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Topologically non-trivial phases are linked to the appearance of localized modes in the boundaries of an
open insulator. On the other hand, the existence of geometric frustration gives rise to degenerate localized bulk
states. The interplay of these two phenomena may, in principle, result in an enhanced protection/localization of
edge states. In this paper, we study a two-dimensional Lieb-based topological insulator with staggered hopping
parameters and diagonal open boundary conditions. This system belongs to the C2v class and sustains 1D
boundary modes except at the topological transition point, where the C4v symmetry allows for the existence
of localized (0D) corner states. Our analysis reveals that, while a large set of boundary states have a common
well defined topological phase transition, other edge states reflect a topological non-trivial phase for any finite
value of the hopping parameters, are completely localized (compact) due to destructive interference and evolve
into corner states when reaching the higher symmetry point. We consider the robustness of these compact edge
states with respect to time-dependent perturbations and indicate ways that these states could be prepared and
measured in experiments with ultracold atoms.

PACS numbers: 74.25.Dw

I. INTRODUCTION

Recently, the charge polarization theory based on topolog-
ical invariants has been extended to include new symmetry
protected topological phases in crystalline insulators of di-
mension dD characterized by the existence of quantized n-
order moments that reflect the presence of surface modes of
dimension (d− n)D [1–3]. For example, in 2D systems with
open boundary conditions (OBC) such that C4v symmetry is
present, quantized quadrupole moments underly the presence
of corner states in the band gaps [1–3]. If OBC lead to lower
symmetries (C2v for instance), one expects to observe typical
weak topological insulator behavior with vertical and horizon-
tally localized boundary modes. Ultimately, geometric frus-
tration in 2D lattices may enrich this topological description
by allowing an enhancement of the edge states localization
[4, 5].

In this paper, we study a Lieb-type system with staggered
hopping terms (t1 and t2). This model exhibits a non-centered
rotation axis within the unit cell which is responsible for non-
quantized topological indexes [6]. When the choice of OBC
generates a lattice with C4 symmetry, the non-trivial topolog-
ical regime reveals corner localized states. Our work focuses
on a different type of boundary under which the model has C2
rotational symmetry in the lattice when t1 6= t2 and a singu-
lar C4 rotational symmetry for identical hopping parameters.
In this model, a particular boundary mode arises displaying
complete localization due to wavefunction destructive inter-
ference, similar to compact localized flat band bulk states [7].
Since this state has support in more than one sublattice it will
acquire non-zero energy without the introduction of local po-
tentials. This automatically implies that the symmetry that
protects these states is not usual chiral symmetry associated
with bipartite lattices. In fact, one can show that this state is
related to the square-root topological insulator [8–13] and the

protecting symmetry is a sublattice chiral-like hidden symme-
try. To our knowledge, topological characterization of a weak
topological insulator with compact edge states has not been
addressed in the literature where geometrically frustrated lat-
tices are studied [14–16]. In our paper, we show that these
compact localized states reflect a different topological transi-
tion point (the atomic limit in our case) and consequently they
remain completely localized (in the system boundaries, edge
or corner) even at the usual transition point t1 = t2 where the
remaining edge states converge. Our topological character-
ization follows the approach of [6] which agrees with other
methods to address topological invariants that protect finite
energy edge states in the case of non-commensurate OBC or
non-centered I-axis in the unit cell such as the modified ap-
proaches of splitting the Zak’s phase into intracell and inter-
cell contributions [17–21], the squaring of the Hamiltonian
[8–13] and synthetic dimensions [22–26]. The robustness of
this compact state is probed when applying a time dependent
perturbation to the hopping amplitudes in order to examine
its protection against mixing with the bulk states and test the
viability of its preparation in a cold atom experiment.

II. STAGGERED HOPPING TERMS IN THE LIEB
LATTICE

The Lieb lattice is a decorated line-centered square lat-
tice characterized by three species of atoms (A,B,C) per unit
cell where electrons can hop between nearest-neighbor atoms
[27, 28]. This system will have two types of states accord-
ing to the degree of localization of the wavefunction in the
system: bulk states which span through all possible k-values
and plaquette localized states of zero energy. In order to ob-
serve topological phase transitions with the emergence of edge
states, staggered hopping terms are required and therefore we
have to consider a larger unit cell of 6 sites (in the original
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Figure 1. (a) Plot of the energy spectrum for the Lieb lattice with
conventional OBC and integer number of plaquettes as a function of
the ratio t1/t2. (b) Schematic illustration of corner states present in
the Lieb lattice according to the choice of hopping amplitudes: t1 = 0
(red); t2 = 0 (purple) and t1 > t2 (blue).

