Bureau of Engineering Research The University of Texas

620. 6 T 312 SP NO. 31
ENGIN
COP. 4

ATLAS OF THE CLIMATES OF TEXAS

(Based on the 50 year period 1910-1959)

> by

Wilfried H. Portig
Visiting Lecturer in Meteorology

JUNE 1962

Price $\$ 2.00$
No. 31

BUREAU OF ENGINEERING RESEARCH THE UNIVERSITY OF TEXAS

ATLAS OF THE CLIMATES OF TEXAS
(Based on the 50 year period 1910 - 1959)

FINAL REPORT

THE ST UDY OF WEATHER MODIFICATION
by

Wilfried H. Portig

Visiting Lecturer in Meteorology
Director

SPECIAL PUELICATIOM NO. 31

JUNE 1962

TABLE OF CONTENTS
Page
Text 3
Texas counties and their climatological stations. 9
Alphabetical station index. 15
Monthly mean temperatures (table) 18
Monthly mean precipitation (table) 23
Types of annual rainfall (diagram). 29
Geographical distribution of rainfall types (map) 30
Probability that for a station with a known mean annual precipitation, the rainfall of an individual year will exceed a certain amount (diagram) 31
Probability that for a station with a known mean monthly rainfall, the rainfall of an individual month will exceed a certain amount (diagram). 32
Isopleths of greatest observed amount of precipitation in a single month (map). 33
Monthly mean temperature (12 charts). T-1-12
Annual mean temperature (chart) T-13
Temperature of the hottest month (chart). T-14
Temperature of the coldest month (chart). T-15
Mean monthly precipitation (12 charts). P-1-12
Mean annual precipitation (chart) P-13

ATLAS OF THE CLIMATES OF TEXAS
(Based on the 50 year period
1910-1959)

INIRODUCTION. Originally the elimatological information in this atlas was gathered and condensed into tables and charts in order to give a reasonable physical climate basis for weather modification studies. It was found that many people not directly involved in those studies, are just as well interested in the climatic conditions, especially at the present time of economic boom. New industries look for new sites; new agricultaral techniques are to be applied under appropriate conditions of weather and climate; the growing population and increasing industry require more water whose resources depend on climate; and also tourism becomes more and more important.

A region such as Texas, severely struck by climatic hazards in the past, has more to gain from climatological investigations than regions under less extreme conditions.

A few attempts have been made in the past to divide Texas into climatic regions, and names such as semiarid, subhumid and others have been used. However, classifications tend to be artificial and they are sometimes misleading. The considerable changes of climate across Texas are gradual; no natural boundary separates the moist East from the dry West, or the cool North from the warm South. Therefore, charts representing temperature distribution by lines of equal temperature (isotherms), and rainfall distribution by lines of equal precipitation (isohyets) are an adequate means of representing the climatic conditions.

DATA. The longer a series of climatological observations, the more representative are the results derived from it. However, the longer the chosen period, the smaller is the number of stations with complete records. After careful inspection of the available data, it was decided to choose the 50 year period 1910 - 1959 as the interval on which the charts are based.

Series of less than 50 years out of the mentioned period should be "reduced" (adjusted) to the standard period. A reduction of a deficient series is based on the assumption that the difference of the temperatures of neighboring stations is markedly less variable than the temperatures themselves. For practical computation the difference has to be considered as constant. The mean temperature difference of all available years is computed between a defective and a complete series. This difference is added to the mean temperature of the complete series as it is computed from all 50 years. The result of this procedure represents the mean temperature of the station with a defective series, reduced to 50 years. This is an old way of adjusting deficient climatological observations by means of a complete series of a nearby station. For precipitation,
the ratio instead of the difference is used (1).
The difference between reduced and non-reduced means is negligibly small when only a few of the 50 basic years are missing. Therefore the reduction was not made when the data of at least 46 years out of the period are available.

In the tables, the original and, in parentheses, the reduced data can be found. For drawing the isotherms and ischyets only the reduced values of stations with records of less than 46 years were considered.

It can be seen in the tables that, especially in rainfall series of West Texas, a considerable difference between the original and the reduced means can be found when the number of available years is much smeller than 50. This has its reason in a climatic fluctuation that took place during those fifty years, which can be easily demonstrated by means of the following example.

During all months of July 1910 through 1934, El Paso received 42.53 inches of rain. During the next period of 25 years, 1953 through 1959, only 31.16 inches were recorded in July. The sum of both periods is 73.69 inches, and the divided by 50 gives us the July precipitation 1.47 inches which can be found in the tables and in the charts. Suppose we had only the last 25 years of the period at our disposal, we would calculate 31.16 divided by 25 , equal to 1.25 inches. The average based on 25 years differs considerably from the mean based on 50 years, and therefore non-reduced values simply computed by averaging the available data, cannot be compared with the averages of stations with other years of record.

All means have been computed anew, and the calculation was checked in several ways, such as by adding the lists horizontally and vertically, by numerical comparison of the data with those of the neighborhood, and by graphical comparison with other stations of the same area. It cannot be assumed that the presented data are absolutely exact; however, it can be hoped that the remaining errors are less numerous than in some other publications of this kind.

