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Abstract 

 

Flexible Antenna Arrays and Transistor Devices Fabricated Using 

Inkjet Printing Techniques 

 

Peter Mack Grubb, Ph. D. 

The University of Texas at Austin, 2019 

 

Supervisor:  Ray Chen 

 

This dissertation reports several improvements to the current state of the art in inkjet 

printed electronics, including new material formulations and new techniques which allow 

for smaller negative dimensions than had previously been reported. These new techniques 

and materials are used to produce several different types of devices on flexible substrates, 

including a new type of printed array antenna called the frequency scanning array as well 

as both high performance and high throughput producible transistors. The experiences of 

building these devices are then used to synthesize potential approaches to integrating the 

unique advantages of printed electronics into conventional IC manufacturing processes. 

This arc from material development, to device development, and finally process 

improvement represents a complete holistic approach to the production of flexible printed 

electronics devices. 
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Chapter 1: Introduction 

In recent years one of the major growth industries for electronics has been the ever 

increasing integration of measurement, quantification, and recording to daily life. These 

technologies have many names, including wearables, flexible electronics, or the so called 

“internet of things.” Together these technologies are projected to generate $6 trillion in 

sales in the next five years [9], yet many of the unique challenges presented by this high 

level of device/lifestyle interaction remain unsolved. Particularly, the requirement for 

highly flexible and environmentally tolerant devices remains a great difficulty. One 

fabrication technique which is being used in order to try and meet the unique environmental 

challenges of the “internet of things” is printed electronics style packaging. As a result, the 

printed electronics industry is growing rapidly, from $35 billion this year to a projected 

$50 billion in the next three years [10]. This expansion is due to the unique capabilities 

provided by printed electronics technology. In particular, the ability for high variability 

without increasing costs makes the suite of techniques developed for printed electronics of 

particular interest for “internet of things” devices. 

Despite the great promise of this field, it remains a poorly defined discipline. 

Processes are ill defined, with many projects taking an ad-hoc rapid prototyping approach. 

This makes communicating evolutions of the field difficult, as it is often hard to integrate 

a new technique into an existing workflow. 

Advancements in the field can be generally split into three categories: materials, 

techniques, and processes. Materials include the formulation of new inks in order to allow 

them to be processed by printed electronics apparatuses. This allows new materials such as 

carbon nanotubes to be used in the printed fabrication of devices. Examples of technique 

advancements include new types of printing methods which allow for smaller dimensions 
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compared to existing technologies. Processes encompass the efforts to provide a common 

language across the discipline in order to maximize impact. 

In this dissertation, I will present examples of each type of advancement. For 

materials, both a new CNT ink and a new hybrid organic/inorganic dielectric ink will be 

demonstrated. The properties of these inks will be fully characterized and various devices 

produced to show the potential impacts of them on future fabrication efforts. 

In terms of techniques, a new micro gapping technique is presented. One of the 

more difficult challenges in printed electronics is feature size, which is currently limited to 

~30 microns using traditional inkjet methods [11]. Several different methodologies have 

been developed for working around these limitations, such as imprinting [12] or 

flexographic printing [13]. While these methodologies allow for micron order feature 

sizes[14], they require static lithographically defined patterns, minimizing the unique 

flexibility that inkjet printing allows.   

The group’s previous work in printing transistors [15]–[17] is extended in order to 

demonstrate a 100% inkjet printed transistor with a very short channel. By using inks with 

differing chemical compositions for the source and drain, transistor channel lengths 

between 300 nanometers and 2 microns were achieved, which represents one of the 

smallest negative feature sizes to date achieved using purely inkjet methodologies. With 

these short channels, transistor devices were developed and tested. An On/Off ratio of 106 

and a high operating frequency with an ft of 18.21 GHz is demonstrated on a transistor with 

a channel length of 1 micron. The semiconducting layer of this transistor consists of a CNT 

thin film formed by printing semiconducting single walled carbon nanotubes in a 

proprietary non-aqueous solution directly onto a Kapton polyimide substrate. This is the 

first printed short channel transistor to achieve such extraordinary performance metrics. 
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In the process field, this dissertation will take experiences from fabricating a wide 

variety of devices including the high performance transistors, mass producible transistors, 

and frequency scanning arrays, and use these experiences as a basis for creating a 

methodology for integrating the advantages of printed electronics into conventional IC 

assembly. As a part of this effort, current common production workflows will be described 

and characterized, including the role of modeling in these workflows. Then, a new hybrid 

methodology will be presented, along with examples of devices that could be or have been 

produced using this hybrid work flow. 
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Chapter 2: Overview of Inkjet Printing Techniques and Requirements 1 

ADVANTAGES OF INKJET PRINTING ELECTRONICS 

Printed electronics technology has been rapidly growing in step with the emergence 

of additive manufacturing technologies since the late 1980’s [18]. Additive manufacturing, 

or 3D printing as it is better known, leveraged many different common paper printing 

techniques in order to extrude three dimensional objects made of plastic. In the same way, 

printed electronics exploits the heavily developed paper printing technologies in order to 

deposit alternative materials which allow the creation of conductive, semiconducting, and 

insulating thin films. 

Inkjet printing provides several unique capabilities to the circuit designer’s toolbox 

which are worth investigating in detail. The first and most obvious is that inkjet printing of 

electronics is a maskless process [19]. Rather than using spincoat methods to cover an 

entire substrate in a material and then removing the unwanted material via some sort of 

developer process, inkjet printing strictly deposits the materials needed on a substrate. This 

offers several advantages over a mask based workflow. Without a mask, design changes 

are trivial, requiring nothing more than a simple update of the digital pattern file. 

Furthermore, expensive exotic materials are much more accessible to inkjet printing 

methodologies since the only portion used it was is printed on the substrate. Both of these 

advantages ultimately lead to significant cost reductions, as variability no longer implies 

cost and materials are conserved. 

Another unique capability relates to the total area inkjet printing can cover. PCB 

production methods typically top out in terms of area covered around 10” x 16” [20], while 

CMOS methods are typically smaller, with wafer sizes maxing out at 450mm [21]. While 

                                                
1 Several Figures from this chapter are pulled from [4] and [7]. Any material included from these sources 
was prepared directly by Peter Mack Grubb. 
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small scale printing systems don’t max out until around 10.5” x 18” similar to PCB 

manufacturing, large scale roll to roll systems can print design on areas that are 18” wide 

and many meters long [22]. This capability to produce long continuous designs lends 

printed electronics some unique capabilities when used for applications such as antennas 

and transmission lines. 

Finally, inkjet printing methodologies are uniquely suited to flexible applications. 

Many CMOS methods are incompatible with flexible substrates due to their very high 

temperatures [23]. In contrast, most inkjet technology is centered around lower temperature 

processes. This allows for a wider variety of potential substrates, including flexible ones 

such as PET and Kapton. Additionally, the high throughput methods developed for printed 

electronics are ultimately all based off of high throughput paper printing presses, 

necessitating the use of some sort of flexible substrate [24]. This means that most 

development in the field has focused its efforts on low temperature processes which are 

compatible with these types of systems, rather than the high temperature paradigm found 

in most CMOS foundries.  

TYPES OF INKJET PRINTING 

The most widely used printed electronics technology is the piezo-electric or drop 

on demand model of printing. This technology works similarly to the technology found in 

common office desktop printers. A membranes shape is controlled by an electric charge, 

allowing a small drop of the material contained in the “ink” cartridge to form at the exit of 

the nozzle [25]. Because this general mechanism has been widely used in inkjet printers, it 

is very well developed and cheap to produce. However, like its 3D printing cousins, the 

biggest problem with drop on demand systems is scaling. A typical 8.5” x 11” design on a 

Dimatix drop on demand system (Such as the one shown in Figure 2.1) will take 4-6 hours 
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to print each layer[25]. Thus, further printing technologies have been needed in order to 

reach large scale deployment. 

 

 

Figure 2.1:  A small scale Fujifilm Dimatix Materials Printer. 

Another popular printed electronics model is known as aerosol or aerojet printing. 

Rather than using piezo-electric membranes, these printing systems use pressure to control 

drop formation and application. The most well-known system is built by Optomec [26], 

and is technically capable of higher resolutions and better layer control than the Dimatix 

system. However, the aerosol based systems tend to have much more narrow requirements 

for printable materials. Some nanoparticle solutions can cause problems with these systems 

due to their particulate nature. In particular, the liquid can behave unpredictably depending 

on the solid/liquid ratio being ejected from the aerosol print head. Due to our group’s 

66cm 

61cm 

40cm 
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interest in depositing CNT films, the aerosol systems were seen to be not as good a fit for 

our particular fabrication requirements. 

The most popular technique for large scale printed electronics production is known 

as roll to roll printing. This technique uses a hybrid of the drop on demand system in 

conjunction with printing techniques developed for mass production of written word, such 

as in books or newspapers [22]. In roll to roll printing, a large roll of flexible substrate is 

placed on one end of a printing tensioner system, such as the one shown in Figure 2.2. 

Several drop on demand print beds are then placed along the tensioner along with the 

proper curing systems. With these systems in place, the printer can create printed 

electronics substrate at a rate of up to 1 meter per minute [27]. The ideal combination of 

these two technologies would be the development of a print on demand and roll to roll 

system which was one to one compatible, that is a design on one was completely 

reproducible on the other. This would allow for a rapid prototyping and production cycle 

unlike anything which is possible for traditional lithographic production methods. 

 

  

Figure 2.2:  A two stage roll to roll printing system with multi-layer alignment.  
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These high speed roll to roll printing techniques are what make printing so 

interesting in the context of “internet of things” packaging. Roll to roll printing could allow 

for the maskless production of flexible electronics without the use of a clean room[22]. 

This greatly reduces the cost of device production for items which are easily integrateable 

into daily life. However, getting to this point requires overcoming several materials based 

challenges. 

SUBSTRATES FOR PRINTED ELECTRONICS 

 The most common material used for printed electronics is Polyethylene 

terephthalate (PET) and its close cousin Polyethylene naphthalate (PEN). While the two 

materials are significantly different from a materials science standpoint [28], their 

similarities are more interesting relative to flexible electronics. Both materials form non-

conductive highly flexible substrates which can easily be made in such a way that it is 

optically transparent. Technically, PEN has better thermal deformation properties than PET 

due to its chemical structure, as illustrated in Figure 2.3, with the difference of PET vs PEN 

and PET treated with a heat shrinkage minimizing coating. Given the problems associated 

with low temperature substrates and flexible electronics, it would seem that PEN would be 

the more common substrate. However, the chemical changes that make PEN better at high 

temperatures than PET also increase its cost somewhat [29], [30]. For the most part, the 

improvements in high temperature performance on PET vs PEN are not worth the cost 

increases. Some research groups continue to use PEN due to specific surface effects that 

they are exploiting, but outside these special cases, PET dominates flexible electronics 
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Figure 2.3:  Deformation properties for PET, PEN and its derivatives. [28]  

 The primary competitor to PET in terms of flexible electronics adoption is 

Kapton. This material is a proprietary film produced by DuPont with a characteristic orange 

appearance as shown in Figure 2.4. Compared to PET, the temperature tolerance of Kapton 

is markedly higher, with most variants citing a melting deformation temperature of over 

500 Celsius [31]. This temperature difference opens up whole new classes of materials 

which can be used on a Kapton substrate but are functionally incompatible with PET or 

PEN. However, Kapton is also much more expensive than PET, with most quantities cost 

approximately 10 times as much as the PET alternatives [32]. This increase in cost makes 

Kapton unusable for many common flexible projects. Despite this, it is the substrate of 

choice for research and development. When other variables are under investigation, it is 

helpful to minimize the potential for problems from the substrate.  
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Figure 2.4:  A roll of Kapton polymide film. [32]  

Due to the high temperature requirements for sintering many silver nanoparticle 

based inks, most of the projects pursued in Dr. Ray Chen’s lab use Kapton as the substrate. 

Some of the transistor testing was performed on glass slides in order to eliminate the 

possibility of substrate coupling issues, but once this potential source of error was 

eliminated development focused exclusively on the Kapton substrate. 

REQUIRED PROPERTIES FOR JETTABLE MATERIALS 

In order for a solution to be usable by a piezo-electric inkjet printer, there are some 

very specific properties it must conform to [33], [34]. For a given piezo-electric membrane 

design, there will be a limit to how much force it can exert on the liquid in the ink cartridge. 

This enforces a maximum viscosity requirement on the liquid, as high viscosity liquids 

such as glycerol will require too much force to pull a drop into the piezo-electric chamber. 

However, if the viscosity is too low, a drop will not form, and instead the liquid will just 

flow straight out the nozzle, this causes long lines to form, instead of drops being placed at 

specific locations on the substrate. 
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The other primary fluid property the ink solution must possess relates to its surface 

tension[34]. For the same reasons as the viscosity, this must fall in a narrow range. Too 

high and the piezo-electric material will not be able to provide enough force to break the 

surface tension at the nozzle/air interface. Too low, and the drop will not properly form, 

keeping the system from being able to properly place the ink on the substrate with any kind 

of precision. 

