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Intertemporal choices involve tradeoffs between the value of rewards and the delay 

before those rewards are experienced—such as deciding to invest for retirement rather than 
purchase a luxury good. Canonical intertemporal choice models such as the hyperbolic model 
assume that reward amount and time until delivery are integrated within each option prior to 
comparison1,2. An alternative view posits that intertemporal choice reflects attribute-wise 
processes in which amount and time attributes are compared separately3–6. Here, we use multi-
attribute drift diffusion modeling (DDM) to show that attribute-wise comparison better represents 
the choice process in a young adult population. We find that, while accumulation rates for 
amount and time information are uncorrelated, the difference between those rates predicts 
individual differences in patience. Moreover, patient individuals incorporate amount information 
earlier than time information into the decision process. Using eye-tracking measures, we link 
these modeling results to attention, showing that patience results from a rapid, attribute-wise 
process that prioritizes amount over time information. Thus, we find converging evidence that an 
interaction between distinct evaluation processes for amount and for time determines 
intertemporal financial choices. Because intertemporal decisions in the lab have been linked to 
a variety of life outcomes, understanding individual differences in the choice process is 
important for developing more effective interventions both for common failures of patience such 
as insufficient saving as well as for pathological dysfunctions like addiction7–13. 

Substantial research shows that intertemporal choices between smaller, sooner (SS) 
and larger, later (LL) monetary rewards can be characterized by a hyperbolic discounting 
function in which rewards lose value very rapidly over short delays and then more slowly over 
longer periods of time1,2. A single hyperbolic discount rate (k) describes choices, such that a 
higher k indicates steeper discounting of future rewards and thus more impatient choices, 
whereas a lower k indicates more patient choices. Such hyperbolic option-wise models have 
been generally accepted for several reasons: the discount rate often relates to other measures 
of individual differences7–9,11, hyperbolic models account for preference reversals as rewards 
become more proximal in time2, and value functions derived from hyperbolic models match well 
to neural data14–19. Yet, it is also known that directing attention toward one attribute (e.g., time) 
can alter decisions, perhaps by encouraging attribute-wise processing20–23. Recent research into 
heuristic and sequential sampling models has suggested that such an attribute-wise process 
may better fit choice behavior3–6.  

The current experiments examine whether amount and time make independent 
contributions to individual differences in intertemporal choice in young adults. To support this 
conclusion, three conditions must be met. First, intertemporal choices should be better modeled 
by a combination of uncorrelated parameters for amount and time than by either of those 
parameters in isolation. If this condition holds, two individuals could exhibit the same 
intertemporal patience (i.e., the same apparent k value) through different combinations of 
decision weights on amount and time. Second, a model that combines amount and time 
parameters in an attribute-wise manner (i.e., comparing amounts to amounts and times to 
times) should be better matched to choice behavior than a similar option-wise model that 
integrates amount and time information to determine the value of each option. Third, amount 
and time should have distinct influences on the attentional process during choice, measured 
independently of choice behavior; if such attentional effects are observed, they would provide 
an important lever for shifting the process of choice. Our experiments provide evidence that 
meets all three of these conditions.  

We investigated the dynamic process of intertemporal choice using multi-attribute drift 
diffusion modeling (DDM) 24–27. This approach builds on prior work indicating that intertemporal 
choice – like other forms of value-guided decision making – involves a dynamic accumulation of 
evidence before reaching a decision threshold5,24. Expanding on other studies, our multi-
attribute model introduces a separation of amount and time information in multiple parts of the 
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decision process. Drift diffusion models split up the decision process into fundamental 
components that shape both choices and response times; each component provides a potential 
source for inter-individual variation in choice patience (see Supplementary figure 1 for more 
information on the structure of the DDM)25. A first possibility is that variation in attribute-specific 
drift slopes for amount compared to time could account for differences in patience. The drift 
slope reflects the weight placed on an attribute during the evidence accumulation process. On a 
given trial, the total evidence accumulation (i.e., trial drift rate) depends on the trial-specific 
value differences between the two options as modulated by the subject- and attribute-specific 
drift slope. Thus, a steeper drift slope for amount compared to time would promote more patient 
choices. Another possible mechanism is attribute latency, or the temporal advantage that results 
if one attribute is processed earlier than another. Faster latency for one attribute would initially 
bias choice toward the better value on that attribute before the other attribute starts influencing 
value accumulation26. Finally, decision bounds represent response caution, which can manifest 
as a tradeoff in speed vs. accuracy27. Differences in boundaries could contribute to individual 
differences in choice with lower bounds relating to faster, less cautious, and noisier responses, 
although bounds do not directly bias choice in one direction.  

 

Figure 1. Intertemporal choice task. On every trial, participants saw a fixation cross followed by a reminder to follow 
the task instructions. Next, they viewed and made a choice between a LL and SS option and received 1s of feedback 
highlighting the choice made. The positions of the LL and SS options were randomized across trials. The orientation 
of amount and time information in the primary sample was rotated in the replication sample. 

