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Submitted to the Annals of Applied Statistics

ESTIMATION OF DYADIC CHARACTERISTICS OF

FAMILY NETWORKS USING SAMPLE SURVEY DATA

By Chris Skinner‡,∗,† and Fiona Steele‡,†

London School of Economics & Political Science‡

We consider the use of sample survey data to estimate dyadic
characteristics of family networks, with an application to non-coresident
parent-child dyads. We suppose that survey respondents report either
from a parent or child perspective about a dyad, depending on their
membership of the dyad. We construct separate estimators of com-
mon dyadic characteristics using data from both a parent and a child
perspective and show how comparisons of these estimators can shed
light on data quality issues including differential missingness and re-
porting error. In our application we find that a simple missingness
model explains some striking patterns of discrepancies between the
estimators and consider the use of poststratification and a related re-
definition of count variables to adjust for these discrepancies. We also
develop approaches to combining the separate estimators efficiently to
estimate means and frequency distributions within subpopulations.

1. Introduction. Many social science research questions are framed
in terms of family networks. For example, how does parents’ provision of
financial support and grandchild care to their adult children depend on
parents’ health and socioeconomic status (e.g. Henretta, Grundy and Harris,
2002)? How does the level and nature of support given by individuals to their
elderly parents vary across countries (e.g. Brandt, Haberkern and Szydlik,
2009)? Widmer, Aeby and Sapin (2013) give other examples of why it is
increasingly important in research on contemporary family networks to look
beyond household boundaries. Obtaining statistical evidence from sample
surveys to address such questions can be challenging, however. Whereas
the practice in household surveys of obtaining data from different family
members who live together is well established, it is less straightforward to
obtain data from family network members who are non-coresident, that is
live in different locations.
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2 C. SKINNER AND F. STEELE

At least three large-scale survey designs are used in practice to study non-
coresident members of family networks. In one, individual respondents in a
‘main’ survey are asked for their consent to approach family network mem-
bers living elsewhere and a follow-up survey is then undertaken. Shapiro
(2004) and Mandemakers and Dykstra (2008) describe examples in the
United States and the Netherlands. A second design is a panel/longitudinal
survey in which family members, living together at the start of the survey in
sample households, are each followed up for many years, sufficient for sam-
ple family members living apart to provide suitable data on non-coresident
family networks. Altonji, Hayashi and Kotlikoff (1997) give a United States
example with networks formed after children have left their parental home.
Both designs have limitations. The first is costly and the need for consent
of both the main sample member and the non-coresident relative may lead
to a selective sample of pairs of network members, for example those with
a good relationship. The second design can also lead to a selective sample
since it requires that the family members lived together during the panel
observation period. In this paper we focus on a third design which seems
more widely used, simpler and less expensive. In this approach, no attempt
is made to collect data from non-coresident individuals directly. Instead, in-
dividual respondents in a standard individual or household survey are asked
questions, effectively by proxy, about family network members living else-
where. This design is employed in the family networks module included in
the British Household Panel Survey (BHPS) and its successor Understand-
ing Society, and data from the 2001 wave of BHPS will provide the basis for
the application in this paper. Similar data are available in other household
panel surveys, for example the US Panel Survey of Income Dynamics, and
the cross-national Gender and Generations Programme.

As with any data collection by proxy, it is important to consider issues of
data quality, such as missing data or measurement error. In this paper, we
shall develop a new approach to assessing data quality for the third form of
survey design. We shall focus on dyadic aspects of family networks, where a
dyad refers to an ordered pair of members of a network and in our application
consists of two non-coresident adult individuals where one is a parent of the
other. Any individual survey respondent may belong to multiple dyads and
may be a parent in some and a child in others. We suppose that respondents
are asked to report about each of these dyads, from either a parental or child
perspective, depending on the nature of their membership of the dyad. This
generates two sources of data about dyads, which we refer to as the parent

data and the child data.
We consider the estimation of dyadic characteristics, such as the number
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of dyads of a certain type in the network. It is possible to construct a sin-
gle estimator of such a parameter employing all the data by treating the
design as a form of network sampling (Lohr, 2010) and using, for example,
Horvitz-Thompson estimation (Frank, 1977). In this paper, we consider in-
stead constructing separate estimators of such a parameter using the parent
and child data in turn. The aim is for comparisons of these two estimators
to shed light on possible sources of reporting error or missing data which
may lead to bias. The first and main part of this paper explores the use
of such comparisons for data quality assessment, not only as a diagnostic
method but also to suggest adjustments to the estimation methodology, in-
cluding weighting and a related redefinition of variables. Later, we develop
novel methods for combining separate estimators to provide more efficient
estimation.

We shall focus in this paper on basic demographic dyadic characteristics,
defined in terms of age and sex, although our approach is, in principle, ap-
plicable more broadly. We take the characteristics to be finite population
parameters, as might be of interest for descriptive purposes in official statis-
tics. We assume that the sampling scheme is such that the number of dyads
for which both parent and child data are available is negligible so that it is
not possible to use such matched data to assess the concordance of reports,
as may be feasible in either of the first two survey designs (see Section 2).

The rest of this paper is organised as follows. Section 2 sets out some
related literature, primarily on issues of data quality for dyadic data on
families. Section 3 sets out the basic methodological framework, introducing
separate estimators based on parent and child data. The data we use from
the BHPS and the application are described in Section 4. Section 5 provides
our first comparison of estimates obtained from applying the estimators
introduced in Section 3 to the BHPS data. This analysis suggests that dis-
crepancies between the estimates are attributable to differential missingness
and the use of weighting to correct for differential missingess is discussed
in Section 6. Related issues of reporting error are discussed in Section 7.
The efficient combination of estimators based on parent and child data is
discussed in Section 8. Section 9 concludes with a discussion of extensions.

2. Related literature. The estimation of dyadic characteristics is an
established problem in the network sampling literature (e.g. Frank, 1977)
and likelihood methods for inference in the presence of missing data have
been considered by Handcock and Gile (2007, 2010). However, we are not
aware that the approach proposed here for assessing data quality by com-
paring separate estimates has been investigated systematically before. There
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is some relevant applied literature which compares reports of subsamples of
parent and child (or mother and father) survey respondents regarding the
same kind of dyadic phenomena.

Chan and Ermisch (2011) use data from the BHPS family networks mod-
ule, as in our study, to assess consistency of parent and child reports of
intergenerational exchanges of different types of support. For example, child
reports of help given to non-coresident parents were compared with parent
reports of help received from non-coresident adult children, based on un-
matched subsamples of parent and child respondents. They concluded that
“the overall picture of help given by children is comparable to help received
by parents, and vice versa”. Studies employing the first design described
in Section 1 use matched data on parent-child dyads to assess the concor-
dance of parent and child reports of variables such as frequency of contact,
exchanges of support, and relationship quality (Shapiro, 2004; Mandemak-
ers and Dykstra, 2008), rather than the more basic demographic variables
considered here. The focus of these studies is to identify individual deter-
minants of discrepancies in reports, which are attributed to a number of
sources including differences in perceptions and inaccuracies in reporting
(Mandemakers and Dykstra, 2008). There is some discussion of other data
quality issues, such as nonresponse, in these papers. However, the nature of
nonresponse and other kinds of sample selection is likely to be very different
to that in our study. For example, the kinds of follow-up studies considered
in these designs may be subject to consent biases whereby consent is more
likely to be given to the follow up of non-coresident parents or children when
the level of relationship quality, contact or support, is judged higher by the
respondent.

Another strand of literature relates to the reporting of non-coresident chil-
dren aged under 21 by non-coresident fathers (and sometimes non-coresident
mothers), where there is social policy interest in child support payments.
This literature does refer to data quality, especially to non-coresident fa-
thers being underreported. One way of assessing reporting of non-coresident
children by men is to compare it with reports of non-coresident fathers by
custodial mothers as in Sorenson (1997). Differences may be due to underre-
porting of non-coresident children by men or to differential nonresponse by
non-coresident fathers or because non-coresident fathers are more often in
institutions not covered by surveys. These kinds of issues may throw some
light on sources of errors in our work, although in these studies there is
no evidence of errors in individuals reporting from a child perspective and
disincentives to provide child support may lead to different kinds of errors
for young children compared to adult children. Stykes, Manning and Brown
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(2013) present evidence of “considerable inconsistencies in the estimates of
prevalence of non-resident fathers” across US surveys and discuss some po-
tential issues of data quality underlying these inconsistencies.

