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Abstract

The putative effectiveness of working memory (WM) training at enhancing cognitive and

academic skills is still ardently debated. Several researchers have claimed that WM training

fosters not only skills such as visuospatial WM and short-term memory (STM), but also

abilities outside the domain of WM, such as fluid intelligence and mathematics. Other

researchers, while acknowledging the positive effect of WM training on WM-related

cognitive skills, are much more pessimistic about the ability of WM training to improve other

cognitive and academic skills. In other words, the idea that far-transfer – i.e., the

generalization of a set of skills across two domains only loosely related to each other – may

take place in WM training is still controversial.

In this meta-analysis, we focused on the effects of WM training on cognitive and academic

skills (e.g., fluid intelligence, attention/inhibition, mathematics, and literacy) in typically

developing (TD) children (aged three to 16). While WM training exerted a significant effect

on cognitive skills related to WM training ( = 0.46), little evidence was found regarding far-

transfer effects ( = 0.12). Moreover, the size of the effects was inversely related to the

quality of the design (i.e., random allocation to the groups and presence of an active control

group).

The results suggest that WM training is ineffective at enhancing TD children’s cognitive or

academic skills and that, when positive effects are observed, they are modest at best. Thus, in

line with other types of training, far-transfer rarely occurs and its effects are minimal.

Keywords: working memory; training; transfer; meta-analysis; intelligence; academic

achievement.
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Introduction

Transfer of learning occurs when a set of skills acquired in a particular domain

generalizes to other domains. The occurrence of transfer is either a tacit assumption or a

deliberate objective of most educational interventions: any learned skills are meant to be

applied beyond the learning context (Perkins & Salomon, 1994). For example, one’s ability in

analytic geometry is supposed to generalize to calculus.

According to Thorndike and Woodworth’s (1901) common element theory, transfer is

a function of the extent to which two tasks share common features and cognitive elements. In

accordance with this hypothesis, while near-transfer – i.e., the transfer of skills between

strictly related domains (e.g., analytic geometry and calculus) – takes place frequently, far-

transfer – i.e., the transfer occurring between source and target domains weakly related to

each other (e.g., Latin and mathematics) – has rarely been observed (Donovan, Bransford, &

Pellegrino, 1999). Examples of failed far-transfer include teaching the computer language

LOGO to improve children’s reasoning skills (De Corte & Verschaffel, 1986; Gurtner, Gex,

Gobet, Nunez, & Restchitzki, 1990) and, as reported in a recent meta-analysis (Sala & Gobet,

2016), teaching chess to improve children’s cognitive and academic skills.

The training investigated in those studies was highly specific (learning a

programming language and chess, respectively). However, it is possible that boosting a

domain-general cognitive mechanism is an effective way to improve other cognitive and real-

life skills, such as academic achievement. This assumption is the key principle underlying the

research on WM training.

Working Memory Training

WM is the cognitive system used to store and manipulate the information necessary to

carry out cognitive tasks (Baddeley, 1992). Measures of WM capacity, such as the number of
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items WM can store and the ability to keep information in active memory during interfering

tasks, correlate positively with fluid intelligence (Engle, Tuholski, Laughlin, & Conway,

1999) and measures of cognitive control such as the Stroop task (Kane & Engle, 2003), the

go/no-go task (Redick, Calvo, Gay, & Engle, 2011), and the dichotic-listening task (Conway,

Cowan, & Bunting, 2001). In addition, WM capacity is related to academic skills such as

reading comprehension (Conway & Engle, 1996) and mathematical ability (Peng, Namkung,

Barnes, & Sun, 2016). WM also seems to play a fundamental role in cognitive development.

Deficits in WM capacity in children are associated with reading difficulties (Swanson, 2006),

mathematical disorders (Passolunghi, 2006), attention deficit/hyperactivity disorder (ADHD;

Klingberg et al., 2005), and language impairment (Archibald & Gathercole, 2006).

Several hypotheses have linked WM to intelligence and academic achievement. It has

been proposed that WM and fluid intelligence share a common capacity constraint (Halford,

Cowan, & Andrews, 2007). The amount of information (e.g., the number of items) that can

be handled in WM is limited. Consequently, the number of interrelationships among elements

that can be held and manipulated by WM in a reasoning task (e.g., Raven’s progressive

matrices) is bounded. If such limits are alleviated by training, then an improvement in fluid

intelligence might occur (Au et al., 2015; Jaeggi, Buschkuehl, Jonides, & Perrig, 2008).

Crucially, such an improvement is supposed to generalize to subject areas such as

mathematics or literacy, because fluid intelligence is a key predictor of academic

achievement (Deary, Strand, Smith, & Fernandes, 2007; Rohde & Thompson, 2007). Another

related hypothesis concerns the role of attentional control processes in both working memory

and fluid intelligence (Gray, Chabris, & Braver, 2003). Chein and Morrison (2010), for

example, have suggested that WM training induces positive effects on measures of cognitive

control (e.g., Go/no-go, Stroop task), which, in turn, boosts performance in other tasks

outside the domain of WM. Finally, it has been hypothesized that WM training is especially
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beneficial for individuals with low WM capacity (e.g., children with ADHD or other learning

disabilities). The idea is simple. If one’s learning difficulties stem from reduced WM

capacity, then training that specific skill might help to improve academic performance. The

common assumption underlying these three hypotheses is that WM training boosts domain-

general mechanisms (WM capacity, cognitive control, and attention), and hence enhances

many other cognitive and academic skills.