 
We adopted a multi-stage procedure for data collection, analysis, and replication (see 

Supplementary figure 2 for approach and Supplementary figures 3-5 for manipulation checks). 
Our task (Figure 1) offered participants incentive-compatible choices between smaller rewards 
delivered that day and larger rewards delivered up to a year later. In our primary sample, 
options were presented vertically with amount information at the top of the screen and time 
information at the bottom. In our replication sample, options were presented horizontally with 
amount and time information location (left or right) switching halfway through the experiment. In 
both samples, the locations of the SS and LL options were randomized across trials. While 
participants performed the task, we sampled their gaze position at high temporal resolution 
using eye-tracking, so that we could obtain real-time assessments of information processing in 
advance of each decision28–33. We examined not only the relative gaze bias between the SS and 
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LL options, which has been linked to overall patience in intertemporal choice34, but also the 
pattern of eye movements between elements in the display, which can reveal variation in 
decision heuristics across individuals35,36. Successful analyses in the primary sample 
determined which analyses were conducted in the replication sample – and all analyses are 
reported in this paper, regardless of replication success. 

We tested two drift diffusion models that differed in how and when amount and time 
information contributed to the decision process. The attribute-wise model [Equation (3)] 
assumes that people make direct comparisons between amounts and direct comparisons 
between times, whereas the option-wise model [Equation (2)] assumes that people integrate 
time and amount for each option before comparing options. We compared model fits using 
Bayesian information criterion (BIC); because both models fit the same number of parameters, 
here the BIC is a transformation of the negative log likelihood. Nearly all participants were better 
fit by an attribute-wise model (Two-sided exact binomial tests: primary sample 107/117, p < 
0.001, 95% CI = 0.85 – 0.96; replication sample 99/100, p < 0.001, 95% CI = 0.95 – 1.0), and 
analyses reported in the following sections use parameters from that model (see Supplementary 
Figures 6 and 7 for option-wise results). Moreover, the difference in fit was correlated with 
discount rate (Figure 2; Two-sided Pearson’s product-moment correlations: primary sample 
t(103) = 12.63, p < 0.001, r = 0.78, 95% CI = 0.69 – 0.84; replication sample t(77) = 5.54, p < 
0.001, r = 0.53, 95% CI = 0.35 – 0.68), such that more patient individuals’ choices were much 
better fit by an attribute-wise model, while very impatient individuals’ choices tended to be more 
similarly fit by both models.  
 Because intertemporal choices involve trade-offs between two attributes – amount and 
time – those attributes influence choice in opposite directions; that is, an increased decision 
weight on time would potentiate SS choices, while an increased decision weight on amount 
would lead to LL choices. Within the DDM, an increased weight on one attribute would be 
evident in a steeper drift slope compared to the other attribute. For every participant, we used a 
multi-attribute DDM (see Methods) to estimate the unique drift slopes associated with amount 
information and with time information. We found that these two drift slopes were uncorrelated 
across participants (Figure 3a; Two-sided Pearson’s product-moment correlations: primary 
sample t(115) = 0.24, p = 0.81, r = 0.02, 95% CI = -0.16 – 0.20; replication sample t(98) = 0.74, 
p = 0.46, r = 0.07, 95% CI = -0.12 – 0.27) indicating that amount and time make distinct 
contributions to the process of intertemporal choice.  
 We next examined whether the difference between drift slopes for amount and time 
related to patience in intertemporal choice. We found a strong relationship therein (Figure 3b), 
such that more patient individuals accumulated amount information at a faster rate than time 
information, whereas more impatient individuals accumulated time information at a faster rate 
than amount information (Two-sided Pearson’s product-moment correlations: primary sample 
t(103) = -19.11, p < 0.001, r = -0.88, 95% CI = -0.92 – -0.83); this effect was again present in 
our replication sample (t(77) = -16.35, p < 0.001, r = -0.88, 95% CI = -0.92 – -0.82). This 
relationship supports the conclusion that amount information pushes choice toward the larger 
amount (LL option) whereas time information pushes choice toward the more immediate time 
(SS option). Together, these results demonstrate that patience results from the combination of 
two uncorrelated factors—time and amount—rather than from a single factor or a slower overall 
drift slope (i.e., the sum of the axes on Figure 3a). Instead, preferences in intertemporal choice 
are proportional to the difference between these drift slopes. 
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Figure 2. Attribute-wise vs. option-wise DDM model comparison using Bayesian Information Criterion (BIC). Shown 
are data from all participants (primary sample N = 117, replication sample N = 100); note that participants with only 
patient choices (primary sample N = 12, replication sample N = 21) were excluded from subsequent statistical testing. 
a) A histogram of the difference in BIC for each participant across models showing that overall the attribute-wise 
model fit better. Two-sided exact binomial tests comparing model performance: primary sample: 107/117, p < 0.001 
95% CI = 0.85 – 0.96; replication sample 99/100, p < 0.001, 95% CI = 0.95 – 1.0. b) The difference in BIC has a 
positive correlation with individual discount rate, log(k). Two-sided Pearson’s product-moment correlations primary 
sample: t(103) = 12.63, p < 0.001, r = 0.78, 95% CI = 0.69 – 0.84; replication sample: t(77) = 5.54, p < 0.001, r = 
0.53, 95% CI = 0.35 – 0.68. Participants with all patient choices are displayed in light gray triangles at -9.5 on the y-
axis for illustrative purposes. Gray shading indicates values better fit by the option-wise model, whereas no shading 
indicates values better fit by the attribute-wise model (lower BIC values indicate better fit). Because both models 
contain the same number of parameters this is a transformation of the difference in negative log likelihood.  