Also on reporting of non-coresident younger children, Rendall et al. (1999)
evaluate the consistency of men’s and women’s reports of the number of chil-
dren in retrospective fertility histories collected in BHPS and the US Panel
Study of Income Dynamics (PSID). As in our study, the objective is to
estimate a common population characteristic, in their case the number of
children, from two different sources (mothers and fathers) for subpopula-
tions defined by basic demographic characteristics including marital status
and, for PSID, race. They find that while women’s reports are consistent
with birth registrations, there is a substantial deficit in men’s reports of
non-coresident children. The authors consider two potential explanations
for this discrepancy: underrepresentation of men among survey respondents,
due to sampling-frame undercoverage and differential nonresponse, and un-
derreporting by male respondents. Comparisons by subpopulations defined
by whether births were nonmarital or from the previous or current marriage
reveal in both surveys an underrepresentation of previously married men and
underreporting of nonmarital births and births from previous marriages by
fathers. Their analysis can be framed as a comparison of reports of the num-
ber of parent-child dyads by mothers and fathers but, as in Sorenson (1997)
and Stykes, Manning and Brown (2013), reporting of the number of dyads
is considered only from the perspective of parents and by subpopulations
defined by parent characteristics. We consider the assessment of consistency
of reports of the number of parent-child dyads by parents and children for
subpopulations defined by both parent and child characteristics.

3. Methodological framework. In this section we set out our method-
ological framework in generic terms. An illustration of what these terms
mean in a concrete application will be given in Section 4. For example, here
we use the generic term ‘child’ but in the application in Section 4 each child
must not be coresident with the parent and must be aged 16+.

We consider a finite population ofN individuals, denoted U = {1, 2, . . . , N}.
Dyads are defined by a dyadic relation A applying to ordered pairs of indi-
viduals in U . A dyad consists of an ordered pair (i, j) for which the relation
holds. We refer to i as the parent and j as the child and write Aij = 1 if i
is a parent of j and Aij = 0 otherwise.

We suppose that a sample of n respondents, denoted s, is drawn from the
population U . Here, s denotes the set of respondents after sampling and unit
non-response have occurred. Each respondent supplies some parent data,
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applying to all dyads to which they belong as a parent, some child data,
applying to all dyads to which they belong as a child, and some data about
themselves. We suppose that weights can be constructed to enable point
estimation of population characteristics using such respondent data.

We suppose that the dyads are not ‘nested within sampling’, in the sense
that if individual i is sampled and belongs to dyad (i, j) or to dyad (j, i)
then the other member of the dyad j will not be sampled (or at least this is
very unlikely).

We specify population parameters which may be estimated separately
from each of the parent and child data and propose to use comparisons of
the estimates from these two sources to assess data quality. We begin with
the simplest case when, for a given individual i, their parent data consists

of just their reported value m
(p)
i of the number of dyads in which they are

a parent, that is the number of their children, and the child data consists

of just their reported value m
(c)
i of the number of dyads in which they are

a child, that is the number of their parents. We view m
(p)
i as the reported

value of Ai+ =
∑

j∈U Aij and m
(c)
i as the reported value of A+i =

∑

j∈U Aji.
As a first population parameter which may be estimated from either the
parent or child data we consider either A++ =

∑

i∈U

∑

j∈U Aij , the total
number of dyads in the population, or µ·· = A++/N , the average number of
dyads per member of the population. These parameters may be estimated
from either the parent or child data since we have

(1)
∑

i∈U

Ai+ =
∑

i∈U

A+i = A++

and we may estimate the population totals in (1) of Ai+ and A+i by suitable

weighted sample totals of m
(p)
i and m

(c)
i , respectively. For instance, we may

estimate µ·· by either

(2) µ̂
(p)
·· =

∑

i∈s(p) w
(p)
i m

(p)
i

∑

i∈s(p) w
(p)
i

or µ̂
(c)
·· =

∑

i∈s(c) w
(c)
i m

(c)
i

∑

i∈s(c) w
(c)
i

from the parent data or child data respectively. Here, s(p) and s(c) are defined
to be the same as s in the simplest case when both the parent and child data,

m
(p)
i and m

(c)
i , are recorded for all individuals i in the sample s. In this case

we also set w
(p)
i = w

(c)
i = wi, a survey weight constructed for the estimation

of population totals from totals across s. The more general expressions in (2)

allow for the weighting to be revised to correct for missing values in m
(p)
i or

m
(c)
i . In this case, s(p) and s(c) denote the subsets of s for which the parent
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and child data, respectively, are observed. In our application, we have no

missing values of m
(c)
i and set s(c) = s and w

(c)
i = wi. We do have missing

values of m
(p)
i and set s(p) ⊂ s to be the subsample of individuals for whom

m
(p)
i is observed and construct the weight w

(p)
i to adjust for the missingness

in m
(p)
i as well as sampling.

We propose to assess the consistency of the parent and child data by

comparing µ̂
(p)
·· and µ̂

(c)
·· via the ratio λ̂·· = µ̂

(p)
·· /µ̂

(c)
·· . We interpret this ratio

as measuring how different, proportionately, the estimated mean number of
children is from what would be expected from the estimated mean number

of parents. When λ̂·· = 1 there is no difference. Later, we shall view µ̂
(p)
··

and µ̂
(c)
·· as stochastic, subject to sampling and data quality errors, and take

λ·· = E(µ̂
(p)
·· )/E(µ̂

(c)
·· ) as a measure of differential bias in these two estima-

tors. We shall construct confidence intervals for λ·· and interpret confidence
intervals which do not contain 1 as evidence of a data quality problem. This
problem could reflect a systematic difference, resulting from measurement

error, between m
(p)
i and Ai+ or between m

(c)
i and A+i or both. It could also

reflect some kind of systematic non-response or other missingness error, as
explained in Section 5.

More generally, we classify the sources of data obtained for individual i
as the following:

• Parent data: m
(p)
i as well as the values of q variables x

(p)
1ij , . . . , x

(p)
qij for

each child j = 1, . . . ,m
(p)
i of individual i ∈ s(p);

• Child data: m
(c)
i as well as the values of r variables x

(c)
1ij , . . . , x

(c)
rij for

each parent j = 1, . . . ,m
(c)
i of individual i ∈ s(c);

• Individual data: the values of a series of variables, including all the

parent data variables x
(p)
1 , . . . , x

(p)
q and all the child data variables

x
(c)
1 , . . . , x

(c)
r , for individual i ∈ s.

To clarify, although the parent data variables x
(p)
1 , . . . , x

(p)
q refer to charac-

teristics of children, they have the superscript (p) because they are obtained
from the survey respondents’ perspectives as parents. Vice versa, although

the child data variables x
(c)
1 , . . . , x

(c)
r refer to characteristics of parents, they

have the superscript (c) because they are obtained from the survey respon-
dents’ perspectives as children.

The parent data variables and child data variables may overlap and,
indeed, be identical and, in practice, we expect q and r to be small. In
our application, both sets of variables consist of sex and age and we have
q = r = 2. In practice, we shall also convert any continuous variable like
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age into a categorical variable, by grouping its values. As a result, we shall

convert the parent data variables x
(p)
1 , . . . , x

(p)
q into indicator variables for

H subpopulations of U , denoted U
(p)
1 , . . . , U

(p)
H , and then, for each i, calcu-

late m
(p)
ih , the individual’s reported value of A

iU
(p)
h

, defined as
∑

j∈U
(p)
h

Aij ,

for h = 1, 2, . . . , H. For example, if U
(p)
h refers to female individuals then

m
(p)
ih will be the individual’s reported number of daughters. Similarly, we

convert the child data variables x
(c)
1 , . . . , x

(c)
r into indicator variables for K

subpopulations of U , denoted U
(c)
1 , . . . , U

(c)
K , and then, for each i, calculate

m
(c)
ik , the individual’s reported values of A

U
(c)
k

i
, defined as

∑

j∈U
(c)
k

Aji, for

k = 1, 2, . . . ,K. For example, if U
(c)
k refers to individuals aged 40-49 then

m
(c)
ik will be the individual’s reported number of parents aged 40-49.
We now extend the specification of the population parameter µ·· to alter-

native choices of subpopulation. The most general case we consider is µhk,
the mean number of dyads per member of the population, where the dyad’s

child is in subpopulation U
(p)
h and the dyad’s parent is in subpopulation

U
(c)
k . We write

(3) µhk =
∑

i∈U
(c)
k

∑

j∈U
(p)
h

Aij/N.