CHARIS AND TABLES. The big charts and the tables contain average values of the temperature and of the precipitation for every month and for the year. Additional maps of the same size inform of the extreme monthly means of temperature recorded between 1910 and 1959. The charts will be supplemented by a series of maps to be published by the U.S. Weather Bureau. (2). Those maps will represent the mean daily maximum and minimum temperatures of January and of July.

The difference between "maximum of a monthly mean" and "mean daily maximum of a month" deserves some explanation. In the first case the mean temperature of every day is computed by ceveral measurements made every day at scheduled times. These daily means are combined to monthly means, and out of the latter the greatest
is selected. In the second case, one value, the highest temperature, is measured daily, These data of a certain month of each year are averaged. The two values cannot be simply compared. The effect of a. high mean daily maximum can be compensated by a low daily minimum, as is usually the case in arid regions; or it can be augmented by high daily minimums such as on the tropical waters. The extreme monthly mean, however, designates an outstandingly hot or cold "spell" which occurred but once in many years.

USE OF THE CHARTS. When using the charts it must be kept in mind that the data are averages of 50 individual values. It cannot be seen whether the individual values cluster close to the mean, or whether they spread out over a wide range. Further, fifty years are not enough to compute means that are as stable as to be considered unchangeable throughout the ages. And even if we possessed stable means, there would be fluctuations of climate, dry spells would alternate with moist ones, and cold periods with warm ones.

In the mountainous Trans-Pecos area of West Texas, the observations are not frequent enough and the station network is not dense enough to allow a correct and complete analysis of the climatic conditions. The maps of this atlas give the best guess possible at this time. It must be expected that future measurements will change the isohyets of the Trans-Pecos area to a greater extent than its isotherms.

Finally, although the U.S. Weather Bureau did its best to install the instruments at the most representative location of a community, it cannot be denied that the measurements reflect only the conditions at the site of the instruments, and that the conditions of the environs can be different. (Compare e.g. the precipitation data of Fort Worth with those of Dallas). The actual conditions of the environment as opposed to the specific measurement site are not known and cannot be considered in the maps. In particular, allowance cannot be made for all differences in elevation of measuring sites.

In order to make the maps more useful, some additional information is offered.
(a) The diagrams on page 29 shows the different types of rainfall distribution throughout the year. There are portions of Texas which do not have a pronounced variation of rainfall (type G), other parts have one rainfall maximum in late spring and one in early fall (types B, C, E), and one district has its rainfall minimum when the majority of the state has a maximum (H vs. A, B, C, and E). The horizontal line at the value 8.3% of each diagram represents an evenly distributed rainfall. (100% in a year; $100 / 12=8.33 \%$ per month). 10 The steps indicate the percentage of the total precipitation that fell in a month during the fifty years in question. The chart on page 30 shows the geographical distribution of the annual rainfall types.

It is likely that the limits from type to type will change when more data accumulate. However, future corrections will not be great enough to erase the basic difference between the A and B types in the western part of the state.

The information described in paragraph (a) has been taken directly from the charts and tables of this atlas. It is nothing new but only another form of representation which may be more useful for answering specific questions.
(b) The diagram on page 31 shows how the actual values of the annual precipitation are distributed around the mean (taken from the tables or the chart "annual precipitation". Although the climates of Texas are very different, the data from different portions of the state yielded almost the same results as far as not absolute extremes are concerned.

The following example shows the use of the diagram. The vertical line coming up from 40 inches meets the horizontal line 30 inches at the intersection with the skew line 15%. That means: A station with the 50 year mean of 30 inches has fifteen out of 100 consecutive years with more than 40 inches (which, of course, are compensated by other years of the same period, with less than 30 inches). It can be seen further, that a station with a 50 year mean of 30 inches is not likely to have more than one year with less than 10 inches, nor more than one year with more than 56 inches, out of 100 consecutive years. This diagram is of special importance for the construction of dams and drainage works.
(c) The diagram of page 32 is similar to that of the frequency distribution of annual rainfall (see paragraph (b)). It gives the frequency distribution for monthly rainfall and is used like the diagram described in the previous paragraph. Also with monthly rainfall neither the region of the location of interest, or the season have to be taken into consideration, as far as frequencies between 5 and 85% are concerned. This diagram is of special importance for irrigation projects and for the estimate of the current water supply of industrial plants.
(d) The diagram on page 32 described in paragraph (c) does not inform of extreme monthly rainfall. The minimum rainfall of every month and of almost every region is nil. The maximum rainfall as it has been measured up to now is presented on chart 33 in such a way that the maximum monthly rainfall that may fall twice in a hundred years, can be learned. This is good enough for normal planning. However, there were some individual rainfalls so severe that they cannot be represented in the map. On September 9, 1921, 37 inches of rain fell in Thrall, 65 miless northeast of the state capital; on June 27 through July 1, 1899, 33 inches fell at Thrnersville, west of Waco. On June 26 through 28, 1954, 27 inches of rain were recorded in Pandale; half way
between Del Rio and Fort Stockton. These rare catastrophic downpours are more than the values of the maximum rainfall map (page 33). Besides that, the map shows monthly rainfall extremes, and the itemized storms occurred in little more than a day. That means that the map on page 33 has to be used with much care.
(e) It was said above that 50 years do not yield stable means. The following table gives an indication as to the variation of the mean precipitation when the period is shifted.