lattice these will correspond to two A, B and C sites). Using
OBC such that we have a system with integer number of pla-
quettes will result in the creation of two distinct topological
regimes. In one of these, when t1 > t2, 4 isolated degenerate
states appear in the bandgap and are localized in the corners
of the lattice [see blue curves of Fig. 1(a)]. These degenerate
states reflect all the possible combinations of parity values in
both x and y directions. Note that, C4 symmetry is preserved
in the lattice independently of the values {t1, t2}. The local-
ization of this state in the corner depends on the ratio t = t1/t2
and will be less extended in the lattice the greater the value
of t. Specifically, in the limit t1 = 0 the corner site can host a
zero-energy localized state. On the other hand, if t2 = 0 we get
a three-site cluster in the corner with energies ε = {0,±

√
2t1}

[see Fig. 1(b)].
We now consider OBC that diagonally cross the Lieb pla-

quettes [see Fig. 2(b,c)], resulting in the unit cell of Fig. 2(a).
In this case, corner sites share both t1 and t2 hopping terms.
This means that, whenever one of the hopping terms van-
ishes we will have three-site clusters in the vertical/horizontal
boundaries hosting finite energy compact edge states and the
corner states will only be seen when the Hamiltonian has C4-
rotation symmetry (t1 = t2).

The tight-binding Hamiltonian for this system is given by

HT B = ∑
m,n

t1a†
m,n(bm,n + cm,n +dm−1,n + em−1,n)

+ t2 f †
m,n(bm,n +dm,n + cm,n+1 + em,n+1)+h.c., (1)

where α†
m,n is the fermionic creation operator acting at site

α = (a,b,c,d,e, f ) of unit cell index (m,n). In order to obtain
the dispersion relation of the Lieb lattice assuming periodic
boundary conditions we proceed by performing the Fourier
transform on the operators of Eq.1 using

αααkx,ky =
1√
MN ∑

m,n
αααm,nei(kxm+kyn) (2)

where αααξ =
(
aξ ,bξ ,cξ ,dξ ,eξ , fξ

)T , ξ labels the 2D coordi-
nates {m,n} or the momentum space {kx,ky}, M and N are
the number of unit cells in the (x,y)-directions, respectively.

The k-space Hamiltonian can be found by transforming the
tight-binding Hamiltonian by

HT B = ∑
kx,ky

(ααα†
kx,ky

)T Hkαααkx,ky , (3)

with

Hk =


0 t1 t1 t1e−ikx t1e−ikx 0
t1 0 0 0 0 t2
t1 0 0 0 0 t2e−iky

t1eikx 0 0 0 0 t2
t1eikx 0 0 0 0 t2e−iky

0 t2 t2eiky t2 t2eiky 0

 (4)

where kx(ky) = 2π p/M(N) for p = 1, ...,M(N). The spectrum
of Hk is the set of eigenvalues of this 6×6 matrix, giving the
general expression for the dispersion relation with the follow-
ing six distinct bands

E±(kx,ky) =±
√

2

√
(1+ t2)±

√
t4 +1+ t2(−1+Λkx,ky),

E0(kx,ky) = 0.
(5)

with Λkx,ky = cosky+coskx(1+cosky) and t = t2/t1 [note that
E0(kx,ky) is 2×-degenerate]. The band structure for this sys-
tem is similar to that of the usual Lieb system for equal hop-
ping parameters [Fig.3(a)], displaying electron-hole symme-
try and a Dirac cone at the high symmetry point Γ = (π,π).
When t2 6= t1 [Fig.3(b)], two band gaps are created in the top
and bottom bands where boundary modes may emerge.

Figure 2. Boundary states of the Lieb rotated lattice. In the top-
left, we schematize the creation of the rotated lattice with unit cell of
(a) from the two-dimensional Lieb model (b) where the boundaries
belong to a π/4 rotated x− y reference frame (c). The energy spec-
trum as a function of the hopping parameters is plotted for the rotated
Lieb lattice with 5×5 plaquettes and t2 = 1 (only the positive energy
range is shown). We identify the different types of states according
to their localization in the lattice: bulk (black line), vertical (purple
line), horizontal (blue line) and corner (red dot) states. This last state
appears only for t1 = t2, when C4 rotation symmetry is restored.
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Figure 3. Dispersion relation of the Lieb rotated lattice for t2 = 1 and
(a) t1 = t2; (b) t1 = 1.67t2.