Two important special cases are: (i) when U
(c)
k = U and the subpopulation

is specified only in terms of U
(p)
h , and we write µh· =

∑

U
(p)
h

A+j/N and (ii)

when U
(p)
h = U and the subpopulation is specified only in terms of U

(c)
k , and

we write µ·k =
∑

U
(c)
k

Ai+/N.

To estimate the parameter µhk, or either of its special cases above, from
either the parent or child data we make use of the alternative expressions

µhk =
∑

i∈U

I(i ∈ U
(c)
k )A

iU
(p)
h

/N =
∑

i∈U

I(i ∈ U
(p)
h )A

U
(c)
k

i
/N,

for h = 1, . . . , H, k = 1, . . . ,K. As in (2), we then estimate µhk by either

(4) µ̂
(p)
hk =

∑

i∈s(p)
w

(p)
i I(i ∈ U

(c)
k )m

(p)
ih

∑

i∈s(p)
w

(p)
i

or µ̂
(c)
hk =

∑

i∈s(c)
w

(c)
i I(i ∈ U

(p)
h )m

(c)
ik

∑

i∈s(c)
w

(c)
i

.

The estimator µ̂
(p)
hk is derived from the parent data (to obtain the m

(p)
ih ),

combined with the individual data (to determine which individuals are in
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U
(c)
k ), whereas estimator µ̂

(c)
hk is derived from the child data (to obtain the

m
(c)
ik ) combined with the individual data (to determine which individuals are

in U
(p)
h ). For illustration, if U

(p)
h refers to men and U

(c)
k refers to women then

µ̂
(p)
hk is a weighted mean of a variable which is the reported number of sons

for women and is 0 for men and µ̂
(c)
hk is a weighted mean of a variable which

is the reported number of mothers for men and is 0 for women. Expressions
for estimators µ̂h· and µ̂·k of µh· and µ·k, respectively, follow naturally from
(4) as special cases.

The consistency of the parent and child data may again be assessed by

comparing the µ̂
(p)
hk and µ̂

(c)
hk via the ratio λ̂hk = µ̂

(p)
hk /µ̂

(c)
hk for alternative

values of h and k. In addition, we may consider the λ̂h· = µ̂
(p)
h· /µ̂

(c)
h· and λ̂·k =

µ̂
(p)
·k /µ̂

(c)
·k . Differences between these ratios and 1 may indicate measurement

error in the reporting of A
iU

(p)
h

by m
(p)
ih or in the reporting of A

U
(c)
k

i
by m

(c)
ik .

In order to estimate standard errors for the ratios λ̂hk, λ̂h·, λ̂·k and λ̂··,

as well as their component mean estimators, such as µ̂
(p)
hk and µ̂

(c)
hk , we shall

use linearization variance estimation. We shall take account of the nature
of the weights w

(p)
i and w

(c)
i as well as the nature of the sampling scheme

and sources of missing data according to which the samples s(p) and s(c) are
determined from U . Further detail for our application is given in Section 4.3
and the supplementary materials. A 95% confidence interval for a param-
eter λ corresponding to an estimator λ̂ and standard error s.e.(λ̂) will be
constructed using standard normal theory as λ̂± 1.96 s.e.(λ̂).

4. Data and application.

4.1. Overview of the British Household Panel Survey and data from the

family networks module. The British Household Panel Survey (BHPS) be-
gan in 1991 with a sample of around 5,500 households and 10,300 individuals
from Great Britain (ISER, 2018). These have been followed up since with
annual waves of data collection. At wave 18 BHPS participants were asked
to join a larger survey Understanding Society, also known as the UK Lon-
gitudinal Household Study (UKHLS), and first interviews with those BHPS
participants joining the new survey took place in 2010–11. Information on
relatives living outside a respondent’s household was collected as part of the
family networks module. The questionnaire has been subject to some rota-
tion, with the module being administered in 2001, 2006 (BHPS waves 11
and 16) and bienially thereafter in 2011–13, 2013–15 and 2015–17 (UKHLS
waves 3, 5 and 7). In this paper, we analyse data from the 2001 module
which allows the use of 2001 census data for poststratification adjustment
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(see Section 6). Analysis of the first wave in the series may also serve as a
baseline for future longitudinal analyses.

We shall consider dyads as parent/child non-coresident pairs among the
population of all individuals aged 16+ living in GB. The age restriction
is consistent with BHPS eligibility criteria for adult sample members, and
hence only dyads with an adult child are considered. Although the initial
BHPS sample consists of individuals in private households, original sample
members (OSMs) who moved into institutional accommodation (including
student halls of residence and nursing homes but not prisons) were followed
where possible.

Data about non-coresident children and parents are obtained from ques-
tions about the presence of children and parents living outside the house-
hold. As in Section 3, we refer to information collected from respondents
about their parents, that is from the perspective of the child, as ‘child data’.
Similarly, information collected about children (from parent respondents) is
referred to as ‘parent data’. The child data include indicators of whether
the respondent has a non-coresident mother (defined in the question as not
“living in this household with you at the moment”), whether they have a
non-coresident father, and the ages of such parents. In BHPS, no distinc-
tion is made between biological, step or adoptive parents and thus, in the

notation of Section 3, m
(c)
i can take only three values: 0, 1 or 2. We have

r = 2 child variables, sex and age. The parent data are restricted to a ques-
tion about the number of non-coresident children. As for the child data, no
distinction is made between biological, step and adopted children. An im-
portant limitation of the parent data is that the age and sex composition of
non-coresident children was not collected. The lack of information on chil-
dren’s age is especially problematic because the focus on adult dyads implies
that only adult children should be included in the count of non-coresident
children. Moreover, age and sex of children is required for disaggregated
analyses by demographic characteristics of parents and children. For these
reasons, we use derived measures of the number of non-coresident children,
by age and sex, rather than direct reports of the total number.

4.2. Derivation of the number of non-coresident children and weighting

for incomplete birth histories. The number of non-coresident children is
calculated as the difference between the total number of children born by
wave 11 and the number of biological children coresident at wave 11. The
total number born is derived from a combination of retrospective child his-
tories collected at wave 2 and panel data from the household enumeration
for waves 3 to 11, while the number coresident at wave 11 comes from the
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household enumeration at that wave.
Retrospective birth histories were collected for almost all sample members

interviewed at wave 2. There was no further attempt to collect histories from
the main BHPS sample after wave 2. In particular, histories were not col-
lected from permanent and temporary sample members (PSMs and TSMs)
who entered the panel after wave 2 or from children of OSMs who became
OSMs themselves when they reached age 16. Hence the derived measure
of the number of non-coresident children is left-truncated for most PSMs
and TSMs and for the youngest OSMs. Histories were collected at waves 11
and 12 for Welsh, Scottish and Northern Ireland extension sample members
(who joined at waves 9 and 11), but they were not asked the family network
questions. Members of the European Community Household Panel (ECHP)
survey low-income sub-sample (who joined at wave 7) were also unlikely to
be asked for a birth history. We therefore restrict our analysis sample s(p)

for the parent data to BHPS OSMs and weight to adjust for the higher rate
of missing data among young OSMs. As the probability of having a missing
history is unrelated to the reported number of non-coresident children after
controlling for age, six age-based weighting classes were used: <30, 30–39,

40–49, 50–59, 60–69 and 70+ years, denoted a = 1, . . . , 6. The weight w
(p)
i

in Section 3 is taken as na/n
(p)
a if i is in age group a, where na and n

(p)
a

are the numbers of respondents in s(p) and s respectively. These samples
are discussed further in Section 4.3. The proportion of cases with complete
data ranges from 0.33 for age <30 to 0.94–0.98 for the older age groups. The
unweighted mean of the reported number of non-coresident children for the
full sample of BHPS OSMs shows close agreement to the weighted mean for
the sub-sample with complete histories (0.950 vs 0.949).