 
 While the previous section shows that attribute-specific differences in drift slope are 
closely connected to intertemporal choice, differences in attribute latency could amplify (or 
moderate) those effects. We found that the latency for amount information was shorter than that 
for time information overall (Two-sided Welch’s paired t-test: primary sample, mean difference 
of 160 ms, t(116) = -3.24, p = .0015, Cohen’s d = -0.30, 95% CI = -0.56 – -0.04; replication 
sample, mean difference of 325 ms, t(99) = -7.17, p < 0.001, Cohen’s d = -0.72, 95% CI = -1.00 
– -0.43), and that the difference between attribute latencies for amount and time was positively 
correlated with k values (Figure 3c, Two-sided Pearson’s product-moment correlations: primary 
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sample t(103) = 6.23, p < 0.001, r = 0.52, 95% CI = 0.37 – 0.65; replication sample t(77) = 4.88, 
p < 0.001, r = 0.49, 95% CI = 0.30 – 0.64). That is, people who are more patient begin 
accumulating amount information more quickly, while those who are less patient begin 
accumulating time information more quickly.  
 Within the DDM, the decision boundary provides a measure of how much evidence is 
required before making a choice – and thus expanded bounds could be plausibly linked to 
patient intertemporal choices. However, there were no correlations between decision bounds 
and discount rate in either sample (Two-sided Pearson’s product-moment correlations: primary 
sample t(103) = -0.85, p = 0.40, r = -0.08, 95% CI = -0.27 – 0.11; replication sample t(77) = 
0.17, p = 0.86, r = 0.02, 95% CI = -0.20 – 0.24). We found a positive correlation between 
discount rate and response time such that impatient participants actually took longer to make 
choices than more patient participants (primary sample t(103) = 3.49, p < 0.001, r = 0.33, 95% 
CI = 0.14 – 0.49; replication sample t(77) = 4.15, p < 0.001, r = 0.43, 95% CI = 0.23 – 0.59, 
Supplementary Figure 8). Together, these data suggest that there is no systematic relationship 
between patience in the intertemporal domain and the amount of evidence or speed required to 
make a decision; instead, individual differences in attribute-specific latency and drift slopes 
account for which individuals exhibit intertemporal patience.  
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Figure 3. Patience reflects the difference in drift slopes and latencies for amount and time. Primary sample N = 117, 
replication sample N = 100, participants with all patient choices were excluded from analyses involving the discount 
rate (primary sample N = 12, replication sample N = 21). a) The drift slopes for amount (x-axes) and for time (y-axes) 
were uncorrelated across participants: Two-sided Pearson’s product-moment correlations: t(115) = 0.24, p = 0.81, r = 
0.02, 95% CI = -0.16 – 0.20; replication sample: t(98) = 0.74, p = 0.46, r = 0.07, 95% CI = -0.12 – 0.27. Values are 
jittered (.001 horizontal and vertical jitter) to reduce over-plotting. The color-map indicates the log(k) value for each 
participant; note that participants with similar levels of patience had different combinations of drift slopes for the two 
attributes. b) The difference in drift slopes was related to patience, in both samples: Two-sided Pearson’s product-
moment correlations primary sample, t(103) = -19.11, p < 0.001, r = -0.88, 95% CI = -0.92 – -0.83; replication sample 
t(77) = -16.35, p < 0.001, r = -0.88, 95% CI = -0.92 – -0.82. c) The relative attribute latency for amount and time also 
relates to patience: Two-sided Pearson’s product-moment correlations primary sample: t(103) = 6.23, p < 0.001, r = 
0.52, 95% CI = 0.37 – 0.65; replication sample: t(77) = 4.88, p < 0.001, r = 0.49, 95% CI = 0.30 – 0.64. Participants 
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with all patient choices are displayed in light gray triangles at -9.5 on the y-axis for illustration and were excluded from 
statistics.  

 
If amount and time are uncorrelated contributors to intertemporal choice, there should be 

