
United States Patent

USOO8447911B2

(12) (10) Patent No.: US 8.447,911 B2
Burger et al. (45) Date of Patent: May 21, 2013

(54) UNORDERED LOAD/STORE QUEUE 6,108,770 A * 8/2000 Chrysos et al. T12/216
6,141,747 A 10/2000 Witt 712,225
6,360,314 B1* 3/2002 Webb et al. ... T12/219

(75) Inventors: SE w E.N.S. 6,393,536 B1* 5/2002 Hughes et al. . T11 159
s s s 6,591.342 B1* 7/2003 Akkary et al. ... T11 125

Robert McDonald, Austin, TX (US); 7,073,043 B2 * 7/2006 Arimilli et al. 711/2O7
Lakshminarasimhan Sethumadhavan, 2003/0033276 A1 2/2003 Cheng et al.
Austin, TX (US); Franziska Roesner, 2004.0003170 A1 1/2004 Gibson et al.
Austin, TX (US) 2008. O133883 A1 6/2008 Glew

(73) Assignee: Board of Regents, University of Texas OTHER PUBLICATIONS
System, Austin, TX (US) Alper Buyuktosunoglu, et al., “Tradeoffs in Power-Efficient Issue

Queue Design.” ISLPED '02 (Aug. 2002).
(*) Notice: Subject to any disclaimer, the term of this International Search Report mailed Oct. 7, 2008 in PCT/US2008/

patent is extended or adjusted under 35 O692O7.
U.S.C. 154(b) by 796 days. Written Opinion mailed Oct. 7, 2008 in PCT/US2008/069207.

International Preliminary Reporton Patentability mailed Jan.5, 2010
(21) Appl. No.: 12/166,491 in PCT/US2008,0692O7.

(22) Filed: Jul. 2, 2008 * cited by examiner

(65) Prior Publication Data Primary Examiner — Stephen Elmore
US 2009/OO13135A1 Jan. 8, 2009 Assistant Examiner — Mark Giardino, Jr.

(74) Attorney, Agent, or Firm — Schwabe, Williamson &
Related U.S. Application Data Wyatt, P.C.

(60) Provisional application No. 60/948,122, filed on Jul. 5,
2007. (57) ABSTRACT

A method and processor for providing full load/store queue (51) Int. Cl. G06F 12/00 (2006.01) functionality to an unordered load/store queue for a processor
GO6F 3/OO (200 6,015 with out-of-order execution. Load and store instructions are
GO6F 3/28 (200 6. 01) inserted in a load/store queue in execution order. Each entry in

(52) U.S. Cl the load/store queue includes an identification corresponding
AV e. we to a program order. Conflict detection in Such an unordered

USPC - - - - - - - - - - - .. 7115. 712/206: 712/219; 712/225 load/store queue may be performed by searching a first CAM
(58) Field of Classification Search for all addresses that are the same or overlap with the address

USPC 711/5; 712/206, 219, 225 of the load or store instruction to be executed. A further search
See application file for complete search history. may be performed in a second CAM to identify those entries

(56) References Cited that are associated with younger or older instructions with

U.S. PATENT DOCUMENTS

5,421,022 A * 5/1995 McKeen et al. 71.2/23
5,467.473 A 11/1995 Kahleet al. 395/800
5,931,957 A 8/1999 Konigsburg et al.

RECEIVE ADDRESS OFCURREN
STOREINSTRUCTION

SEARCHADDRESSAMTOCENTIFY ANY
ADDRESSWITH THESAMEROVERLAPPNG
ADDRESSOFCRRENTSTORESTRUCTION

CENTIFYZERORMOREADDRESSESTHAT
ARE THESAMERVERLAPPINGTH THE

ADDRESSOF THECURRENTSTOREINSTRUCTION

712

PLACESTOREDATA MO
BATANLOADASTORE
QUEEDATA ARRAY

7os INSTRUCTION THAT IS ONETHANCRRENT

PERFORMLOGICAL AND OPERATION ON
OUTPUT OF ADDRESSCAMANDAGECAM

respect to the sequence number of the load or store instruction
to be executed. The output results of the Address CAM and
Age CAM are logically ANDed.

27 Claims, 8 Drawing Sheets

RECEIVESEQUENCENUMBER OF
CRRENSTOREINSTRUCTION

RECEIVEINSTRUCTIONTOSEARCHFOR YOUNGER
SEQUENCENUMBERS THAN
CRRENTSTOREINSTRUCTION

SEARCHASECAMTOIENTIF ANY LOAD

STREINSTRUCTION

IDENTIFYZEROORMOREENTRIESNAGECAM
WITHASEQUENCENUMBERTHATIS

YOUNGER THANRECEIVEDSELENCENUMBER

PERFORMNECESSR
RECOVERY, INCLUDING

PIPELINEFLUSH

US 8.447,911 B2 Sheet 1 of 8 May 21, 2013 U.S. Patent

e,
OO|

| ||

ZO| HOSSROOMA |~ 101
| WEIS?SÇO| |

NOIWODA) |^ VO!

U.S. Patent May 21, 2013 Sheet 2 of 8 US 8.447,911 B2

2O1 // INSTRUCTION
FETCHUNT

FAR

INSTRUCTION
CACHE UNIT

2O3

INSTRUCTION
DISPATCH
UNIT (IDU)

INSTRUCTION
SEQUENCER N2O5

INSTRUCTION WINDOW

i. LOAD/STORE
GPRFILE UNITS L/S

HOUEUE
GPRENAME 208
BUFFERS

FPRFILE FLOATING

FPRENAME :
BUFFERS

COMPLETION
UNIT

BUSINTERFACE
UNIT (BIU)

