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Abstract. Decentralised energy systems provide the potential for adding energy system flexibility by 

separating demand/supply dynamics with demand side management and storage technologies. They also 

offer an opportunity for implementing technologies which enable sector coupling benefits, for example, 

heat pumps with controls set to use excess wind power generation. Gaps in this field relating to planning-

level modelling tools have previously been identified: thermal characteristic modelling for thermal storage 

and advanced options for control. This paper sets out a methodology for modelling decentralised energy 

systems including heat pumps and thermal storage with the aim of assisting planning-level design. The 

methodology steps consist of: 1) thermal and electrical demand and local resource assessment methods, 2) 

energy production models for wind turbines, PV panels, fuel generators, heat pumps, and fuel boilers, 3) 

bi-directional energy flow models for simple electrical storage, hot water tank thermal storage with 

thermal characteristics, and a grid-connection, 4) predictive control strategy minimising electricity cost 

using a 24-hour lookahead, and 5) modelling outputs. Contributions to the identified gaps are examined by 

analysing the sensible thermal storage model with thermal characteristics and the use of the predictive 

control. Future extensions and applications of the methodology are discussed. 

1 Introduction 

Decentralised energy systems locate the production 

of energy closer to electrical and heat demands, a shift 

from the traditionally centralised, fossil-fuel based 

power systems. They consist of generation, demand, and 

storage components which can be connected by private 

wire networks, virtually through the wider grid 

infrastructure or cloud platforms, and via district heating. 

The control of shifting demand and production is known 

as Demand Side Management (DSM) and is enabled by 

storage technologies such as electrochemical batteries, 

hot water tanks, hydrogen electrolysers, etc [1]. DSM 

capability provides an energy system with flexibility. 

1.1 Heat pumps and thermal storage 

Heat pumps are a decentralised technology which 

combine the electrical and thermal sectors. They 

efficiently use electricity and low-grade heat sources to 

provide useful heat, commonly for a single household 

for the purposes of hot water and space heating, while 

district heating and industrial applications also exist. 

Previous studies have identified large-scale heat pumps 

for district heating as providing 25-30% of heat in future 

roadmaps for Europe [2] and concluded the technology 

is mature for deployment [3]. 

Heat pumps offer sector coupling benefits such as 

utilising excess wind power generation. The economic 

viability of large-scale heat pumps is dependent on local 

conditions, i.e. demand density and local electricity 

production, and grid dynamics, i.e. power prices and 

carbon intensities. When there are low power prices and 

high renewable power production is on the grid, 

electrical consumption with heat pumps can provide 

low-cost and low-carbon heat. Power prices, local 

demand and renewable production can be forecast 

meaning there is a role for predictive control strategies in 

design. A local system may also have existing renewable 

generation or fossil fuel infrastructure, such as the gas 

grid which covers large parts of the UK, available to 

utilise which influences energy technology choices. 

Thermal storage can provide flexibility to an energy 

system with heat pumps by decoupling heat demand and 

electrical consumption. The value of thermal storage in 

literature has been reviewed [4] and several benefits 

identified: (i) enabling grid services such as frequency 

response and demand side response, (ii) shifting 

electricity consumption to low pricing with day/night 

tariffs and intra-day spot markets, (iii) increasing local 

generation self-consumption, (iv) plant optimisation 

(reducing generating size and increasing usage), and (v) 

enhancing service and resilience. The motivation for 

using district-scale thermal storage is from capital 

savings both due to scaling storage volume and in 

comparison to electrical storage costs [5]. 

Heat pumps and thermal storage can play a 

successful role as part of a decentralised system by 

providing sector coupling benefits and adding flexibility. 
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1.2 Review of modelling 

Heat pump and thermal storage models have been 

developed in previous studies to perform sizing studies 

and plan operation using different controls. A model was 

developed and validated a model of a solar powered heat 

pump paired with a Phase Change Material (PCM) 

storage tank to investigate transient behaviour within the 

storage tank [6]. Ground and air source heat pumps 

coupled to thermal storage were simulated using 

TRNSYS to investigate sizing configurations to improve 

cost effectiveness and energy savings [7].  