observable attentional biases toward one attribute or the other that relate to variation in drift 
slope. We tested this hypothesis by examining whether differences in drift slope showed a 
relationship with our Attribute Index, which quantifies relative looking time at amount versus time 
information (Figure 4a). There was a significant positive correlation between difference in drift 
slope and relative gaze in both the primary sample (two-sided Pearson’s product-moment 
correlation: t(103) = 6.09, p < 0.001, r = 0.51, 95% CI = 0.36 – 0.64) and the replication sample 
(t(83) = 5.84, p < 0.001, r = 0.54, 95% CI = 0.37 – 0.68). That is, individuals direct more 
attention toward the attribute for which they show a higher drift slope. This could be due either 
to attention driving the information gathering process or to underlying preferences driving 
attention; the challenge in separating these explanations is considered below. We also tested 
whether the location of the first fixation was related to individual differences in attribute latency 
for amount and time and found a significant correlation in our primary sample (two-sided 
Kendall’s rank correlation tau: z(103) =-3.32 , p < 0.001, tau = -0.23, 95% CIs = -0.34 – -0.12) 
and in our replication sample (z(83) = -2.12, p = 0.034, tau = -0.16, 95% CIs = -0.30 – -0.03) 
such that those who had a faster amount latency were more likely to fixate first on amount 
information (Supplementary figure 9).  
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Figure 4. Differences in drift slope between amount and time attributes are reflected in measures of attention. 
Primary sample N = 105, replication sample N = 85 which includes all participants with sufficient eye-tracking data. a) 
The Attribute Index measures relative looking at amounts (index>0) versus times (index<0). Across participants, a 
bias toward looking at amounts was associated with a greater drift slope for amount information: two-sided Pearson’s 
product-moment correlation primary sample: t(103) = 6.09, p < 0.001, r = 0.51, 95% CI = 0.36 – 0.64; replication 
sample: t(83) = 5.84, p < 0.001, r = 0.54, 95% CI = 0.37 – 0.68. b) The Payne Index measures the relative likelihood 
of gaze transitions within options (index>0) or between attributes (index<0). Participants who tended to make more 
attribute-wise transitions also showed a greater drift slope for amount information; two-sided Pearson’s product-
moment correlation primary sample: t(103) = -7.61, p < 0.001, r = -0.60, 95% CI = -0.71 – -0.46; replication sample: 
t(83) = -5.50, p < 0.001, r = -0.52, 95% CI = -0.66 – -0.34.  

 
 While the results from the previous sections show attribute-specific biases in decision 
making, they do not in themselves provide evidence that participants directly compare attribute 
values when making decisions. To obtain that evidence, we identified all gaze transitions in our 
eye-tracking data and then measured the relative proportions of attribute-based transitions (e.g., 
SS time to LL time) and option-based transitions (e.g., SS time to SS amount). The difference in 
transition probabilities is quantified by the Payne Index37, for which positive values reflect more 
option-based gaze transitions. We observed a strong negative correlation between the Payne 
Index and the difference in attribute drift slopes: individuals with a higher drift slope for amount 
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were indeed more likely to engage in attribute-wise comparisons, while those with a higher drift 
slope for time used more option-wise comparison (Figure 4b two-sided Pearson’s product-
moment correlations: primary sample t(103) = -7.61, p < 0.001, r = -0.60, 95% CI = -0.71 – -
0.46; replication sample t(83) = -5.50, p < 0.001, r = -0.52, 95% CI = -0.66 – -0.34). Moreover, 
those with higher Payne Index values tended to look more at amounts than times (t(103) = -
7.53, p < 0.001, r = -0.60, 95% CI = -0.71 – -0.46; replication sample t(83) = -10.59, p < 0.001, r 
= -0.76, 95% CI = -0.84 – -0.65 Supplementary Figure 10). We also examined the relationship 
between eye tracking indices and the discount rate (Supplementary figure 11). Together, these 
results indicate that people who make more patient choices tend to directly compare the 
amounts offered (and largely ignore temporal information), whereas those who are less patient 
tend to integrate amount and time within an option before comparing the two options. 
 Collectively, our results support the conclusion that intertemporal choices result from the 
combination of two distinct processes – one evaluating amount information and the other 
evaluating time information – that combine to shape an individual’s choice patience. This 
conclusion follows from converging evidence drawn from choice behavior, multi-attribute drift 
diffusion modeling, and metrics of attention obtained using eye-tracking (Supplementary tables 
1 and 2 summarize these results). Moreover, markers of the choice process (e.g., patterns of 
gaze transitions, latency of attribute integration) were predictive of subject-specific individual 
differences in patience (see Supplementary figure 12 for trial by trial differences in the choice 
process). These markers contribute to an improved understanding of the mechanisms of 
intertemporal choice, which in turn could inform policy and interventions that ameliorate 
negative real-world outcomes7–12,38–42.  

Three features of our results are particularly relevant for understanding intertemporal 
choice. First, we show that the processing of amount information and time information have 
uncorrelated contributions to the choice process. While our design cannot confirm complete 
statistical independence, the observed lack of correlation between drift slopes for amount and 
time stands in contrast to other models that assume a limited capacity constraint on attention 
such that weights on amount and time trade-off within the decision process (i.e., sum to a 
constant)5,43. Moreover, prior work suggests that although attention can constrain processes of 
evidence accumulation in decision making, this bias is partial rather than absolute29. We note, 
however, that modeling approaches like ours could miss idiosyncratic violations of 
independence, as could be the case if a subject adopts different choice heuristics on different 
trials that are mixed across trials in an overall model. Future work should extend these analysis 
procedures to identify potential decision heuristics, including attentionally constrained trade-offs 
in processing, that may be manifest in some contexts. 

Second, because the pattern of gaze transitions provides an index of overt attention29,44–

48, we could link parameters extracted from diffusion models to observable online behavior 
during the period of choice. This connects biases observed in the models (e.g., a steeper drift 
slope for amount information) to potential heuristics observed in eye movements (e.g., attribute-
wise transitions between amounts).  

Third, our large sample size and replication strategy allowed us to make strong claims 
about inter-individual variability in patience. We showed, for example, that the overall biases 
toward amount information in drift slope and latency are modulated by participants’ preferences, 
with more patient individuals showing more bias toward amount information. While our study 
focused on young adults, expanding this understanding of inter-individual variability in the 
mechanisms of intertemporal choice will be particularly important for studies of groups 
characterized by excessively impatient choices (e.g. people with addiction9).   