217

FG. 2

U.S. Patent May 21, 2013 Sheet 3 of 8 US 8.447,911 B2

PROGRAM EXECUTE

l D 4

4 ST 1

7 ST 2

8 LD 3

PROGRAM

ORDER N

INSERTED IN
EXECUTION ORDER

US 8.447,911 B2 Sheet 4 of 8 May 21, 2013 U.S. Patent

BANK 2

BANK 3

BANK 4

FG. 4

US 8.447,911 B2 Sheet 5 of 8 May 21, 2013 U.S. Patent

ZOG

+7OG
?OG

U.S. Patent May 21, 2013 Sheet 6 of 8 US 8.447,911 B2

(600

(3O1 604 RECEIVE SEQUENCENUMBER OF
RECEIVE ADDRESS OF CURRENT CURRENT LOAD INSTRUCTION

LOAD INSTRUCTION

as
RECEIVE INSTRUCTION TO SEARCH FOR OLDER

(6O2 6O5 SEQUENCENUMBERS THANSEQUENCE
SEARCHADDRESS CAM TOIDENTIFY ANY NUMBER OF CURRENT LOAD INSTRUCTION

ADDRESS WITH THE SAME OR OVERLAPPING
ADDRESS OF CURRENT LOAD INSTRUCTION SEARCHAGECAM TOIDENTIFY ANY STORE

(3O3 aoa, INSTRUCTION THAT ISOLDER THAN CURRENT
LOAD INSTRUCTION

IDENTIFY ZERO ORMORE ADDRESSES THAT
ARE THE SAME OR OVERLAPPING WITH THE

ADDRESS OF THE CURRENT LOAD INSTRUCTION IDENTIFY ZERO ORMORE ENTRIES IN AGECAM
WITH A SEQUENCENUMBER THATIS

(3O7 OLDER THAN RECEIVED SEQUENCENUMBER

(3O8.

PERFORMLOGICAL AND OPERATION ON
OUTPUT OF ADDRESS CAMAND AGECAM 612

TERATE THROUGH
(61O (3O9 MATCHINGSTORE

INSTRUCTIONS TO
is: NO ONE ORMORE MATCHING YESIDENTIFY ALL STORED
DATA MEMORY STORE INSTRUCTIONS BYTES THAT ARE OLDER

THANTHELOAD
INSTRUCTION TO LOAD

DELIVER DATA (311 THE WORD
(2) BACK TO

PROCESSOR

F.G. (6A

U.S. Patent May 21, 2013 Sheet 7 of 8 US 8.447,911 B2

RETRIEVE MISSING
BYTES FROM DATA

CACHE OR DATA MEMORY

RETRIEVE THEBYTES, IF ANY,
THAT ARE NOT MISSING FROM

LOAD/STORE QUEUEDATA ARRAY

RETRIEVEBYTES FROM OLDER
STORE INSTRUCTIONS FROM

LOAD/STORE QUEUEDATA ARRAY

F.G. (33

U.S. Patent May 21, 2013 Sheet 8 of 8 US 8.447,911 B2

7OO

7O1 7O4 RECEIVE SEQUENCENUMBER OF
RREN TRUCT RECEIVE ADDRESS OF CURRENT CURRENT STORE INSTRUCTION

STOREINSTRUCTION

is
7O2 RECEIVE INSTRUCTION TO SEARCHFOR YOUNGER

7O5 SEQUENCENUMBERS THAN
SEARCHADDRESS CAM TOIDENTIFY ANY CURRENT STORE INSTRUCTION

ADDRESS WITH THE SAME OR OVERLAPPING
ADDRESS OF CURRENT STORE INSTRUCTION SEARCH AGECAM TOIDENTIFY ANY LOAD

7O3 702 INSTRUCTION THAT IS YOUNGER THAN CURRENT
STORE INSTRUCTION

IDENTIFY ZERO ORMORE ADDRESSES THAT
ARE THE SAME OR OVERLAPPING WITH THE

ADDRESS OF THECURRENT STORE INSTRUCTION IDENTIFY ZERO ORMORE ENTRIES IN AGECAM
WITH ASEQUENCENUMBER THAT IS

YOUNGER THAN RECEIVED SEQUENCENUMBER

PERFORMLOGICAL AND OPERATION ON
OUTPUT OF ADDRESS CAMANDAGE CAM

712 7O9 71O 711

EEA No-1ArcHNGoin' YES TRIGGER PERFORMNECESSARY
DATA IN LOAD/STORE INSTRUCTION? WO RECOVERY INCLUDING
QUEUEDATA ARRAY PIPELINE FLUSH

FIG. 7

US 8.447,911 B2
1.

UNORDERED LOAD/STORE QUEUE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to the following commonly
owned co-pending U.S. patent application:

Provisional Application Ser. No. 60/948,122, “Method and
Apparatus for Enabling Unordered Load-Store Queues, filed
Jul. 5, 2007, and claims the benefit of its earlier filing date
under 35 U.S.C. S119(e).

STATEMENT REGARDING GOVERNMENT
SPONSORED RESEARCH ORDEVELOPMENT

This invention was made with government Support under
F30602-03-C-4106 awarded by The Air Force Research Lab.
The government has certain rights in the invention.

TECHNICAL FIELD

The present invention relates to load/store queues, and
more particularly to an unordered load/store queue for a pro
cessor with out-of-order execution.

BACKGROUND OF THE INVENTION

A conventional processor in an information handling sys
tem may include several pipeline stages to increase the effec
tive throughput of the processor. For example, the processor
may include a fetch stage that fetches instructions from
memory, a decoder stage that decodes instructions into
opcodes and operands, and an execution stage with various
execution units that execute decoded instructions. Pipelining
enables the processor to obtain greater efficiency by perform
ing these processor operations in parallel. For example, the
decoder stage may decode a fetched instruction while the
fetch stage fetches the next instruction. Similarly, an execu
tion unit in the execution stage may execute a decoded
instruction while the decoder stage decodes another instruc
tion.

The simplest processors processed instructions in program
order, namely the order that the processor encounters instruc
tions in a program. Processor designers increased processor
efficiency by designing processors that execute instructions
out-of-order. Designers found that a processor can process
instructions out of program order provided the processed
instruction does not depend on a result not yet available. Such
as a result from an earlier instruction. In other words, a pro
cessor can execute an instruction out-of-order provided that
instruction does not exhibit a dependency.

To enable a processor to execute instructions out-of-order,
the processor may include a “load/store queue.” With the
load/store queue, load and store instructions are able to be
executed in order relative to one another. Entries in the load/
store queue may be established for load and store instructions
in program order as the instructions are fetched. For example,
as a new load or store instruction is fetched, an entry is created
for that load or store instruction at the tail end of the load/store
queue. The load/store queue continues to hold this instruction
until it has been committed (i.e., irrevocable) or nullified
through misspeculation. Hence, the load/store queue holds
each load and store instruction that are currently in-flight until
that particularload or store instruction has been committed or
nullified through misspeculation.
As discussed above, the load and store instructions are

stored in the load/store queue after they have been fetched.