Considering the system with OBC shown in Fig. 2(c), the
resulting Lieb cluster with integer number of plaquettes holds
C2 rotational symmetry for any choice of the hopping terms
except when t1 = t2, where C4v symmetry is restored. As a re-
sult, this system behaves as a weak topological insulator [29]
since it carries horizontal or vertically localized states when-
ever t1 6= t2. In fact, due to the absence of magnetic flux, the
time-reversal symmetry is preserved and the Chern number
is zero [30]. The band of edge states disappears at the gap
closing point except for one particular state which does not
participate in the level crossing at the topological transition
point. The latter leads to the appearance of the corner state
when t1 = t2 marking the evolution of maximally localized
horizontal to vertical edge modes (see Fig. 2).

III. LOWER DIMENSIONAL SYSTEMS

In this section we will address lower-dimensional systems
based on the Lieb unit cell. Since they maintain {Mx,My}
reflection symmetries, they will be similar to the square ro-
tated Lieb lattice from the symmetry point of view and thus
studying its topology will allow us to comprehend the differ-
ent types of edge states previously identified. Through this
analysis we make use of the vertical mapping – a basis ro-
tation which combines Wannier states of sites that intersect
the same vertical axis. We define the orthonormal basis space
BIγ = {|ψI1〉 , . . . , |ψINγ

〉} for each set Sγ of all Im sites in the
γ-vertical axis with dimSγ = Nγ , with the following condi-
tions |ψIi〉=

1√
β

Nγ

∑
m=1

am |ψIm〉 ,

〈ψIi |ψI j〉= 0, i 6= j.

(6)

Specifically when Nγ is even, we get β = Nγ and a∗mam = 1 for
all m = 1, . . . ,Nγ . As an example, a vertical axis with Nγ = 4
sites requires a set with dimSγ = 4 vectors, each with uni-

tary amplitude components am = ±1 such that all 4 vectors
of the basis for that γ-axis are orthogonal. For an odd num-
ber of vertical sites in the set Sγ , the components are chosen
to be the smallest integer amplitudes possible, respecting the
vertical reflection symmetry and the orthogonality rule.

The topological characterization follows the generalization
of the Zak’s phase in [6] for systems with a non-centered sym-
metry point. For the determination of this topological invari-
ant we rely on the inversion symmetry present in the system.
In such case, the well-quantized Zak’s phase is given by the
parity of the occupied Bloch wave functions at the inversion
invariant points in the Brillouin zone [31] plus a correction
accounting for the displacement of the inversion center with
respect to the midpoint of the unit cell.

A. Lieb rhombi chain

The Lieb rhombi chain is a quasi-1D system consisting of
Lieb rotated plaquettes connected at the vertices with 7 sites
per unit cell [see Fig. 4(a)]. The bulk Hamiltonian is followed
by

Hk =



0 t1 t1 e−ikt1 e−ikt1 0 0
t1 0 0 0 0 t2 0
t1 0 0 0 0 0 t2

eikt1 0 0 0 0 t2 0
eikt1 0 0 0 0 0 t2

0 t2 0 t2 0 0 0
0 0 t2 0 t2 0 0


, (7)

where we write the energy dispersion relation as

E±(k) =±
√(

2t2
1 + t2

2

)
±
√

4t2
1 t2

2 cos(k)+4t4
1 + t4

2 ,

Et2(k) =±
√

2t2,

E0(k) = 0.

(8)

When t1 = t2, the band structure shows three flat bands εk =
{0,±

√
2} and four dispersive bands touching at k = {0,π}

[see Fig. 4(c)]. For the particular case of k = 0 [see Fig. 4(e)],
this gap closing point is robust against perturbations that
preserve the inversion symmetry. The same is not seen in
Fig. 4(d) for k = π . In this case, gaps open at t1 ≥ t2/

√
2 and

edge states may appear depending on the choice of boundary
conditions.