Predictive controls and non-predictive controls have 

also been studied. A finned PCM and heat pump model 

was developed to benefit from off-peak electricity tariffs 

by shifting heat pump production leading to reduced 

operational costs [8]. A rule-based controller was 

compared to a Model Predictive Control (MPC) finding 

that MPC is vital when sizing thermal storage for 

household application [9].   

A tool selection process [10] for identifying 

planning-level tools which pass essential capability 

criteria for modelling community-scale energy systems 

was applied to a system with heat pumps and thermal 

storage plus wind turbines, PV, and a grid-connection. 

The study identified gaps in planning-level modelling 

tools in temperature dependence of thermal component 

modelling and the lack of the use of predictive controls. 

It is important that for design at the planning-level 

modelling of heat pumps and thermal storage is 

performed in enough detail such that benefits from sector 

coupling and added flexibility are captured. 

1.3 Contribution of this work 

This paper sets out a modelling methodology to aid 

planning-level design of decentralised energy systems 

with large-scale heat pumps and thermal storage for 

district heating. The structure consists of the following 

steps: 1) resource and demand assessment methods, 2) 

models for electrical and thermal production 

technologies, 3) models for battery storage and hot water 

tank thermal storage, 4) an electricity cost optimisation 

predictive control strategy, and 5) modelling outputs.  

The value in using temperature dependence for heat 

pump and thermal storage models and the predictive 

control, and extensions and applications of the 

methodology are discussed. The paper then ends with the 

conclusions. 

2 Modelling framework 

The steps of the modelling methodology are outlined in 

the following sections and an overview of the modelled 

technologies and energy flows is provided in Figure 1. 

The modelling framework showing the work flows of the 

methods and models is displayed in Figure 2.  

The resource assessment method is used to feed 

weather conditions into the wind turbine, PV, hot water 

tank and heat pump models as well as the district heating 

demand predictor. The demand assessment method is 

used to develop the district heating demand predictor and 

the electrical demand. The renewable production is then 

subtracted from the electrical demand to produce an 

electrical deficit/surplus profile. 

The district heating demand predictor, electrical 

deficit/surplus profile, auxiliary electrical production 

models, thermal production models, storage models, and 

a 24-hour electricity cost prediction are all fed into the 

predictive controller. The controller generates a 24-hour 

ahead operation schedule which ensures electrical and 

thermal demands are met and minimises electricity cost. 

The scheduled action is taken in that hour and in the 

following hour a new 24-hour ahead schedule is 

generated, and henceforth over a period of a design year. 

Figure 1: Modelling components and energy flows 
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3 Resource and demand assessment 
methods 

3.1 Local resources 

Assessing available historical data on local resources 

requires access to the necessary databases. For weather 

resources on an hourly basis local stations and reanalysis 

climate databases can be used to obtain datasets for 

several years. Typically, it is easier to access a greater 

number of year datasets from reanalysis databases than 

from weather stations (where often access requires 

payment). 

The website renewables.ninja [11] provide free and 

easy access to hourly data from the NASA MEERA 

reanalysis (worldwide) and CM-SAF SARAH (Europe) 

datasets. This includes direct and diffuse solar radiation, 

windspeed, air temperature, etc.  

Data obtained from the MEERA reanalysis dataset is 

compared against local weather station data for the 

available years and calibration steps taken where 

necessary. 

3.2 Electrical demand 

Electrical demand profiles on an hourly timestep are 

generated using HOMER Pro software. This tool 

contains a module which allows the user to generate a 

profile based upon building types: residential, 

commercial, industrial and community. Choice of peak 

demand month accounts for seasonal variability, and a 

random variability parameter is used to include hourly 

and daily variability. The resultant hourly profile over a 

year can be scaled to match the building mix to be 

modelled by using CIBSE benchmarks [12] for different 

building types.  