When selecting inks, one other property that is essential to examine is the annealing 

method and temperature. Kapton substrates have a maximum temperature around 500 

Celsius depending on the exact type used [31]. This means that while there are materials 

that could theoretically be deposited using an inkjet printer, many are incompatible with 

the types of substrates that are typically used. One way to avoid this issue is through the 

use of high intensity UV curing. Sometimes called “photonic curing,” these systems use 

pulsed UV light to rapidly cure the inks. This curing technique requires inks which are 

specifically designed to absorb UV spectra light, but otherwise are one of the primary ways 

in which high speed curing is achieved.[35]  

These different properties will by what type of printer and cartridge are used. Some 

types of print heads use piezo-electric membranes that are stronger than others, which 

changes the range of both viscosity and surface tension that the system will support. This 

tends to complicate ink commercialization, as specific solutions tend to work best with 

specific print systems. Fortunately, viscosity and surface adjustments are usually possible 

through the addition of solvents and emulsifiers such as glycerol and Triton-X100. [34]  
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Chapter 3: Material Selection and Ink Development 2 

SILVER CONDUCTIVE INK 

Given the emerging nature of the printed electronics technology, it is unsurprising 

that many different types of conductive inks have emerged to try and fill the needs of 

researchers and engineers. Costs, chemical properties, and even basic annealing 

mechanisms vary wildly across the entire range. Of the many various types of conductive 

materials that have been tried to date, currently the material of choice for most projects 

needing a conductor is silver, due to its very high conductivity and relatively low annealing 

point. 

Over the course of the printed transistor project, four different silver inks were 

tested and used in various developmental applications: Novacentrix JS-B40G, UTDots 

UTDAg40IJ, Paru Co. PG-015, and Electronink RxNA-Ag1012. Each of these inks is 

pictured in Figure 3.1 below. 

 

 

 

 

                                                
2 Sections of this chapter are pulled from [3], [4], [7], [8], For all of these publications, Peter Mack Grubb 
was responsible for all preparation and sourcing of materials, printing, and testing of final devices. Ion Gel 
material was produced in conjunction with Dr. Frisbie from the University of Minnesota. Hybrid dielectric 
development was accomplished in collaboration with Farzad Mokhtari-Koushyar. Raman spectroscopy was 
performed with the assistance of Farzad Mokhtari Koushyar and Aref Asghari. 
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Figure 3.1:  The various silver inks used in the project from left to right: Novacentrix JS-
B40G, UTDots UTDAg40IJ, Paru Co. PG-015, and Electroninks RxNA-
Ag1012. 

The UTDots, Novacentrix, and Paru Co. inks all use a very similar mechanism for 

printing silver. The solution consists of a proprietary solvent combination that meets the 

requirements of the printer with silver nanoparticles dispersed into it. Silver nanoparticles 

have a much lower melting point than bulk silver due to the high surface area to volume 

ratio [36]. When heat is applied to these inks, the solvent evaporates leaving the silver 

nanoparticles which then melt into a single conductive sheet of silver. This method has 

been the dominant mechanism for silver printed electronics in recent years [37], and has 

seen much development by multiple companies in an attempt to commercialize the 

technology. However, while the three inks are similar in terms of mechanisms, they vary 

quite a bit in terms of cost, chemical composition, and print quality. In our experience, the 

Paru Co. ink had the best print results of the three. However, the solvent combination used 

therein was very prone to clogging the nozzles of the ink cartridges when not in use, 

rendering the ink far less useful. This forced us to use the Novacentrix cartridge as our day 

to day printing ink due to its consistency and solid print results. The UTDots ink was the 

most difficult of the three to print with, but the difficulties had to be worked with as it was 
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one of the only non-polar inks we were able to consistently source. This became crucial as 

ink chemistry came into play with both surface effects and inter-ink interactions. 

The Electronink product was very different from the other three silver inks we 

tested. Instead of using a silver nanoparticle solution, the Electronink used a silver salt 

solution. When heat was applied, the solvents evaporate, and a reaction occurs leaving only 

the silver on the substrate. This method has great potential for future printing projects, as 

it has a much lower unit cost than the silver nanoparticles. However, it is currently under 

development, and thus the ink product was not as consistent batch to batch as we would 

have liked. While we initially had some very promising results with this ink, it was 

ultimately abandoned due to reproducibility problems.  

PRINTABLE SEMICONDUCTORS 

The critical development in the past 15 years that has enabled the development of 

printed transistors is the emergence of printable semi-conductors. Conductive printing 

materials were some of the earliest materials developed for use with inkjet printers in an 

electronics paradigm. However, semiconductors have proven more challenging. CMOS 

lithography doesn’t have an analog for “deposited” semiconductors, as the semiconductor 

material is usually the basis for the whole device. Thus, the development of new materials 

was needed. 

Three classes of materials have emerged as possibly solving this problem: organic 

materials, silicon nanoparticles, and more recently carbon nanotubes. Organic materials 

such as polythiophene or other semiconducting polymers were some of the first printable 

semiconductors [38]. However, these materials have major limitations with regard to high 

frequency operation, usually topping out in the low megahertz range with cutting edge 

technology [39]. The first attempt to find a higher frequency semiconductor used silicon 
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nanoparticles to try and build something that behaved more like a CMOS device [40]. 

However, silicon’s melting point even in nanoparticle is very high. This meant a binding 

polymer was required between the silicon nanoparticles. Unfortunately, polymers also have 

very poor high frequency responses. While researchers were able to get decent mobilities 

out of these materials, the high frequency response was not adequate. 

Because of the limitations of organic and silicon nanoparticle semiconductors, high 

frequency printed transistors have largely focused on using carbon nanotube (CNT) based 

solutions for the semiconducting material. Originally CNT based semiconductors were 

extremely expensive and hard to implement due to the fact that CNTs naturally form in 1/3 

semiconducting and 2/3 conducting proportions. However, Nanointegris developed a 

method to separate the semiconducting CNTs out with a greater than 99.9% purity [41]. 

This opened the door for the development of CNT based inks. All of these inks operate on 

basically the same principle. CNTs are dispersed in some kind of solvent with a relatively 

low evaporation point. The solvent with the dispersed CNTs is then printed on the 

substrate, and heat is used to evaporate the solvent. What is left is some form of CNT field, 

similar to the one shown in Figure 3.2. 
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Figure 3.2: Unaligned single walled carbon nanotubes that have been applied using a 
Dimatix printer. The solvent has been annealed away, though some residue 
remains. 

The primary downside to CNT based semiconducting layers is the fact that it is 

alignment sensitive. If there is not some path through the CNTs from the source to the drain 

which forms a continuous line, then no semiconducting effect will be observed. One way 

to avoid this is via the use of a percolated mesh such as the one shown in Figure 3.2 [42]. 

At high enough concentrations, a mesh forms such that semiconducting is achieved. 

Another alternative is self-alignment using dip coating, which has been explored by 

previous members of Dr. Ray Chen’s group [16]. While this method is effective, it is not 

fully roll to roll compatible, limiting its applications to small scale prototype devices. For 
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the development of the high speed transistors as a part of this project, a third alternative 

was developed using electric fields to align the CNTs, which is reported below. 

CARBON NANOTUBE INK DEVELOPMENT 

One of the key elements in developing high frequency compatible printed thin film 

transistors (TFTs) has been the development of inexpensive high purity CNTs by 

Nanointegris Inc. [41]. While the upscaling of these technologies have allowed 

semiconducting CNTs to be commercially available in purities greater than 99.9%, this 

does not solve the issue of how to apply these CNTs to a substrate in a precise fashion. 

Previously our group developed a CNT inkjet solution using 1-Cyclohexyl-2-

pyrrolidone (CHP) [15]. CHP was selected as the solvent due to its relatively low boiling 

point, ideal viscosity and it polarity. As a polar substance, the CNTs would remain in 

solution for an extended period of time, giving the ink a good shelf life [43]. However, the 

CHP was not without its downsides. Firstly, due to its polar nature the CHP could not be 

applied across multiple inkjet layers. After the first layer of ink was cured, the highly 

hydrophobic CNTs would push any CHP/CNT solution away from the target site. Given 

that the CNT concentration was limited to 20% by weight, it was almost impossible to 

achieve consistent semiconducting layers using this formulation. Additionally, the CHP 

solution is not compatible with high speed roll to roll printing methodologies. The solvent 

must be burned away using some sort of thermal curing system [15]. With these negatives 

in mind, our group worked to formulate a new CNT ink which wouldn’t have these negative 

properties. 

For an ink to be compatible with an inkjet deposition system, the two most critical 

properties are the surface tension and the viscosity of the ink solution. Typical values of 

32-42 dynes/cm for surface tension, and 10-12 cps for the viscosity have been recorded as 
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good targets for an ink in a Fujifilm Dimatix cartridge[34]. While some R2R systems have 

varying targets for these values, they provide a good benchmark target for developing a 

new ink. 

In addition to these solvent properties, the other key property for this CNT ink 

would be the absorption spectra. Typically, a high speed R2R system uses some sort of 

flash lamp system to emit high energy UV and visible light pulses. The ink can then absorb 

the energy from these flashes, annealing the ink. The development of this CNT ink targeted 

the Xenon Sinteron-2000 system pictured in Figure 3.3, which features a high intensity 

pulsed xenon lamp that provides a broadband spectrum from 240 nm to 1000 nm with  

adjustable pulse energy up to 1500 Joules/pulse [44], which corresponds to UVB up to the 

Green/Yellow split of the visible light bands. 

 

 

Figure 3.3:   Xenon Sinteron-2000 system used for developing the CNT ink. 

One class of solvents with absorption in the right range for usage with the Xenon 

Sinteron-2000 are the aromatic hydrocarbon liquids including both Xylene and Toluene. 
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These solvents typically have a strong absorption peak at 400 nm in the UVA range, with 

a second peak between 575 nm and 750 nm depending on the exact compounds in 

solution[45]. Consequently, these materials are well suited to absorbing the energy from 

the Sinteron, allowing them to be evaporated using only the high intensity light pulses. 

Of these aromatic hydrocarbons, Xylene is one of the most common. However, its 

viscosity is only 0.6 cP in a multi isomer blend. This is far too low to have drop formation 

using a drop on demand printing system. Some sort of thickening agent is needed in order 

to raise the viscosity of the overall printing solution. The most common thickening agent 

used in inkjet formulation is glycerin, as it has an extremely high viscosity requiring very 

little to reach the target viscosity needed. However, glycerin is not miscible in xylene, 

necessitating the addition of a moderator, in this case methanol, to allow for a stable 

solution. The last component of the CNT ink is Triton X-100, which is an emulsifier that 

both keeps the CNTs in the solution and lowers the surface tension to a usable level. 

Once the solvents all had been identified, the next step was to identify the proper 

concentrations. Experimentally, it was determined that a 1:4 ratio of methanol to xylene 

provided a solution which was miscible with the glycerin. Then, the Refutas equation for 

viscosity blending was used to determine the amount of glycerin needed to reach the target 

viscosity[46]. The Triton X-100 concentration was determined based on other ink 

formulations in the literature [47]. The end result yielded a formula of 0.5% glycerin, 0.1% 

Triton X-100, 19.4% methanol, and 80% Xylenes. This solvent being jetted by a Fujifilm 

Dimatix cartridge is shown in Figure 3.4. 
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Figure 3.4: Drop watcher view of the new CNT solution on the Dimatix printer. Drops 
have stability similar to the CHP solution, though markedly better 
performance once on the substrate. 

With the concentrations determined, an IsoNanotubes-s100 CNT thickfilm from 

Nanointegris was dissolved into the solution at a concentration of 20% by weight. These 

CNTs are high purity, with no polymer wrapping or other functionalization, and have been 

sorted to be 99.9% semiconducting CNTs. The resulting solution is shown in Figure 3.5a. 

This ink solution was then printed in a small patch on a piece of Kapton and glass as shown 

in Figure 3.5b, which was then placed under the Sinteron. The UV light was then pulsed 

12 times at 1.8 kV with a 0.4 second separation between the pulses. This put sufficient 

energy into the solvent to evaporate the non-CNT components, as shown in Figure 3.5c. 

An SEM micrograph of the CNT field remaining on the substrate after the curing process 

is shown in Figure 3.5d. 
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Figure 3.5:   A) The CNT Ink Solution, B) Printed solution before curing and C) after 
curing, D) SEM of the CNT field post curing. No disturbance of the CNT 
field by the high intensity pulses was observed 

In order to assess the purity of the deposited CNT ink, Raman spectroscopy was 

used. First, as a baseline a reading was taken of the bulk CNT thick film provided by 

Nanointegris. CNTs were then applied to a Silicon substrate and cured using the Xenon 

Sinteron, and a reading was taken from the resulting thin film. It is worth noting that 

readings were attempted on a Kapton thin film, as this is what is typically used for 

producing R2R transistors. However, the Kapton substrate was too transparent for the 

Raman apparatus used to gather the data. The resulting data from the two readings is shown 

in Figure 3.6. 
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Figure 3.6:  Raman spectroscopy of the thickfilm and printed film shows no significant 
shift in peaks, revealing very little contamination from un-annealed solvents. 