10

15

25

30

35

40

45

50

55

60

65

2
Once the load or store instruction is ready to be executed,
there may be a search performed in the load/store queue to
ensure that there would not be a violation in executing that
load or store instruction. For example, if a load instruction is
to be executed, a search may be performed in the load/store
queue to locate older (referring to being fetched prior to the
load instruction in question) store instructions to the same or
overlapping address that have not been committed to deter
mine if the correct data to be loaded has already been stored.
In another example, if a store instruction is to be executed, a
search may be performed in the load/store queue to locate any
younger (referring to being fetched after the store instruction
in question) load instructions to the same or overlapping
address that have been executed. If that has occurred, all of the
pipelines are flushed.

Since the load/store queue has to store all the load and store
instructions from the time they have been fetched to the time
they have been committed, the load/store queue has to be
large in size to accommodate these load and store instruc
tions. Hence, the load/store queue is not currently scalable by
requiring to hold load and store instructions in program order
from the time they have been fetched to the time they are
committed.

However, if the load/store queue could be scaled smaller in
size, then the area and power efficiency of the load/store
queue may be improved.

BRIEF SUMMARY OF THE INVENTION

In one embodiment of the present invention, a method for
providing full load/store queue functionality to an unordered
load/store queue for a processor with out-of-order execution
comprises inserting load and store instructions in one or more
load/store queues in non-program order, where each entry in
the one or more load/store queues comprises an identification
corresponding to a program order.
The foregoing has outlined rather generally the features

and technical advantages of one or more embodiments of the
present invention in order that the detailed description of the
present invention that follows may be better understood.
Additional features and advantages of the present invention
will be described hereinafter which may form the subject of
the claims of the present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

A better understanding of the present invention can be
obtained when the following detailed description is consid
ered in conjunction with the following drawings, in which:

FIG. 1 is a hardware configuration of a computer system
configured in accordance with an embodiment of the present
invention;

FIG. 2 illustrates an embodiment of the present invention
of a processor of the computer system;

FIG.3 illustrates storing instructions in execution order in
a load/store queue in accordance with an embodiment of the
present invention;

FIG. 4 illustrates an embodiment of the present invention
of the load/store queue;

FIG. 5 illustrates the internal architecture of the load/store
queue in accordance with an embodiment of the present
invention;

FIGS. 6A-B are a flowchart of a method for providing full
load/store queue functionality to an unordered load/store
queue in connection with arriving load instructions for a

US 8.447,911 B2
3

processor executing instructions out-of-order in accordance
with an embodiment of the present invention; and

FIG. 7 is a flowchart of a method for providing full load/
store queue functionality to an unordered load/store queue in
connection with arriving store instructions for a processor
executing instructions out-of-order in accordance with an
embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention comprises a method and processor
for providing full load/store queue functionality to an unor
dered load/store queue for a processor with out-of-order
execution. In one embodiment of the present invention, load
and store instructions are inserted in one or more load/store
queues in execution order. Each entry in the load/store queue
includes an identification corresponding to the program
order. Conflict detection (e.g., determining if any violations
occurred) in Such an unordered load/store queue (which may
include separate load and store queues) may be performed by
using two content addressable memories. One content
addressable memory, referred to herein as the “Address
CAM” may include addresses of the load or store instructions
executed. The other content addressable memory, referred to
herein as the “Age CAM” may include the sequence number
(i.e., the program order) of the load or store instructions
executed. A search may be performed in the Address CAM for
all addresses that are the same or overlap with the address of
the load or store instruction to be executed. A further search
may be performed in the Age CAM to identify those entries
that are associated with younger or older instructions with
respect to the sequence number of the load or store instruction
to be executed. The output results of the Address CAM and
Age CAM are logically ANDed. Since the entries in the
Address CAM and the Age CAM are correlated, the loads and
stores to the same address are physically co-located with one
another thereby allowing address comparison and the ability
to perform a conflict detection analysis.

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, it will be apparent to those skilled in the
art that the present invention may be practiced without Such
specific details. In other instances, well-known circuits have
been shown in block diagram form in order not to obscure the
present invention in unnecessary detail. For the most part,
details considering timing considerations and the like have
been omitted inasmuch as such details are not necessary to
obtain a complete understanding of the present invention and
are within the skills of persons of ordinary skill in the relevant
art.
FIG. 1—Hardware Configuration of Computer System

FIG. 1 illustrates an embodiment of a hardware configura
tion of computer system 100 which is representative of a
hardware environment for practicing the present invention.
Computer system 100 may have a processor 101 coupled to
various other components by system bus 102. A more detailed
description of processor 101 is provided below in connection
with FIG. 2. Referring to FIG.1, an operating system 103 may
run on processor 101 and provide control and coordinate the
functions of the various components of FIG.1. An application
104 in accordance with the principles of the present invention
may run in conjunction with operating system 103 and pro
vide calls to operating system 103 where the calls implement
the various functions or services to be performed by applica
tion 104.

Referring to FIG. 1, read-only memory (“ROM) 105 may
be coupled to system bus 102 and include a basic input/output

10

15

25

30

35

40

45

50

55

60

65

4
system (“BIOS) that controls certain basic functions of com
puter device 100. Random access memory (“RAM) 106 and
disk adapter 107 may also be coupled to system bus 102. It
should be noted that Software components including operat
ing system 103 and application 104 may be loaded into RAM
106, which may be computer system’s 100 main memory for
execution. Disk adapter 107 may be an integrated drive elec
tronics (“IDE') adapter that communicates with a disk unit
108, e.g., disk drive.

Referring to FIG. 1, computer system 100 may further
include a communications adapter 109 coupled to bus 102.
Communications adapter 109 may interconnect bus 102 with
an outside network (not shown) thereby allowing computer
system 100 to communicate with other similar devices.