Our modeling results revealed a strong bias toward an attribute-wise comparison 
process, rather than an integration of attributes within a choice option. Importantly, our eye 
tracking data indicated that this bias was not universal; there is not one best-fitting approach, 
but rather both attribute-wise and option-wise strategies may be employed in different contexts, 
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with substantial individual variability. This result builds upon the similar finding (using mouse-
tracking methods) from Reeck and colleagues36; we extend their results by showing that the 
attribute-wise model fits best for those at the most patient end of the spectrum whereas the 
option-wise model fits better for those who are less patient. Therefore, while the attribute-wise 
model fits better overall, individuals may still differ in the mechanisms by which they make these 
choices, given the clear individual differences both in choice behavior and in processes of 
information acquisition.  

High-patience individuals showed a striking – and potentially counterintuitive – pattern of 
behavior. Rather than exhibiting a slow and analytic comparison process that integrated all 
available information, they tended to employ a heuristic strategy of directly comparing amounts 
and choosing the larger. In contrast, low-patience individuals showed a more balanced process 
of examining both amounts and times, as evident in gaze tracking and model parameters. This 
combination of results – with patient decisions arising from heuristics, and impatient decisions 
arising from a more analytic comparison process – seems counter to rational choice models. 
However, it echoes previous findings in other choice domains that point to the use of heuristics 
as a characteristic feature of effective decision making49–52. Interventions to promote patience by 
encouraging analytic integration of outcome attributes might not be effective, accordingly. 
Instead, patient decisions might be nudged through interventions that encourage comparison of 
amounts, rather than times to delivery, which could be considered a “cost” or “penalty”22,53,54. 
Attentional manipulations may be particularly effective for decisions involving relatively short 
periods of time until reward delivery; in such cases, attention toward the time component 
increases the number of smaller, sooner choices21–23. While our study cannot disentangle 
whether attentional bias itself drives choice or whether some underlying preference drives both 
attentional biases and choices, research showing a positive feedback loop between attention 
and preference (i.e., the gaze cascade effect) suggests that even externally directing attention 
can influence choice55. Future interventions could provide strong tests of the directionality of our 
effects by attempting to force the “patient” attentional patterns we observed. 

Our results do not obviate conclusions derived from simpler models that assess 
individual differences in behavior. The commonly used hyperbolic model assumes a relatively 
steeper discount curve for immediately available rewards, while the beta-delta model explains 
temporal variability in discount rates through separate parameters for relatively immediate and 
for relatively distal rewards2,15,56,57. Each of these approaches explains dynamic inconsistencies 
in behavior (e.g., preference reversals with the passage of time) while also being measurable 
through simple survey or laboratory experiments14. We emphasize that for diagnostic tests in 
the field or in clinical settings, such simpler measures that are restricted to choice behavior will 
often be preferable to the more complex models used in our analyses58. We use modeling and 
eye tracking to better understand the attentional processes underlying the mechanisms of 
intertemporal choice – and where those mechanisms might be incompletely specified by 
behavioral models (e.g., the limitations of option-wise integration, as assumed by both 
hyperbolic and beta-delta models). The resulting insights into mechanism could in turn generate 
new hypotheses for future research and provide markers that could be studied in other 
populations. 

Because both this study and others26 have found that attributes processed more rapidly 
have an overall advantage in choice, interventions intended to encourage patient choices could 
draw attention to amount information before time information (e.g., via sequential presentation 
or a manipulation of stimulus salience)59–63. Similarly, to facilitate attribute-wise transitions 
during the process of choice, amounts could be placed closer to each other and further from 
time information to encourage attribute-wise processing, or information could be revealed in a 
step-wise manner that promotes attribute comparison36,64–70. For example, Reeck et al. (2017) 
were able to shift strategies toward attribute-wise (or option-wise patterns) by changing the 
speed of revealing key information based on the transition pattern used and thus reduce (or 
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increase) discount rates36. Future work should investigate what factors predict whether an 
individual can flexibly shift decision strategies (e.g., the pattern of information acquisition) 
across contexts. Also important for interventions will be extensions to impatience in other 
domains such as primary food rewards, health outcomes, and even environmental 
consequences38,40–42.  

Our sample included relatively few people at the extreme end of impatience, which limits 
our ability to extend our claims to all populations (e.g., individuals with pathologically impatient 
choices, as in addiction). We hypothesize, however, that a different heuristic, attribute-wise 
approach may also be utilized in extremely impatient people who compare options according to 
their time-to-delivery attribute instead of their amounts. If that result were observed, there would 
be a quadratic relationship between response time and patience. Some evidence in our data 
supports this hypothesis; in our larger primary sample, which has more extremely impatient 
individuals, this relationship is best fit by a quadratic curve (Supplementary Figure 8). However, 
this conclusion must be tempered because our replication sample does not have a sufficient 
number of extremely impatient individuals to confirm this finding. Future experiments could test 
the shape of this relationship with varying stimuli and across a larger sample with people with 
more diverse socioeconomic backgrounds and in populations known to be at the more extreme 
end of impatience. Such an approach could show that extreme discounters fall along the 
continuum of information-gathering patterns we observed or could find that those individuals 
employ an entirely different pattern altogether.  