A comparison of the derived measure of the total number of non-coresident
children with the reported measure (among those with a complete birth
history) shows an exact match in 87% of cases, and a discrepancy of 1 child
for a further 10%. We also considered a derived measure that includes step
and adopted children because these children may be included in parental
reports of non-coresident children; however, their inclusion led to a slight
reduction in the proportion with an exact match to 85%. For this reason,
and because of a large amount of missing data on the dates of birth for these
children, the number of biological children is used in all analysis.

4.3. Analysis sample. The family network questions were asked of 9724
of the wave 11 respondents. The module was not administered among the
Welsh, Scottish and Northern Ireland extension samples, nor proxy and tele-
phone interviewees. All but two respondents answered the questions about
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Table 1

Frequency distributions of numbers of non-coresident children (m
(p)
i ) and non-coresident

parents (m
(c)
i )

m
(p)
i Frequency m

(c)
i Frequency

0 2998 0 3161
1 833 1 1530
2 1053 2 2177
3 535 Total 6868
4 164
5+ 105
Total 5688

the presence of non-coresident parents and children. Of these, we restrict the
analysis sample to the 6961 BHPS OSMs. The following sample members
were excluded because of high probabilities of incomplete birth histories: 623
PSMs, 741 TSMs, and 1397 ECHP members. The size of the analysis sample,
denoted s in Section 3, reduces to 6868 after the following further exclusions:
11 respondents aged 15, 74 who provided a birth history but with missing
data on the date of birth or sex of at least one child, and 8 with missing
data for parental age. Of this sample, 5688 provided a birth history at wave
2. In the notation of Section 3, this subsample is denoted s(p), whereas the
subsample s(c) is identical to s. Table 1 shows the frequency distributions of
the number of non-coresident children aged 16+ (among those who provided
a birth history) and the number of non-coresident parents for the analysis
sample.

The sample s is based on a stratified multi-stage sample of OSMs in 1991
(wave 1). The primary sampling units (PSUs), denoted c, consist of 250 post-
code sectors. As an approximation to the stratification of PSUs, we take the
strata, denoted ℓ, as the L = 18 regions employed as major strata. Sam-
ple inclusion probabilities of OSMs in 1991 were virtually identical. Weights
were constructed to handle nonresponse at wave 1, and successive attrition
at waves 2 to 11 (Taylor et al., 2010). We comment further on these in
Section 6 and the supplementary materials. For variance estimation, we em-
ploy linearization, approximating point estimators by sample sums

∑

s zi of
appropriate linearized variates zi, derived in the supplementary materials
for the various estimators considered in Section 3. We then use a standard
ultimate cluster linearization variance estimator for the stratified multistage
sampling design (Valliant, Dever and Kreuter, 2013, p.404), given by

v =
L
∑

ℓ=1

nℓ
nℓ − 1

nℓ
∑

c=1

(zℓc − z̄ℓ)
2,(5)
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where nℓ is the number of PSUs in stratum ℓ, zℓc =
∑

i∈sℓc
zi, z̄ℓ = n−1

ℓ

∑nℓ
c=1 zℓc

and sℓc denotes the set of individuals i ∈ s falling into PSU c in stratum
ℓ. We allow not only for clustering and stratification but also for variation
arising from sample dependence of the weights. Importantly, we allow for
correlation between estimates based on the parent and child data sources,

such as µ̂
(p)
hk and µ̂

(c)
hk . Missingness of a birth history, as described in Sec-

tion 4.2, is represented by an indicator denoted ui so that, for example,
s(p) = {i ∈ s | ui = 1}. For variance estimation, ui is treated as fixed so no
stochastic assumption is made about the nature of this source of missing-
ness. We do assume independence of individual-level missiness and reporting
error between PSUs.

5. Comparison of estimates from parent and child data. We now
present some initial comparisons of the estimates µ̂(p) and µ̂(c) of the mean
number of dyads per member of the population, both overall and for those
dyads where the parent and/or child belong to different subpopulations de-
fined by sex or age group. In this section, the µ̂(p) are only weighted to adjust
for the higher rate of incomplete birth histories for young respondents, while

the µ̂(c) are unweighted. Hence, in (2), w
(p)
i consists of the simple weight de-

scribed in Section 4.2 and w
(c)
i is taken as a constant. Table 2 shows the two

estimates of the overall parameter µ··, defined below (1), and subpopulation
parameters µh·, µ·k and µhk, defined in and below (3), for subpopulations
defined by sex. Their ratios (denoted λ̂··, λ̂h·, λ̂·k or λ̂hk in Section 3) appear
in the final column. Standard errors are given in parentheses.

The ratio of the estimates of the overall parameter µ·· (1.019) differs from
1 by less than a standard error (0.033) and the 95% confidence interval
for λ·· is (0.95, 1.08). This finding therefore provides no evidence that the

number m
(p)
i of non-coresident children aged 16+ reported in the parent

data differs systematically from what would be expected given the number

m
(c)
i of non-coresident parents reported in the child data.
The corresponding findings for the different subpopulations in Table 2

mostly lead to a different conclusion, however. Only one of the 95% confi-
dence intervals for the ratio λ for subpopulations defined by sex, (0.88,1.02)
for fathers, (1.01,1.15) for mothers, (1.07,1.24) for sons and (0.85,0.98) for
daughters, contains 1. Among the 95% confidence intervals for the param-
eters λhk for the four subpopulations defined by sex of both parents and
children only two contain 1.

A striking feature of the results for subpopulations in Table 2 is that
the ratios λ̂h· and λ̂·k differ from 1 in opposite directions, both for fathers
vs. mothers (k = 1 vs. 2) and for sons vs. daughters (h = 1 vs. 2). These
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Table 2

Estimates of means of numbers of non-coresident children aged 16+ and parents and

their ratio: overall and by subpopulation. Standard errors in parentheses. Ratios for

which the 95% confidence interval does not contain 1 are in bold.

Subpopulation (parameter) µ̂(p) µ̂(c) λ̂ = µ̂(p)/µ̂(c)

Overall (µ··) 0.873 (0.019) 0.857 (0.013) 1.019 (0.033)

Sex of parents

Fathers (µ·1) 0.362 (0.010) 0.382 (0.007) 0.948 (0.037)
Mothers (µ·2) 0.511 (0.013) 0.475 (0.007) 1.076 (0.035)

Sex of children

Sons (µ1·) 0.439 (0.012) 0.381 (0.009) 1.152 (0.043)
Daughters (µ2·) 0.434 (0.012) 0.475 (0.009) 0.912 (0.033)

Sex of both parents and children

Fathers/sons (µ11) 0.182 (0.006) 0.172 (0.005) 1.054 (0.048)
Fathers/daughters (µ21) 0.181 (0.006) 0.210 (0.005) 0.861 (0.039)
Mothers/sons(µ12) 0.258 (0.008) 0.209 (0.005) 1.233 (0.047)
Mothers/daughters(µ22) 0.253 (0.008) 0.266 (0.005) 0.952 (0.036)

differences are quite strong and greater (in absolute size) than the difference
between λ̂·· and 1 for the overall population. There seem to us to be two
main possible reasons for these differences, either reporting error or missing
data. We contend that the latter is much more plausible than the former.

Consider first reporting error and the ‘sex of children’ results. Based on the
non-coresident father literature mentioned in Section 2, the most plausible
form of reporting error would seem to be underreporting (rather than over-
reporting). Suppose that non-coresident children, i.e. sons and daughters,

and their total m
(p)
i , are underreported, but that non-coresident parents are

correctly reported then we would expect λ̂h· to be less than 1 for both sons
(h = 1) and daughters (h = 2), even if the degree of underreporting (and
hence λ̂h·) differs between sons and daughters. This is not consistent with
our observation that the ratio is above 1 for sons. Similarly, if non-coresident
parents are underreported but non-coresident children are correctly reported
then we would expect λ̂h· to be greater than 1 for both sons and daughters,
even if the degree of underreporting (and hence λ̂h·) differs between sons
and daughters. Again, this is not consistent with our observation that the
ratio is below 1 for daughters. The only way of obtaining the opposite di-
rection of departures of λ̂h· from 1 for sons and daughters would seem to be
if some fairly extreme interaction occurred, such as parents underreporting
daughters but not sons and male but not female respondents underreporting
parents. This seems to us fairly implausible.
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On the other hand, consider the possibility of nonresponse or a similar
kind of missing data. As a simple model to explain the patterns of results,
suppose that male and female individuals are missing from the sample with
probabilities 1 − qm and 1 − qf , respectively. In the case of nonresponse,
qm and qf may be interpreted as response propensities. Let Amm, Afm,
Amf and Aff denote the numbers of father-son, mother-son, father-daughter
and mother-daughter dyads, respectively, and let A+m = Amm + Afm and
A+f = Amf + Aff . Also let Nm and Nf denote the numbers of male and
female individuals, respectively, in the population. Assuming that reporting
errors are absent, we obtain in the supplementary materials the following
expressions for the approximate expectations of the relevant estimators.