	STMAT I ON			
Dates	Brownsville	Austin	El Paso	
$1855-1903$	-	33.52	-	inches
$1862-1910$	-	33.58	-	
$1869-1917$	26.29	33.10	9.12	
$1876-1924$	27.05	34.07	9.12	
$1883-1931$	26.84	34.35	8.83	
$1890-1938$	25.06	33.92	8.41	
$1897-1945$	26.17	34.62	8.66	
$1904-1952$	26.92	33.97	8.38	
$1911-1959$	27.01	34.09	8.15	

With the exception of El Paso, no trend can be found in the variations of the long term mean. The standard error of El Paso's mean 9.12 is ± 0.52. It is just so high that the laws of theoretical statistics do not decide whether the decrease from 9.12 to 8.15 inches has to be considered as statistically significant or as accidental.
(f) A table for the annual temperature similar to the previous table for precipitation looks like this:

STATION

Dates
1870-1918
1876-1924
$1883-1931$
1890-1938
1897-1945
1904-1952
1911-1959

Brownsville
72.88
73.12
73.16
73.40
73.42
73.65
73.65

Houston	Abilene
-	-
-	-

E1 Paso	
-	O_{F}

64.44
63.62

The standard error for $73.65^{\circ} \mathrm{F}$ (Brownsville) is only $\pm 0.15^{\circ} \mathrm{F}$, so it is quite obvious that the climate of Texas has become warmer in this century, and the average rate of warming was $0.018^{\circ} \mathrm{F}$ per annum at all four stations with long temperature records. It may be of interest that the increase of annual temperature at Brownsville was first of all due to temperature rises in January and February with $1.5^{\circ} \mathrm{F}$ each, and in September and October with. $1.0^{\circ} \mathrm{F}$. increase between the first and the last date of the table above. The other months contribute on the order of $\frac{10}{2}$ or less; March is the only month with a decrease of temperature ($-\frac{1}{2}{ }^{\circ} \mathrm{F}$) in the mentioned period. An explanation for these temperature changes cannot be offered, however, they occurred in similar form in other partscof the northern hemisphere.
(g) A frequency distribution of the temperatures is not so useful as that for precipitation because the seasonal march overshadows most of its fluctuations. Not overshadowed by the seasonal march are the temperatures of the coldest and warmest months. Therefore two big charts show isotherms of the coldest and of the warmest month respectively. They are based on the monthly temperature means observed form 1910 through 1959.
(h) All data used for the construction of this atlas, including the locations of the stations, stem from publications or from the files of the U.S. Weather Bureau, State Climatologist for Texas, Austin, Texas. They were supplemented by corresponding data from the adjacent states. Requests for further information should be directed to those agencies. Questions referring to the tables and charts presented in this atlas should be directed to the Department of Meteorology, University of Texas, Austin, Texas.

REFERENCES

(1) e.g. V. Conrad and L. W. Pollak, Methods in Climatology 1950, pp. 232 - 237.
(2) U. S. Weather Bureau, Climatography of the United States, Climates of the States, Texas, under press.

COUNTY	STATION
Anderson	Palestine
Andrews	
Angelina	Lufkin
Aransas	
Archer	
Armstrong	
Atascosa	
Austin	
Bailey	Muleshoe No. 1
Bandera	
Bastrop	
Baylor	Seymour
Bee	Beeville S NE
Bell	Temple
Bexar	San Antonio WB AP
Blanco	Blanco
Borden	
Bosque	
Bowie	
Brazoria	Angleton 4 NE
Brazos	College Station FAA AP
Brewster	Alpine and Marathon
Briscoe	
Brooks	Falfurrias
Brown	Brownwood
Burleson	
Burnet	
Caldwell	Luling 1 SE
Caihoun	
Callahan	
Cameron	Brownsville WB AP Harlingen San Benito
Champ	
Carson	
Cass	
Castro	
Chambers	
Cherokee	
Childress	Childress
Clay	Henrietta
Cochran	
Coke	
Coleman	Coleman
Collin	
Collingsworth	
Colorado	

COUNIY	STATION
Comal	New Braunfels
Comanche	
Concho	
Cooke	Gainesville
Coryell	
Cottle	
Crane	
Crockett	
Crosby	Crosbyton
Culberson	
Dallam	
Dallas	Dallas WB AP
Dawson	Lamesa 1 SSE
Deaf Smith	
Delta	
Denton	Denton Exp. Sta.
De Witt	Cuero 3 NW
Dickens	Spur 1 WNW
Dimmit	Carrizo Springs
Donley	clarendon
Duval	
Eastland	Eastland
Ector	
Edwards	
Ellis	
El Paso	El Paso WB AP
Erath	Dublin
Falls	
Fannin	Bonham
Fayette	Flatonia
Fisher	
Floyd	
Foard	
Fort Bend	Sugar Land
Franklin	
Freestone	
Frio	Dilley
Gaines	Seminole
Galveston	Galveston WB CITY
Garza	
Gillespie	
Glasscock	
Goliad	
Gonzales	
Gray	Pampa

Texas Counties and their Climatological Stations Cont.