Another limitation of our study is that we allowed some stimulus information to vary (SS 
amount and LL delay) while keeping other information constant across trials. While one might 
hypothesize that participants would attend primarily to information that varies across trials, our 
eye-tracking results show that participants still used all information on the screen and made very 
few diagonal transitions between the cells with variable information. This suggests that attention 
was not driven by novelty or salience but instead by the information carried by each attribute, 
similar to prior research36,71. Future experiments could manipulate additional features of the 
display, in order to evaluate whether reported moderators of choice behavior (e.g., the 
magnitude of the later reward) have concomitant effects on the patterns of attention. Dai & 
Busemeyer (2014) found that an attribute-wise model could account for variations in stimuli 
such as the magnitude effect, although that conclusion about choice behavior has not yet been 
accompanied by process-tracing data5. Furthermore, it would be interesting to test how the 
frequency of attractive LL or SS options for a given individual’s discount rate affects their 
attentional strategies and response times72.  

Temporal discounting has a profound influence on overall well-being and life outcomes –
and interventions to encourage intertemporal patience could have a significant impact in many 
life domains. Both behavioral work and neural findings have suggested that working memory 
may be involved in choosing delayed options, and that training this skill may improve choice73–

76. In addition, time perception, positive episodic prospection, and concreteness of future events 
can influence intertemporal patience77–81. Finally, framing choices using default options, 
directing attention to options or attributes or tradeoffs can shift choices4,8,20,22,36,82. Our results 
are consistent with this last category, in that we show that factors that shape attention also 
influence selective parameters of the choice process – leading to more patient or impatient 
choices. These results could direct new interventions (e.g., modulations of attention that lead to 
heuristic choices) to help individuals focus more on the benefits of future rewards rather than 
the cost of waiting for these rewards. Through a better understanding of the underlying 
mechanisms of intertemporal choice, interventions that work for financial decision making could 
potentially be extended to improve choices across many contexts. 
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METHODS 
 
Participants: Primary Sample. We recruited 117 subjects (mean age=21.3 years, SD=2.3 
years; 75 female). Before data collection, we established a target sample size of 100 
participants. No statistical methods were used to pre-determine sample sizes, but our sample 
sizes are larger than those reported in previous publications31,34,83. Because of a data collection 
error with a second unrelated task completed by the same participants, we collected additional 
participants who completed both tasks – leading to a final sample of 117 for this experiment. Of 
these participants, 12 were excluded from eye tracking analyses because of poor-quality or 
insufficient data (subjects were excluded if in 50% or more of the eye tracking data for one or 
both eyes could not be identified or if their calibration was poor.) All participants were recruited 
from the Durham, NC and Duke University communities and provided informed consent under a 
protocol approved by the Institutional Review Board of Duke University. 
 
Participants: Replication Sample. We recruited 100 subjects (mean age=21.5 years, SD=2.0 
years; 68 female); 15 of whom were excluded from eye tracking analyses because of poor-
quality or insufficient data. All recruitment, consent, and instructional procedures were identical 
to those of our Primary Sample. 
 
Procedure. Following informed consent, participants read a brochure about financial decision 
making; that brochure described either a traditional information-based strategy or a social 
cognition strategy. Conditions were randomly assigned to subject numbers before participants 
signed up for the experiment. Note that because initial analyses revealed that the strategies did 
not evoke differences in ITC behavior that replicated across experiments, we hereafter combine 
across them in all reported analyses. Participants then completed two independent economic 
decision-making tasks – an intertemporal choice task (reported here) and a shopping task 
(reported elsewhere) – in randomized order. After both tasks, subjects provided open-ended 
feedback about the strategies they used during decision making and completed the Abbreviated 
Barratt Impulsivity Scale (ABIS) as a general measure of individual differences in impulsivity84. 
Because the ABIS did not correlate with intertemporal choice across samples, we do not further 
report on its relationship to other variables. See Supplementary Figure 2 for a detailed 
description of our analysis and replication workflow. 
 
Tasks. Participants completed 141 intertemporal choices. The SS choice was always available 
that day and varied between $0.50-$10 in increments of $.50, while the LL choice was always 
$10 but delivered between 1-365 days later (1, 7, 15, 30, 90, 180, and 365 days). All possible 
combinations of immediate amounts and later delays were used. In the Primary experiment 
(Figure 1, top row), the choice options were displayed on the left and right sides of the screen, 
with amount on top and time on bottom. In the Replication experiment (Figure 1, bottom row), 
the choice options were displayed at the top and bottom of the screen; with left-right position of 
time and amount information counterbalanced across the first and second halves of the 
experiment in blocks. The left-right (Primary) or top-bottom (Replication) order of the SS and LL 
options was randomized across trials.  

Participants indicated their chosen option via keyboard button press. The task was self-
paced with a 10s maximum response time; most choices were much faster (primary sample: 
mean RT=2.21s, SD=.70; replication sample: mean RT= 2.14s, SD=.64). Our maximum 
response time was well above the average response time; it was implemented to minimize 
extended lapses of attention and to keep participants focused on the task. At the end of the 
experiment, each participant received a base payment of $6 (cash) for their participation, and 1 
trial was resolved for additional payment in an Amazon gift certificate that was delivered via 
email at the date on that trial. We used this payment method to minimize transaction costs and 
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risk of delivery for future rewards20,85,86; that is, subjects could be confident that they would 
receive the chosen reward on the promised date, with no additional time or effort commitment 
on their part.  
  