The resultant profile is not a function of local 

weather conditions and therefore is fixed for any year. It 

could be adjusted to include an ambient temperature 

dependence to improve prediction. 

3.3 District heating demand 

Predicting heat demand is necessary to generate an 

hourly profile over a year and for use in a predictive 

control in order to provide predictions over lookahead 

periods. A review of existing, similar methods can be 

found in [13] which highlights the need for a simplified 

approach. 

A method for generating hourly profile for the 

district heating demand of a residential scheme was 

developed using regression analysis of pre-simulated 

housing standard profiles, scaling based on floor area, 

and applying diversity using a normalised smoothing 

method. This method builds on work done in the 

development of the demand assessment method used in 

the Biomass Decision Support Tool [14] which generates 

a design day demand profile and an annual energy 

estimation. The described method uses simple inputs 

typically available at the planning-level design stage.  

The flow diagram, Figure 3, shows the flow of this 

method. The steps below describe the method in more 

detail: 

1. Buildings to be modelled are split into archetypes 

based upon the following ages and types. It is 

assumed that the age of the building indicates the 

building regulations applied during construction. 

a. Ages: pre-1983, 1983-2002, 2003-2007, 

and post 2007.  

b. Building types: detached, semi-detached, 

mid-terrace, detached bungalow, semi-

detached bungalow, ground floor flat, mid 

floor flat, and top floor flat.  

2. Detailed building simulation models provide 

standard profiles for each age and type and are a 

function of a discrete (1°C step) range of outdoor 

temperatures and of hour of day (see [14] for floor 

areas, U-values, ventilation rates, and controls used 

in the detailed simulation). Regression models are 

applied to the standard profiles to predict demand as 

a function of hour of day and outdoor temperature. 

To reduce the calculation speed the outdoor 

temperature parameter is discretised from a 

Figure 2. Modelling framework displaying the workflows of the different methods and outputs 
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continuous input by round and sorting into bins 

sized to 0.01°C.  

3. The standard profiles are linearly scaled according 

to floor area which is calculated from the user input 

number of bedrooms and then each of the building 

types are multiplied by the number of each type. 

4. Diversity is applied by smoothing the demand in 

each hour across multiple hours using a normal 

distribution with the following standard deviation 

[14]: 

𝑆. 𝐷.  =  2 (1.2 − 𝑒−
𝑛

220)               (1) 

 

5. Underground piping heat losses are calculated using 

industry standard pipe sizing software [15] which 

take the types, lengths and diameters of the different 

piping sections of the network, the design flow and 

return temperatures, and a design ambient 

temperature to calculate day heat loss. Using 

average ambient temperatures for each day of the 

design year the tool is used to calculate the heat loss 

every day of a year. This is uniformly distributed 

across each hour of that day and added to the 

diversified heat demand.  

This results in a method for predicting demand for 

any hour of the design year as a function of outdoor 

temperature for use in the control strategy. 

4 Production technologies models 

4.1 Electrical production technologies 

The electrical production technologies modelled are 

electrical generator, wind turbine and photovoltaics 

(PV). It is assumed that these local production units can 

directly meet the local electrical demand via a (virtual-) 

private wire network. An optional grid connection 

provides limitless import and export.  

Renewable electricity production technologies are 

modelled to analyse how they match with the electrical 

demand, in addition to investigating sector coupling by 

utilising local, zero marginal cost electricity production 

in heat pumps.  

An electrical generator which transforms a fuel into 

electricity at a fixed efficiency is included as an auxiliary 

unit for times where the non-dispatchable renewable 

generation does not meet demand or there is no grid-

connection. 

Windpowerlib [16] is a Python library which 

contains functions and classes for calculating the power 

output from wind turbines and is used in this 

methodology. A choice between a user input wind curve 

and selecting from a database of power curves from 

different manufacturers is provided to simplify the input 

requirements of the user. Hub height and rotor diameter 

are the additional technical inputs. Local condition 

inputs are wind speed (including measurement height) 

and roughness length as mandatory, and pressure, air 

density, air temperature, and wind speeds at different 

heights as optional. The power produced in hourly 

timesteps is the output. 