The only significant downside of the new solution is that the CNTs do not remain 

in solution as well as they do in the CHP mixture. This is the downside of most non-aqueous 

CNT solutions [48]. Much of this is mitigated by the use of Triton X-100, an emulsifier 

which improves CNT dispersion. For what minimal settling that occurs, a simple hand 

shaking of the cartridge prior to usage is sufficient to minimize the effects of this issue. 

Furthermore, an ink recirculation system such as those used in industrial scale applications 

would also be sufficient to maintain the CNTs in suspension.  

DIELECTRIC MATERIALS 

One of the primary problems which is causing decreased yield rate with the 

transistors is the dielectric material used for the gate insulator. Low temperature printable 

dielectric materials present several unique challenges. The classic gate insulator of silicon 

dioxide is not really an option do to the high temperatures required to grow it, and the lack 
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of silicon present in most printed devices [49]. Other modern high-K dielectric materials 

present their own problems as well, with most materials in this class having annealing 

temperatures well beyond the limits of Kapton [50]. For example, one common high-K 

dielectric is ZrO2, which has an annealing temperature greater than 550 Celsius [51]. This 

makes most high-K dielectrics, even in nanoparticle form, unusable for flexible electronics. 

Currently, much research is being done to try and find an elegant solution to this problem. 

In the course of our research we investigated and tested devices using three classes of 

printable dielectrics intended for usage as gate insulators including acrylates, ion gel, and 

a hybrid organic/inorganic material. 

The primary class of materials our group has built transistors with in the past are 

acrylates. These materials typically take the form of photoresists such as AZ5214 and 

AZ5209. A device using the AZ5214 dielectric is pictured in Figure 3.7. Characteristics 

include very low dielectric constants on the order of 0.8-2.2 [52], higher viscosity, and 

good temperature tolerance. While the group has achieved remarkable results using these 

materials, the yield rate associated with them tends to be very low. With the high viscosity 

of the materials, particularly AZ5214, printing the material consistently is very difficult. 

Additionally, the material does not spread very well or very consistently across Kapton. 

This makes achieving a thin and uniform layer of material difficult. The roughness is 

visible in the black and white image of a typical deposition in Figure 3.8. Despite these 

downsides, the material has very good high frequency response, and is not as prone to pin-

holing as many dielectric materials, making it a solid baseline for investigating the various 

dielectric materials under consideration. 
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Figure 3.7:  A typical AZ5214 thin film transistor. Note the inconsistent thickness. 

 

 

Figure 3.8:  Typical AZ5214 deposition. Note the very rough surface with many high 
and low points despite still being in liquid form. This is due to the high 
viscosity of the material. 
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One method we used to boost the yield rate of the acrylate based devices was 

diluting the photoresist material with propylene glycol monomethyl ether acetate 

(PGMEA). This solvent is commonly used to control the thickness of photoresists when 

spin coating on silicon wafers. In the context of printing, it reduces the viscosity of the 

material, but burns off when the device is heated up. By using a 75% AZ5214/25% 

PGMEA solution we were able to significantly boost the yield rate of the acrylate based 

devices with minimal downsides. Additionally, this solution shows promise of being 

compatible with roll to roll production, whereas pure AZ5214 is too viscous for the Konica 

Minolta cartridges used in the group’s roll to roll system. 

While the acrylates have a history of providing high performance devices in our 

group [17], even with the dilution methodology, yield rates remain stubbornly stuck in the 

25-50% range. This is not workable when attempting to build 8x8 phased array devices, so 

our group has been investigating other alternatives. One dielectric material which has been 

receiving lots of attention in printed electronics is ion gel. Given ion gel’s status as an 

emerging material, our group consulted with an expert on ion gel devices, Dr. Daniel 

Frisbie, who provided the support necessary to design and implement devices using these 

materials. A typical ion gel gate transistor is shown in Figure 3.9. 
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Figure 3.9:  A typical ion gel-based transistor with a PEDOT: PSS gate. 

Ion gel research grew out of the need for low operating voltage printed electronics 

while researching printable batteries leads. These requirements can be satisfied by 

Electrolyte-gated transistors (EGTs)[53], which are a special type of thin film transistor. 

EGTs with ‘ion gel’ as the gate dielectric have shown promising characteristic for printed 

electronics such as electronic ON/OFF current ratio of 106 and gate-drain current of nAmps 

and more importantly sub-3 volt operating voltages[54]–[56]. Ion gel is a mixture of 

triblock copolymer and ionic liquid [57]. Despite micron level thickness, ion gel shows 

specific capacitance in the order 10 µF/cm2 which is 10,000 times larger than thin 

conventional dielectric layer like PMMA, which gives ion gel more printability with 

current printing methods to relax the alignment requirements [58]. Moreover, ion gel 

capacitance is constant for thickness range of 2-10 µm, which also eliminates the thickness 

control as a challenging step in the printing of conventional dielectrics [59]. 
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For ion gel ink, a solution with the mass ratio of 1/9/90 for poly(styrene-b-methyl 

methacrylate- b -styrene) (PS-PMMA-PS) /1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)amide [EMI][TFSI]/ethyl acetate was made. The (PS-PMMA-

PS) polymer was synthesized by Dr. Hong Chul Moon in the Frisbie/Lodge group. 

[EMMI][TFSI] was purchased from EMD Chemicals. For the poly(3,4-

ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) ink, PH1000 was 

purchased from Heraeus, and 6% volume ethylene glycol was added to the ink to enhance 

the conductivity. The chemical structures for these inks are shown in Figure 3.10. 

 

 

Figure 3.10:  Examples of organic dielectric, conductive materials. (a) [EMI][TFSI] Ionic 
liquid. (b) SMS, PS-PMMA-PS, triblock copolymer (c) PEDOT (d) PSS. 
The mixture of (a) and (b), ion gel, is used as dielectric. The mixture of (c) 
and (d) is a well-documented conducting polymer.  

While ion gel enabled us to achieve prints with yield rates in excess of 95%, the 

material has several major disadvantages. Fabrication is non-trivial as it requires the usage 

of an aerosol-jet printer. Aerosol-jet printing is relatively new printing method for printed 

(a) (b) 

(c) (d) 
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electronics with less viscosity sensitivity than inkjet printers. Aerosol-jet printers are 

nozzle based methods, in which despite 100 µm sized nozzle, printed high aspect ratio line 

with width as narrow as 10 µm is accessible [60]. Since our group does not currently 

possess this equipment, Dr. Frisbie’s group performed these prints. Additionally, ion gel 

lacks the durability of the acrylate gate insulators. Simply wiping a soft cloth across an ion 

gel device completely destroys the gate layer. This lack of environmental hardiness is 

exacerbated by the fact that any annealing over 100 Celsius causes the material to 

evaporate, limiting gate electrodes to very low temperature annealing materials. The most 

concerning issue with the environmental stability of the ion gel devices is its lack of voltage 

tolerance. At a voltage greater than 2V or less than -2V, the ion gel permanently deforms, 

burning the device out. This makes the power supply concerns for a device using these 

transistors very important. 

HIGH VOLTAGE DIELECTROPHORESIS  

One of the primary challenges of using carbon nanotubes (CNTs) in a printed 

electronics setting is the lack of alignment. In CMOS design flows using CNTs, the general 

method is to grow a series of CNTs, such that there are many groups going from one side 

of the channel to the other. When using the inkjet deposited CNTs, there is far less control. 

CNTs tend to spread out from the point where the fluid first contacts the Kapton, forming 

outward pointing lines, and generally showing minimal directionality in their placement. 

An example of some unaligned CNTs is shown in Figure 3.11. 
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Figure 3.11: SEM image of unaligned CNTs at 77.07kX magnification. 

The problem with unaligned CNTs is it requires very high densities of them in order 

to achieve a semiconducting layer for the transistor. High density leads to other undesirous 

effects, including very high drain currents and CNT to CNT current induction effects. An 

ideal CNT layer is almost entirely aligned, with as many CNTs as are needed in order to 

reach the desired max Idsat.  

Thus far in inkjet printing there have been very few attempts to align CNTs. 

However, in a CMOS setting there have been many methods tried. One which is 

particularly well suited to inkjet production flows is Dielectrophoresis (DEP). In DEP, the 

CNT/CHP solution is placed between two electrodes which will eventually form the source 
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and drain in a transistor setting. An electric field is then applied, which the CNTs align to 

due to their dipole nature. 

In CMOS settings, this method has largely been abandoned. In a clean room setting 

there are better methods which can be used, though none of these transfer to inkjet printing 

very well. However, when applied to inkjet printing, DEP leads to much better aligned 

CNTs. By applying an AC voltage with a frequency on the order of 10 MHz, and a DC 

bias of approximately 10 Volts, the alignment shown in Figure 3.12 was achieved. 

 

 

Figure 3.12: SEM image of aligned CNTs at 118.42kX magnification. 

While the initial results are very promising, this methodology is not without 

challenges. Foremost among these is the difficulty in defining how “aligned” a group of 

CNTs are. While qualitative statements are not too difficult, having a quantitative 
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definition of alignment is critical. To this end, a model is currently being developed to 

predict the CNT behavior while undergoing DEP. The other major challenge relates to 

localized shorts in the CNTs. Even at best purity, 1 in every 1000 CNTs is conducting. This 

makes the odds that a conducting CNT bridges the gap very high. If this happens without 

DEP it is a simple matter to apply a ramped current to burn out the conducting CNT. 

However, if DEP causes a conducting CNT to suddenly bridge the gap between the two 

electrodes, then it can cause a sudden high current event. This can cause burnouts of the 

silver and semiconducting CNTs, causing permanent damage to the device being 

developed. In order to combat this, low current and high voltage is used. The low current 

prevents the CNTs from burning out, allowing the conducting CNTs to be carefully burned 

out at a later point in the production cycle. 

One important note about DEP is the fact that it is roll to roll compatible. Electric 

fields may be applied via a roller, allowing alignment as a part of the roll to roll production 

cycle. This is critical to future development, as there are very few high yield production 

methods for CNT FETs. 

SUBSTRATE SURFACE TREATMENTS 

In the course of printing the various materials used for the new CNT ink 

development, a new methodology for improving the print resolution of various devices was 

found. Specifically, by coating the print area in a solvent of the opposite polarity and then 

evaporating it prior to printing the new material, print resolution and smoothness was 

greatly increased. This is due to the neutralization of surface charges which would normally 

cause the ink to spread across the substrate. While substrate coating is not a new technique 

[71], it is usually accomplished via some sort of cured polymer as opposed to a simple 

wash. 
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To demonstrate these effects, samples were prepared with Novacentrix JS-B40G 

silver nanoparticle ink printed on each. This ink is an aqueous ink, so the substrate was 

coated with Xylene which was then evaporated off. The resulting prints are shown in Figure 

3.13. Prior to developing this methodology, the closest parallel lines that could be 

maintained without reflow causing shorts was 125-150 microns. Using the new method, 

lines as close as 50-80 microns could be obtained. This allowed for the design of a transistor 

test fixture which was compatible with both 250 and 500 micron pitch GSG probes, which 

increases the maximum testable frequency of the device.  

 

 

Figure 3.13:  a) Novacentrix ink on uncoated Kapton, b) Novacentrix ink on Kapton that 
has been treated with xylene. Note the smoother surface of the xylene 
treated sample. 

The effect is even more dramatic with the new CNT ink solution. Given the non-

aqueous nature of the ink, isopropyl alcohol (IPA) was used as the surface coating which 

was evaporated off prior to the print. Figure 3.14a shows a print without the coating while 

Figure 3.14b shows a print with the coating. Of particular note is the much greater 

concentration of solvent on the substrate. Both contain the same volume, but keeps the 

solution, and thus the CNTs, concentrated in a much smaller space. 

a) b) 
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Figure 3.14: a) CNT on uncoated substrate, and b) CNT on IPA coated substrate. Note 
that the coated sample shows much better control in terms of shape and 
concentration. 

Note that this method is fully roll to roll compatible. By simply running the 

substrate through a tank similar to what is used in flexographic print systems, the substrate 

could be coated in the solvent of choice. Given the low boiling point of IPA and Xylene, it 

could then be evaporated off using a simple heated air gun prior to printing. A diagram of 

such a system is shown in Figure 3.15. 

 

a) b) 
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Figure 3.15: Example setup to allow roll to roll substrate coating. The coating could be 
Xylene, IPA, or some other surface energy neutralizer. Note that additional 
rollers could be added to flip the substrate if needed. 
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Chapter 4: High Frequency CNT Transistors 3 

One of the key successes of the research efforts described in this dissertation was 

the development of a high speed 100% printed CNT Transistor. As a part of the materials 

development described in the previous chapter, a technique was created which allows for 

the printing of sub-micron non-conductive gaps between silver electrodes. Using this, it is 

possible to produce a CNT transistor capable of operating at up to 18.2 GHz.   