Making use of the vertical combination mapping [see
Fig. 4(b)] of Eq.6 (which, in this case, corresponds to a bond-
ing and anti-bonding combination since Nγ ≤ 2) [32], the sys-
tem can be rewritten as a

√
2t1t2t2

√
2t1 chain and a chain of

decoupled three-site clusters with a single hopping parame-
ter dependence t2, responsible for the flat bands Et2 of Eq.8.
Since the topological transition of the t1t2t2t1 chain occurs at
t1 = t2 [6], our top mapped chain of Fig. 4(b) holds a topo-
logical transition point at t1 = t2/

√
2. The chain of decoupled

clusters may as well be interpreted as a t1t2t2t1 chain, adding
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Figure 4. Lieb rhombi chain with 7 sites per unit cell. (a) original model; (b) mapped version of the vertical bonding (blue) and anti-bonding
(red) combination basis with a continuous chain of even states (e) and decoupled chains of odd states (o). (c,d,e) plot the dependence of the
band structure with the hopping parameters. In (c) we plot the band structure for t1 = t2 = 1 and in (d) and (e) we show the dependence
with t1/t2 of the k = π and k = 0 levels, respectively. The plot in (f) represents the eigenstates of each (blue and red) chains as a function of
the hopping parameters for an open chain (a) with left-A and right-F endings. The edge states in the band gaps evolve from the topological
transition t1 =

√
2t2 (blue line) and from the atomic limit (red line).

fictional Ao sites connected to the clusters by a t1 = 0 hop-
ping term, implying a topological transition at the atomic limit
t2 = 0.

One may choose appropriate OBC such that both indepen-
dent systems host edge states localized at least in one of their
boundaries [see Fig. 4(f)]. In such case, the top chain requires
left and/or right Ae ending sites in the regime

√
2t1 > t2 and

left and/or right Fe ending sites for
√

2t1 < t2 in order for the
localized edge states to be observed. On the other hand, the
decoupled three-site cluster chain will display edge states with
energy ε = ±t2 when OBC are such that a two-site cluster is
generated at least in one end of the chain (i.e. the chain should
end with a left and/or right Fo site). Moreover, when a single
site cluster is constructed, we will also have an edge state with
zero energy, albeit not protected against perturbations since it
overlaps with zero-energy flat bands present in the system.

Although our model is a quasi-1D chain, the Zak’s phase
can still be calculated if one follows the method of [6] for 1D-
chains with non-centered inversion point with additional con-
siderations. Fig. 5 specifies the inversion center rc = a(1/2+
m/2Nx) with Nx = 4 being the number of sites encountered in
the x-direction of the

√
2t1t2t2

√
2t1 mapped chain and m the

displacement of the inversion axis with respect to the center of
the unit cell. We may choose one of the two axis (rc1 or rc2 )
with respective m = 1 and m = −3 (the Zak’s phases for the
two inversion axis suffer a shift of Z̃ j,rc2

− Z̃ j,rc1
= π). The

corrected Zak’s phase for the Lieb rhombi chain reads

Z j =


arg
(

p0 p†
π

)
+

N

∑
N−m′+1

ˆ
π

0
dk|u j(k, |m′|)|2, m < 0,

arg
(

p0 p†
π

)
−

m′

∑
1

ˆ
π

0
dk|u j(k, |m′|)|2, m > 0,

(9)
for each band j where m′ is the evaluated number of k-
dependent terms in the inversion operator for each displace-
ment m (see [6]) and N = 7 the number of sites in the unit cell
of the Lieb chain. We gather the results for the Zak’s phase
of each band in Table I for rc1 taking into account the two
topological regimes previously mentioned. From one regime
to the other, we see a π-shift of the Zak’s phase of the dis-
persive bands and this is consistent with the results achieved
for a t1t1t2t2 chain in [6]. Furthermore, since there is no gap
opening or closing for k = 0, the parity values p0 for each
band remain constant for the two topological regimes. For the
flat bands arising from the three dangling sites in the unit cell,
the two different regimes will not introduce a π-shift because
the respective flat bands remain gapped. This reflects the fact
that the topological transition for this chain of clusters occurs
when t2 = 0. If we choose a different unit cell which does
not contain three connected dangling sites the Zak’s phase is
shifted by π .