When the subpopulation U
(p)
h refers to sons:

E[µ̂
(p)
h· ] ≈

qmAmm + qfAfm

qmNm + qfNf

and E[µ̂
(c)
h· ] ≈

qmA+m

qmNm + qfNf

so that

(6) E[µ̂
(p)
h· − µ̂

(c)
h· ] ≈

−(qm − qf )Afm

qmNm + qfNf

.

When the subpopulation U
(p)
h refers to daughters:

E[µ̂
(p)
h· ] ≈

qmAmf + qfAff

qmNm + qfNf

and E[µ̂
(c)
h· ] ≈

qfA+f

qmNm + qfNf

so that

(7) E[µ̂
(p)
h· − µ̂

(c)
h· ] ≈

(qm − qf )Amf

qmNm + qfNf

.

The estimators µ̂
(p)
h· and µ̂

(c)
h· considered here are in the form of ratios φ̂/ψ̂

and we assume an asymptotic framework in which such ratios minus the
ratio of their expectations E(φ̂)/E(ψ̂) converge to zero in probability. The
approximation notation ≈ above is used to denote this limiting behaviour
so that differences between the left and right hand sides of ≈ converge to
zero in probability. Expectations and this limiting behavior are with respect
to sampling (individuals are assumed to be sampled with equal probability),

the simple model for missingness above and, in the case of µ̂
(p)
h· , the process

which generates missing child histories (individuals in the same age group
are assumed to have equal probabilities of missingness).

If missingness is unrelated to sex and qm = qf then the expressions in

both (6) and (7) are zero and we would expect the ratio λ̂h· to be 1, subject
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to sampling error. In the more realistic case, however, when qm and qf are
unequal, the differences in (6) and (7) are of opposite signs (since both Afm

and Amf are positive) and we expect the ratios λ̂h· for sons and daughters
to be opposite sides of 1, as we observe. The finding in Table 2 that the

difference µ̂
(p)
h· −µ̂

(c)
h· is positive for sons corresponds in expectation to qm−qf

being negative in (6), that is to the response rate being lower for men than
women. Indeed, a comparison of sample and census counts by sex gives an
estimate of qm/qf of 0.90.

Moreover, we can compare the magnitudes of (6) and (7) by noting that
Afm − Amf = (π·m − πm·)A++ under the approximation that the sexes of
children and parents are independent (so that e.g. Amf = Am+A+f/A++),
where πm· = Am+/A++ and π·m = A+m/A++ are the proportions of dyads
where the parent or child, respectively, is male. Since we expect πm· < π·m
when the proportion male gradually declines with age, as we observe it does
using the census data, it follows that we expect Afm > Amf and so we

expect the absolute difference between λ̂h· and 1 to be greater for sons than
daughters, as we observe in Table 2 (15% vs 9%).

Corresponding results are obtained in the supplementary materials for
subpopulations defined by fathers and mothers. Under the assumption, as
before, that the response rate is lower for men than women (qm < qf ),

we show that, in expectation, µ̂
(p)
·k is less than µ̂

(c)
·k and hence the ratio λ̂·k

is expected to be less than 1 for fathers, as indeed we observe. Similarly,
we show that the ratio is expected to be greater than 1 for mothers, as
observed. The positions of the sexes are reversed in this theory, with the
ratio for fathers expected to be lower than for mothers in contrast to the
sons having a higher expected ratio than daughters and this reversal is what
is observed empirically in Table 2. We also find, under the assumptions
that sexes of children and parents are independent and πm· < π·m, that the
absolute difference between λ̂·k and 1 is expected to be greater for mothers
than fathers, as we observe in Table 2 (8% vs 5%).

We may also study the overall estimators µ̂
(p)
·· and µ̂

(c)
·· under this simple

theoretical model for nonresponse. We find that

(8) E[µ̂
(p)
·· ]− E[µ̂

(c)
·· ] ≈

(qm − qf )(πm· − π·m)A++

qmNm + qfNf

.

Under our assumptions above that qm < qf and πm· < π·m, this difference

must be positive and we expect the ratio λ̂·· = µ̂
(p)
·· /µ̂

(c)
·· to be greater than

1, as indeed we observe in Table 2.
We now present results for subpopulations defined by age of parents and

age of children (Table 3). As for the analysis by sex of parents and children,
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Table 3

Estimates of means of numbers of non-coresident children aged 16+ and parents and

their ratio by age of parents and children. Standard errors in parentheses. Ratios for

which the 95% confidence interval does not contain 1 are in bold.

Subpopulation µ̂(p) µ̂(c) λ̂ = µ̂(p)/µ̂(c)

Age of parent

< 50 0.089 (0.005) 0.080 (0.005) 1.117 (0.063)
50–59 0.263 (0.011) 0.219 (0.009) 1.202 (0.057)
60–69 0.233 (0.011) 0.253 (0.008) 0.924 (0.051)
70–79 0.193 (0.011) 0.208 (0.007) 0.928 (0.066)
80+ 0.094 (0.007) 0.097 (0.005) 0.967 (0.090)

Age of child

16–19 0.035 (0.003) 0.032 (0.003) 1.066 (0.089)
20–24 0.084 (0.005) 0.078 (0.005) 1.073 (0.052)
25–29 0.127 (0.006) 0.106 (0.006) 1.196 (0.058)
30–39 0.312 (0.012) 0.290 (0.011) 1.073 (0.058)
40–49 0.202 (0.010) 0.232 (0.009) 0.872 (0.057)
50+ 0.124 (0.008) 0.118 (0.005) 1.051 (0.090)

the ratios deviate from 1 to a much greater degree than the 2% deviation
overall. We observe that for both age of parents and children, the ratios
follow a similar pattern to that observed for sex, with some ratios differing
significantly from 1 both above and below. For age of parent groups, the ratio
is above 1 for ages up to 59 and below 1 from age 60; for age of child groups,
the ratio is above 1 up to age 39 and below 1 for 40–49. (The ratio is above
1 again for children aged 50+, but the deviation is within 1 standard error
for this small group.) As age of parents and children is positively correlated,
the ratios are not expected to differ from 1 in opposite directions for parent
age and child age.

To summarize this initial analysis, although we observe a value 1.02

(se=0.03) for the overall ratio λ̂·· = µ̂
(p)
·· /µ̂

(c)
·· that is not far from 1, we

observe more substantial deviations from 1 in different subpopulations de-
fined by sex and age. We do not find that the patterns of these deviations
correspond in a very plausible way with any obvious simple model for re-
porting error. On the other hand, they do seem to correspond remarkably
well with a simple model for differential nonresponse. Hence, our priority
in the next section will be to consider nonresponse further and the correc-
tion of potential nonresponse bias via weighting. We return to considering
reporting error in Section 7.

6. Weighting adjustments. The analysis in Section 5 suggested that
a simple partial explanation for the deviations of the observed ratios from
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1 was that population units were differentially represented in the analysis
sample with respect to sex and age. In this section we consider an alternative

choice of weights w
(p)
i and w

(c)
i in (2) and (4) to adjust for such differential

missingness.
We considered four options, derived from weights supplied with the BHPS

data (Taylor et al., 2010), designed to compensate for nonresponse, and
weights we constructed using estimates from the 2001 census in GB, designed
to compensate for differential representation of the 2001 population in the
analysis sample. The options are described in the supplementary material
together with a theoretical and empirical comparison. Taking our primary
objective as the reduction of the discrepancies between the ratios and 1, we
concluded that the most suitable of our options was to employ poststrati-
fication based on population counts in 24 age-sex groups (poststrata) from
the census. The age groups were 16–29, 5-year groups for ages 30–79, and
80+. Denoting the poststrata by b = 1, . . . , 24, the poststratified weights are

(9) w
(p)
PSi =

n

N

Nb

n
(p)
b

, w
(c)
PSi =

n

N

Nb

nb
if i is in poststratum b,

where nb and n
(p)
b are the numbers of respondents in poststratum b in sam-

ples s and s(p), respectively, with n =
∑

nb, and Nb is the census count in
poststratum b, with N =

∑

Nb. Values of the poststratified weights are given
in the supplementary materials. Since the poststrata are nested within the
six age-based weighting classes used in Section 4.2 to construct the weighting
class adjustment applied in Section 5, the poststratified weights incorporate
this adjustment implicitly.