Eye tracking. Tasks were presented on a Tobii T60 eye tracker, which uses an unobtrusive 
camera system to sample gaze position at 60hz while allowing free head motion by the 
participant. We established areas of interest (AOIs) around the four pieces of information 
present on each display; each AOI was 350 by 350 pixels within the 1280 by 1024 total 
resolution of the screen. Before ROI analyses (gaze indices), we preprocessed the gaze 
position data using a clustering algorithm that identified drifts in calibration and then shifted the 
centers of mass of fixation clusters into the appropriate AOIs.  
 
Analysis: 
 
Modeling intertemporal value. For each subject, we used maximum likelihood estimation to 
identify their temporal discounting coefficient (k) within a hyperbolic function (Equation 1). 
 
Equation 1:      𝑆𝑉 = 𝐴1+𝑘𝑇  
 
In this equation, SV is the subjective value of an option for an individual, A is its amount (in 
dollars), T is the time until its delivery (in days), and k is the discount rate. In addition, because 
k-values are non-normally distributed, we use a natural log transformation of k for 
analysis19,23,71. Participants with uniformly patient choices or almost all patient choices with a 
few highly inconsistent choices (Primary Sample, N = 12; Replication Sample, N = 21) could not 
be fit by this function and were excluded from statistical analysis; on figures, their data is shown 
in lighter gray triangles to facilitate comparison with the other participants. Once k was identified 
for a given subject, we used its value to estimate the subjective value of the LL options on each 
trial, assuming a linear utility function for money over the range of values used; note that the 
subjective value for each SS option is equivalent to its nominal value. We chose the hyperbolic 
model for baseline comparison to our multi-attribute DDM as it has been shown to best fit with 
neural data and is widely used in relevant literature18,19,87. 
 
Multi-attribute DDM models: To examine individual differences in the processing of amount 
and time information, we fit two multi-attribute DDM models for each participant, one based on 
attribute-wise comparison and the other on option-wise comparison.  

DDMs assume that people stochastically accumulate evidence toward one choice option 
or the other until a relative value signal (RVS) reaches a decision boundary, triggering the 
execution of the choice88,89. Our computational implementation of the DDM involved the 
following steps. First, we model the decision as a choice between two options (i.e., left or right in 
the primary sample, top or bottom in the replication sample) that differ in two attributes: amount 
and time. We assume that the relative value signal (RVS) is unbiased and starts at 0, 
equidistant from the decision boundaries for the two options; this assumption is appropriate 
because of our randomization of options to left/right or top/down locations (see Supplementary 
figure 13). Second, we estimate separate attribute latency values for amount (𝑡𝐴∗) and for time 
(𝑡𝑇∗ ). These values reflect the interval after the onset of the stimulus when no information is 
accumulating related to that attribute; both attribute latency values include perceptual and motor 
processing90,91, while differences between latency values reflect a temporal advantage of one 
attribute over the other. The RVS accumulates in 10 ms time steps according to the amounts 
and times of each option weighted by separate drift slopes for time and amount attributes (𝛿A or 
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𝛿T). All terms in the model are proportional to a stochastic error signal (𝜖𝑡) that is defined by a 
Gaussian distribution centered at 0 with variance 𝜎2 = 0.1.  

In our option-wise model, equation (2), amount and time for each option are integrated in 
an option-wise manner similar to typical hyperbolic models. Prior to the attribute latency for a 
given attribute, the average over the experiment is used in place of the actual amounts or times 
on that trial as a scaling factor. We kept amount and time in their original scales to preserve the 
relative relationship between them.  

   
Equation 2: 𝑅𝑉𝑆𝑡 = 𝑅𝑉𝑆𝑡−1 + 𝛿𝐴∙𝐴𝑙𝑒𝑓𝑡1+𝛿𝑇∙𝑇𝑙𝑒𝑓𝑡 − 𝛿𝐴∙𝐴𝑟𝑖𝑔ℎ𝑡1+𝛿𝑇∙𝑇𝑟𝑖𝑔ℎ𝑡 + 𝜖𝑡 
 
Where:  𝐴𝑙𝑒𝑓𝑡 , 𝐴𝑟𝑖𝑔ℎ𝑡 = 𝐴̅ if 𝑡 < 𝑡𝐴∗; 𝑇𝑙𝑒𝑓𝑡, 𝑇𝑟𝑖𝑔ℎ𝑡 = 𝑇̅ if 𝑡 < 𝑡𝑇∗ . 

 
In comparison, in our attribute-wise model, equation (3), following an attribute-specific 

latency period, each attribute begins contributing to the RVS according to the difference in 
values. We normalized amount and time values to each be within the range [-1,1]; this allows 
their relative drift slopes to be directly comparable.  
 
