes the
first and at least a second computation node:

directly receiving an associated operand of the instruc
tion, from the second of the preselected computation
nodes, via a first direct channel directly coupling the
first and the second computation nodes;

executing the instruction using the directly received
associated operand, wherein the execution results in
an output data; and

Selectively, but directly, providing the output data to
either the second computation node via a first output
port, or a third of the preselected computation nodes
via a second output port, for execution of another one
of the subset of instructions, wherein the first and
second output ports are configured to be respectively
coupled to a second direct channel and a third direct
channel, directly and respectively coupling the first
computational node to the second and third computa
tional nodes, wherein the first computational node
further comprises a router configured to be able to
route the output data to either a third output port or a
fourth output port, for alternative selective provision
to either the second computation node or the third
computation node, via a transport channel, and
wherein the plurality of computation nodes are further
interconnected via the transport channel.

14. The computer storage medium of claim 13, wherein at
least one of the plurality of groups of instructions is a basic
block.

15. The computer storage medium of claim 13, wherein at
least one of the plurality of groups of instructions is a hyper
block.

16. The computer storage medium of claim 13, wherein at
least one of the plurality of groups of instructions is a Super
block.

17. The computer storage medium of claim 13, wherein at
least one of the plurality of groups of instructions is an
instruction trace constructed by a hardware trace construction
unit at run time.

18. A first computation node, comprising:
means for coupling the first computation node to a second

computation node of a plurality of computation nodes,
via a first direct channel, for directly receiving input data
from the second computation node, wherein the plural
ity of computation nodes are preselected to execute a
Subset of a group of instructions that is partitioned from
a program, and the plurality of computation nodes
include at least the first and second computation nodes;

means for receiving an instruction from an external instruc
tion sequencer, and storing the instruction, wherein the
means for storing the instruction, together with similar
means of at least a third of the preselected computation

US 8,055,881 B2
13

nodes form a frame of buffers spanning the plurality of
preselected computation nodes to store the Subset of
instructions prior to availability of operands of the sub
set of instructions;

means for executing the instruction using the input data to
produce output data;

means for selectively, but directly, providing the output
data from the first computation node to either the second
computation node via a first output port, or the third
computation node via a second output port, for execu
tion of another one of the subset of instructions, wherein
the first and second output ports are configured to be

5

10

14
respectively coupled to a second direct channel and a
third direct channel, directly and respectively coupling
the first computational node to the second and third
computational nodes;

means for routing the output data to either a third output
port or a fourth output port, for alternative selective
provision to either the second computation node or the
third computation node, via a transport channel, wherein
the plurality of computation nodes are further intercon
nected via the transport channel.

k k k k k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,055,881 B2 Page 1 of 1
APPLICATIONNO. : 12/136645
DATED : November 8, 2011
INVENTOR(S) : Burger et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page, item (75), under “Inventors, in Column 1, Line 3, delete “Karthikevan and insert
-- Karthikeyan --.

Title page, item (57), under “Abstract, in Column 2, Line 3, delete “other 5 computation and insert
-- other computation --.

Title Page 2, item (56), under “Other Publications, in Column 1, Line 4, delete “Transaction and
insert -- Transactions --.

Column 1, lines 7-8, delete “application of co-pending U.S. and insert -- application of U.S. --.

Column 1, line 16, delete “119 (e)' and insert -- 119(e) --.

Signed and Sealed this
Twenty-sixth Day of June, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,055,881 B2 Page 1 of 1
APPLICATIONNO. : 12/136645
DATED : November 8, 2011
INVENTOR(S) : Burger et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

Column 1

Lines 18-19, under “Cross-Reference to Related Applications, insert -- This Invention was made with
government support under Grant no. CCR9985109 awarded by the National Science Foundation. The
government has certain rights in the invention. --

Signed and Sealed this
Twenty-sixth Day of May, 2015

74-4-04- 2% 4
Michelle K. Lee

Director of the United States Patent and Trademark Office