DEVICE STRUCTURE 

The entire fabrication process was completed using a Fujifilm Dimatix DMP-

2831[25] printer for deposition. Individual printed material layers were thermally cured in 

an oven.  

The general device structure is shown in Figure 4.1, with 1a showing the device 

layout and 1b showing the cross section of the transistor. A top gate structure was used in 

order to protect the SWCNT thin film and provide repeatable printability[42]. Without a 

protective top layer, the SWCNT thin film can dissolve on contact with environmental 

contaminants and liquids.  

 

                                                
3Sections of this chapter are pulled from [1]. Peter Mack Grubb was responsible for all fabrication and 
electronics printing presented in this publication. Additionally, all device designs originated from Peter 
Mack Grubb. Most importantly, the sub-micron gapping technique were discovered, tested, and 
implemented solely by Mr. Grubb. 
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Figure 4.1:  a) A composite image of one of the devices produced. The odd structure is 
designed to allow testing used GSG probes for high frequency testing, while 
the more conventional pads were used for DC testing. G = Ground, D = 
Drain, and S = Source. b) A dimensioned cut away of the device structure. 

The substrate used was 500HN Kapton. This substrate provides a very high 

temperature tolerance ranging from –269°C to 400°C[72], allowing for a wide range of 

compatible inks, while retaining high flexibility. Additionally, these properties make it an 

ideal substrate for use in aerospace and military applications. 

First, SWCNT thin film structures were formed on the substrate using the 

techniques outlined in subsequent sections. Once the thin film was formed, the source and 

drain were printed on top, with one terminal using silver nanoparticle ink from Novacentrix 

Inc (JS-B40G) and the other using non-aqueous silver nanoparticle ink from UTDots Inc 

(UTDAg40IJ). The opposite polarities of inks cause the generation of a narrow, non-

diminishing gap with a finite length. This process is discussed later in this paper. Silver 

was printed on top of the SWCNT thin film in order to maximize the contact surface area 

between the SWCNT network and the silver transmission lines. The source and drain were 

then cured at 200 degrees Celsius. Once this step was completed, a dielectric material 
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(AZ5214 photoresist from MicroChemicals) was printed over the source, drain, and 

gap[51]. Finally, a gate was printed on top of the structure using the JS-B40G silver 

nanoparticle ink from Novacentrix.  

The capacitance per unit area for the dielectric material was experimentally 

determined. Printing usually forms layers of very consistent heights, due to its high degree 

of control over the quantity of ink deposited in each layer. To find the value for Cdiel, a 

simple 100 μm x 100 μm silver patch was printed on top of a 1-micron thick layer of 

AZ5214. The capacitance across this structure was then measured allowing us to calculate 

Cdiel to be ~9.3 nF/m2. The relatively low capacitance is achieved due to the relatively thick 

gate dielectric and lower dielectric constant of AZ5214.  

SWCNT THIN FILM PRINTING 

In the device outlined above the semiconductor consists of a network of single 

walled carbon nanotubes. Recent efforts for printed transistors have focused on the usage 

of semiconducting CNTs due to their exceptionally high mobilities[15], [17]. While other 

printable semiconductors have been used, none have shown the potential for the multiple 

GHz performance that CNTs have. While other bioFET devices have shown outstanding 

properties in terms of subthreshold swing and low gate voltage[73], these devices have so 

far been unable to break into the GHz switching realm, whereas CNT devices have.  

Typically, clean room processed SWCNT based transistors use some form of 

aligned SWCNTs[16]. This provides optimal performance while using the fewest number 

of CNTs. However, in recent years, the cost of CNTs has dropped to a point that using the 

minimal number is not necessarily a major concern from a cost standpoint[41]. While 

aligned thin films do provide significantly better performance[74], [75], unaligned thin 
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films are much easier to produce. Thus, efforts to ink jet print CNTs have largely focused 

on unaligned CNT networks [17], [42], [43]. 

Past efforts to print these CNTs have largely been done using aerosol printer. This 

process has met with solid results [4], [17], [76], but is not as flexible in terms of 

applications as ink deposition. Previously, our group formulated a mixture of CHP and 

SWCNTs which allowed the SWCNTs to be printed using a deposition printer [15]. CHP 

is ideal from a printing aspect for this application, as it has both a relatively low boiling 

point of 154°C that is stable at room temperature, and a viscosity well suited to use in the 

Dimatix printing system[43]. However, while the CHP provides good print performance, 

subsequent layers must deal with the extreme hydrophobicity of the CNTs themselves. This 

means that the first layer of solution printed must be the only layer, as the CHP will be 

pushed away from the print site by the CNTs. To avoid this, the CNT solution described in 

chapter 3 was developed. CNTs were dispersed via sonication in this proprietary solution 

at a 20% concentration by weight, leading to a solution like the one shown in Figure 4.2a. 

This allowed for CNT printing without dealing with the aqueous/non-aqueous interactions 

of the CHP and CNTs. 

Once the solution is deposited on the substrate, the proprietary solution is annealed 

away via thermal annealing. Figure 4.2b shows an SEM image of a multilayer CNT thin 

film after the annealing step. The final resistance of the CNT thin film was 200 kΩ, which 

was in line with past papers using aerosol printing [17] 
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Figure 4.2:  a) The CNT solution to be printed for the semiconducting layer. b) An SEM 
image of the cured CNT solution at 52630X magnification. 

CHEMICAL GAPPING PROCESS 

One of the primary challenges in fabricating a transistor via any printing 

methodology is the achievable minimum channel length. Traditionally, inkjet printed 

electronics achieves this gap between the source and drain by merely not printing a space 

in a transmission line. In theory this yields a gap where the width is limited by the resolution 

of the printer. Given that a printer like the Dimatix has a resolution of 10-30 µm depending 

on drop volume[25], this provides a small gap, but by no means a short channel compared 

to photolithographic methods in a CMOS foundry[13], [14]. 

In practice, this gap often has to be much larger. Not only does print position have 

fairly significant error bars, but this issue is further exacerbated by affinity of inks 

employed. Thus, if the source and drain are printed using the same ink, and the chemical 

force is greater than the surface energy of the substrate, the ink will pull across the source 

and drain, causing closure of the gap and creating a short circuit. 

a) b) 



 40 

The concept of using surface effects to control gap size is not inherently new[71], 

[77], [78]. However, past efforts have focused on the usage of some sort of self-aligning 

monolayer. This potentially places major restrictions on both materials and substrates that 

could be used. Additionally, the technique has not been ported to a roll to roll technique, 

limiting its potential for mass production. In order to combat these disadvantages, the 

technique outlined below focuses instead on creating the chemical effect with multiple wet 

layers. This allows for the selection of any two inks with opposite chemical properties. For 

the specific device produced here, conductive silver inks with opposing chemistries were 

selected due to their easy commercial availability. Both inks form silver thin films when 

cured. However, one is a hydrophobic, non-aqueous hydrocarbon silver nano-particle 

solution while the other is a hydrophilic, aqueous silver nanoparticle solution. What this 

means is that the two inks cannot mix, similar to the way water and oil will separate when 

poured in the same glass.  

By printing the two inks in a single layer side by side, the chemical force would 

produce the gap as shown in Figure 4.3a. In the printing process, the two ink sections were 

printed right next to each other with no gap from the printing process. However, the 

chemical forces between the two inks introduce a micron to sub-micron order gap. 

One major advantage of this method over previously listed short channel methods 

is its flexibility and tunability. In our experiments, Kapton was used with two off-the-shelf 

inks. However, by using custom formulated silver inks, various solvent combinations could 

be used to introduce gaps with a specific length. Gap size would theoretically be controlled 

by the net polarity difference between the chosen solvents. This also allows the technique 

to be adapted to other substrates that have surface coatings that might affect the polarity of 

the substrate, and thus the interactions of the inks with it. As far as substrate limitations go, 

the primary issue would relate to surface roughness. At a certain surface roughness the 
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ability of the inks to move apart might become impeded. However, this effect was not 

observed on Kapton, Glass or PET, which covers three of the most common substrates used 

in printed electronics. 

Additionally, unlike most other short channel methods that have been developed 

for these types of devices, this technique is fully roll to roll compatible, and relies on the 

usage of inkjet deposition as opposed to gravure[79] or offset methodologies[80, p.]. Inkjet 

technology does not require the use of any kind of stencil or mask to produce devices, 

allowing designs to be changed at essentially no cost. This is in essence one of the core 

promises of inkjet deposition technology, which this technique does not interfere with in 

any way.  

 

 

Figure 4.3:  a) A diagram of the chemical gapping process. b) An image of one of the 
printed chemical gaps. c) A measurement of an average gap using an optical 
microscope. d) An SEM image of the smallest recorded non-conductive gap. 
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Additionally, this method has the added benefit of being highly reliable. Rather 

than relying on a mechanical process, this methodology relies on a chemical process which 

should be consistent as long as the formulation of the inks does not change. Thus, it is 

possible to print this gap much smaller without having conduction between the two sides 

of the gap while still maintaining print reliability. 

AVERAGE GAP SIZING 

In order to characterize the performance of the gapping technique outlined 

previously, a series of 50 gaps was fabricated using the Dimatix printer in conjunction with 

the two different inks. Each gap was 1mm long, with a single layer of ink 150-300 microns 

wide on each side, as shown in Figure 4.3b. The resulting gaps were imaged using an 

optical microscope and a Zeiss Scanning Electron Microscope to find accurate 

measurements for each gap. Of the 50 gaps fabricated in this example only a single device 

was shorted. To further characterize the yield rate, during one transistor fabrication run, 

216 gaps were fabricated, of which 10 were shorted. Based on these experiments, this 

particular combination of inks and substrate has a yield rate greater than 95%. However, it 

is worth noting that with custom ink tuning without proprietary solvents, a greater yield 

rate could be achieved. 

Across all the optical measurements, a range of 0.5-2 micrometers was observed in 

gap size, with an average gap size of 1.1 microns and a standard deviation of 0.437 microns. 

Figure 4.3c shows an optical image of one of these gaps with observed measurements. It is 

worth noting that the Dimatix printer did have some alignment issues which contributed to 

the larger gap sizes when printing many simultaneous gaps for developing this average. 

With a more precise multi-layer printer with better interlayer alignment, more consistent 

gap sizing could be achieved. 
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In addition to the repeatability study, a separate set of fabrication was done to 

determine the minimum gap length that could be achieved using this particular combination 

of inks. As shown in Figure 4.3d, gap sizes as small as 300 nm were observed using the 

Zeiss SEM. This was verified via capacitance measurements to ensure that the conduction 

was occurring all the way out to the edge of the silver deposition.  

TRANSISTOR PERFORMANCE 

Two different tests were performed on the transistor to determine its capabilities. 

The first was a simple DC analysis which was completed using an Agilent B1500A 

transistor analyzer. This analyzer was used to perform both a Vgs sweep and a Vds sweep 

in order to obtain an Id vs Vg and Id vs Vd plots. The resulting plots are shown in Figures 

4.4a-b and 4.4c-d, respectively. Of particular interest is the on-off ratio, which was found 

to be on the order of 106. This is compared to previous efforts using unaligned printed 

SWCNT thin films, which achieve 102 [14], [17], [76]. 
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Figure 4.4:  DC Test results for the small gap device. a) and b) are Id-Vg plots, with b) 
using a logarithmic scale for Id to show the on/off ratio. c) and d) are Id-Vd 
plots, with d) also using a log scale for the same reasons. 

Based on the transfer characteristics shown above, the threshold voltage and 

mobility were calculated. By examining Figure 4.4b, the threshold voltage is found to vary 

somewhat with Vd as is common for most FET devices. At Vd = -1 V, the threshold voltage 

is approximately -7 volts, varying up to -11 volts at Vd = -5 V. These relatively high 

threshold voltages are a product of the acrylate dielectric used to produce these devices. 

Using an ion gel[4] or hybrid[50] dielectric would potentially decrease this number 

considerably. Mobility is found using the peak transconductance 퐺 = 휇퐶 푉 , where 

퐶  is the gate capacitance. As stated previously, the capacitance of the gate dielectric is 

a) b) 

c) d) 
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9.3 nF/m2. Using an optical microscope, the channel area was found to be approximately 

10 square microns with dimensions of L = 0.8 microns and W = 12.5 microns, yielding a 

Cgc of  0.093 pF. Using the peak transconductance from VDS = -2V in the linear region, it 

was found that the effective mobility of the device was approximately 6 cm2/(V s), well in 

line with other CNT devices with similar on-off ratios[81]. 

The second test was to determine the maximum switching frequency of the device. 