Table 4 contains estimates µ̂(p), µ̂(c) and λ̂ with standard errors obtained
using poststratified weights. We observe first that the standard errors are
generally much reduced compared with the standard errors in Tables 2 and
3. Age and sex of respondents clearly play a key role in the parameters of
interest and respondents’ age will be highly correlated with the ages of their
parents and children so such a gain in efficiency from age-sex poststratifi-
cation seems plausible. Ratios λ̂ for which their associated 95% confidence
intervals do not contain 1 are highlighted in bold. We treat such cases as
evidence of bias in the sense that µ̂(p) and µ̂(c) are estimating different quan-
tities. We focus in the remainder of this section on such cases and the largest
deviations of λ̂ from 1.

We consider subpopulations defined by sex and age in turn, beginning
with ones defined by sex of parents and/or children. We observe that the
values of λ̂ in Table 4 for these subpopulations are all closer to 1 than their
initial estimates in Table 2. The poststratification adjustment has moved the
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Table 4

Poststratified estimates of means of numbers of non-coresident children aged 16+ and

parents and their ratio by subpopulation. Standard errors in parentheses. Ratios for

which the 95% confidence interval does not contain 1 are in bold.

Subpopulation µ̂(p) µ̂(c) λ̂ = µ̂(p)/µ̂(c)

Overall 0.854 (0.014) 0.861 (0.009) 0.992 (0.019)

Sex of parents

Fathers 0.372 (0.007) 0.388 (0.005) 0.958 (0.022)
Mothers 0.483 (0.010) 0.474 (0.005) 1.019 (0.022)

Sex of children

Sons 0.430 (0.010) 0.415 (0.006) 1.036 (0.026)
Daughters 0.424 (0.010) 0.446 (0.006) 0.950 (0.025)

Sex of both parents and children

Fathers/sons 0.186 (0.005) 0.189 (0.004) 0.986 (0.030)
Fathers/daughters 0.186 (0.006) 0.199 (0.003) 0.932 (0.031)
Mothers/sons 0.244 (0.006) 0.227 (0.004) 1.077 (0.030)
Mothers/daughters 0.239 (0.006) 0.247 (0.003) 0.965 (0.028)

Age of parents

< 50 0.082 (0.004) 0.084 (0.004) 0.984 (0.058)
50–59 0.236 (0.007) 0.238 (0.007) 0.990 (0.035)
60–69 0.243 (0.007) 0.253 (0.006) 0.961 (0.034)
70–79 0.190 (0.007) 0.195 (0.006) 0.976 (0.045)
80+ 0.103 (0.005) 0.092 (0.004) 1.120 (0.068)

Age of children

16–19 0.033 (0.003) 0.034 (0.002) 0.972 (0.080)
20–24 0.079 (0.004) 0.082 (0.003) 0.968 (0.052)
25–29 0.118 (0.005) 0.111 (0.003) 1.068 (0.047)
30–39 0.300 (0.008) 0.316 (0.004) 0.950 (0.028)
40–49 0.204 (0.007) 0.209 (0.004) 0.979 (0.038)
50+ 0.130 (0.006) 0.110 (0.003) 1.179 (0.067)
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estimates close enough to 1 for the confidence intervals for the main effects
(father, mother, son, daughter) to contain 1, but not quite close enough for
this to hold for the mothers/sons or fathers/daughters effects (even though
their point estimates are greatly improved).

In summary, the poststratification adjustment has been very effective in
removing differential bias for the subpopulations defined by sex, but there is
still evidence that it has not been wholly successful. This suggests either an
element of misspecification of the underlying missingness model or an effect
of reporting error. We address the second possibility in the next section. Here
we consider the possibility of departures from the implicit model underlying
the poststratification, that missingness depends at most on the sex and age
of the member of the dyad included in the sample. In particular, it is assumed
that, given these characteristics, missingness does not depend on the sex of
the other non-sampled member of the dyad.

To accommodate departures from these missingness assumptions, we might
consider a poststratification or calibration adjustment which controls for
other population characteristics in addition to sex and age. Characteristics
of the dyadic population are not available to us. A variable such as house-
hold size would be available from the 2001 census but its use for adjustment
would depend on it being measured the same in the census and the survey
data and we shall not pursue this possibility any further here. Another ap-
proach follows from noting that the poststratification adjusts not only for
non-response but also for coverage error, since the 2001 census data includes
individuals who were not resident in GB in 1991, such as those who migrated
to GB after that year and had zero chance of inclusion in the analysis sample.
Hence another possible explanation for the discrepant results for mother-son
dyads and father-daughter dyads might be a distorting effect of the cover-
age element of the weighting adjustment. To explore the possibility of such
an effect we might study the impact of modifying the population used in
the poststratification weight. We shall do this below for age but we have
not identified any rationale for such a modification for these two sex-based
subpopulations.

Consider then subpopulations defined by age of parents or children. We
observe in Table 4 that the greatest deviations of the ratio from 1 occur in
the eldest groups, parents of 80+ or children of 50+. To help understand
these deviations we have also undertaken poststratification using 2001 cen-
sus counts for just the household population, that is excluding individuals
living outside private households, such as in care homes. Such individuals
were included when calculating the poststratified weights employed in Table
4. We find that poststratification by the household population leads to es-
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timates µ̂(p) (0.092 and 0.120 for parents aged 80+ and children aged 50+,
respectively) closer to the initial estimates (0.094 and 0.124) than to post-
stratification by the total population (0.103 and 0.130). We attribute this

to the larger weights w
(p)
i for the 80+ age groups when the total (rather

than the household) population is used, because of the importance of indi-
viduals aged 80+ living outside the household population, especially in care
homes. On the other hand, we find that poststratification by the household
population leads to estimates µ̂(c) (0.093 and 0.112 for parents aged 80+
and children aged 50+, respectively) closer to poststratification by the total
population (0.092 and 0.110) than to the initial estimates (0.097 and 0.118).
We attribute this to the fact that there is little difference between these two
poststratification weights w

(c)
i for those age groups (ages 50− 69, say) who

are most likely to have elderly parents. Combining the effects on µ̂(p) and
µ̂(c), we find that poststratification by the household population leads to ra-
tios λ̂ that are closer to 1 (0.984 and 1.074 for parents aged 80+ and children
aged 50+ respectively) and with confidence intervals that contain 1 in both
cases. In short, we consider that the deviations of λ̂ from 1 for the eldest
groups in Table 4 can be attributed particularly to underrepresentation of
the elderly in care homes in the BHPS.

The poststratified weights measure the extent to which the analysis sam-
ple is underrepresented in the different age-sex groups. Of the four largest
poststratified weights, one is for the oldest age group (women aged 80+), as
could be anticipated from the discussion above, but the remaining three are
for younger age groups (men aged 30-34, 35-39 and women aged 25-29). This
may reflect net immigration to GB between 1991 and 2001. Hatton (2005)
showed higher net immigation over the 1990s for the 15-24 and 25-44 age
groups (and age in 2001 will be higher than age at immigration). Rendall and
Ball (2004) found that a large proportion of the overseas-born population in
the 2001 census were in their 20s, 30s and 40s. Undercoverage of immigrants

in the analysis sample may therefore be expected to lead to increases in µ̂
(c)
h·

for poststratified (vs. initial) weights for such age groups but have rather

less impact on corresponding values of µ̂
(p)
h· . Indeed, we find that the two

largest increases in µ̂
(c)
h· for age of children subpopulations are for those aged

25-29 and, especially, 30-39. Moreover, the ratio λ̂ for children aged 30-39
has decreased from 1.07 to 0.95. Although the associated confidence interval
contains 1, it is possible that the ratio 0.95 does represent a real discrepancy

between µ̂
(p)
h· and µ̂

(c)
h· as a result of such an immigration effect. It may be

possible to move the ratio closer to 1 by removing immigrants (since 1991)
from the 2001 census counts in the poststratification weights, but such a
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modification was not available to us and has not been pursued.