PV is modelled using the PVLIB Python library [17]. 

The model consists of a module and an optional inverter, 

and the power output is dependent on location inputs. A 

database for the module and inverter is used to input 

measured performance characteristics based on PVUSA 

test conditions. The surface azimuth, surface tilt, 

surrounding surface type, and a multiplier are also used 

to complete the technical model. PV location is defined 

by latitude, longitude, and altitude and local conditions 

by wind speed, air temperature and at least two of direct 

normal irradiance, diffuse normal irradiance, and global 

horizontal irradiance. The power produced in hourly 

timesteps is the output.  

4.2 Heat pumps and auxiliary heat units 

Thermal production technologies modelled are large-

scale heat pumps as primary units, and fuel boilers as 

auxiliary units (modelled as fixed efficiency for 

transforming fuel to heat). In this methodology these are 

used to provide hot water for use in district heating. 

Heat pumps are commonly modelled at the planning 

stage using simple energetic models which do not 

account for temperature dependent COP. Additionally, 

Figure 3. Flow diagram of district heating demand 

prediction method with user inputs in text bold 
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available data for specific heat pumps is often limited 

and COP under one set of conditions is provided. This 

leads to an overestimation of seasonal performance.  

The method set out is for modelling large-scale heat 

pumps (capacity > 100kW). Air source heat pumps 

(ASHP) require additional modelling consideration with 

respect to the defrost cycles which effect performance in 

temperature regions where freezing conditions are 

possible. Water source heat pumps (WSHP) are assumed 

to have a constant flow or limitless supply of ambient 

water, meaning that there is no degradation of the source 

temperature. Ground source heat pump (GSHP) models 

have been developed throughout literature [18] and these 

can be included in this methodology framework as future 

work. 

General inputs required for the heat pump modelling 

are heat pump type (ASHP or WSHP), modelling 

approach, rated thermal capacity of the heat pump, the 

difference between the source in and out temperatures, 

operation mode (variable or fixed speed), auxiliary heat 

requirement (monovalent or bivalent), and data input 

type (peak performance if data does not include defrost 

cycling). 

Three separate approaches for modelling ASHP and 

WSHP of increasing modelling detail and different input 

requirement can be used in the methodology. The first 

two approaches can be classified as steady-state as 

dynamic effects are ignored and the third as quasi-steady 

state as it includes a reduction in performance to account 

for dynamic effects without fully capturing them.  

The first uses a generic regression performance map 

to form the COP as a function of flow temperature and 

ambient temperature. The following regression relations 

were obtained from [19] and are based upon surveys of 

industrial datasheets and field trials. While they were 

obtained for household-scale heat pump, the assumption 

is made that they are also applicable to large-scale heat 

pumps. For the COP of an air source heat pump (ASHP) 

where ∆𝑇 is the difference between flow temperature 

and ambient temperature is: 

 

𝐶𝑂𝑃𝐴𝑆𝐻𝑃 = 6.81 − 0.121∆𝑇 + 0.000630∆𝑇
2 

𝑓𝑜𝑟 15 ≤ ∆𝑇 ≤ 60                          (2) 

 

The same paper includes a regression function for a 

generic ground source heat pump (GSHP) and is 

included here as representative of a water source heat 

pump (WSHP) due to similar dynamics of the ambient 

sources: 

 

𝐶𝑂𝑃𝑊𝑆𝐻𝑃 = 8.77 − 0.150∆𝑇 + 0.000734∆𝑇
2 

𝑓𝑜𝑟 20 ≤ ∆𝑇 ≤ 60                          (3) 

 

This approach is useful when quickly appraising heat 

pumps without data for a specific heat pump. 