Equation 3: 𝑅𝑉𝑆𝑡 = 𝑅𝑉𝑆𝑡−1 + 𝛿′𝐴(𝐴𝑙𝑒𝑓𝑡 − 𝐴𝑟𝑖𝑔ℎ𝑡) +  𝛿′𝑇(𝑇𝑙𝑒𝑓𝑡 − 𝑇𝑟𝑖𝑔ℎ𝑡) + 𝜖𝑡  
 
Where:  𝐴𝑙𝑒𝑓𝑡 −  𝐴𝑟𝑖𝑔ℎ𝑡 = 0 if 𝑡 < 𝑡𝐴∗′; 𝑇𝑙𝑒𝑓𝑡 − 𝑇𝑟𝑖𝑔ℎ𝑡 = 0 if 𝑡 < 𝑡𝑇∗′. 
 

We estimated the parameters of this model for each participant, independently, from 
their response time and choice data. To improve the stability of our estimation process, we 
excluded the 2.5% slowest and 2.5% fastest response times for each subject. We simulated 
each participant’s data 1000 times to identify the combination of parameters that best generated 
their choices and response time distribution (using 8 RT bins for each subject). The two models 
take different forms, but both fit the same five parameters – amount latency, time latency, 
amount drift slope, time drift slope, and decision boundary – while holding noise and bias 
constant. This similarity means that model fits can be directly compared on a subject-by-subject 
basis.  

We used the Bayesian Information Criterion (BIC) to compare model fits. The equation 
for the criterion is BIC = -2 x log likelihood + d x log(N) where N is the number of trials 
completed and d is the number of parameters fit. Lower scores indicate better fit. See 
Supplementary Figures 14 and 15 for average model-predicted and actual choice and response 
time for each individual. 

For all models we used a grid-search procedure with an initial common coarse grid for all 
subjects, followed by a finer grid search around each individual’s best fitting parameters (see 
Supplementary methods for parameter ranges). Linear spacing was appropriate for all DDM 
parameters, save for drift slope in the option-wise model (which used a log spacing to as log-
normalization was needed to obtain a normal distribution for the time drift slope). We did not 
include negative drift slopes because they do not make theoretical sense in our paradigm; that 
is, subjects did not prefer to receive smaller amounts of money at later times, as would be 
needed to generate a negative slope. We note that there are a variety of methods to solve 
DDMs that seek to account for a variety of psychological processes such as inconsistencies in 
choice, but we chose a grid search to minimize assumptions about the attentional process89,92,93. 
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Indices of looking behavior. We derived three measures of gaze behavior from our eye 
tracking data. All measures were scaled to a -1 to 1 range. The Attribute Index, equation (4) 
describes the proportion of time a participant looked at the amount AOIs (compared to the total 
time looking at AOIs); positive values indicate more time spent looking at amounts, negative 
indicate more time spent looking at time AOIs.  
 
Equation 4: 𝐺𝑎𝑧𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐴𝑚𝑜𝑢𝑛𝑡 𝑅𝑂𝐼𝑠 – 𝐺𝑎𝑧𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑇𝑖𝑚𝑒 𝑅𝑂𝐼𝑠𝐺𝑎𝑧𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐴𝑚𝑜𝑢𝑛𝑡 𝑅𝑂𝐼𝑠  +  𝐺𝑎𝑧𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑇𝑖𝑚𝑒 𝑅𝑂𝐼𝑠 
 
The Option Index, equation (5) measures the proportion of time a participant looked at SS AOIs 
(again compared to the total looking time); positive values indicate looking at SS options, 
negative at LL34.  
 
Equation 5: 𝐺𝑎𝑧𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑜𝑝𝑡𝑖𝑜𝑛 𝑅𝑂𝐼𝑠 – 𝐺𝑎𝑧𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐷𝑒𝑙𝑎𝑦𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛 𝑅𝑂𝐼𝑠𝐺𝑎𝑧𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑜𝑝𝑡𝑖𝑜𝑛 𝑅𝑂𝐼𝑠  +  𝐺𝑎𝑧𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐷𝑒𝑙𝑎𝑦𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛 𝑅𝑂𝐼𝑠 
 
Finally, the Payne Index37, equation (6), quantifies whether transitions in gaze tend to be within 
options (e.g., from the SS amount to the SS time; positive Payne Index) or within attributes 
(e.g., from the SS amount to the LL amount; negative Payne Index).  
 
Equation 6: 𝑂𝑝𝑡𝑖𝑜𝑛−𝑤𝑖𝑠𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 − 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒−𝑤𝑖𝑠𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑂𝑝𝑡𝑖𝑜𝑛−𝑤𝑖𝑠𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠  +  𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒−𝑤𝑖𝑠𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 
 
Statistics: All statistics are stated in the text and figure captions. Binomial tests are compared 
to a hypothesized probability of 0.5. Normality was not directly tested because of our large 
sample sizes, but unless otherwise noted, data was assumed to be normally distributed and 
individual data points are provided in the figure scatterplots.  
 
Programming environments: MATLAB was used to calculate discount rates, run drift diffusion 
models, preprocess eye tracking data, and create eye tracking indices94. R was used to make 
plots and calculate statistics95,96.  
 
Data Availability: Data that support the findings of this study will be made available on the 
Open Science Framework upon publication.  
 
Code Availability: Code will be made available on the Open Science Framework and GitHub 
upon publication. Analysis code can also be found in supplementary software.  
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