Given that past efforts by the group yielded devices operating up to 5 GHz [17], new 

techniques were needed to determine the max frequency which should theoretically be 

higher due to the much shorter channel length. To measure a transistor’s maximum 

frequency via RF tools, the parameter of interest becomes H21, or the small signal gain of 

the transistor[82], [83]. When the small signal gain is 0, the transistor has reached 

maximum operating frequency. The H parameter may be derived using the S parameters 
measured by a network analyzer and the equation 퐻 = −

( )( )
, where port 

1 is the gate and port 2 is the source. S11 is then defined as the gate return loss, S22 the 

source return loss, and S12 and S21 are the power transmitted from the gate to the source 

and source to the gate respectively. This allows the use of RF equipment that will usually 

be capable of 5+ GHz measurements, rather than lower speed traditional transistor 

measurement equipment. 

The transistor pictured earlier in Figure 4.1 was measured using this methodology, 

with the drain tied to the ground plane on a pair of GSG probes and the source and gate 

serving as the signal lines. The measured transit frequency for the extrinsic device as whole 

yielded the parameter ft,ext. Typically, ft is significantly larger than ft,ext due to parasitic 

capacitance and resistive effects. Thus, an experimental dembedded value which actually 

derives ft is required. This is accomplished via standard two step dembedding to derive the 

performance curve for the actual device independent of these parasitic effects[84], [85]. 
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This method essentially consists of measuring the extrinsic device response and then an 

open and short test structure on the same substrate. With this data, the intrinsic ft is derived, 

yielding a de-embedded value for the transistor performance. The intrinsic data set is 

shown in Figure 4.5. The extrapolated line showed that the transistor was capable of 

operating at up to 18.21 GHz (at the point when h21 = 0). 

 

 

Figure 4.5:  The high frequency test results for the device. Note that the signal becomes 
quite noisy at higher frequencies. The trend line breaks through this 
somewhat to give us the final value of 18.21 GHz. 

To ensure that experimental de-embedded values are reasonable, an analytical 

estimate needed to be made for the device. For intrinsic results, 푓 = 푔 /2휋퐶  where gm 

is intrinsic transconductance and Cgc is the gate capacitance. Cgc was calculated above to 

be 0.093 pF. The parameter gm can be extracted from the extrinsic transconductance Gm 

(which is found using the DC curves for the device) via the equation 푔 =

a) b) 
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[ ( )/( / )]
 , where Gds is the extrinsic device conductance, and Rs and Rd are 

the source and drain resistances respectively. Using this equation, gm was found to be 13.3 

mS at the drain bias point used for gathering the high frequency data. When this was 

substituted to the intrinsic predictor, the analytical result of ~22.76 GHz was found. 

Compared to our actual measured result, these analytical results show that the device was 

operating as expected. 

These results represent some of the best performance seen in any printed electronics 

device to date. Through the use of high purity CNTs and novel production methodologies, 

high frequency switching has been demonstrated this creates the possibility for inkjet 

printed amplifiers and other high frequency RF devices. 
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 Chapter 5: Production Scale Roll to Roll Compatible Transistors4 

One critical component for producing systems on flexible substrates is an inkjet 

printed transistor. Past papers have explored using these roll to roll systems in order to print 

CNT transistors, typically using a gravure system which employs a lithographically defined 

stamp to produce the pattern[79], [86]. This method loses one of the main advantages of 

inkjet printing, in that the stamp must be retooled for each design, whereas R2R drop on 

demand print heads do not have such a limitation. Moreover, even the few efforts which 

were able to print transistors using inkjet deposition were forced to use thermal curing due 

to the nature of the CNT inks used[86], [87]. A typical CNT ink is a high weigh percentage 

of CNTs dispersed in CHP, which requires a 15 minute cure at 210 C. This negates the 

high speed capability of R2R, and puts the design out of reach for true production scale 

electronics. 

Using the UV curable CNT ink described in Chapter 3 and a proprietary hybrid 

dielectric, a high speed R2R compatible transistor was designed and fabricated. This 

represents the first such device which could be produced using full speed R2R methods, 

rather than requiring long delays for thermal curing steps.  

METHODOLOGY 

Many papers have been written about designing CNT thin film transistors for drop 

on demand printing systems. Typically these papers focus on the usage of small scale 

printers such as the Dimatix DMP-2800. Part of what makes the Dimatix an attractive 

prototyping platform is the ability to vary the drop spacing from 15 microns up to 100 

microns. This variability allows for the usage of a wide variety materials without 

                                                
4 Sections from this chapter were originally published in [3]. Peter Mack Grubb designed, printed, and 
tested all of the devices described in this section.  
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complicated design parameters. In contrast, the drop spacing for an R2R system is often 

fixed. For this design, the Konica KM1024MHB printhead was targeted as the R2R system 

of choice. This print head has a 35 micron drop spacing in the direction perpendicular to 

the substrate axis of motion, and a 70 micron drop spacing in the direction parallel, with 

1024 nozzles on each print head. Thus, feature sizes needed to be multiples of 35 microns 

in one direction, and multiples of 70 microns in the other.  

 

Figure 5.1:  A) The layout dimensions are all multiples of 70 microns to allow for easy 
R2R printing. B) Layers are depicted as sloped surfaces to more accurately 
reflect the typical shape of a printed material. 

With the minimum feature sizes defined, the layout shown in Figure 5.1A was 

defined. Based on this layout, both top gate and bottom gate structures were tested. Due to 

the domed nature of the printed dielectric, it was not possible to consistently produce a 

CNT thin film on top of the dielectric material. The CNTs would invariably reflow off the 

dielectric, aggregating on the edges of the dielectric layer. Due to this issue, the top gate 

structure shown in Figure 5.1B was used to construct the devices. The greater adhesion 

between the silver nanoparticle ink and the dielectric allowed the gate to be accurately 

placed where needed to produce the device. 
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Each layer was printed and then cured using the Xenon Sinteron-2000. This 

required careful coordination of materials, so that a subsequently printed layer would not 

be burned by a higher cure power on the sintering system. Based on these requirements, 

Novacentrix JS-B40G was selected for the conductive ink when printing the source and 

drain and a hybrid SU-8/BaTiO3 nanocomposite was selected for the gate insulator. Due 

to surface effects of the hybrid dielectric, a UTDots silver nanoparticle ink with better 

adhesion to SU-8 was used to print the gate. The CNT ink described above was used to 

create the semiconducting channel. The final device is pictured in Figure 5.2A, where each 

of the inks can be clearly seen. These devices were arrayed in batches with 22 to a cell as 

shown in Figure 5.2B.  

 

Figure 5.2:  A) A composite image of the final device produced. Multiple images were 
taken and assembled in order to create a higher resolution image. B) An 
array of transistor devices in production. 

RESULTS 

The devices were evaluated based on their DC performance. Once produced, the 

devices were tested using an Agilent B1500A transistor analyzer. Different ranges were 

tested to find the limits of the thin film transistor before the current melted either the 

dielectric layer or the substrate. As is typical for printed TFTs, driving voltages for the gate 

A) B) 
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were quite high due to the relatively thick gate dielectrics required to have contiguous 

layers without shorts into the CNT semiconducting layer. Of the 352 devices printed for 

this paper, 142 showed functioning transistor characteristics. However, most of the failures 

occurred during the dielectric application. Over 90% of the devices had contiguous CNT 

thin films with resistances on the order of 10 megaohms. Problems with the dielectric layer 

included both pinholing, and overly thick layers preventing switching. The resulting DC 

performance curves of a functioning device are shown in Figure 5.3. 

 

 

 

Figure 5.3:  The DC performance curves for the R2R compatible transistor design. 
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In order to better illustrate the On/Off ratio, the subthreshold swing is reproduced 

using the Id/Vg plot on a logarithmic scale in Figure 7. The resulting DC curves demonstrate 

an On/Off ratio of up to 104. Additionally, it is worth noting that at 0 volts Vd a small 

reverse biasing effect was observed at high values for the gate voltage on some devices. 

This is common in printed TFT devices [76], [88], [89], but was easily overcome even at 

small source/drain voltage levels. Significant hysteresis was not observed when testing the 

devices. Hysteresis in printed CNT devices with polymer dielectrics is usually caused by 

impurities in the deposited CNT thin film or traps formed by voids in the dielectric layer 

[90]. The wet application of the dielectric over the CNTs minimized the formation of traps 

at the CNT/dielectric interfaces, and impurities in the deposited film were minimal as 

shown via the Raman spectroscopy. These properties are all average for a small-scale 

printed CNT TFT, though they are produced by a device which is compatible with high 

speed R2R methods. 

 

Figure 5.4:  The subthreshold curve shows the 104 On/Off ratio at Vd = 1 Volt. 
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DISCUSSION 

It is important to consider the context that these transistor devices exist in. The 

literature is replete with examples of printed high performance transistors ranging from ion 

gel devices to self-aligned gates [16], [57], [91], [92]. Most of the devices described in 

these papers have major hurdles relating to potential roll-to-roll applications, usually due 

to the small minimum feature sizes they require to achieve their significant performance 

increases. While this device development is important, moving to something that can 

actually be used in a consumer device requires moving these techniques to production scale 

technologies such as R2R drop on demand or gravure printing. 

The primary area where there has been success in mass producing printed TFTs has 

been using gravure printing methodologies. The transistor data shown in this paper matches 

previous On\Off ratios from gravure printing papers[79], [81]. However, it does so without 

requiring any kind of gravure or stamp to be produced using lithographic means. This 

means the device can be produced while retaining the high re-configurability inherent to 

drop on demand systems. The only other reported device that can be produced using high 

speed gravure printing required the usage of an organic semiconductor due to lacking a UV 

curable CNT ink[79].  

The main advantage of gravure printed devices is the thinner dielectric layers they 

are able to maintain, and therefore the lower on voltages required to operate the device. For 

a potential IOT device, this lower on voltage would correspond to significantly lower 

power usage. This advantage is fundamental to the physics of how the two technologies 

apply material to the substrate. Future efforts will need to investigate the potential for 

thinning the gate layer while still maintaining integrity in order to lower the on voltage of 

the device. These thickness issues along with the yield rates observed in the dielectric 

application step suggest that the need for improved dielectric materials is significant. 
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Alternatively, it would be instructive to reformulate the UV curable CNT ink to a gravure 

printable version. This would allow for a high-speed roll to roll printable device with better 

performance in low power environments. 

The Raman spectroscopy also provides an important data point in terms of the 

purity of the CNT film that is deposited. While minor shifts are seen throughout the curve, 

most are not significant enough to show significant variation. The two normalized Raman 

data sets are over 99.99% correlated, corresponding to a low level of contamination from 

the solvents used to suspend the CNT ink before applying it to the substrate. By evaporating 

off all the solvent components, what remains on the substrate is the high purity 

semiconducting CNT thin film needed for the transistor device. The close correlation 

between the sample after curing and the reference thickfilm sample shows that the carrier 

solution does not significantly contaminate the CNT particles. This lack of contamination 

is critical to preventing the emergence of significant hysteresis in the final device. 

Compared to thermal curing, this UV curable CNT ink shows no discernable 

differences in performance. This was primarily assessed via the performance of the 

transistor compared to past efforts [76], [88], [89]. Given the Raman spectroscopy results, 

this was as expected given that most CNT inks aim to minimize impurities in the final thin 

film. That said, the UV CNT ink does not stay in solution as long as CHP based solutions 

due to the interactions between the non-polar solvents and the CNTs themselves. This 

requires sonication or circulation of the ink prior to usage to ensure a uniform solution. 

Ultimately, no performance impact to the CNTs was measured when using photonic 

sintering. 
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Chapter 6: Frequency Scanning Array Antennas5 

THEORY OF FREQUENCY CONTROLLED PHASED ARRAY ANTENNA 

The frequency effects on the beam squint of a phased array antenna are well known 

and documented in previous literature[93], known primarily as a frequency scanning array. 

However, there are no examples of building such antennas in a printed electronics type 

application for which it is uniquely suited. To understand the various effects at play, it is 

important to first understand the operating principle of a PAA. 

PAAs use a network of identical antennas along with a time delay circuit to induce 

phase differentials between the various antenna patches. This in turn generates a net wave 

directionality as illustrated in Figure 6.1. 

 

 

Figure 6.1:  Each delay block is some amount n larger than the one before it, with the 
final delay block being D+kn where k is the number of blocks. 

                                                
5 Sections from this chapter were originally published in [2], [5]. Peter Mack Grubb designed the 
Frequency Scanning Array concept in the context of printed electronics. All simulations, device production, 
and testing was done by Mr. Grubb. The wideband antenna and power divider were both developed in 
collaboration with Dr. Li Wentao.  
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Typically the delay in each block is varied such that the direction of propagation 

can be controlled. The equation for determining this directionality is derived geometrically 

from a basic understanding of wave motion, and yields ∆휙 = 2휋 푠푖푛 휃, where ϕ is the 

phase shift, d is the distance between the antennas, λ the wavelength and θ the direction of 

propagation. Most PAA devices achieve shifts in θ by varying ϕ through different delay 

structures. However, the electrical path of the signal (d/λ) can also be varied with 

frequency, which in turn is proportional to the phase shift. The usage of metallic delay lines 

provides a secondary change in ϕ as well. In microstrip transmission lines, phase velocity 

will vary with frequency [94] which provides a secondary minor source of phase shift as a 

function of frequency.  