I/O devices may also be connected to computer system 100
via a user interface adapter 110 and a display adapter 111.
Keyboard 112, mouse 113 and speaker 114 may all be inter
connected to bus 102 through user interface adapter 110. Data
may be inputted to computer system 100 through any of these
devices. A display monitor 115 may be connected to system
bus 102 by display adapter 111. In this manner, a user is
capable of inputting to computer system 100 through key
board 112 or mouse 113 and receiving output from computer
system 100 via display 115 or speaker 114.
The various aspects, features, embodiments or implemen

tations of the invention described herein can be used alone or
in various combinations. The methods of the present inven
tion can be implemented by software, hardware or a combi
nation of hardware and software.
As discussed above, a detail description of processor 101 is

provided below in connection with FIG. 2.
FIG. 2 Processor

FIG. 2 illustrates an embodiment of the present invention
of processor 101 (FIG. 1) configured to execute instructions
out-of-order. Processor 101 may include an instruction fetch
unit 201 configured to fetch an instruction in program order.
Instruction fetch unit 201 may further be configured to load
the address of the fetched instruction into Instruction Fetch
Address Register 202 (“IFAR). The address loaded into
IFAR 202 may be an effective address representing an address
from the program or compiler. The instruction corresponding
to the received effective address may be accessed from
Instruction Cache (I-Cache) unit 203 comprising an instruc
tion cache (not shown) and a prefetch buffer (not shown). The
instruction cache and prefetch buffer may both be configured
to store instructions. Instructions may be inputted to instruc
tion cache and prefetch buffer from a system memory 217
through a Bus Interface Unit (BIU) 216.

Instructions from I-Cache unit 203 may be outputted to
Instruction Dispatch Unit (IDU) 204. IDU 204 may be con
figured to decode these received instructions. IDU 204 may
further comprise an instruction sequencer 205 configured to
forward the decoded instructions in an order determined by
various algorithms. The out-of-order instructions may befor
warded to one of a plurality of issue queues, or what may be
referred to as an “instruction window'. 206, where a particular
issue in instruction window 206 may be coupled to one or
more particular execution units, fixed point units 207, load/
store units 208 and floating point units 209. Instruction win
dow 206 includes all instructions that have been fetched but
are not yet committed. Each execution unit may execute one
or more instructions of a particular class of instructions. For
example, FXUs 207 may execute fixed point mathematical
and logic operations on Source operands, such as adding,
subtracting, ANDing, ORing and XORing. FPUs 209 may
execute floating point operations on Source operands, such as
floating point multiplication and division. FXUs 207 may

US 8.447,911 B2
5

input their source and operand information from General
Purpose Register (GPR) file 210 and output their results (des
tination operand information) of their operations for storage
at selected entries in General Purpose (GP) rename buffers
211. Similarly, FPUs 209 may input their source and operand
information from Floating Point Register (FPR) file 212 and
output their results (destination operand information) of their
operations for storage at selected entries in Floating Point
(FP) rename buffers 213.
As stated above, instructions may be queued in one of a

plurality of issue queues in instruction window 206. If an
instruction contains a fixed point operation, then that instruc
tion may be issued by an issue queue of instruction window
206 to any of the multiple FXUs 207 to execute that instruc
tion. Further, if an instruction contains a floating point opera
tion, then that instruction may be issued by an issue queue of
instruction window 206 to any of the multiple FPUs 209 to
execute that instruction.

All of the execution units, FXUs 207, FPUs 209, LSUs
208, may be coupled to completion unit 214. Upon executing
the received instruction, the execution units, FXUs 207, FPUs
209, LSUs 208, may transmit an indication to completion unit
214 indicating the execution of the received instruction. This
information may be stored in a table (not shown) which may
then be forwarded to IFU 201. Completion unit 214 may
further be coupled to IDU204. IDU204 may be configured to
transmit to completion unit 214 the status information (e.g.,
type of instruction, associated thread) of the instructions
being dispatched to instruction window 206. Completion unit
214 may further be configured to track the status of these
instructions. For example, completion unit 214 may keep
track of when these instructions have been committed.
Completion unit 214 may further be coupled to instruction
window 206 and further configured to transmit an indication
of an instruction being committed to the appropriate issue
queue of instruction window 206 that issued the instruction
that was committed.

In one embodiment, LSUs 208 may be coupled to a data
cache 215. In response to a load instruction, LSU 208 inputs
information from data cache 215 and copies such information
to selected ones of rename buffers 211, 213. If such informa
tion is not stored in data cache 215, then data cache 215 inputs
through Bus Interface Unit (BIU) 216 such information from
system memory 217 connected to system bus 102 (FIG. 1).
Moreover, data cache 215 may be able to output through BIU
216 and system bus 102 information from data cache 215 to
system memory 217 connected to system bus 102. In
response to a store instruction, LSU 208 may input informa
tion from a selected one of GPR file 210 and FPR file 212 and
copy such information to data cache 215 when the store
instruction commits.

Processor 101 is not limited in scope to any one particular
embodiment. Further, the principles of the present invention
are not confined in Scope to any one particular type of pro
cessor architecture. The principles of the present invention
apply to any processor architecture that includes a load/store
queue.

Referring to FIG.1, processor 101 may include a load/store
queue (“L/S queue') 218 configured to store load and store
instructions in execution order and not in program order as
illustrated in FIG. 3. FIG. 3 illustrates storing instructions in
execution order in load/store queue 218 inaccordance with an
embodiment of the present invention. For example, referring
to the top portion FIG.3, suppose at fetch time, a load instruc
tion (indicated as “LD in FIG. 3) is assigned the sequence
number (i.e., the position of the program order) of 1. To be
clear, a sequence number is non-contiguous as other non

10

15

25

30

35

40

45

50

55

60

65

6
memory instructions may occur between these load and store
instructions. A store instruction (indicated as “ST in FIG. 3)
is assigned the sequence number of 4. Another store instruc
tion is assigned the sequence number of 7. Further, another
load instruction is assigned the sequence number of 8. Sup
pose further that out of these instructions, the store instruction
with the sequence number of 4 is executed first, followed by
the store instruction with the sequence number of 7, followed
by the load instruction with the sequence number of 8 fol
lowed by the load instruction with the sequence number of 1.
As illustrated in the bottom portion of FIG.3, the load/store

instructions are stored in load/store queue 218 in executed
order where the store instruction executed first (store instruc
tion with the sequence number of 4) is first endueued fol
lowed by the store instruction with the sequence number of 7
followed by the load instruction with the sequence number of
8 followed by the load instruction with the sequence number
of 1.