COUNTY	STATION
Grayson	Sherman No. 2
Gregg	Longview
Grimes	
Guadalupe	
Hale	Plainview
Hall	Memphis
Hamilton	
Hansford	
Hardeman	Quanah 5 SE
Hardin	
Harris	Houston WB CITY
Harrison	Marshall
Hartley	Dalhart FAA AP
Haskell	Haskell
Hays	San Marcos
Hemphill	Canadian
Henderson	
Hidalgo	Mission
Hill	Hillsboro
Hockley	
Hood	
Hopkins	
Houston	
Howard	Big Spring
Hudspeth	
Hunt	Greenville 2 SW
Hutchinson	
Irion	
Jack	
Jackson	
Jesper	
Jeff Davis	Fort Davis
Jefferson	Beaumont Exp. Farm
Jim Hogg	
Jim Wells	
Johnson	Cleburne
Jones	
Karnes	
Kaufman	
Kendall	Boerne
Kenedy	
Kent	
Kerr	Kerrville
Kimble	Junction CAA AP
King	

COUNTY	STATION
Kinney	
Kleberg	
Knox	
Lamar	Paris
Lamb	
Lampasas	Lampasas
La Salle	Encinal
Lavaca	
Lee	
Leon	
Liberty	Liberty
Limestone	Mexia
Lipscomb	
Live Oak	
Llano	Llano
Loving	
Lubbock	Lubbock WB AP
Lynn	
McCulloch	
McLennan	Waco WB AP
McMullen	
Madison	
Marion	
Martin	
Mason	
Matagorda	
Maverick	Eagle Pass
Medina	Hondo
Menard	
Midland	Midland WB AP
Milam	Cameron
Mills	
Mitchell	
Montague	
Montgomery	
Moore	
Morris	
Motley	
Nacogdoches	Nacogdoches
Navarro	Corsicana
Newton	
Nolan	
Mueces	Corpus Christi
Ochiltree	
Oldham	Vega

COUNTY	STATION
Orange	
Palo Pinto	
Panola	
Parker	
Parmer	
Pecos	Fort Stockton
Polk	
Potter	Amarillo WB AP
Presidio	Presidio
Rains	
Randall	
Reagan	
Real	
Red River	
Reeves	Balmorhea Exp. Pan.
Refugio	
Roberts	Miami
Robertson	
Rockwall	
Runnels	Ballinger 2 N
Rusk	
Sabine	
San Augustine	
San Jacinto	
San Patricio	
San Saba	
Schieicher	
Scurry	Snyder
Shackleford	Albany
Shelby	
Sherman	
Smith	
Sumerveil	
Starr	Rio Grande City
Stephens	
Sterling	
Stonewall	
Sutton	
Swisher	
Tarrant	Fort Worth WB AP
Taylor	Abilene WB AP
Terrell	Sanderson
Terry	
Throckmorton	
Titus	Mount Pleasant

COUNTY	STATION
Tom Green	San Angelo WB AP
Travis	Austin WB AP
Trinity	
Tyler	
Upshur	
Upton	McCamey
Uvalde	Uvalde
Val Verde	Del Rio WB CITY
Van Zandt	Wills Point
Victoria	Victoria WB AP
Walker	Huntsville
Waller	
Ward	Grandfalls 3 SSE
Washington	Brenham
Webb	Laredo WB AP
Wharton	Danevang
Wheeler	Pierce
Wichita	Wichita Falls WB AP
Wilbarger	
Willaco	
Williamson	
Wilson	
Winkler	
Wise	Bridgeport
Wood	
Yoakum	
Young	Graham
Zapata	
Zavala	

Name	County	Latitude	Longitude	Elevation
		N	W	feet
Abilene WB AP	Taylor	3226	$99^{* 1}$	1759
Albany	Shackelford	3244	9918	1429
Alpine	Brewster	3023	10340	4433
Amarillo WB AP	Potter	3514	10142	3590
Angleton 4 NE	Brazoria	2912	9523	27
Austin	Travis	3018	9742	615
Ballinger 2 N	Runnels	3146	9957	1637
Balmorhea Exp. Pan.	Reeves	3100	10341	3225
Beaumont Exp. Farm	Jefferson	$30 \quad 04$	9417	30
Beeville 5 NE	Bee	2827	9742	225
Big Spring	Howard	3215	10127	2528
Blanco	Blance	3005	9825	1350
Boerne	Kendall	2949	9845	1412
Bonham	Fannin	3336	9611	566
Brenham	Washington	3010	9623	350
Bridgeport	Wise	3312	9746	754
Brownsville WB AP	Cameron	2554	9726	16
Brownwood	Brown	3143	9859	1345
Cameron	Milam	3051	9659	393
Canadian	Hemphill	3555	10022	2324
Carrizo Springs	Dimmit	2831	9952	600
Childress	Childress	3426	10012	1880
Clarendon	Donley	3456	10053	2720
Cleburne	Johnson	3221	9723	758
Coleman	Coleman	3150	9926	1710
College Station FAA AP	Brazos	3035	96-21	314
Corpus Christi WB AP	Nueces	2746	9726	41
Corsicana	Navarro	3205	9628	445
Crosbyton	Crosby	3339	10115	3105
Cuero 3 NW	Dewitt	2908	9719	180
Dalhart FAA AP	Hartley	3601	10233	3989
Dallas WB AP	Dallas	3251	9651	487
Danevang	Wharton	2902	9612	70
Del Rio WB CITY	Val Verde	2920	10053	957
Denton Exp. Sta.	Denton	3315	9711	621
Dilley	Frio	2840	9910	569
Dublin	Erath	3205	9820	1466
Eagle Pass	Maverick	2843	10030	743
Eastland	Eastland	3224	9849	1435
El Paso	El Paso	3148	10624	3920