These factors are usually negative effects in Phased Array Antenna design, as they 

cause unwanted variations that are difficult to model. For this design however, these 

phenomena are exploited in order to create beam steering via the variation of frequency. 

Such a device is called a Frequency Scanning Array, and is in essence a microwave prism. 

Due to the lack of switching or other complex elements in the internal antenna structure, 

such a device is uniquely suited to the limitations inherent in printed electronics devices. 

DESIGN VIA SIMULATION 

Simulation Setup 

Given the complexity of the factors involved in the frequency dependence of the 

final θ, a simulation was desired to verify the capabilities of the system as a whole. To this 

end Ansys Electronics Desktop was used to test the individual components and overall 

system. Of particular interest in the simulations were the reflection coefficient and the far 

field radiation patterns of the system as a whole. 
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Unlike some simulations for printed electronics devices, the antenna system was 

modeled as having a finite thickness. Many simulations use sheet models for the antenna 

components[95]. However, given the groups previous experience with printed silver[7], 

[96], [97] the silver depositions were modeled as having a finite thickness of 500nm. This 

was done to ensure that any extraneous signal phenomena were captured. 

This simulation setup was used to gradually work towards an ideal design for 

frequency shifting. For each component or device, a simulation was run which would 

capture a full sphere radiation pattern at multiple frequencies. The range of frequencies 

was selected based upon the S11 performance of the antenna patch being used, yielding a 

range of interest of 5.0 to 9.0 GHz. For each frequency, the local angles of maximum 

transmission or “lobes” were extracted and plotted. This yielded steering angle as a 

function of frequency for the antennas being simulated.  

Wide Bandwidth Antenna 

The wide bandwidth antenna used in this design is based off an elliptical antenna 

coming out of a backplane region through a slot, as shown in Figure 6.2. This elliptical 

design was selected based off of simulated S11 performance. The transitionary curve 

coming out of the feedline is intended to preserve 50 ohm impedance relative to the input 

when used on Kapton in a printed application. The continuous ellipses are intended to allow 

for wideband performance without increasing the complexity of the antenna when it comes 

to fabrication. 
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Figure 6.2:  The wide bandwidth antenna patch. The green is a silver backplane, and the 
blue is the simulated Kapton material, while the red is the front antenna 
element. 

This design was developed from other efforts for printed wideband antennas[98]–

[101], and then tuned in the Ansys simulation software based on the specific material 

properties observed in previous efforts by the group at the University of Texas. The 

resulting design showed good performance from 5.5-9.5 GHz, as shown by the S11 plot in 

Figure 6.3. 
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Figure 6.3:  The antenna has better than -10 dB S11 performance from 5.5-9.5 GHz. 

Power Divider and Fixed Phase Shifter 

A power divider was developed to minimize reflection effects and provide a 50 

ohm transition into the split. This design runs the signal through a minimally reflecting 

bend prior to the split, which serves to prevent reflection back to the source and transition 

the width to something that can be split into two separate 50 ohm lines. Fixed Phase Shifter 

The power divider is then connected to a fixed phase shifter. Typically, in a phased 

array antenna the phase shifter is one of the most critical components, as it is reconfigured 

to steer the beam. However, in this design the phase shift is fixed. In order to keep 

fabrication simple, the design is based off of time delay via microstrip delay lines. 

Essentially, the transmission lines between the various branches of the power divider were 

extended to create a constant delta L added between each patch. A single cell of this design 

is shown in Figure 6.4A. 

A second phase shifter with a longer path was developed to determine the effect of 

the constant phase on the frequency steering. Essentially, a delay cell was added to the 
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original fixed phase shifter, with an appropriate number en route to each patch. A single 

cell of this design is shown in Figure 6.4B. 

While the longer transmission lines cause additional losses and reduce overall 

antenna performance, it did provide a simple way to quantify the effect of the phase shift 

differential on the frequency steering factor. Figure 6.5 shows the performance of a 1:4 

power splitter using these designs. 

 

Figure 6.4:  The two version of the fixed phase shifter. Lines were kept as straight as 
possible to minimize loss, with the transitions from the power splitter 
maintained where possible. 

 

Figure 6.5: S(1,1) performance was consistently below -10dB except at 5 and 6 GHz. 
Output port performance had some variance which converged at higher 
frequencies. 

A 

B 



 61 

System Performance 

The various components making up the system were assembled in Ansys into a 

single contiguous structure and simulated as described earlier. The device structure is 

shown in Figure 6.6. 

 

 

Figure 6.6:  The overall system being simulated in Ansys. 

The primary parameters of interest for this system are the S11 performance, and the 

radiation patterns. S11 performance across the best performance range for the antenna 

patches is shown in Figure 6.7. 
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Figure 6.7:  Overall system S11 performance. 

Compared to the S11 performance of the individual antenna, the PAA network 

shows less reflectance, but also less consistent performance. This is due to the line losses 

inherent in having longer transmission line lengths. Due to the physical size of the UWB 

antennas, the minimum length of the transmission lines was significant. However, on the 

whole the device showed usable characteristics across the entire range except from 6 – 6.5 

GHz.  

Radiation Pattern 

The radiation pattern was typical for a PAA device, and showed variance as a 

function of frequency. A typical radiation pattern at 7.5 GHz is shown in Figure 6.8. 
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Figure 6.8:  A typical radiation pattern for the overall system. 

As was expected for such a device, a primary lobe was observed, with side lobes in 

both the positive and negative directions. Additionally, due to the fact that there is no 

backplane behind the UWB antenna patches, symmetry between the front and back half of 

the radiation pattern was also observed.  

Frequency Based Beam Steering  

For the purposes of defining the beam steering, two pattern features were 

considered, the primary front lobe between 0 and 30 degrees at 7.5 GHz, and the primary 

rear lobe between -180 and -150 degrees at 7.5 GHz. These two features at 7.5 GHz and 

8.5 GHz are shown in Figure 6.9. 
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Figure 6.9:  On the left, the front left lobe, and on the right the rear left lobe. Both show 
11 degrees of variance from 7.5 to 8.5 GHz. 

In order to characterize this performance across a range of values, the angle of the 

maximum at each step of the simulation from 5-9 GHz was considered. Figure 6.10 shows 

this plot for the front and rear quadrants, along with the trend line. 
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Figure 6.10:  Angle of the local maximum as a function of frequency. Note the very small 
difference in the sloped of the trendlines. 
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In order to characterize the effects of the phase difference on this phenomenon, the 

system was also simulated with the longer phase shifter described above. These results are 

shown in Figure 6.11. Due to the effects of the longer shifter, results below 6 GHz were 

not consistent enough to be plotted due to a double peak in the region of interest. 

 

 

 

Figure 6.11:  Angle of local maximum as a function of frequency for the longer phase 
shifter. Again, note the similar slopes on the trendline. 
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From these plots, not only is the beam steering via frequency variation obvious, it 

is also observable that the steering per unit frequency is a function of the phase difference 

between the antenna elements. The larger the fixed phase difference, the more rapidly the 

beam can be steered as the frequency is changed. These conclusions provide the 

background necessary to design additional devices which exploit these phenomena. 

It is worth noting that typically such devices are designed to have 0 degrees or the 

center at the middle of the frequency range. However, in this case the size of the antenna 

patches severely limited the potential tunability of the phase shifters in order to achieve the 

target steering capabilities. Future work will seek to use smaller antenna patches to allow 

for the creation of a printed array where the center frequency has a 0 degree beam shift. 

DEMONSTRATION OF A REAL DEVICE 

Printed Device Design 

One of the main design challenges regarding building a frequency scanning array 

on a flexible substrate is the relative thinness of the substrate. Typically substrate thickness 

is varied to improve properties such as gain or microstrip performance. However, the 5 

mil/125 micron Kapton is the thickest option that Dupont currently sells[31]. Additionally, 

other flexible polymide films have much lower curing temperatures, rendering them 

incompatible with many silver ink compounds[23]. Consequently, the antenna system must 

be designed to accommodate the thin substrate being used. 

The antenna system consists of three elements: the broadband antenna, the phase 

shifter network, and the input coupler, an example of which is illustrated in Figure 6.12A. 

For the input coupler, a simple SMA to microstrip transmission was used to allow for easy 

connection of various pieces of measurement equipment to the antenna system. The width 

of the base of the input coupler was determined by the SMA specifications for attaching to 
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PCBs and similar using off the shelf SMA hardware. To make up for the obvious 

differences in thickness, epoxy was used to both stabilize and provide a similar dielectric 

surface. This was then translated into a microstrip transmission line by creating an 

exponential taper that was mirrored on both the front plane and backplane, providing an 

impedance matched transition to the microstrip lines throughout the system[102], [103]. 

 

Figure 6.12:  A) Red is the antenna patch, dark blue the shifter network, yellow the SMA 
to microstrip transition, and cyan the backplane. The offset splitters 
minimize the length of the microstrip lines. B) S11 Performance of a single 
printed antenna. C) A 1x4 array with an extended phase shifter. D) A 1x8 
array with a standard shifter.  

The shifter network was more difficult to design, due to the relatively high losses 

of microstrip lines on thin substrates [104], [105]. A power splitter design was used to 

maintain 50 Ohm impedance throughout the network, however it was found through 

simulation that the losses from unbalanced splitters was less than the longer microstrip 

transition lines [5]. Both the high loss of the microstrip lines and the unbalanced nature of 

the splitters was previously verified using Ansys simulation software [5].These power 

splitters, used a gradual increase in width while moving through several corners to prevent 

sudden changes in impedance. Additionally, the corners were chamfered to control 
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reflectance within the power splitters. This and the offset provided the fixed phase shifter 

portion of the system. 

The key part of the design which enables the frequency scanning array capability 

is the broadband antenna patch. Many different broadband antenna patch designs have been 

demonstrated on printed substrates [99], [106], [107]. For this particular application, a 

stacked ellipsoid design was selected for its relatively compact size and known 

performance characteristics [5], [108]. Additionally, this particular antenna could be easily 

tuned to match the impedance of the shifter network without significant negative effects 

on the performance of the antenna. The S11 of this antenna is shown in Figure 6.12B. 

This design was fabricated in both a 1x4 and a 1x8 element configuration, and with 

both a shortest path phase shifter network as well as a network with an additional ∆ϕ to 

increase the steerage per unit frequency. These devices were then tested to obtain far field 

radiation patterns, as well as performance under flex. Two of the devices fabricated using 

these methods are shown in Figure 6.12C and D. Both antenna arrays were 22 mm in 

height, while the 1x4 array was 122 mm in width and the 1x8 array was 250mm in width. 

With the addition of the shifter and coupler, the total height of system was 45 mm for the 

1x4 array and 55 mm for the 1x8 array. The width of the overall system depended on the 

particular phase shifter network, but was never more than 15mm wider than the array. 

Results 

Rotational measurements were made using a Microwave Spectrum Analyzer, high 

frequency signal generator, rotational stage and horn antenna. The FSA being tested was 

connected to the high frequency generator as a transmitting antenna, while the horn antenna 

was placed in the far field connected to the microwave spectrum analyser. The frequency 

of the generator and MSA was then selected, and the rotational stage used to move through 
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an entire 360 degree rotation recording the various values measured at each degree marker. 

These results were then collated and plotted. 

S11 Results were obtained using an Agilent NS230A Network Analyzer. The 

antenna was directly connected to the Network analyser output point to minimize system 

reflectance after calibrating. 

Beam steering was demonstrated across multiple devices, with steering per unit 

frequency varying depending on the number of elements on the array and the length of the 

phase shifters used. These results are shown in Figure 6.13. Both 1x4 and 1x8 arrays with 

a shortest path and extended shifter network were tested in order to demonstrate the 

relationship between the length of the shifter network and the beam steering per unit 

frequency. Additionally, the two different sizes of arrays were tested to demonstrate the 

effect of greater elements on the steering phenomenology. Peak directional gain of the 1x4 

array was observed at 12 dBi, and the 1x8 array was 15 dBi. 
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Figure 6.13:  Extended shifter networks increase the swing per unit frequency, while the 8 
element system exhibits narrower peak power. 

It is worth noting that for the physical devices, specific frequencies were tested, 

whereas for the previous work using simulation was able to do continuous peak capture to 

show the continuity of the illustrated shifting effect[5]. However, given the limitations of 

the measurement setup used for evaluating these devices, this was not possible. 

Consequently, the devices were each tested at a series of key frequencies to demonstrate 

the beam steering and consistency with the simulated results. Based on the key frequency 

results and mathematical model of the frequency shifting, it can be concluded that the 

continuity in steering demonstrated in the simulations is also present in the physical 

devices. 
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Figure 6.14:  A) The S11 of both the 1x4 and 1x8 devices shows less than 10 dB of 
reflection across the frequencies of interest. B) The 1x4 and 1x8 devices 
show similar correlation between the actual measured and simulated results. 
C and D) Both devices exhibited minimal distortion due to bending, but the 
1x8 devices were more resilient due to their tighter beam.  