It can be shown that, through an appropriate rotation of the
BCo and DCo sites, the chain of decoupled three-site clus-
ters at the bottom of Fig. 4(b) becomes a diamond chain
with a single renormalized hopping parameter, t2/

√
2, and

a π-flux per plaquette [33]. Recently, this model was found
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Figure 5. Determination of index m′ for
the calculation of the Zak’s phase. We
specify the unit cell center (blue line) as
well as the two possible inversion cen-
ter axis (red line) for both the original (a)
and mapped (b) rhombi chain.

rrrc1

band Z̃ jjj ppp000 pppπππ

tt t 11 1
<< <

tt t 22 2
// /
√

2

1 0 1 1
2 0 1 1
3 π 1 -1
4 0 -1 -1
5 0 -1 -1
6 0 1 1
7 0 1 1

tt t 11 1
>> >

tt t 22 2
// /
√

2

1 π 1 -1
2 0 1 1
3 0 1 1
4 0 -1 -1
5 π -1 1
6 0 1 1
7 π 1 -1

Table I. Calculation
of the corrected Zak’s
phase (Z̃ j) and par-
ity values {p0, pπ}
for each band j of
Fig. 4(c) and for
the two topological
regimes using the
inversion center rc1.

to fall into a new category of topological insulators labeled
Square-Root Topological Insulators (

√
T Is) [8, 9]. The non-

trivial topological features of these
√

T Is are linked to their
squared-Hamiltonian (H2) [34, 35]. Since

√
T Is are bipar-

tite, their H2 can be put into a block diagonal form, that is,
the squared model is a system of two-independent chains, one
of which being topologically non-trivial. Under the square-
root operation, the topological states of the squared model
are then mapped into the corresponding states of the original√

T I model. Through the basis rotation mentioned above, our
three-site cluster model directly inherits the same topological
nature as that of the diamond chain with π-flux per plaquette.

B. Lieb rhombi ribbon with single-direction PBC

In the Lieb rhombi chain, we showed the existence of two
topological transitions, one of which occurs at the atomic limit
and leads to a state exclusively in the topological non-trivial
regime. We will now study a more complex system - the Lieb
rhombi ribbon composed by several rhombi chains connected
at the F-sites (see Fig. 6) - and show that similar behavior is
also present.

Let us first consider a horizontal cylinder where PBC are
applied in the y-direction and OBC in the x-direction preserv-
ing an integer number of plaquettes [see Fig. 6(a)]. The y-
momentum is a good quantum number and one can interpret
this system as a set of 1D chains indexed by ky. Using the unit
cell indexation of Fig. 2(a), we write the Hamiltonian of each
m-chain as

HT B(m,ky)= ∑
m,ky

t1a†
m,ky

(bm,ky +cm,ky +dm−1,ky +em−1,ky)+

t2 f †
m,ky

(bm,ky +dm,ky + e−ikycm,ky + e−ikyem,ky)+h.c. (10)

The effective unit cell of each of these 1D chains is now
composed by two diamond plaquettes connected at F-sites
[see Fig. 7(i)]. Similarly to the system addressed by Kremer
et al. [9], we encounter a Peierls phase factor [36] in one of
the hopping terms of each diamond plaquette which translates
into a magnetic flux inside each loop. In this case, however,
consecutive plaquettes have opposite flux directions. Using
bonding and anti-bonding combinations of B (D) and C (E)
states, we arrive at a bonding t̃1t̃2t̃2t̃1 chain [t̃1 =

√
2t1 and

t̃2 =
√

2t2 cos(ky/2)] with additional anti-bonding sites con-
nected to the F-sites by an effective t̃3 =

√
2t2 sin(ky/2) [see

Fig. 7(ii)]. In the particular case of ky = 0, the system falls into
the topological behavior of a t1t2t2t1 chain [see Fig. 7(ii1)].
For ky = π the effective hopping t̃2 = 0 leads to two chains
of decoupled three-site clusters with t̃1 and t̃3 hopping terms,
respectively [see Fig. 7(ii2)]. We encounter the same descrip-
tion as in the Lieb rhombi chain, where the topological tran-
sition point occurs at the atomic limit. Therefore, three flat
bands are created for each hopping parameter and edge states
emerge every time OBC are such that break these clusters into
two-site boundaries. As expected, an edge band of all possi-
ble ky-values appears in the band gap for t = t1/t2 > 1, when
the system ends at A-sites. These edge states have the same
energy at the transition point t = 1, except for the ky = π edge
state that will instead cross the bulk band at t =

√
2. This be-

havior is observed in Fig. 6 where we plot the energy spectrum
of the ribbon considering PBC in the y-direction and a unit cell