The second approach involves calculating a real COP 

based upon one set of operating conditions and then 

calculating the maximum COP (Lorentz efficiency) 

under the same operating conditions. The real COP 

divided by the Lorentz efficiency gives the heat pump 

efficiency. For each timestep the Lorentz efficiency for 

the conditions is calculated and then multiplied by the 

heat pump efficiency to give the modelled COP. The 

maximum thermal output in the given timestep is given 

by the input maximum electrical capacity multiplied by 

the modelled COP. This follows the same modelling 

approach as used in a standard industry modelling tool 

EnergyPRO EMD and the detailed equations can be 

found in the user manual [20]. This approach is useful 

with limited data (performance under a single operating 

condition), but likely leads to overestimation of 

performance in other operating conditions. 

The third approach is based on multiple variable 

linear regression analysis using measured COP and duty 

(maximum thermal output) at a range of test conditions. 

Ambient temperature (Ta) and flow temperature (Tf) are 

used as the two independent variables. Coefficients for 

the following 2nd degree polynomial functions for COP 

and duty are calculated automatically based on the input 

data. Predictions are made in each of the timesteps using 

these equations and the flow and ambient temperatures.  

 

𝐶𝑂𝑃 = 𝛼0 + 𝛼1𝑇𝑎 + 𝛼2𝑇𝑓 + 𝛼11𝑇𝑎
2 + 𝛼22𝑇𝑓

2

+ 𝛼12𝑇𝑎𝑇𝑓   

(4) 

𝑑𝑢𝑡𝑦 = 𝛽0 + 𝛽1𝑇𝑎 + 𝛽2𝑇𝑓 + 𝛽11𝑇𝑎
2 + 𝛽22𝑇𝑓

2

+ 𝛽12𝑇𝑎𝑇𝑓 

(5) 

If the data input is at peak performance, defrost 

cycling and dynamic effects (start up and shut down) are 

not included in the data. Thus, for ASHPs a 15% 

reduction in COP is assumed below 5°C but are 

neglected for WSHPs.   

If the data input is at integrated performance, then 

cycling behaviour and dynamic effects are included in 

the testing. This should be the case if measurements are 

taken under standard test conditions according to 

EN14511 [21]. 

Part load effects on COP for variable speed heat 

pumps are neglected in all three modelling approaches. 

This method is the most detailed of the three 

approaches and should yield realistic heat pump 

performance across a wider operational range. However, 

the necessary data is not always readily available. Using 

standard test conditions means that manufacturers should 

possess the necessary data and correspondence should be 

sought to obtain this data. 

5 Storage models 

Storage models for battery storage and hot water tanks 

are employed to investigate DSM strategies. Battery 

storage was chosen as it is currently the most commonly 

used form of electrical storage. Hot water tanks provide 

a cheap form of mid-term (from days to minutes) 

thermal storage, particularly when used at scale for 

district heating, and in comparison to battery storage. 

5.1 Simple battery model 

Electrical storage models have been developed in detail 

in previous studies and utilised in different tools [10]. In 
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this methodology a simple battery model is used which 

captures the essential technical parameters which are 

capacity, initial state, max charging/discharging, 

efficiency charging/discharging, min/max state of 

charge, and self-discharge and are displayed in Figure 5. 

Given the generic and simple nature of the model any 

electrical storage technology (flow batteries, lithium-ion 

batteries, lead-acid batteries, etc.) which operates on the 

appropriate timestep can be modelled with simplifying 

assumptions. 

The stored energy Q at the time 𝑡 + ∆𝑡 can be 

expressed as (6) where ∆𝑇 is the timestep, 𝜂𝑐 is the 

charging efficiency, 𝜂𝑑 is the discharging efficiency, 

𝑄𝑐(∆𝑇) is the charging energy, 𝑄𝑑(∆𝑇) is the 

discharging energy, 𝑄𝑠(∆𝑇) is the self-discharge, 𝑄𝑐𝑚 is 

the max charging rate,  𝑄𝑑𝑚 is the max discharging rate, 

C is the capacity, and M is the minimum state of charge. 