Load/store queue 218 may perform the following func
tions. One function is referred to as the “forwarding func
tion. When a youngerloadinstruction arrives later thana Store
instruction to an overlapping address, typically the store
instruction "forwards' its value to the load instruction, com
bining it with data from a cache (e.g., data cache 215) if
necessary. The data from the cache should have a lower pri
ority than the data being forwarded from a store instruction.
The second function is referred to as the “violation detec

tion' function. When an older store instruction to an overlap
ping address arrives, it may detect that a younger load arrived
earlier and has already executed. As a result, the load instruc
tion received the incorrect data and the pipeline needs to be
flushed, at least back to the load instruction and all younger
instructions.
The third function is referred to as the “store buffering

function. When a store instruction executes, its value is buff
ered in load/store queue 218 until the store instruction com
mits, at which point the store's value is written to the cache
(e.g., data cache 215).
As further illustrated in the bottom portion of FIG.3, in one

embodiment, load/store queue 218 may store the program
order associated with the enqueued store or load instruction
So as to test for violations and to give the perception of being
ordered as will be discussed in further detail below in con
nection with FIGS. 5, 6A-B and 7.

Returning to FIG. 2, load/store queue 218 may include
multiple queues, where one queue is designated to store load
instructions and the other queue is designated to store instruc
tions. While the following discusses load/store queue 218 as
being a single unit, the principles of the present invention
apply to a load/store queue that includes separate queues for
storing the load and store instructions. In one embodiment,
the load and store instructions may be loaded into load/store
queue 218 at the time the effective addresses are computed,
such as at point 219 in FIG. 2. In another embodiment, the
load and store instructions are loaded into load/store queue
218 when the instructions are issued, such as at point 220 in
FIG. 2. Since the load and store instructions are enqueued in
load/store queue 218 when effective addresses are computed
or when the instructions are issued and are not enqueued as
the instructions are fetched, there is a delay in inserting the
instructions which allows the load/store queue to be smaller
in size. As a result, processor performance and power effi
ciency is improved.

Load/store queue 218 may further be scaled by dividing
load/store queue 218 into a plurality of banks as discussed
below in connection with FIG. 4.

US 8.447,911 B2
7

FIG. 4 Load/Store Queue
FIG. 4 illustrates an embodiment of the present invention

of load/store queue 218 (FIG. 2). Load/store queue 218 may
include a plurality of banks 401A-D, where each bank may be
configured to store load and store instructions over a range of
addresses. Banks 401A-D may collectively or individually be
referred to as banks 401 or bank 401, respectively. For
example, an address of a load or store instruction may be used
to determine which bank 401 to store that load or store
instruction. For instance, all load and store instructions to the
same address are sent to the same bank. In one embodiment,
the address of the load or store instruction may be used in a
hash function to determine which bank 401 to store the loador
store instruction. Load/store queue 218 may include any
number of banks 401. Load/store queue 218 is not confined in
scope to the embodiment disclosed in FIG. 4. As a result of
partitioning load/store queue 218 into banks 401, the load/
store queue can be Smaller and faster and more energy effi
cient.

However, conflict detection still needs to be performed to
determine if there any violations in executing a load or store
instruction. For example, a load instruction to a particular
address should not be executed if there are unissued older
store instructions that will overlap in the addresses. A discus
sion of handling conflict detection using the unordered load/
store queue 218 is provided below in connection with FIGS.
5, 6A-B and 7. FIG. 5 illustrates the internal architecture of
load/store queue 218 in accordance with an embodiment of
the present invention. FIGS. 6A-B area flowchart of a method
for providing full load/store queue functionality to an unor
dered load/store queue in connection with arriving load
instructions for a processor with out-of-order execution. FIG.
7 is a flowchart of a method for providing full load/store
queue functionality to an unordered load/store queue in con
nection with arriving store instructions for a processor with
out-of-order execution.
FIG. 5—Internal Architecture of Load/Store Queue

FIG. 5 illustrates the internal architecture of load/store
queue 218 in accordance with an embodiment of the present
invention. Referring to FIG. 5, load/store queue 218 may
include a content-addressable memory 501 referred to herein
as “Address CAM. In one embodiment, Address CAM 501
may include the addresses of the load or store instructions
executed. Address CAM501 may be configured to receive the
address of the current load or store instruction to be executed.
Address CAM 501 may further be configured to search its
entire memory to determine if that address (or an address that
contains that address) is stored anywhere in it. If the same or
overlapping address is found, then Address CAM501 returns
a bit mask which identifies the entries in Address CAM501
that contain the same or overlapping address of the address of
the load or store instruction to be executed.

Load/store queue 218 may further include a second con
tent-addressable memory 502, referred to herein as “Age
CAM. In one embodiment, Age CAM 502 may include the
sequence number (i.e., the program order) of the load or store
instructions executed. Age CAM 501 may be configured to
receive the sequence number (i.e., the program order) of the
current load or store instruction to be executed (identified as
“age' in FIG.5) as well as an indication as to whether younger
or older instructions with respect to the provided sequence
number are to be searched (indicated as “fin' for function in
FIG. 5). For example, if a load instruction is to be executed,
then the nearest oldest address of a store instruction for the
same or overlapping address may need to be identified in
order to determine if the data to be loaded is the latest or not.
In another example, if a store instruction is to be executed,

5

10

15

25

30

35

40

45

50

55

60

65

8
then younger executed load instructions to the same or over
lapping address need to be identified to determine if incorrect
data was previously loaded thereby resulting in the flushing of
the pipelines.
Age CAM 502 may be configured to search its entire

memory to determine if younger or older sequence numbers
(based on whether Age CAM 502 is to search for younger or
older sequence numbers than the sequence number provided)
is stored anywhere in it. Age CAM 502 returns a bit mask
which identifies the entries in Age CAM 502 that contain Zero
or more younger or older sequence numbers than the
sequence number provided.
The output of Address CAM 501 and the output of Age