Name	County	Latitude	Longitude	Elevation
		N	W	feet
Encinal 3 NW	La Salle	2804	9922	569
Falfurrias	Brooks	2713	9808	110
Flatonia	Fayette	2941	9706	465
Fort Davis	Jeff Davis	3036	10353	4800
Fort Stockton	Pecos	3054	10252	2925
Fort Worth WB AP	Tarrant	3250	9703	544
Gainsville	Cooke	33 B8	9708	745
Galveston WBCITY	Galveston	3918	9450	7
Graham	Young	3305	9835	1040
Grandfalls 3 SSE	Ward	3118	10250	2440
Greenville 2 SW	Hunt	3307	9608	550
Harlingen	Cameron	2612	9742	37
Haskell	Haskell	3310	9944	1605
Henrietta	Clay	3349	9812	915
Hillsboro	Hill	3201	9708	625
Hondo	Medina	2921	9908	901
Houston WB CITY	Harris	2946	9522	41
Huntsville	Walker	3044	9534	400
Junction CAA AP	Kimble	3030	9946	1705
Kerrville	Kerr	3002	9908	1650
Lamesa 1 SSE	Dawson	3242	101. 56	2965
Lampasas	Lampasas	31.03	9811	1016
Laredo WB AP	Webb	2732	9928	500
Liberty	Liberty	3003	9449	38
Llano	Llano	3045	9841	1040
Longview	Gregg	3229	9443	345
Lubbock WB AP	Lubbock	3339	10150	3243
Lufkin	Angelina	3114	9445	286
Luling 1 SE	Caldwell	2940	9738	400
Marathon	Brewster	3013	10315	4050
Marshall	Harrison	3233	9422	375
McCamey	Upton	3108	10212	2454
Memphis	Hall	3443	10032	2067
Mexia	Limestone	3141	9629	537
Miami	Roberts	3542	10038	2744
Midland WB AP	Midland	3156	10212	2854
Mission	Hidalgo	2613	9819	140
Mount Pleasant	Titus	3310	9500	416
Muleshoe 1	Bailey	3413	10243	3790
Nacogdoches	Nacogdoches	3137	9439	360

Name

New Braunfels
Palestine
Pampa.
Paris
Pierce
Plainview
Presidio
Quanah 5 SE
Rio Grande City 2 ESE
San Angelo WB AP
San Antonio WB AP
San Benito
Sanderson
San Marcos
Seminole
Seymour
Sherman No. 2
Snyder
Spur 1 WlvW
Sugar Land
Temple
Uvalde
Vega
Victoria WB AP
Waco WB AP
Wichita Falls WB AP
Wills Point

County

Comal
Anderson
Gray
Lamar
Wharton
Hale
Presidio
Hardeman
Starr
Tom Green
Bexar
Cameron
Terrell
Hays
Gaines
Baylor
Grayson
Scurry
Dickens
Fort Bend
Bell
Uvalde Oldham
Victoria
McLennan
Wichita
Van Zandt

Latitude

2942
3147
3532
3340
2915
3412
2933
3415
2622
3122
2932
2608
3008
2953
3242
3335
3338
3244
3329
2937
31. 06

2912
3315
2847
3137
3359
3242

Longitude	Elevation
W	feet
9807	720
9537	580
1058	3225
9534	542
9611	102
10143	3400
10124	2582
9941	1495
9847	160
10030	1903
9828	792
9738	37
10222	3000
9757	600
10240	3318
9916	1291
9636	745
10055	2450
10053	2274
9538	79
9721	675
9948	937
10226	4000
9705	110
9713	500
9831	1020
9601	532

TEXAS TEMPERATURE

Monthly and Annual Means (1910-1959)