 

𝑄(𝑡 + ∆𝑡)

=

{
 

 
𝑄(𝑡) + 𝜂𝑐𝑄𝑐(∆𝑇) − 𝑄𝑠(∆𝑇) 𝑖𝑓 𝑄𝑐𝑚 ≥ 𝑄𝑐  𝑎𝑛𝑑 𝑄𝑑 = 0   

𝑄(𝑡) − 𝜂𝑑𝑄𝑑(∆𝑇) − 𝑄𝑠(∆𝑇) 𝑖𝑓 𝑄𝑑𝑚 ≥ 𝑄𝑑  𝑎𝑛𝑑 𝑄𝑐 = 0

𝐶 𝑖𝑓 𝑄(𝑡) + 𝜂𝑐𝑄𝑐(∆𝑇) − 𝑄𝑠(∆𝑇)  ≥ 𝐶 𝑎𝑛𝑑 𝑄𝑑 = 0

𝑀 𝑖𝑓 𝑄(𝑡) − 𝜂𝑑𝑄𝑑(∆𝑇) − 𝑄𝑠(∆𝑇)  ≤ 𝑀 𝑎𝑛𝑑 𝑄𝑐 = 0

 

(6) 

5.2 Hot water tank model 

Gaps have been identified in modelling tools in 

representing the temperature dependence of thermal 

storage. In this methodology this has been addressed by 

utilising similar modelling methods to those 

implemented in detailed building design simulation such 

as TRNSYS.  

The hot water tank is modelled as a cylinder which is 

vertically orientated with an outside shell of insulation. 

The tank is configured using a 4-port connection and the 

use of 5 temperature sensors, in accordance with CIBSE 

guidance [22] for district heating design. 

The main characteristics [23] which require capturing 

in the modelling are: 

• Capacity per unit volume 

• Temperature range of operation 

• Means and power requirements of charging 

and discharging 

• Structural elements of tank 

• Control 

• Degree of stratification 

Physical processes of hot water tanks include: (i) heat 

losses through tank due to difference in internal 

temperature and external ambient temperature, (ii) 

conduction heat transfer in the water due to temperature 

differences at different layers, (iii) convective flows due 

to cooling of water at edge of tank resulting in density 

differences, (iv) buoyancy induced flows due to load 

temperature being lower than temperature of layer it is 

entering at, (v) entering fluid mixing with lower 

temperature water due to high flow rate (carrying kinetic 

energy), and (vi) recirculation of water from 

connections. 

A selection process [24] was used to select a model 

to represent the stratification in the tank. The main 

selection decisions were to select a suitable model for 

simulating without data and a balance between accuracy 

and computational time. The multi-node model was 

chosen as it fits these criteria. In addition, due to the use 

of 5 temperature sensors a 5-node model was selected.  

A detailed description of the multi-node model can 

be found in [23]. The final energy balance equation for 

node i contains terms for (i) heat loss between inside and 

ambient conditions outside of the tank, (ii) for mixing 

between nodes, (iii) charging energy function, and (iv) 

discharging energy function. Each term has an explicit 

node temperature dependence. 

The ambient heat loss term, (i) above, in the energy 

balance equation is a function of the tank U-value 

(different insulation can be selected: polyurethane 0.02 

W/mK, rockwool 0.045 W/mK, and glasswool 0.04 

W/mK), tank surface area, specific heat of water, and the 

difference between the internal tank temperature and 

ambient temperature (if outdoors use outdoor 

temperature or if in plant room assumption of 15°C). 

The multi-node model may over represent 

stratification of the tank but should be an improvement 

on the commonly used approaches such as fully mixed 

or moving boundary models. 

6 Predictive control 

Model predictive control (MPC) was chosen as the 

supervisory control strategy with the aim of minimising 

electricity cost.  