CAM502 are logically ANDed by logical AND gate503. The
bit mask outputted by AND gate 503 may be stored in a
register (not shown) in state machine 504 (discussed further
below). In one embodiment, the entries in Address CAM501
and Age CAM 502 are correlated meaning that the first entry
in Address CAM501 that stores an address corresponds to the
same instruction whose age is stored in the first entry in Age
CAM 502. As a result, the load and store to the same address
is physically co-located with one another which allows
address comparison and the ability to perform a conflict
detection analysis (e.g., to determine if a violation has
occurred). By logically ANDing the output of Address CAM
501 and Age CAM 502, a conflict detection analysis is per
formed on the appropriate load or store instructions by a state
machine 504 which is discussed in further detail below in
connection with FIGS. 6A-B and FIG. 7. State machine 504
may be implemented via hardware, software, or a combina
tion of hardware and software. State machine 504 may be
configured to retrieve data from an appropriate entry in data
array 505 as discussed further below in connection with
FIGS 6A-B.
While the foregoing has described load/store queue 218 as

including two separate content addressable memories, the
principles of the present invention may applied to a single
content addressable memory that performs the functions of
Address CAM 501 and Age CAM 502.
FIGS. 6A-B Method for Providing Full Load/Store Queue
Functionality to an Unordered Load/Store Queue in Connec
tion with Arriving Load Instructions

FIGS. 6A-B are a flowchart of a method 600 for providing
full load/store functionality to an unordered load/store queue
218 (FIGS. 2-5) in connection with arriving load instructions
for a processor with out-of-order execution in accordance
with an embodiment of the present invention.

Referring to FIG. 6A, in conjunction with FIGS. 2 and 5, in
step 601, an address of the current load instruction to be
executed is received.

In step 602, a search is performed in Address CAM 501 to
identify any address with the same or overlapping address of
the current load instruction to be executed.

In step 603, Zero or more entries in Address CAM 501 are
identified with an address that is the same or overlapping with
the address of the current load instruction to be executed.

In one embodiment, steps 604-607 are simultaneously
executed in parallel with the searching in Address CAM501
(steps 601-603).

Referring to FIG. 6A, in conjunction with FIGS. 2 and 5, in
step 604, a sequence number of the current load instruction to
be executed is received. In step 605, an instruction to search
for older sequence numbers than the received sequence num
ber is received.

In step 606, a search is performed in Age CAM 502 to
identify any entries with a sequence number that are older
than the received sequence number. That is, a search is per

US 8.447,911 B2

formed in Age CAM502 to identify any store instructions that
are older than the current load instruction.

In step 607, Zero or more entries in Age CAM 502 are
identified with a sequence number that are older than the
received sequence number.

In step 608, a logical AND operation is performed on the
output of Address CAM501 and the output of Age CAM502.

State machine 504 performs the following analysis to per
form the functions of load/store queue 218 as previously
discussed.

In step 609, state machine 504 determines whether there
are one or more matching store instructions. For example,
there may have been no entries identified in Address CAM
501 with the same or overlapping address as the address of the
load instruction to be executed. Further, if the search finds no
matching store instructions, then there is no forwarding of
data from the store instructions in load/store queue 218 to the
load instruction. When no matching store is found, state
machine 504, in step 610, retrieves the data from the appro
priate entry from data cache 215 or from memory 217.

In step 611, state machine 504 delivers the data back to
processor 101.

If, however, one or more matching store instructions were
identified, then, in step 612, state machine 504 iterates
through the matching store instructions to identify all the
stored bytes of a word that are older than the load instruction
to load the word.

For example, Suppose a load instruction is to be executed to
load data from address X. Suppose further that state machine
504 determines that the only uncommitted older store to
address X has its address stored in entry #3 in Address CAM
501 and its sequence number stored in entry #3 in Age CAM
502. State machine 504 may then retrieve the data stored in
entry #3 from data array505.

In another example, Suppose that a load instruction is to
load a word beginning at address X. One may need to know if
data has been stored at each of the four bytes beginning at
address X (e.g., X, X+1, X-2 and X+3, where X corresponds to
the first byte of the word; x+1 corresponds to the second byte
of the word; x+2 corresponds to the third byte of the word; and
x+3 corresponds to the fourth byte of the word). If there are
uncommitted Stores to a portion of the bytes of the word (e.g.,
older stores to bytes X, X-2 and X-3 have been committed),
then the missing bytes of data (e.g., X+1) may have to be
retrieved from memory (e.g., data cache 215). As discussed
above in connection with step 602 of FIG. 6A. Address CAM
501 is searched for the same or overlapping address of the
address of the current load instruction. If the word load
instruction was the current load instruction, then a search may
be performed in Address CAM501 for the same address (e.g.,
address X) and the overlapping addresses (e.g., addresses X-1,
X+2 and X--3). The above analysis regarding overlaps with
older uncommitted stores may be performed for each byte in
the word to be loaded. It is noted that the load instruction is
not limited to loading a word of four bytes. For example, the
word to be loaded may be a half-word, a quad-word, etc.
Further, state machine 504 may be configured in step 612 to
match the corresponding types of prior stores (e.g., half
word, quad-word) to the loaded word.

Referring to FIG. 6B, in step 613, state machine 504 deter
mines whether there are any missing stored bytes in the word.
If there are missing stored bytes in the word, then, in step 614,
state machine 504 retrieves the missing bytes from a data
memory or from data cache 215. Further, in step 615, state
machine 504 retrieves the bytes, if any, that are not missing
from load/store queue data array505. State machine 504 may
then deliver the data back to processor 101 in step 611.

10

15

25

30

35

40

45

50

55

60

65

10
If, however, there no missing bytes, then, in step 616, state

machine 504 retrieves the bytes from the older store instruc
tions from load/store queue data array505. State machine 504
may then deliver the data back to processor 101 in step 611.