STATION \quadYEARS OF RECORD			JAN。	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPP.	OCT.	NOV.	DEC.	ANTNUAL
	Max.														
Abilene	50	50	44.6	48.8	55.9	64.8	72.2	80.5	83.8	83.6	76.6	66.3	53.8	45.9	64.7
Albany	42	41	44.3	48.6	55.1	64.7	72.4	80.9	84.6	84.9	77.2	66.8	53.6	46.8	65.0
			(44.7)	(48.4)	(55.1)	(64.5)	(72.2)	(81.0)	(84.7)	(84.9)	(77.3)	(66.6)	(54.0)	(46.4)	(65.0)
Alpine	31.	28	46.7	51.2	55.8	63.4	70.8	77.6	77.4	77.0	72.1	65.0	53.6	48.7	63.3
			(47.4)	(51.4)	(56.0)	(63.2)	(70.7)	(77.2)	(77.4)	(77.1)	(72.1)	(65.2)	(54.3)	(48.3)	(63.3)
Amarillo	50	50	36.9	40.4	46.9	56.2	64.8	74.7	78.6	77.5	70.4	59.5	46.4	38.4	57.6
Angleton		45	54.9	57.7	61.8	68.4	74.7	80.2	82.0	82.2	78.5	71.0	61.7	56.6	69.1
Austin	50	49	50.4	54.2	60.2	67.7	74.8	81.7	84.5	84.7	79.3	70.3	59.0	52.1	68.2
Balinger	50	47	44.2	49.2	55.7	65.1	72.6	80.8	83.8	83.7	76.7	66.6	53.9	46.6	64.9
Balmorhea	36	35	47.0	51.8	57.4	65.6	72.8	80.7	80.8	80.0	74.7	66.0	54.2	47.9	64.9
			(47.5)	(51.7)	(57.5)	(65.4)	(72.7)	(80.2)	(80.8)	(80.1)	(74.7)	(66.8)	(54.7)	(47.8)	(64.9)
Beaumont	50	48	54.5	57.4	62.3	69.4	76.3	82.4	84.1	84.1	80.1	71.8	61.6	55.5	70.0
Beeville	50	48	55.3	58.6	64.4	71.1	76.9	81.9	84.2	84.8	80.7	73.0	63.0	56.6	70.9
Big Spring	50	49	43.9	48.1	55.0	64.2	72.3	80.6	83.0	82.4	75.7	65.4	52.5	44.8	64.0
Blanco	50	46	48.2	51.5	56.5	63.7	73.2	80.3	83.3	83.3	77.6	67.8	56.2	49.9	66.0
Boerne	50	48	49.7	53.1	58.9	65.2	72.2	78.4	81.0	81.3	76.4	67.6	57.0	50.8	66.0
Bonham	48	44	42.8	46.8	54.2	63.3	71.4	79.9	83.8	83.9	77.2	65.7	53.4	45.2	64.0 68.4
Brenham	50	48	51.6	54.4	60.3	67.8	74.9	81.3	84.1	84.5	79.4	70.6	59.6	52.5	68.4
Bridgeport	25	24	42.8	47.1	54.5	63.6	71.8	80.6	84.6	85.0	76.9	66.1	52.6	46.0	64.3
Briageport			(42.7)	(47.1)	(53.8)	(63.4)	(71.1)	(80.5)	(84.5)	(84.3)	(76.7)	(65.6)	$53.0)$ 67.6	$45.1)$ 61.2	(64.0) 73.5
Brownsville	50	50	61.0	64.1	68.0	74.0	78.8	82.5	83.8 84.4	84.3 84.2	81.4	67.0	57.0	41.2	73.5 65.4
Brownwood	50	49	45.8 49.6	49.5 53.4	56.4 60.0	65.0 67.7	72.5 75.1	80.5 81.6	84.4 85.1	84.2 85.6	880	70.5	55.0 58.9	51.4	68.2
Cameron	48	39	49.6 (49.5)	53.4 (53.5)	(60.1)	67.7 (67.7)	(75.1)	(81.6)	(85.2)	(85.6)	(80.0)	(70.5)	(58.8)	(51.4)	(68.3)
Carrizo Springs	38	35	$\begin{aligned} & 54.2 \\ & (54.3) \end{aligned}$	$\begin{aligned} & 58.5 \\ & (58.8) \end{aligned}$	$\begin{gathered} 64.7 \\ (65.0) \end{gathered}$	$\begin{gathered} 72.1 \\ (72.5) \end{gathered}$	$\begin{gathered} 78.7 \\ (78.9) \end{gathered}$	$\begin{gathered} 84.5 \\ (84.4) \end{gathered}$	$\begin{gathered} 86.5 \\ (86.7) \end{gathered}$	$\begin{gathered} 86.6 \\ (86.9) \end{gathered}$	$\begin{gathered} 81.5 \\ (81.8) \end{gathered}$	$\begin{gathered} 73.0 \\ (73.3) \end{gathered}$	$\begin{gathered} 61.6 \\ (62.3) \end{gathered}$	$\begin{gathered} 55.3 \\ (55.4) \end{gathered}$	$\begin{gathered} 71.4 \\ (71.7) \end{gathered}$

NOTE: Numbers in (parenthesis) are reduced to 50 years.

TEXAS
TEMPERATURE (continued)
Monthly and Annual Means (1910-1959)

NOTE: Numbers in (parerthesis) are reduced to 50 years.