S11 results, shown in Figure 6.14A, exhibited less than -10 dB of reflectance across 

the entire range of interest for both the 1x4 and 1x8 devices. The 1x8 device showed less 

reflectance from 6.5 to 7.5 GHz, which corresponds to inefficiencies in the longer 

transmission lines and additional power splitters leading to larger losses. Radiation 

efficiency at peak transmittivity for the 1x4 devices was observed to be 23%, while the 1x8 

devices exhibited similar peak numbers but showed more significant drop off in efficiency 

as the frequency increased. This caused the development of a much larger side lobe for the 
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1x8 extended shifter at 7.2 GHz, as the signal strength was lower and the radiation 

efficiency was also reduced, leading to a much smaller gain relative to the side lobes. 

In addition to the rotational measurements, bending tests were also done. Given the 

potential for flexible electronics devices built using inkjet deposition, it is essential to 

understand what performance is like under these scenarios. The results of these tests are 

shown in Figure 6.14 C and D. 

Given the minimal loss of performance under bending tests, the Frequency 

Scanning Array is an ideal type of antenna to be used in situations where both spatial 

signals and directionality are needed. Many flexible substrate devices exhibit significant 

losses in performance under bending tests. However, due to the fact that FSA results are 

assessed from the far field, the bending required to show performance loss is relatively 

extreme. Combined with the low cost to manufacture, these devices represent an immediate 

potential application for flexible printed electronics. 

DISCUSSION 

The first point in interpreting the results is to ensure that they make sense from a 

physics standpoint. Beyond the equations outlined in this paper, the peak values were 

compared to previously simulated results [5]. The extended shifters were used for 

comparison as these are the more interesting devices performance wise, with the results 

summarized in Figure 6.14B. 

 Note that both devices show stronger correlation on one end of the range 

than the other. This is due to differences in the slope or change per unit frequency for the 

simulated vs actual devices. This difference can be accounted for given the dimensional 

inaccuracies of the Dimatix system. The simulation is based off the designed dimensions, 

such as microstrip transmission lines with a width of 285 microns, whereas the actual 
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results were closer to 310 microns. This can cause significant changes in the S11 

performance of several of the components in the system. 

There are several different elements in the measured results that warrant further 

discussion. First and foremost is the basic properties stemming from the steerability as a 

function of frequency. While this has been demonstrated previously using rigid array 

antennas [109], these devices have not been built using inkjet deposition technologies. 

Thus, we must first consider the basic capabilities of the array. 

Both the 1x4 and 1x8 arrays exhibit typical array antenna properties and similar 

levels of gain. The 1x8 arrays have a much narrower -10dB gain angle than the 1x4 devices, 

which is generally the goal in increasing the number of elements in an array. Changing the 

number of elements in the array also shifts the center of the angle range encompassed by 

the 4 different frequencies tested for these antennas. This is product of the shifts in the S11 

caused by introducing additional power splitters in the design. Note however that 

increasing the number of elements does not significantly alter the shift per unit frequency. 

This implies that higher element count antennas would show similar steering characteristics 

independent of the element count. 

Additionally, increasing the length of the fixed phase shifter path increases the 

amount of steering exhibited per unit frequency. This is expected based on the equation 

governing the angle of transmission as a function of frequency. This effect is somewhat 

independent of the number of elements in the array, as both the 1x4 and 1x8 arrays have a 

similar total swing in angle. However, while the total swing was similar across frequencies, 

the distance between the intervening peaks varied. This speaks to the difficulty in designing 

these types of antenna arrays. The S11 of the patch antenna, power splitter, coupler, and 

microstrip lines all interact to produce the final signal. This means the simple addition of a 

power splitter or longer transmission line significantly shifts the center frequency of an 
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antenna array. Designing to these specifications without the usage of EM software such as 

Ansys Electromagnetics would be very difficult. 

Given the fact that these devices were produced on flexible substrates, it is also 

important to consider the performance under the bending test. The usage of 5 mil Kapton 

HN provides excellent tensile performance compared to other polymide films[31], and the 

usage of a silver/polymer nanocomposite ink further improves lifetime flex performance 

of the devices as has been demonstrated in other papers[37]. Both the 1x4 and 1x8 devices 

presented usable performance under bending. However, the 1x8 was more resilient, 

showing adequate performance through all the tested values. In contrast the 1x4 devices 

began to degrade significantly around a 10mm radius. This test implies that denser arrays 

with more elements will be better for flexible electronics applications. 

Note that denser arrays with more elements will incur an additional cost in 

producing these devices, as it will require both additional print time and materials. These 

negative effects can be combatted through the usage of small area fractal antennas[110] 

but fundamentally dense arrays will always cost more than their less dense counterparts. 

Optimization of the cost performance curve should be done on a per application basis, as 

dense array performance may not be needed in certain applications, while high flex 

applications may make it a necessity. 

MULTI-ANGLE COMMUNICATION CAPABILITIES 

One of the more interesting applications available to this particular antenna type is 

as a multi-angle communication device. Typically, a PAA can only receive or send a signal 

on one angle at a time[4], [96], [97]. Well-designed antennas will have a phase shifter 

network which can be reconfigured very quickly, but especially for devices with a high 

angular resolution, the time between when a given angle is received on may be significant. 
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For this device, such a lag is not needed. Using a microwave spectrum analyzer, 

the entire range of frequencies can be monitored for incoming signals. This in turn allows 

for a large range of angles to be simultaneously listened on. Furthermore, when a signal is 

received, directional information can be inferred from the frequency it was received on. 

This combination is particularly useful for Internet of things (IoT) devices. Suppose 

we have an IoT device which has a single wide bandwidth antenna patch similar to the one 

used by the array that is sending data back to the array. As it does so, the directional nature 

of the array receiving allows the system to make conclusions about the IoT devices 

location. It can simultaneously receive from multiple devices as illustrated in Figure 6.15. 

 

 

Figure 6.15:  An example of the potential for this type of PAA to receive from multiple 
devices simultaneously. 
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This ability to receive on two frequencies simultaneously allows for more data 

intake without loss due to switching. Additionally, it allows for location information to be 

inferred by the data processor rather than requiring valuable board space on the IoT devices 

for GPS and other location information. 
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Chapter 7: Inkjet Printing Enabled Rapid Prototyping and Model 
Verification Processes6 

In the last 20 years, additive manufacturing (AM) methodologies have captured the 

public imagination. 3D filament printing and cellular printing [18], [111], [112] have 

evoked the idea that the technologies of science fiction are right around the corner. In 

parallel with these headline grabbing technological developments though, AM has been 

quietly bringing new ways of device production to several industries, including but not 

limited to electronics, wearables, sensors, agriculture, security, farming, and 

medicine[113]. 

Conventional electronics relies on the use of CMOS technology, which 

fundamentally focuses on a subtractive process workflow. While this process has matured 

significantly and scaled in dimensions over the last six decades, thanks to Moore’s 

Law[114], each successive generation has required even more expensive retooling in order 

to accommodate the new processes. AM has shown the promise to eliminate both the waste 

of the IC workflow allowing for the usage of more expensive materials, and to allow for 

new process and design testing without any expensive retooling in low to medium 

performance applications[115]. 

Current electronics AM methodologies which are seeing significant development 

include drop-on-demand and roll-to-roll inkjet printing as discussed previously, as well as 

screen printing, and aerosol jet printing such as the systems pictured in Figures 7.1a and 

7.1b below. Each technology has its own application space and advantages. Drop-on-

demand inkjet printing is based off of piezoelectric membrane drop formation used in color 

                                                
6 Content from this chapter was originally published in [6]. Peter Mack Grubb created the original concept 
for the hybrid process and developed the models for the different workflows himself. Dr. Harish 
Subbaraman assisted with proofreading and honing the models to accurately represent common practices in 
printed electronics. 



 79 

inkjet printers[25]. This particular technology is extremely robust, allowing drop-on-

demand systems to support a wide variety of materials. Additionally, the printing industry 

has already mapped out a small-scale to large-scale transition for this technology via the 

usage of roll to roll (R2R) printing systems. However, of the current printing technologies, 

the drop-on-demand system has the largest minimum dimension size. Aerosol jet printing 

grew out of a desire to shrink these minimum dimensions. By using an aerosolized inks 

with pressure control, the aerosol jet printer has a smaller dimension than the drop-on-

demand system[116]. However, the large-scale system for high-rate production of devices 

is not as well developed. Of the printing technologies, screen printing is most similar to the 

IC workflow. Screen printing uses a mask to apply the ink, similar to the exposure mask 

used in lithographic processes. By using a mask, screen printing retains very small 

dimensions with a relatively high process throughput [53]. However, the usage of masks 

increases the cost of design changes, negating one of the advantages AM promises for 

electronics. 

 

 

Figure 7.1:  a) A typical screen jet printing system[117]. b) An Optomec Aerosol Jet 200 
system[118].  
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Despite the quiet emergence of these new technologies, there has been very little 

effort to define the processes surrounding using them to produce actual electronics. Part of 

the power of the IC workflow is the fact that it is extremely well defined and documented, 

allowing advancements on one part of the process to be quickly integrated with other 

existing technologies. In this chapter, the current processes typically used in printing labs 

to produce devices using the three dominant printing technologies will be explored. Then, 

a potential integrated hybrid printed/IC workflow which maximizes the potential of each 

technology will be proposed, and examples of how specific devices have been produced 

using this workflow will be explored. Finally, the potential merits of each of these 

processes will be discussed forming the basis for future device production using both AM 

and conventional IC methods. 

INKJET PRINTING AS A RAPID PROTOTYPING PROCESS 

Given the common background of electronics AM and 3D printing, much of printed 

electronics follows a very similar rapid prototyping process. Rapid prototyping is 

characterized as an effort to try and bring some of the workflow elements of the “Agile” 

process from programming into physical prototyping efforts [119]. Rather than doing 

extensive simulation to plan a device out, rapid prototyping focuses on taking individual 

components of a design, quickly producing and testing them, and using the knowledge 

gained from this to improve the design of the next iteration as illustrated in Figure 7.2.  
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Figure 7.2:  An example of the process used for rapid prototyping with electronics 
additive manufacturing. Each iteration improves the known Theory and 
Science surrounding the design, in turn improving both this design and 
future designs. 

Compared to a typical process, the rapid prototyping process provides lots of real 

world test data. This is particularly valuable when building new types of devices which 

might represent edge cases for existing models. By using a quick production method to 

move to the test phase early and often, the unique challenges of a particular design can be 

quickly isolated and resources applied to overcome them. 

Additionally, one of the other advantages of a rapid prototyping process is that it 

provides demonstrable prototypes relatively early in the development process. This can be 

useful for higher risk projects, as it provides concrete progress at many steps in the project. 

The key to making rapid prototyping work is that each step in an iteration needs to 

be inexpensive enough that an open-ended number of iterations is not cost prohibitive. This 

is what prevents rapid prototyping from being used with conventional IC workflows or 

lithographic tools. Masks for lithographic exposures are expensive, and take time to have 

produced, both of which greatly increase the cost per cycle, making a rapid prototyping 

approach less appealing. Additionally, printing techniques such as screen printing have 

similar downsides. The production of each screen has significant costs associated with it, 
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making a many iteration process expensive. In contrast, both drop-on-demand and aerosol 

jet printing systems are maskless, with changes in design only requiring changes to a digital 

pattern file on a computer. 

Once a design has been optimized via rapid prototyping, it must be transitioned to 

a large-scale manufacturing method for production. This is where technology selection 

becomes critical. For drop-on-demand inkjet, the transition from a small-scale printer to a 

roll-to-roll (R2R) printer is a well-documented process. Aerosol jet has similar potential to 

be used in a R2R apparatus, though the technology for it is less mature and more expensive 

in terms of upfront investment. 

The primary problem with a rapid prototyping process is that the pressure for quick 

iterations and the nature of device testing can often mean that while improvements to a 

specific design are easy to pull out of testing, larger phenomenological conclusions can be 

difficult to produce. Simulation environments will often give very detailed readouts of the 

theoretical behavior of electromagnetic fields or semiconductor materials that are hard to 

capture using system testing apparatuses. While rapid prototyping can often indicate flaws 

in the design, identifying the design defect becomes difficult. Thus, setting up experiments 

to investigate particular aspects of a design is critical, albeit a difficult part of the rapid 

prototyping process. 

CONVENTIONAL IC STYLE WORKFLOWS USING INKJET TECHNIQUES 

While rapid prototyping has seen extensive usage in electronics AM, several 

flexible and printed devices are still primarily produced using conventional simulation-

guided development[120], [121]. This is particularly common with complex devices with 

industry standard simulation environments, such as antennas whose performance can be 

extensively predicted using tools such as ANSYS Electromagnetics Desktop or COMSOL. 
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These simulation tools provide quick and straightforward insights into the behavior of the 

device, thus providing some advantages over rapid prototyping methodology. An example 

workflow in this vein is illustrated in Figure 7.3. 