7. Reporting error. In Section 6, we discussed how differences be-
tween poststratified estimates µ̂(p) and µ̂(c) could depend on the choice of
population used to contruct the poststratified weights. In a closely related

way, these differences can also depend on the reporting of the variables m
(p)
i

and m
(c)
i and their subpopulation components.

Consider, for example, the effect of restricting the total population of
individuals in GB in 2001 and the analysis sample to those living in private
households. To ensure comparability of µ̂(p) and µ̂(c), we also need to restrict

the measures m
(p)
i and m

(c)
i to apply to the counts of non-coresident parents

and children living in private households. In fact, it is not possible to apply

this restriction to the BHPS variables making up m
(p)
i and m

(c)
i . Hence,

the results cited in the previous section for weights based on the private
household population may be viewed as subject to the effect of reporting
error because, for example, the reports of non-coresident parents aged 80+
could be overstated as a result of the inclusion of some parents living in care

homes and this could bias µ̂
(c)
·k (but not µ̂

(p)
·k ) upwards.

A related example concerns the restriction of individuals to those resi-
dent in GB. It may be reasonable to assume that the analysis sample and
the census population counts obey this restriction. However, there may be
cases where the restriction does not hold for the parent or child variables

underlying the m
(p)
i and m

(c)
i . It is possible with the BHPS data to iden-

tify whether a parent is deemed by a respondent to live overseas. Restricting
non-coresident parents to GB-based ones reduces the number of respondents
reporting 1 non-coresident parent by 27 and the number reporting 2 by 71.
This leads to a reduction in µ̂(c), no effect on µ̂(p) and increases in λ̂. For
example, the value of 0.9319 reported for λ̂ in Table 6 for father-daughter
dyads is increased to 0.9563. However, the BHPS data do not permit the
same restriction to be applied to reported children. We only know about the
child the respondent has most contact with, and we do not know the age or
sex of this child. Just over 100 of these children are overseas, but the actual
number could be much greater if we assume parents are unlikely to have
most contact with a child living overseas (if there are other children still in
GB). As we cannot apply the same restriction to the parent and child data,
we simply note this potential source of inconsistency between µ̂(p) and µ̂(c)

and have left the overseas parents in the parent counts used in Section 6.
There are many other possible variables which could be subject to report-

ing error, not just the examples of residence status (in private household or
not) and country of residence (GB or not) discussed above. Given our focus
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on consistency of the parent and child data, we are primarily interested in
whether reporting is consistent between these two sources, rather than how
this reporting relates to some ‘true’ variable. For example, in Section 4.1
we discussed the classification of parents or children as biological, adopted
or step. The BHPS questions about non-coresident parents make no dis-
tinction between these categories and so a broad definition, including all

three categories, has to be used for m
(c)
i . We discussed the more complex

task of constructing the variable m
(p)
i , number of non-coresident children,

and explained why we restricted the definition of this variable to biologi-
cal children. Given the broader definition of parents, we might anticipate
a tendency for µ̂(c) to exceed µ̂(p). There is no strong evidence for such an
effect in Table 4. It is possible that such an effect is counteracted by the fact

that m
(c)
i is restricted to take a maximum of 2, that is at most one father

and one mother can be reported, whereas it is possible that multiple fathers
(biological, adopted or step) or multiple mothers could report the same child
and this could inflate µ̂(p).

One final important source of potential reporting error is the classification
of whether a parent or child is coresident or not. For example, the process
by which a child leaves a parental home can often take place over a period
of time during which the definition of whether the child and its parents are
coresident is not clear-cut. It is feasible then that the child and its parents
may report this coresidency status differently. The background literature re-
viewed in Section 2 provides various illustrations of potential reporting error
in coresidency status, in particular the tendency for fathers to underreport
their non-coresident children, for example by omitting births from their fer-
tility histories, as shown by Rendall et al. (1999). We consider now possible
explanations for the two remaining unexplained discrepancies of λ̂ from 1 in
Table 4 in terms of such reporting error.

The first discrepancy is for father-daughter dyads, where λ̂ = 0.9319, so
that the number of non-coresident daughters reported by men is 7% lower
than would be expected given the number of non-coresident fathers reported
by women. If reporting error is the explanation, the results suggest either:

(a) underreporting of non-coresident daughters by men or
(b) overreporting of non-coresident fathers by women (i.e. women are more

likely to report having a father than are men).

Let us assume that men underreport their fertility. As λ̂ for the father-
son dyads is close to 1, explanation (a) would suggest that fathers are more
likely to omit a daughter than a son when reporting the number of non-
coresident children. Note, however, that the estimates µ̂(p) are identical for
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the father-son and father-daughter dyads, while the estimate µ̂(c) is higher
for the father-daughter dyads. If we assume an average sex ratio of 1 among
the population with a living father, this would suggest that men are no more
likely to underreport daughters than sons, which would favour explanation
(b). Perhaps daughters are more likely to stay in contact with their father
after parental divorce, and are therefore more likely than sons to report
having a non-coresident father.

The second and final discrepancy we consider is for mother-son dyads,
where λ̂ = 1.0774, so that the number of non-coresident sons reported by
women is 8% higher than would be expected given the number of mothers
reported by men. If reporting error is the explanation, the results suggest
either:

(a) overreporting of non-coresident sons by women or
(b) underreporting of non-coresident mothers by men.

Comparing patterns in the estimates µ̂(p) and µ̂(c) for the mother-son and
mother-daughter dyads, we find that µ̂(p) is slightly higher for the mother-son
dyads, but the most striking difference is in µ̂(c): the mean number of non-
coresident mothers is higher for women than for men. Assuming that mothers
correctly report their total (coresident + non-coresident) children, and that
children correctly report whether they have a mother, this pattern suggest
differential reporting of coresidence, with a greater discrepancy in mother-
son reports than in mother-daughter reports. Non-coresident daughters are
more likely to report being non-coresident than are sons.

8. Estimation of population characteristics. Our comparisons of
estimators of a common parameter using parent and child data have so far
explored sources of inconsistency between the estimators and ways of reduc-
ing inconsistency by refining sample weighting or redefining count variables.
In this section, we take the parameter to be of interest for its own sake, not
just as a means of assessing data quality. In this case, the choice of sample
weighting and variable definition should, of course, depend on the definition
of the parameter and this may lead to different choices to those made earlier.

We focus in this section on the question of how to combine the parent
and child data to estimate a given parameter of interest θ. Subject to the
above remarks about choice of weights, we suppose that, after poststrat-
ified weighting, we have estimators θ̂(p) and θ̂(c), which are both approx-
imately unbiased for θ and we consider a combined estimator of θ, given
by θ̂ = αθ̂(p) + (1 − α)θ̂(c), where α is some constant between 0 and 1. In
the supplementary materials we derive the value of α which minimises the



ESTIMATION OF DYADIC CHARACTERISTICS 25

Table 5

Estimates of θk, the mean number of non-coresident children aged 16+, for parents in

different age groups k. Standard errors in parentheses.

Age group k θ̂
(p)
k θ̂

(c)
k θ̂

(opt)
k

60-69 2.076 (0.055) 2.159 (0.053) 2.120 (0.041)

70-79 2.069 (0.070) 2.120 (0.060) 2.098 (0.045)

80+ 1.964 (0.089) 1.754 (0.073) 1.843 (0.051)

variance of this estimator and obtain the optimal estimator given by

θ̂(opt) = α̂(opt)θ̂(p) + (1− α̂(opt))θ̂(c), where α̂(opt) =
V̂ (c) − Ĉ(pc)

V̂ (p) + V̂ (c) − 2Ĉ(pc)

and V̂ (p), V̂ (c) and Ĉ(pc) are estimators of var(θ̂(p)), var(θ̂(c)), and cov(θ̂(p), θ̂(c)),
respectively. We also show how to estimate the standard error of θ̂(opt). To
illustrate the potential reduction in standard error achieved by such opti-
mal estimation, we consider a parameter which refers to one of the three
subpopulations defined by the parental age groups: 60-69, 70-79 and 80+.
Following the notation in Section 3, we denote these subpopulations or age

groups by U
(c)
k or simply by k. We define our parameter as the mean num-

ber of non-coresident children Ai+ across parents i in age group k, given

by θk =
∑

U
(c)
k

Ai+/N
(c)
k , where N

(c)
k is the size of U

(c)
k . This parameter is a

scaled version of the subpopulation mean µ.k introduced in Section 3 since

we have θk = (N/N
(c)
k )µ.k.