TEEAS TEMPERATURE（continued）															
Monthly and Annual Means（1910－1959）															
STATION	YEARS OF RECORD		JAN。	FEB。	MAR。	APR．	MAY	JUNE	JULY	AUG．	SEPT．	OCT．	NOV．	DEC。	ANAUAL
	Max．	Min													
Falfurrias	50	48	57.2	61.8	67.5	74.1	79.7	84.2	86.1	86.5	82.2	74.8	65.3	59.2	73.2
Flatonia	50	48	52.9	56.5	62.2	69.1	75.7	81.9	82.9	85.0	79.8	72.0	61.0	54.6	69.5
Fort Stockton	－ 50	48	48.2	52.3	57.9	66.0	73.9	81.2	82.3	81.7	76.0	67.0	55.4	48.8	65.9
Fort Worth	50	50	46.0	49.9	56.8	65.2	72.8	81.2	84.9	85.0	78.2	68.0	55.7	48.0	66.0
Gainesville	50	49	43.7	48.3	55.7	64.4	72.1	80.7	84.7	84.6	77.7	66.6	53.8	45.7	64.8
Galveston	50	50	54.7	57.1	61.7	68.6	75.5	81.3	83.0	83.4	80.3	73.2	63.1	56.7	69.9
Graham	40	36	44.3	47.8	55.3	64.3	71.9	80.9	84.9	85.0	77.6	66.8	53.6	45.8	64.8
			（44．3）	（47．8）	（55．3）	（64．3）	（71．9）	（80．8）	（85．0）	（85．0）	(77.6)	（66．8）	（53．6）	（45．8）	（64．9
Greenville	39	38	43.4	47.4	54.4	63.9	71.8	80.3	84.0	84.6	77.9	66.8	53.7	45.9	64.5
			（43．2）	（47．0）	（54．5）	(63.6)	(71.7)	（80．3）	(84.0)	（84．2）	（77．9）	（66．8）	(54.0)	（45．4）	（64．4）
Harlingen	46	44	61.0	64.3	68.5	74.8	79.7	83.1	84.6	85.3	81.9	75.8	67.4	61.9	74.0
			（60．9）	（64．2）	（68．7）	（74．9）	（79．6）	(83.2)	(84.6)	(85.3)	（81．9）	(75.7)	（67．3）	（62．0）	（74．0）
Haskell	50	46	42.5	46.5	．54．3	63.8	71.6	80.5	84.0	83.7	76.4	65.4	52.5	44.3	63.8
Henrietta	50	49	41.8	46.2	53.4	63.3	71.7	81.3	85.9	85.8	78.1	66.2	52.8	44.3	64.2
Hillsboro	49	47	45.9	49.8	56.7	65.5	73.4	81.6	85.3	85.5	79.1	68.4	55.5	48.0	66.2
Hondo	50	48	52.4	56.4	62.5	69.3	75.9	82.4	85.0	85.2	80.1	71.2	60.2	53.4	69.5
Houston	50	50	54.3	57.2	62.4	69.0	75.7	81.6	83.6	83.9	79.7	72.0	61.7	55.8	69.7
Huntsville	50	48	50.3	53.2	59.2	65.7	74.0	81.0	83.4	83.4	78.1	69.3	58.0	52.6	67.4
Junction Kerrville Lamesa	50	47	47.7	51.9	57.8	65.4	72.3	79.4	80.5	82.2	75.9	66.8	54.8	48.6	65.3
	50	49	47.2	50.7	56.9	64.1	71.4	78.2	80.8	81.0	75.5	66.1	54.7	48.2	64.6
	33	31	41.4	45.5	52.4	61.6	70.1	78.9	80.6	80.0	73.3	63.1	50.2	43.4	61.7
			（41．7）	（45．7）	（52．3）	（61．1）	（69．8）	（78．9）	（80．7）	（79．9）	（73．1）	（62．6）	（50．2）	（42．6）	（61．6）
Lampasas	50	47	47.1	50.6	57.3	65.0	72.3	80.1	83.7	83.9	77.4	67.4	55.6	48.6	65.8
Laredo	50	47	56.8	61.4	67.6	75.3	80.7	85.9	87.6	87.8	83.1	75.3	64.2	57.4	73.6

NOTE：Numbers in（parenthesis）are reduced to 50 years．

TEXAS TEMPERATURE (continued)
Monthly and Annual Means (1910-1959)
YeARS OF

NOTE: Numbers in (parenthesis) are reduced to 50 years.

TEXAS .TEMPERATURE (continued)
Monthly and Annual Means (1910-1959)

NOTE: Numbers in (parentresis) are reduced to 50 years.

TEXAS
PRECIPITATION
Monthly and Annual Means (1910-1959)

NOTE: Numbers in (parenthesis) are reduced to 50 years.

TEXAS PRECIPITATION (continued)
Monthly and Annual Means (1910-1959)

NOTE: Numbers in (parenthesis) are reduced to 50 years.

TEXAS PRECIPITATION (continued)
Monthly and Annual Means (1910-1959)