Figure 6. Plot of the energy spectrum for the rotated Lieb ribbon with
OBC in the x-direction and PBC in the y-direction as a function of the
ratio t1/t2. (a) and (b) schematically illustrate the PBC in the y and x
direction, respectively (the colors in the boundaries of the cylinders
represent the type of edge states energies of Fig. 2 supported by each
system). The plot was computed for system in (a) with 5 plaquettes
in the x-direction where we overlap the analytical form of the edge
states for ky = 0 (purple line) and ky = π (red line). Due to the chosen
terminations for the numerical evaluation, we will not see the ky = 0
edge state level in regime t1 < t2 (dashed line). The colored dots
correspond to those of Fig. 7. In (c) we represent the particular case
of ky = π state with total localization in the left boundary and no bulk
decay.
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Figure 7. Effective 1D-chains categorized by ky-values. The Lieb rhombi ribbon after Fourier transforming in the periodic y-direction maps
into a diamond chain (i) with opposite magnetic flux in consecutive plaquettes, yielding ky-dependent hopping terms between F and both C
and E sites. A basis rotation via bonding and anti-bonding linear combination of B (D) and C (E) states gives chain (ii) with effective hopping
terms t̃2(ky) and t̃3(ky). At the inversion-invariant momenta ky = {0,π} we arrive at a

√
2t1
√

2t2
√

2t2
√

2t1 chain (ii1) and a set of
√

2t1
√

2t1
and
√

2t2
√

2t2 clusters (ii2), respectively. The right figures plot the energy spectra as a function of ky (and respective corrected Zak’s band
phase [6]) for a system (i) with 10 diamond plaquettes, spanning different t = t1/t2 values. We identify the band of edge states (thick black
line) which becomes present in the non-trivial topological regime, the ky = π flat band states (purple and blue dots) for each cluster of (ii2) and
the ky = π edge state (red dot), which will not converge to the band gap closing point at the topological transition t = 1.

with 5 plaquettes in the y-direction. The appearance of energy
levels in the middle of the band gap is only seen for the case
where t1 outgrows t2. These edge states are confined to the
open vertical boundaries of the ribbon and we show below
that they are approximately the vertical edge states observed
for the square Lieb cluster of Fig. 2.

In the case of a 2D Lieb system, the general form of edge-
like states should include two independent decaying behaviors
{cx,cy} such that the components of the edge state in a unit
cell are given by |ul, j〉 = cl

xc j
y(ψA,ψB,ψC,ψD,ψE ,ψF)

T with
indexes (l, j) denoting the unit cell of 6 sites [see Fig. 2(a)].
Imposing PBC in the y-direction implies cy = eiky and ky =
{0,π} will define the top and bottom levels of the edge states
band (see Fig. 6).

The OBC of the horizontal Lieb cylinder of Fig. 6(a) im-
ply {B,C} and {D,E} virtual sites of zero amplitude [37] at
the left and right ends, respectively. The solutions for the de-
caying behaviors are obtained by solving the eigenvalue rela-
tions and setting the amplitudes in these sublattices to zero.
For ky = {0,π}, the set of solutions is shown in Table II with
β t

0 =
√

2
√

t2 +1, β t
1 =
√

2/(t
√

1+ t2) and β t
2 =
√

t2 +1/
√

2.

ky cy cx ε |ε〉

0 1
−t2 −β t

0 (β t
1,0,0,−β t

1,1,1)
T

β t
0 (−β t

1,0,0,β
t
1,1,1)

T

−1/t2 −β t
0 (t,−β t

2,−β t
2,1,0,0)

T

β t
0 (t,β t

2,β
t
2,1,0,0)

T

π −1 0 −
√

2t (−
√

2,1,1,0,0,0)T
√

2t (
√

2,1,1,0,0,0)T

Table II: Edge-like behavior of |ul, j〉 assuming PBC in the y-
direction and decaying behavior from either ends of the open x-
direction (cx < (>) 1 for left (right) edge localization). These states
are only present when the virtual sites at the respective edge coincide
with the zeros of amplitude of |ul, j〉.

Note we have neglected solutions with energies that fall into
the bulk bands. A ky = 0 (cy = 1) state will have two possi-
ble decaying behaviors in the x-direction cx = {−t2,−1/t2}
depending on the hopping constants. In the t > 1 regime, a
cx = −t2 (cx = −1/t2) decaying factor will give a right (left)
edge state in which the degree of localization will increase
with t (1/t).