We shall compare three estimators of θk: those based on the parent or child

data, denoted respectively by θ̂
(p)
k = (N/N

(c)
k )µ̂

(p)
.k and θ̂

(c)
k = (N/N

(c)
k )µ̂

(c)
.k ,

and the optimal combined estimator, denoted θ̂
(opt)
k . In each case we use the

poststratified weights described in Section 6.
Table 5 displays values of these estimators for the three age groups to-

gether with estimated standard errors. The optimal estimator is roughly
midway between the estimators based on the parent and child data, since
α̂(opt) is not far from 0.5 for each age group (0.47, 0.43 and 0.42 for ages
60-69, 70-79 and 80+, respectively). The optimal estimator has considerably
reduced standard error for each age group.

In many contexts, it may be of interest to study not only the mean θk,
but also the frequency distribution of the number of non-coresident children,
defined as Fk(t) =

∑

i∈U
(c)
k

I(Ai+ = t) for t = 0, 1, 2, . . . . A natural direct
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estimator of Fk(t) based upon the parent data is given by

(10) F̂
(p)
k (t) = (N/n)

∑

i∈s(p)

w
(p)
PSiI(i ∈ U

(c)
k )I(m

(p)
i = t), t = 0, 1, 2, . . . .

where w
(p)
PSi is the poststratified weight. We show in the supplementary ma-

terials that the sum of these estimated frequencies is N
(c)
k , as we would wish,

that the mean of this estimated frequency distribution is θ̂
(p)
k , as well as how

to estimate the standard error of F̂
(p)
k (t).

We cannot estimate Fk(t) directly from the child data. We propose to

improve on F̂
(p)
k (t) instead by calibrating its mean to θ̂

(opt)
k as follows

(11) F̂
(reg)
k (t) = F̂

(p)
k (t) +N

(c)
k bk(t)

(

θ̂
(opt)
k − θ̂

(p)
k

)

,

where bk(t) is the estimated regression coefficient of the indicator variable

I(m
(p)
i = t) on m

(p)
i :

bk(t) =

∑

i∈s(p) w
(p)
PSiI(i ∈ U

(c)
k )(m

(p)
i − m̄k)I(m

(p)
i = t)

∑

i∈s(p) w
(p)
PSiI(i ∈ U

(c)
k )(m

(p)
i − m̄k)2

,

where m̄k =
∑

i∈s(p) w
(p)
PSiI(i ∈ U

(c)
k )m

(p)
i /

∑

i∈s(p) w
(p)
PSiI(i ∈ U

(c)
k ). The esti-

mator F̂
(reg)
k (t) may be interpreted as a form of regression estimator (Fuller,

2009). It makes no assumption about the shape of the frequency distribu-

tion. We show in the supplementary materials that F̂
(reg)
k (t) has sum N

(c)
k

and mean θ̂
(opt)
k as well as how to estimate its standard error.

Estimated frequency distributions using both F̂
(p)
k (t) and F̂

(reg)
k (t) are

presented in Table 6. In Table 5 we saw that the optimal estimate of the
mean was greater than the estimate based on the parent data for age groups
60-69 and 70-79. The corresponding increase in the mean of the estimated
frequency distributions in Table 6 is achieved by reduced estimated frequen-
cies for 0 and 1 children, increased estimated frequencies for 3+ children
and virtually no change in the estimates for 2 children. The reverse occurs
for age group 80+ where the smaller optimal estimate of the mean in Ta-
ble 5 corresponds to increased estimated frequencies for 0 and 1 children, a
smaller estimated frequency for 3+ children and again virtually no change
in estimate for 2 children. The difference between the standard errors of
the two estimators of the frequency distribution in Table 6 depends on the

correlation between I(m
(p)
i = t) and m

(p)
i . The maximum correlation occurs

for t =3+ children and this is where the standard error is reduced the most.
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Table 6

Estimates of frequencies of numbers of non-coresident children aged 16+ in thousands

and percentages, for parents in different age groups in Great Britain in 2001. Standard

errors in parentheses.

Age group

Number of children F̂
(p)
k (t) (SE) % F̂

(reg)
k (t) (SE) %

60-69

0 children 689 (77) 12.9 650 (69) 12.2
1 child 869 (82) 16.3 844 (78) 15.8
2 children 1,986 (103) 37.2 1,982 (103) 37.1
3+ children 1,794 (106) 33.6 1,863 (88) 34.9
Total 5,338 100 5,338 100

70-79

0 children 654 (66) 15.6 638 (60) 15.2
1 child 870 (78) 20.7 858 (75) 20.4
2 children 1,303 (89) 31.0 1,302 (88) 31.0
3+ children 1,375 (90) 32.7 1,403 (68) 33.4
Total 4,202 100 4,202 100

80+

0 children 296 (44) 12.4 330 (40) 13.8
1 child 676 (67) 28.3 714 (61) 30.0
2 children 723 (63) 30.3 721 (63) 30.2
3+ children 690 (67) 28.9 619 (53) 26.0
Total 2,384 100 2,384 100

The correlation is least for t = 2 children, indeed it is negligible, and in this
case the standard error is virtually unchanged. Overall, optimal estimation
does offer a decent reduction in standard error despite the fact that no direct
estimation of the frequency distribution is feasible using the child data.

9. Concluding remarks. In this paper we have considered a survey
design where characteristics of non-coresident dyads in a family network
may be estimated using data obtained from either member of each sam-
pled dyad. Thus, in our application with parent-child dyads, the perspective
of a survey respondent as either parent or child may be used. We have
shown how inconsistencies between estimates obtained from reports from
these two perspectives may indicate problems of data quality, specifically se-
lective missingness or reporting error. In our application we found selective
missingness provided the most relevant explanation for these inconsisten-
cies and that poststratification was helpful in reducing them. We have also
developed methods for combining estimates from parent and child data.

Our focus here has been on the estimation of some fairly simple demo-
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graphic parameters defined in terms of sex and age. This research was orig-
inally motivated by similar questions of data quality for a broader range
of dyadic variables concerning exchange of support, for example whether
a grandparent helps their adult children with childcare. In principle, the
methods discussed in this paper could be applied to such questions. For ex-
ample, the binary variable Aij introduced in Section 3 could be redefined
as whether i is a non-coresident parent of j and provides j with help with
child care.

The difficulty with applying our methods in this case is that they require
data on Aij either at the individual level, for example reports of whether
help is provided to each individual non-coresident child, or as a total (Ai+

or A+i in Section 3), for example the number of non-coresident children to
which help is provided. The problem is that such data are often not avail-
able, because, for example, of the number of questions that would be needed
to ask about all children on a range of types of support. The BHPS ques-
tions about exchange of support to parents or to children refer collectively
to non-coresident children or parents, respectively. Thus, a parent reports
whether they help any of their non-coresident children but not how many
children. Dealing with ‘any’ rather than ‘how many’ children raises signifi-
cant additional methodological challenges, which we aim to address in fur-
ther research. Simplistic treatment of ‘any’ could lead to bias. For example,
in a population with many children per family, the proportion of individuals
who receive a given form of help from any of their children will typically
exceed the proportion of individuals who give this form of help to one of
their parents.

Another restriction of the paper has been to estimation of finite popu-
lation characteristics for descriptive purposes. Many research questions are
analytic, however, such as those at the start of Section 1, and may be for-
mulated in terms of models (e.g. Snijders and Kenny, 1999). The relation
of the methods in this paper to such modelling is another area for further
research.

SUPPLEMENTARY MATERIAL

Supplementary information.

(doi: 10.1214/00-AOASXXXXSUPP; .pdf).
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