STATION	YEAR	S OF	JANV.	FEBB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.	ANINUAL
		Min.													
Falfurrias	50	49	1.30	1.08	1.02	1.78	2.89	2.80	1.69	2.10	4.25	2.14	1.26	1.39	23.70
Flatonia	50	49	2.43	2.66	2.45	3.80	4.48	3.18	2.48	2.46	3.23	3.00	2.75	2.96	35.88
Fort Davis	47	45	0.54	0.46	0.30	0.58	1.38	1.73	2.62	2.79	2.12	$\underline{125}$	0.50	0.54	14.91
Fort Stockton	50	49	0.64	0.61	0.46	0.94	1.78	1.47	1.42	1.61	2.07	1.33	0.64	0.68	13.65
Fort Worth	50	50	1.98	2.08	2.35	4.02	4.71	3.09	1.82	2.25	2.54	2.70	2.18	2.11	31.83
Galveston	50	50	3.50	2.58	2.68	3.02	3.38	3.29	4.16	4.02	5.22	3.70	3.38	4.04	43.02
Graham	50	49	1.37	1.46	1.69	2.91	4.01	3.22	1.91	1.95	2.66	2.73	1.61	1.52	27.04
Grandfalls	40	35	0.48	0.59	0.51	0.87	1.73	1.20	1.05	1.30	1.88	1.44	0.56	0.64	12.25
			(0.51)	(0.52)	(0.46)	(0.75)	(1.61)	(1.13)	(1.01)	(1.26)	(1.56)	(1.26)	(0.52)	(0.55)	(11.14)
Greenville	50	50	2.82	2.81	3.24	4.83	5.10	3.59	3.05	2.41	2.74	3.09	3.06	3.11	39.85
Harlingen	43	41	1.46	1.27	1.15	1.35	3.11	2.66	2.09	2.56	4.92	2.68	1.53	1.38	26.16
			(1.46)	(1.20)	(1.15)	(1.35)	(3.17)	(2.65)	(1.96)	(2.41)	(4.85)	(2.70)	(1.65)	(1.38)	(25.93)
Haskell	50	48	0.86	1.10	1.03	2.40	3.67	2.98	1.94	2.02	2.29	2.54	1.25	1.15	23.23
Henrietta	50	49	1.21	1.50	1.77	2.96	4.09	3.27	2.19	2.07	2.52	3.08	1.74	1.64	28.04
Hillsboro	49	47	2.47	2.54	2.76	4.84	4.58	3.26	1.94	1.95	2.99	2.78	2.79	2.96	35.86
Hondo	50	49	1.60	1.70	1.79	3.03	4.06	2.97	2.00	2.08	3.18	2.62	1.59	1.74	28.38
Houston	50	50	3.52	2.80	2.72	3.59	4.63	3.71	4.59	3.55	3.71	3.52	3.66	4.82	44.82
Huntsville	50	49	3.60	3.71	3.54	4.88	4.88	3.92	3.39	2.68	2.79	3.33	4.19	4.37	45.28
Junction	50	49	1.20	1.18	1.53	2.48	3.51	2.83	2.05	1.97	3.12	2.53	1.42	1.22	25.04
Kerrville	50	49	1.59	1.77	1.97	3.05	4.02	3.03	2.06	2.00	3.86	3.05	1.77	2.05	30.22
Lamesa	50	49	0.57	0.66	0.70	1.33	2.16	2.08	2.01	1.82	2.26	2.20	0.75	0.75	17.29
Lampasas	50	49	1.68	1.99	1.95	3.49	4.06	2.68	1.70	1.86	3.16	2.63	2.33	2.23	29.76

NOTE: Numbers in (paredhesis) are reduced to 50 years.

TEXAS PRECIPITATION (continued)
Monthly and Annual Means (1910-1959)

NOTE: Numbers in (parentiesis) are reduced to 50 years.

TEXAS PRECIPITATION (continued)
Monthly and Annual Means (1910-1959)

NOTE: Numbers in (parenthesis) are reduced to 50 years.

TEXAS PRECIPITATION (continued)
Monthly and Annual Means (1910-1959)

STATION	YEARS OF RECORD	JAN.	FEB.	MAR.	APR.	MAY	JUME	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.	ANNUAL
	Max. Min.													
Vega	4241	0.53	0.46	0.90	1.25	2.54	2.24	2.16	2.58	1.66	1.49	0.74	0.74	17.29
		(0.49)	(0.49)	(0.82)	(1.30)	(2.49)	(2.03)	(2.22)	(2.66)	(1.66)	(1.44)	(0.70)	(0.76)	(17.06)
Victoria	5050	2.20	2.05	2.34	2.63	4.03	2.96	3.23	2.76	4.06	3.15	2.25	2.68	34.34
Waco	5050	2.04	2.35	2.74	3.94	4.34	2.82	1.76	1.88	2.82	2.58	2.49	2.68	32.44
Wichita Falls	3636	1.17	1.32	1.58	2.51	4.36	3.34	2.13	1.84	2.37	2.82	1.40	1.40	26.24
		(1.03)	(1.27)	(1.42)	(2.85)	(3.96)	(3.22)	(2.10)	(2.38)	(2.21)	(2.74)	(1.43)	(1.36)	(25.97)
Wills Point	3432		2.82	3.21	5.46	4.76	3.28	2.48	2.79	2.48	3.50	3.64	3.23	40.44
		(3.32)	(2.87)	(3.15)	(4.88)	(4.55)	(3.05)	(2.35)	(2.55)	(2.86)	(3.46)	(3.42)	(3.42)	(39.88)

NOTE: Numbers in (parenthesis) are reduced to 50 years.

Types of annual rainfall
(For their geographical
distribution see the
following map)

Geographical distribution of rainfall types

> (For the meaning of the letters see the diagram of the previous page)

Circles denote the positions of the stations whose data can be found in the tables, pp. 18 - 28 .
Crosses denote the positions of stations whose series of observations are not long enough to be included in the tables. They were consulted in the production of the charts.

Probability that for a station with the mean monthly rainfall of the vertical scale the rainfall of an individual year will exceed the amount given by the horizontal scale.
Unit: inches

Probability that for a station with the mean monthly rainfall of the vertical scale, the rainfall of an individual month will exceed the amount given by the horizontal scale. Unit: inches.

Lines of greatest observed amount of precipitation fallen in one individual month. (Extreme monthly rainfall is mostly the result of one severe rainstorm during only a few days of the month.) Unit: inches