For a non-zero cx, the eigenfunctions will always have de-
pendence with both t1 and t2 and hence the respective topo-
logical transition occurs at a finite value of t = t1/t2 where
the edge states become extended. The same will not be seen
for ky = π (cy =−1) where the only possible edge-like states
have decay cx = 0 (it is implicit that l = 0,1, · · ·N−1), which
implies that the state is completely localized in the first col-
umn of Lieb plaquettes [see Fig. 6(c)]. All these conclusions
are intuitively found in the plot of Fig. 6, where we show the
exact overlap of the eigenvalue solutions for ky = {0,π} edge
states (purple and red curves, respectively) onto the numerical
calculations of the Lieb rhombi ribbon with 5× 5 plaquettes
and PBC in the y-direction.

This procedure can be replicated for the system of Fig. 6(b),
where PBC are applied in the x-direction. Indeed, since the
open boundaries in this case end with t2 hopping terms, both
the top and bottom edge states appear when t1 < t2. Thus,
the analytical results can be inferred by simply taking the
transformation t1 ↔ t2, yielding cy ∈ {(−t2,−1/t2),0} for
kx ∈ {0,π}.

IV. ROTATED LIEB SQUARE LATTICE

So far, we have studied the rotated Lieb square lattice with
the application of PBC to one of the boundaries of the system
and found the edge-like states in the open direction. Since
the square lattice has t1 (t2) terminations in the y-(x-)direction
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(see Fig. 2), the above analysis allows us to predict the behav-
ior of the square lattice for both t1 < t2 and t1 > t2 regimes.
In Fig. 2, the top and bottom levels of the edge states band
correspond to kx/y ≈ {0,π} states that have similar behavior
to those obtained for the Lieb ribbon. When t1 > t2 (t1 < t2),
they are localized in the vertical (horizontal) boundaries. In
the specific case of k ≈ 0, when t1 > t2, these vertical bound-
ary modes have a bulk oriented decay cx = −t2 for a right
localized state and cx =−1/t2 for a left localized state. Anal-
ogously, for t1 < t2, we find horizontal edge states with decay
cy =−t2 (cy =−1/t2) for a top (bottom) localization.

The kx/y ≈ π states of Fig. 2 drift away from the remaining
levels of the edge states band as t1/t2 approaches the topo-
logical transition (t1/t2 = 1), since the latter levels converge
to the band closing point (this is more clearly observed for
larger cluster sizes). From the previous results, we identify
this state to have a decaying behavior c = 0 for both topo-
logical regimes, meaning it is entirely localized in a single
boundary (or unit cell if PBC are considered in the perpen-
dicular direction of maximum localization). For the limiting
cases t1 � t2 and t1 � t2, the energy eigenvalues found us-
ing periodic conditions εa =±

√
2t1 and εb =±

√
2t2 are good

approximations for this boundary mode in the square lattice.
Nevertheless, around point t1 = t2, the energy curve will, in
principle, be ruled by a function f (εa,εb). At this point, cor-
ner states are generated due to the increase in symmetry (the
square lattice holds a 4-fold rotational symmetry when both
hopping terms are equal) and reflect the evolution of maxi-
mum localized horizontal kx ≈ π to vertical ky ≈ π edge states
which do not fall into a topological transition point. In all,
these corner states are a manifestation of the emergence of a
higher C4v symmetry between topological phases ruled by C2v
class.

V. TIME-DEPENDENT ANALYSIS

A striking feature of the kx/y ≈ π edge state is its complete
localization for any finite value of the hopping amplitudes.
This may lead to an enhanced protection of the state when
time-dependent perturbations are introduced in the system.
Let us consider the square Lieb lattice of Fig. 2(c) and time-
dependently vary the dimerization to adiabatically transform
this edge eigenstate to a corner eigenstate (moving along the
ky≈ π line in Fig. 2). We see from Fig. 8(a) that the projection
onto the corner eigenstates, Φ, can be made arbitrarily close to
1 by increasing the time of the adiabatic ramp of the hopping
elements. This indicates that this evolution is not affected by
the other energy levels and there are no avoided level cross-
ings when this state goes through the bulk band as usual for
an adiabatic time-evolution, (with the exception of the transi-
tion point). For small lattice sizes the scheme benefits from
the finite difference in the energy levels, thus increasing the
robustness of the state for each ramp. Nevertheless, this ef-
fect saturates when the size of the lattice is increased beyond
15× 15 plaquettes. This leads us to suggest that these edge

states are greatly protected from mixing with the bulk eigen-
states, irrespective of the size of the lattice, by the destructive
interference effect that generates a mismatch of the probabil-
ity density distribution with the bulk eigenstates.