Further, for systems that require program ordering between
two load instructions to the same address, method 600 may be
extended to check for load-load ordering violations and trig
ger recovery in a similar fashion as discussed below in con
nection with method 700.
Method 600 may include other and/or additional steps that,

for clarity, are not depicted. Further, method 600 may be
executed in a different order presented and that the order
presented in the discussion of FIGS. 6A-B is illustrative.
Additionally, certain steps in method 600 may be executed in
a Substantially simultaneous manner or may be omitted.
As discussed above, the method for providing full load/

store queue functionality to unordered load/store queue 218
in connection with arriving store instructions is provided
below in connection with FIG. 7.
FIG.7 Method for Providing Full Load/Store Queue Func
tionality to an Unordered Load/Store Queue in Connection
with Arriving Store Instructions

FIG. 7 is a flowchart of a method 700 for providing full
load/store functionality to an unordered load/store queue 218
(FIGS. 2-5) in connection with arriving store instructions for
a processor without-of-order execution in accordance with an
embodiment of the present invention.

Referring to FIG. 7, in conjunction with FIGS. 2 and 5, in
step 701, an address of the current store instruction to be
executed is received.

In step 702, a search is performed in Address CAM 501 to
identify any address with the same or overlapping address of
the current store instruction to be executed.

In step 703, Zero or more entries in Address CAM 501 are
identified with an address that is the same or overlapping with
the address of the current store instruction to be executed.

In one embodiment, steps 704-707 are simultaneously
executed in parallel with the searching in Address CAM501
(steps 701-703).

Referring to FIG. 7, in conjunction with FIGS. 2 and 5, in
step 704, a sequence number of the current store instruction to
be executed is received. In step 705, an instruction to search
for younger sequence numbers than the received sequence
number is received.

In step 706, a search is performed in Age CAM 502 to
identify any entries with a sequence number that are younger
than the received sequence number. That is, a search is per
formed in Age CAM 502 to identify any load instructions that
are younger than the current load instruction.

In step 707, Zero or more entries in Age CAM 502 are
identified with a sequence number that are younger than the
received sequence number.

In step 708, a logical AND operation is performed on the
output of Address CAM501 and the output of Age CAM502.

State machine 504 performs the following analysis to per
form the functions of load/store queue 218 as previously
discussed.

In step 709, state machine 504 determines whether there is
a matching load instruction.

If there is a matching load instruction, then, in step 710,
state machine 504 triggers a violation. For example, if a
younger load instruction was executed prior to the store
instruction being executed, then a violation has occurred as
incorrect data was loaded. In step 711, state machine 504
performs the appropriate action to handle the violation, Such

US 8.447,911 B2
11

as by flushing the processor pipelines of at least the violating
load instruction and everything younger, including the con
tents of load/store queue 218.

If, however, there is no matching load instruction, then, in
step 712, state machine 504 places the stored data in load/
store queue data array505.
Method 700 may include other and/or additional steps that,

for clarity, are not depicted. Further, method 700 may be
executed in a different order presented and that the order
presented in the discussion of FIG. 7 is illustrative. Addition
ally, certain steps in method 700 may be executed in a sub
stantially simultaneous manner or may be omitted.

Although the method and processor are described in con
nection with several embodiments, it is not intended to be
limited to the specific forms set forth herein, but on the con
trary, it is intended to cover Such alternatives, modifications
and equivalents, as can be reasonably included within the
spirit and scope of the invention as defined by the appended
claims. It is noted that the headings are used only for organi
Zational purposes and not meant to limit the scope of the
description or claims.

The invention claimed is:
1. A method for comprising:
fetching instructions of a program from an instruction stor

age, and staging fetched instructions in a dispatch store
for issuing, wherein the program comprises a plurality of
instructions, including a plurality of load or store
instructions;

issuing staged instructions from the dispatch store out-of
program-order to one or more execution units of a pro
cessor for out-of-program-order execution, wherein the
issuing includes inserting in execution order, which is
out-of-program-order, load or store instructions being
issued into one or more combined load/store queues for
staging issued load and store instructions for execution,
wherein each combined load/store queue is configured
to store load instructions and store instructions;

searching a memory of the one or more combined load/
store queues to identify any address with one of a same
address or an overlapping address of one of a load
instruction or a store instruction to be executed;

searching said memory to identify any sequence numbers
that are one of younger or older than a sequence number
of one of said load instruction or said store instruction to
be executed, wherein a sequence number of a load or
store instruction comprises a program location of the
load or store instruction in the program in program
order; and

performing a logical AND function on outputs of said
searches.

2. The method of claim 1,
wherein at least a first of the load or store instructions

inserted into said one or more load/store queues in
execution order, which is out-of-program-order, com
prises an identification corresponding to a program loca
tion of the first load or store instruction in the program in
program order.

3. The method as recited in claim 1, wherein inserting
comprises inserting load or store instructions being issued in
said one or more combined load/store queues, as addresses
associated with the load or store instructions being issued are
computed.

4. The method as recited in claim 1, wherein said one or
more combined load/store queues comprise a plurality of
banks, and wherein inserting the first load or store instruction

5

10

15

25

30

35

40

45

50

55

60

65

12
includes selecting a bank of said plurality of banks according
to one or more bits of an address associated with the first load
or store instruction.

5. The method as recited in claim 1 further comprising:
identifying Zero or more entries in said memory with one of

said same address or said overlapping address of one of
said load instruction or said store instruction to be
executed.

6. The method as recited in claim 1 further comprising:
receiving a sequence number of one of a load instruction or

a store instruction to be executed, the sequence number
comprising the program location of the load or store
instructions in the program in program order.

7. The method as recited in claim 6 further comprising:
receiving an instruction to search in a memory of the one or
more combined load/store queues for one of younger
sequence numbers or older sequence numbers than said
received sequence number.

8. The method as recited in claim 1 further comprising:
triggering a violation by identifying a matching younger

load instructions for a search instigated by a store
instruction.

9. The method as recited in claim 1 further comprising:
iterating through store instructions in the one or more com

bined load/store queues to identify queued stored bytes
applicable to a word of a load instruction in the one or
more combined load/store queues.

10. The method as recited in claim 9 further comprising:
retrieving missing one or more bytes of said word from one

of a data memory or a data cache.
11. The method as recited in claim 9 further comprising:
retrieving one or more bytes from one or more older store

instructions from a data array in said one or more load/
store queues.