 

Figure 7.3:  An example of an IC style workflow which can be followed using 
electronics AM methods. While there is an additional step feeding into the 
Theory and Science gained from the process, fewer iterations are typically 
done due to its roots in the cost driven IC development process. 

Typically, this process is also used when the AM technology is used to bring new 

capabilities to the table other than the ability to rapid prototyping. For instance, AM 

methods are often far more compatible with particular types of coatings or with flexible 

substrates[122], [123]. In these cases, AM production methods enable new types of devices 

or materials, and consequently usually warrant a more extensive simulation process prior 

to production to fully understand the effects of these new materials or substrates on the 

performance of devices. 

This type of process also has the advantage of being fully compatible with any of 

the major electronics AM methods currently on the market. With screen printing, it has the 

additional advantage of being able to jump straight from a successful prototype to a mass 

produced device. This high degree of compatibility underlines both the advantage of IC 

workflows in general, and in using them in the context of electronics AM.  
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One thing that makes this process very attractive to organizations trying electronics 

AM for the first time is the fact that it removes the pressure to have the AM apparatuses in 

house. For rapid prototyping to be successful, the turnaround time from a design to a test 

needs to be minimized, which usually means having the necessary equipment to produce a 

device in house. In contrast, without this pressure the AM process can be outsourced to an 

entity with expertise in that field. This reduces the startup costs associated with exploring 

an AM technology at the cost of giving up some control over how exactly the process is 

implemented. This can be critical to justifying the costs necessary to satisfy industry 

standard safety and lab practices when bringing AM in house. 

The tradeoff inherent to using this workflow for AM is that it slows AM production 

speed in favor of a more deliberate simulation step. While the simulation step provides 

insight, it does not always reflect the reality of edge cases, leading to additional 

development cycles. This often reduces the potential positive impact of a move towards an 

AM production methodology. However, the ability to produce different classes of devices 

at lower costs still makes this methodology attractive.  

HYBRID INTEGRATED PROCESS 

Despite the advantages that electronics AM has brought to the various processes it 

is used in, it has not seen widespread adoption. This is largely due to challenges 

surrounding yield rates, and the specific types of devices which can be produced using 

printed electronics, along with the significant differences in feature size and performance 

metrics. However, the potential advantages that rapid prototyping can generate, especially 

for low-cost, low-to-medium performance electronic devices, are too significant to be 

ignored. Thus, it is worthwhile to investigate where an AM methodology could be used to 
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improve the process typically used for producing electronics regardless of the nature of the 

final device.  

In the context of conventional IC lithography there are two main advantages that 

can be gleaned from AM devices: the ability to rapidly produce and test prototypes and the 

ability to apply coatings and other unique materials typically incompatible with IC 

production equipment. Thus, these are the two elements that should be brought into an IC 

workflow. An example workflow is shown in Figure 7.4 and explained in detail below. 

Most of the typical IC production steps and their associated high costs are moved 

into a “Development Process” section, which will be addressed momentarily. Before 

moving to the Development Process, the device must first be designed. The proposed 

“Design Process” section exploits a rapid prototyping process to rapidly print and test 

devices. However, instead of merely using these elements to improve the design, as is 

typical done for a rapid prototyping process, the results of the prints and subsequent tests 

will be used to both verify the simulation and to develop the trade space associated with 

the device design. This trade space describes the inherent tradeoffs for the particular device 

being developed, such as the relationship between area and frequency for an antenna, for 

example. Using the known theory and science for a particular class of device, along with 

the verified simulation results and test results, this trade space can be rigorously defined 

and deeply understood. 

Note that none of the steps in the Design Process are expensive both 

computationally and monetarily. Once the trade space is fully understood, the process 

moves from design to development. Based on the knowledge developed in the trade space, 

a refined design for a specific application can be developed. Depending on what is needed 

for this particular application, either an AM or IC production method can be selected, a 

pre-production prototype produced and then verified. Ideally, by performing iterations in 
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the Design Process, iterations in a more expensive Development Process are minimized to 

keep costs down.  

 

 

Figure 7.4:  The proposed hybrid IC/Printing process. Note that it is split into a design 
and development process for the purpose of discussion. The Design process 
is intended to be iterated repeatedly to produce a high quality design, while 
the Development process is intended to minimize iterations in order to keep 
costs low. 

Note that none of the steps in the Design Process are expensive both 

computationally and monetarily. Once the trade space is fully understood, the process 

moves from design to development. Based on the knowledge developed in the trade space, 

a refined design for a specific application can be developed. Depending on what is needed 

for this particular application, either an AM or IC production method can be selected, a 

pre-production prototype produced and then verified. Ideally, by performing iterations in 
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the Design Process, iterations in a more expensive Development Process are minimized to 

keep costs down.  

This hybrid process will allow for the production of either conventional IC devices 

or a fully functional flexible electronic system. However, by separating a cheaply iterable 

Design Process from a more expensive Development Process, specialization in each 

portion of the process can be achieved. This fits into an existing industry standard of 

outsourced production facilities, but does so in a manner that allows for the significant 

advantages associated with rapid prototyping.  

Typically, the start-up costs associated with being able to have in-house rapid 

prototyping of electronics would be prohibitively high. These high start-up costs are what 

have led to the consolidation of the silicon IC industry as a whole[124]. However, most 

electronics AM methods have relatively low startup costs compared to the IC industry and, 

more critically, do not require the maintenance of a clean room. The necessary equipment 

to add a rapid prototyping capability to an organizations design process is cheap enough 

that if it reduces the number of iterations using conventional IC production processes, it 

will easily pay for itself. 

EXAMPLES OF ELECTRONICS PRODUCTION USING THE HYBRID PROCESS 

To illustrate the potential capabilities of the hybrid production process, two 

examples of devices that can benefit from this process will be considered. One is a phased 

array antenna, while the other is a cheap, disposable Internet-Of-Things (IOT) device. Both 

have been previously printed successfully [4], [125]–[127], and there is a significant body 

of knowledge surrounding how they can be produced conventionally.  

Phased array antennas (PAAs) are a class of devices which have seen significant 

development using printing technology [15], [121], [125], [128]. An example of a printed 
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device is shown in Figure 7.5. Of particular interest is the ability to do flexible arrays and 

sparse arrays without resorting to extremely expensive production methodologies. 

However, PAAs are complex devices which rely on the interaction of multiple high 

frequency antennas to produce a desired effect. As such, these devices are vulnerable to 

edge cases inn simulation environments which can cause difficulties in obtaining the 

desired performance. 

A typical workflow for producing a PAA device involves extensive simulation 

efforts to refine the device design until the desired characteristics are understood. At this 

point the design would be sent to a manufacturing entity which would produce samples for 

testing. Any changes after the first batch of samples would be extremely expensive, with 

the exact cost depending on size and manufacturing methodology.  

 

 

Figure 7.5:  A printed 12 GHz phased array antenna device. 
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To imagine how this device might benefit from the hybrid process, consider a 

design for the device shown in Figure 50. Initially the device would be designed and 

simulated using ANSYS Electronics desktop. However, in the printing and testing phase, 

it is found that the heat curing of the substrate causes the thickness of the Kapton to change, 

causing a change in the performance of the device. This is then fed back into the model to 

improve the design, and test other frequencies. Each step of the way, a better understanding 

of the interaction of the various materials being used is coming together. 

Once an optimized prototype like the one pictured in Figure 50 is developed, it is 

ready to move to application design. In this hypothetical example, the final application 

requires a flexible substrate, which prioritizes an R2R printing setup. However, given the 

large amount of ink required to start up an R2R printer, the amount of print runs should be 

minimized. Since an optimized prototype has already been produced using methods similar 

to the R2R system, the number of attempts required to produce the same device using an 

R2R system should be minimal. With a production prototype in hand, the device can then 

move to full scale production, all while minimizing the costly iterations to get to this point.  

A second class of devices worth investigating are cheap disposable IOT devices 

such as one time use heart rate monitors. The falling costs of production are enabling small 

devices which may consist simply of an antenna and a sensor on a flexible substrate. Such 

devices could use gas sensors for methane detection, for example, food storage status 

recording, personal health monitoring, or other sensing applications. From a user 

convenience standpoint, the ideal device would be disposable such that a user could use it 

once and afford to discard it, particularly if the object being monitored is being shipped or 

otherwise transferred between users.  

In a conventional development process, the heart rate sensor would be modeled 

using some type of physics software if possible, while the circuit would be simulated using 
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PSPICE or another ASIC design software. There might also be a bench top phase where 

the physics of the sensor would be verified relative to the theoretical model. However, 

integration testing would depend on the bench top prototype, which might or might not 

have tolerances and sensitivity levels similar to the final device. Once integration testing 

was complete, the device would be sent to a manufacturing entity and produced en masse.  

Using the hybrid process, integration testing of the heart rate sensor could proceed 

from the earliest stages. Using a drop-on-demand system, reasonable facsimiles of the final 

device could be produced and tested in the design stage, uncovering interactions which 

would cause performance issues. This would also allow for early assessment of packaging 

concerns and comfort levels for such a device, which tend to be more critical in health care 

oriented devices. Once the device design was completed, both a traditional IC based device 

and a printed version could be produced and compared in terms of both performance and 

cost/unit. Additionally, alternative packaging possibilities could be explored to design 

something that best fit the use case. The final product would then select the production 

methodology based on the exact target application. 

By using an AM driven design process, these devices would undergo integration 

testing at a much earlier phase in the overall production process. This would allow for more 

use driven testing, and by extension a more user friendly device. Additionally, the potential 

pitfalls of transitioning from a benchtop apparatus to a compact device are largely avoided.  

DISCUSSION 

This hybrid process was created as an answer to the lack of OEM printed electronics 

devices currently being shipped. While there has been substantial interest from several 

different major electronics production companies[129], for the most part printed devices 

which could reach a consumer are few and far between.  
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While the situation is odd by electronics standards, it is very similar to what has 

happened with 3D filament printers. Despite capturing the public imagination, most of the 

things actually produced using 3D printing are either very small-scale or highly 

customized. In the case of the 3D filament printer, its biggest impact has been in the 

prototyping process, where it allows mechanical prototypes to be rapidly produced and 

tested. In most cases the consumer can never tell what the role of the 3D printer was in 

producing their purchase. 

Similarly, the proposed hybrid process seeks to outline a niche allowing electronics 

AM to improve existing electronics production rather than create a specific consumer 

electronic device using printing. That said, part of the appeal of the process is the fact that 

it can accommodate large-scale R2R printing. By separating the development and 

production processes, R2R printing can move into the realm of OEM style outsourced 

production, making it more cost effective than it currently is. 

Most current efforts of R2R printing are done in house requiring design changes 

from the ground up in order to make design work with them[24], [86]. This is because a 

specific design rather than an understanding is transitioned from the small-scale printing 

process to the large. By building a trade space, the hybrid process allows us to feed the 

particular advantages and disadvantages of a given design into the limitations of a 

particular manufacturing setup, rather than feeding in a particular design. This creates an 

end to end approach to design, whereby devices are cheaply optimized for each production 

methodology.  

This brings us to the advantages of the hybrid process. First and foremost, this 

process keeps costs down by concentrating repeated iterations in a process which has a 

very low per device cost. This allows knowledge to be developed without incurring 

significant costs prior to moving to a more production oriented process like IC production. 
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Additionally, by having the prototype production in house, there is no time lag between 

device design and prototype production. This removes the 1-4 week lag usually associated 

with having test devices produced, not to mention the large costs associated with it. 

The other advantage comes in the realm of model verification. By creating steps to 

explicitly verify the model, edge cases of modeling methodologies can be found and 

assessed. This in turn improves models for future device production, providing an 

organization an in built advantage for future efforts. Given that differences between models 

and actual devices can typically cause costly mistakes, this compounding advantage is 

attractive in both a research and corporate setting. 

Electronics additive manufacturing is a discipline rapidly running towards the point 

where it can have meaningful impact on the methods and processes used in the building of 

electronics devices. As such, it is important to examine where such processes could have 

the biggest potential impact. This hybrid process shows how AM systems can be integrated 

into current electronics workflows to build devices at a lower cost, and much faster than 

existing methodologies. 
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Chapter 8: Conclusion 

In conclusion, a series of advances to the state of the art of inkjet printing were 

presented. First, a series of ink innovations were shown, including a non-aqueous UV 

curable CNT solution. These ink innovations were then leveraged to build several devices 

using new techniques. One such device was a high performance micro-gapped transistor, 

which demonstrated speeds of 18.21 GHz. Other devices included a high speed roll to roll 

compatible transistor with only UV curing, and a frequency scanning array antenna. The 

experiences of building these devices and inks were then used to present a way to use 

printed electronics techniques to achieve better results in a traditional IC fabrication 

strategy. 

These advancements cover the gamut of what is involved in creating devices using 

printed electronics. Thus, this dissertation represents an across the board improvement in 

available inkjet printed electronics techniques and results. Using the processes and 

materials described previously, faster, cheaper devices can now be built, as well as new 

classes of devices such as the frequency scanning array. 
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