When we apply a fast ramping process [see Fig. 8(b)] some
mixing with the other eigenstates occurs. However, the mix-
ing only happens with states that have a large density over-
lap with the edge states and we can see from Fig. 8 c) that
even for fast ramps there is a protection against mixing with
a large class of states, resulting in non-avoided energy cross-
ings with the time-dependent target state. This illustrates that
these edge states are partially protected against mixing with
the bulk states even for large time-dependent perturbations to
the hopping amplitudes. However, it should be noted that if
we apply a random disorder to either the onsite energies or
the hopping terms, then this protection is lost. This leads us
to suggest that these states are only protected against pertur-
bations that do not break the destructive interference condi-
tion. These time-dependent manipulations of the Hamiltonian
can be easily implemented in an experimental realization with
cold atoms in an optical lattice [38]. In this experimental con-
text varying the hopping amplitudes throughout the adiabatic
ramps is straightforwardly performed by changing the depth
of the lattice, which involves controlling the laser power with
an acousto-optic modulator (AOM). For appropriate choices
of atoms, the interaction strength can also be precisely tuned
through Feshbach resonances [39] by varying an applied mag-

1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5

101 102 103 104

Ramp Time, [1/t
2
]

10-4

10-3

10-2

10-1

100

5X5
10X10
15X15
20X20
25X25

1 1.2 1.4

t
1
/t

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t
1
/t

2

E
ne

rg
y 

[t
2]

(a) (b) (c)

Figure 8. Time-dependent adiabatic transformation of an edge eigen-
state into a corner eigenstate for the square rotated Lieb lattice with
open boundary conditions. We begin in the positive energy ky = π

eigenstate highlighted in red in Fig. 6, and adiabatically ramp the
hopping amplitudes from t1/t2 = 2 to t1/t2 = 1. (a) Projection of the
final produced state onto all corner eigenstates of the final Hamilto-
nian (t1/t2 = 1) as a function of the adiabatic ramp time and for a
variety of system sizes. (b) Projection of time-dependent state onto
the other eigenstates for a fast ramp time (T = 5t2) on a lattice with
5× 5 plaquettes. (c) Projections displayed on the energy spectrum,
color coded to match (b). All calculations carried out with exact di-
agonalization and for a time step of dt = 0.01t2.
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netic field. The ability to manipulate the potential or remove
atoms in order to being with an atom on a specific site en-
ables the preparation of multiple atoms in eigenstates of the
system including the initial ky ≈ π edge state for t > 1, us-
ing similar manipulations of the Hamiltonian and beginning
with the particle localized on a single site on the edge. Note
that this preparation scheme can be applied to more than a
single particle (either bosons or fermions) as long as they are
non-interacting. Furthermore, we have shown that, in certain
conditions, we can time dependently map the k = π edge state
into a corner eigenstate, offering us a way to also prepare the
corner states. With this, we have the tools to experimentally
probe and/or verify the stated topological properties of the
boundary states for these Lieb-type systems, with or without
interactions between particles.

VI. CONCLUSION

In this paper, we have addressed the Lieb lattice with stag-
gered hopping terms and a particular choice of open boundary
conditions which reduces its symmetry to C2v class generating
weak topological behavior. We demonstrated the existence of
unusual boundary states that reflect the interplay of topolog-
ical protection and geometrical frustration. These states dis-
play extreme localization at the vertical or horizontal bound-
aries (with momentum ky ≈ π or kx ≈ π , respectively) and
do not converge into the band gap closing point at the topo-
logical transition point, reflecting the existence of a topologi-
cal non-trivial phase for any value of the hopping parameters.
This is in contrast to the usual boundary modes that exhibit a
common topological phase transition at the gap closing point
with a clear distinction between non-trivial and trivial phases.
The former are, in good approximation, the boundary modes
ky = π and kx = π of the Lieb ribbons with PBC in the x-
direction for t1 > t2 and in the y-direction for t1 < t2. The
density mismatch of these states and bulk states confers the
former protection against time dependent perturbations that
change the hopping amplitudes ratio.

For our choice of open boundary conditions, corner states
emerge from the latter states due to a higher symmetry class
C4v transition point between topological phases ruled by C2v
class. This suggests the existence of a quadrupole moment at
a single point of the ratio t1/t2, but hidden due to immersion
of the corner states into the bulk bands.
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