12. The method as recited in claim 1,
wherein the memory of the one or more combined load/

store queues comprises first and second memory;
wherein searching a memory of the one or more combined

load/store queues to identify any address with one of a
same address or an overlapping address of one of a load
instruction or a store instruction to be executed com
prises searching a first memory of the one or more com
bined load/store queues to identify any address with one
of a same address or an overlapping address of one of a
load instruction or a store instruction to be executed,

searching said memory to identify any sequence numbers
that are one of younger or older than a sequence number
of one of said load instruction or said store instruction to
be executed, comprises searching a second memory of
the one or more combined load/store queues to identify
any sequence numbers that are one of younger or older
thana sequence number of one of said load instruction or
said store instruction to be executed.

13. The method as recited in claim 12 further comprising:
triggering a violation by identifying a matching younger

load instructions for a search instigated by a store
instruction.

14. The method as recited in claim 12 further comprising:
iterating through store instructions in the one or more com

bined load/store queues to identify queued stored bytes
of a word applicable to a load instruction in the one or
more combined load/store queues.

15. The method as recited in claim 14 further comprising:
retrieving missing one or more bytes of said word from one

of a data memory or a data cache.

US 8.447,911 B2
13

16. The method as recited in claim 14 further comprising:
retrieving one or more bytes from one or more older store

instructions from a data array in said one or more load/
Store queues.

17. A processor comprising:
one or more execution units to execute instructions;
a dispatcher unit configured to stage fetched instructions of

a program, and issue staged instructions to the one or
more execution units for execution, wherein the pro
gram comprises a plurality of instructions, including a
plurality of load or store instructions, and the staged
instructions are issued to the one or more execution units
out of program order; and

one or more combined load/store queues coupled to the one
or more execution units and the dispatcher unit, and
configured to store issued load and store instructions,
wherein the one or more combined load/store queues are
further configured to enable load or store instructions
being issued to be inserted into the one ore more load/
Store queues in execution order, which is out-of-program
order, and wherein said one or more combined load/
store queues comprises a memory configured to store
destination addresses and sequence numbers of the load
or store instructions, wherein each combined load/store
queue is configured to store load instructions and store
instructions, and wherein the sequence number of a load
or store instruction comprises a program location of the
load or store instruction in the program in program
order;

wherein said one or more combined load/store queues
comprises a gate configured to perform a logical AND
function on outputs of a first search and a second search,
wherein the first search is performed on said memory to
identify any address with one of a same address or an
overlapping address of one of a load instruction or a
store instruction to be executed, and wherein the second
search is performed on said memory to identify any
sequence numbers that are one of younger or older than
a sequence number of one of a load instruction and a
store instruction to be executed.

18. The processor as recited in claim 17, wherein said one
or more combined load/store queues comprises:

a state machine coupled to said gate, wherein said state
machine is configured to trigger a violation by identify
ing a matching younger load instructions for a search
instigated by a store instruction.

19. The processor as recited in claim 17, wherein said one
or more combined load/store queues comprises:

a state machine coupled to said gate, wherein said state
machine is configured to iterate through matching store
instructions to identify all stored bytes of a word that are
older than an address of a load instruction to load said
word.

20. The processor as recited in claim 19, wherein said state
machine is further configured to retrieve missing one or more
bytes of said word from one of a data memory or a data cache.

10

15

25

30

35

40

45

50

55

14
21. The processor as recited in claim 19, wherein said state

machine is further configured to retrieve one or more bytes
from one or more older store instructions from a data array in
said one or more load/store queues.

22. The processor as recited in claim 17, wherein said one
or more combined load/store queues comprises:

a first memory configured to store addresses of executed
load or store instructions; and

a second memory configured to store sequence numbers of
executed load or store instructions.

23. The processor as recited in claim 22, wherein said one
or more combined load/store queues comprises:

a state machine coupled to said gate, wherein said state
machine is configured to trigger a violation by identify
ing a matching younger load instructions for a search
instigated by a store instruction.

24. The processor as recited in claim 22, wherein said one
or more combined load/store queues comprises:

a state machine coupled to said gate, wherein said state
machine iterates through matching store instructions to
identify all stored bytes of a word that are older than an
address of a load instruction to load said word.

25. The processor as recited in claim 24, wherein said state
machine is further configured to retrieve missing one or more
bytes of said word from one of a data memory or a data cache.

26. The processor as recited in claim 24, wherein said state
machine is further configured to retrieve one or more bytes
from one or more older store instructions from a data array in
said one or more load/store queues.

27. A processor comprising:
first means for executing instructions; and
second means for enabling instructions of a program,

including one or more load or store instructions, to be
issued out-of-program-order to said first means for out
of-program-order execution, wherein the second means
are configured to store load and store instructions in a
combined intermixed manner, wherein the second
means are further configured to enable the load or store
instructions to be inserted into the second means in
execution order, which is out-of-program-order, and
wherein said second means further comprises a gate
configured to perform a logical AND function on out
puts of a first search and a second search, wherein the
first search is performed on to identify any address with
one of a same address or an overlapping address of one
of a load instruction or a store instruction stored in the
second means to be executed, and wherein the second
search is performed to identify any load or store instruc
tions with sequence numbers that are one of younger or
older than a sequence number of one of a load instruction
or a store instruction stored in the second means to be
executed, wherein each combined load/store queue is
configured to store load instructions and store instruc
tions, and wherein the sequence number of a load or
store instruction comprises a program location of the
load or store instruction in the program.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8.447,911 B2 Page 1 of 1
APPLICATIONNO. : 12/166491
DATED : May 21, 2013
INVENTOR(S) : Burger et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specifications

In Column 1, Line 47, delete “out of program order and insert -- out-of-program-order --, therefor

In Column 2, Line 47, delete “DRAWING and insert -- DRAWINGS --, therefor.

In the Claims

In Column 12, Line 47, in Claim 12, delete “executed, and insert -- executed; --, therefor.

In Column 13, Line 13, in Claim 17, delete “out of program order; and insert
-- out-of-program-order, --, therefor.

In Column 13, Line 19, in Claim 17, delete “ore and insert -- or --, therefor.

Signed and Sealed this
Twenty-fifth Day of March, 2014

74-4-04- 2% 4
Michelle K. Lee

Deputy Director of the United States Patent and Trademark Office