Figure 5. Simple battery model schematic 

Figure 4. Configuration of 4-port connection between 

heat pump, thermal store, and heat network, modified [27] 
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The controller generates a 24-hour ahead operation 

schedule which ensures electrical and thermal demands 

are met and minimises electricity cost. The scheduled 

action is taken in that hour and in the following hour a 

new 24-hour ahead schedule is generated, and henceforth 

over a period of a design year. 

The main components of a MPC controller [25] are:  

(i) the objective function which is based on the main 

control goal and in this case is minimising electricity 

costs,  

(ii) the prediction horizon is the lookahead period which 

is optimised over, chosen to be 24 hours,  

(iii) the decision time step which is the interval between 

generating optimised schedules, chosen to be 1 hour,  

(iv) the manipulated variables which can be varied by 

the optimiser, chosen to be the heat pump thermal 

output, and hot water tank energy content and 

temperature at different nodes,  

(v) the optimisation algorithm which is applied in the 

optimisation process,  

(vi) the feedback signal which provides the necessary 

information on variables for next optimisation step, i.e. 

updates on predicted demands and renewable generation.  

The MPC controller has capability of predicting the 

demands and renewable electricity production over the 

24 hour lookahead by weather prediction and optimising 

operational schedules to minimise electricity costs. Non-

predictive controllers only consider the immediate 

system conditions when making operational decisions. 

A day/night tariff can be input, and a representation 

of an intra-day spot market is made using historical data 

from the APX electricity spot market. This data can be 

extracted from the Elexon Portal [26]. 

7 Modelling outputs 

It is important that modelling outputs reflect the value 

which can be obtained from the sector coupling enabled 

by heat pumps and the increased system flexibility 

introduced by thermal storage. Outputs from the 

modelling methodology are outlined in Table 1. 

8 Discussion and Conclusions 

The developed methodology described will be applied to 

case studies. For example: (i) an ecovillage of 50 mixed 

use buildings with existing wind turbines, PV, and 

micro-district heating looking at the technical 

requirements to decarbonise heating via installing heat 

pumps to utilise local wind generation and reduce export 

to the grid, and (ii) a housing cooperative of 550 flats 

with existing biomass district heating looking to 

investigate the economic feasibility of changing to heat 

pumps and thermal storage. Additionally, monitoring 

data obtained from these two sites will allow validation 

and calibration of the modelling methods. 

The electrical demand method is independent of 

external conditions and could be improved by including 

an outdoor temperature dependence as with the district 

heating demand predictor. In applying diversity in the 

district heating demand method, the standard deviation 

used should be adjusted to reflect monitoring data 

obtained for UK district heating. More detailed 

modelling of the district heating network losses would 

allow better comparison of the effect on system 

performance of changes in flow and return temperature. 

The most detailed heat pump model described is 

quasi-steady state where the dynamic effects are 

incorporated as a reduction in performance and part load 

conditions are neglected. For timesteps ≤10 minutes a 

dynamic model is needed to capture start-up 

characteristics. Part-load performance for large-scale 

heat pumps also needs further investigation. 

Utilising temperature dependent models for the heat 

pumps and thermal storage should capture realistic 

performance. This is an improvement on the simple 

energetic models typically employed in planning-level 

design modelling tools. 

A predictive control strategy based on MPC has been 

described with the objective of minimising electricity 

costs associated with the electrical demand and heat 

pump. Currently this has capability with day/night tariff 

and intra-day spot markets, and this should be extended 

to include provision of grid services such as frequency 

response and demand side response. Additionally, real 

forecast data for electricity prices and weather should be 

implemented along with uncertainties. 

Table 1. Outputs from modelling and units 

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110609)
201

E3S 111
CLIMA 9

601 144 

7



In conclusion, a methodology for designing 

decentralised energy systems with predictive control for 

heat pumps and thermal storage has been outlined. It 

addresses previously identified modelling gaps and has 

application in a range of case studies to aid in planning-

level design to provide modelling for studies such as 

heat pump and thermal storage sizing, feasibility studies, 

and operation scheduling. 
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