However, in spite of a vast amount of research, no definite conclusion on the putative

effectiveness of WM training at boosting cognitive skills and academic achievement has been

reached yet. There is substantial agreement about the existence of near-transfer effects due to

WM training – such as improvements in measures of verbal and non-verbal WM and short-

term memory. However, while several reviews of the available experimental evidence have

upheld the idea that WM training is a valuable cognitive enhancement tool (Au et al., 2015;

Au, Buschkuehl, Duncan, & Jaeggi, 2016; Klingberg, 2010; Morrison & Chein, 2011), others

have challenged the hypothesis according to which WM training effects substantially transfer

to other cognitive skills outside the domain of WM (Dougherty, Hamovits, & Tidwell, 2016;

Melby-Lervag & Hulme, 2013, 2016; Melby-Lervag, Redick, & Hulme, 2016; Redick,

Shipstead, Wiemers, Melby-Lervag, & Hulme, 2015; Schwaighofer, Fischer, & Buhner,

2015; Shipstead, Redick, & Engle, 2010, 2012).

Working Memory Training in Children

Children represent an important population on which to test the ability of WM

training to boost cognitive and academic skills. During childhood, cognitive ability and

academic skills are still at the beginning of their development, and, thus, cognitive training is

likely to be more efficient than in adulthood. In agreement with this idea, research into

expertise has clearly established that the likelihood of far-transfer is inversely related to the

level of expertise in a discipline, which needs several years to acquire (Ericsson & Charness,
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1994; Gobet, 2015). That is, WM training is more likely to improve, for example, a child’s

basic arithmetic abilities than an undergraduate student’s skill in solving differential

equations. In fact, while the skill to develop is quite general and based to some extent on

cognitive ability in the former case, it depends to a large extent on domain-specific

knowledge in the latter case. Thus, from a theoretical point of view, children are an ideal

population to test the occurrence of transfer.

Several recent reviews have addressed the issue of the putative benefits of WM

training in children, without reaching any agreement. According to Klingberg (2010), WM

training can be used as an effective remediating intervention. By contrast, Rapport, Orban,

Kofler, and Friedman’s (2013) meta-analysis reported little or no evidence of amelioration in

academic achievement in children with ADHD after WM training. In line with Rapport et

al.’s (2013) results, Redick et al.’s (2015) review showed that WM training did not provide

any benefit to academic performance in children with ADHD (e.g., Chacko et al., 2014) and

poor WM (e.g., Ang, Lee, Cheam, Poon, & Koh, 2015), or in typical developing children

(e.g., Rode, Robson, Purviance, Geary, & Mayr, 2014).

Evaluating the effects of WM training on children with no learning disability has

substantial practical and theoretical implications. If a brief training can improve overall

cognitive ability and academic achievement, the impact of such an intervention on

educational practices and policies would be profound. Any positive effect of WM training

would provide an advantage for a vast cohort of individuals, not just for a relatively small

sub-sample (children with ADHD or children with poor WM). However, it is yet to be

established whether increasing WM capacity in typically developing (TD) children with no

WM impairment can enhance academic achievement and cognitive abilities outside the

domain of WM. The aim of the present study is to quantitatively evaluate the available

evidence via meta-analysis.
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The Present Meta-Analysis

The present meta-analysis focuses on the putative effectiveness of WM training at

enhancing cognitive and academic skills in TD children. While several previous meta-

analyses (e.g., Melby-Lervag & Hulme, 2013; Melby-Lervag et al., 2016; Schwaighofer et

al., 2015) included studies dealing with the putative benefits of WM training in TD children,

no meta-analysis has yet been specifically devoted to this issue.1

The main purpose of this meta-analysis is to estimate the overall effect sizes obtained

with WM training with respect to near-transfer (i.e., WM-related outcomes) and far-transfer

(i.e., outcomes outside the domain of WM). Also, we aimed to test the possible effects of

several moderators, with particular attention to far-transfer measures (e.g., fluid intelligence,

cognitive control, and academic achievement measures). Therefore, the meta-analysis

followed five steps. First, to estimate the presence or absence of near-transfer and far-transfer

at the end of the intervention, we calculated the overall standardized difference between WM

training groups and control groups on (a) near-transfer measures (e.g., visuospatial working

memory, short-term memory) and (b) measures related to abilities outside the domain of WM

(e.g., fluid intelligence, cognitive control, mathematics).

Second, we carried out a moderator analysis. As noted in previous meta-analyses

(e.g., Melby-Lervag & Hulme, 2013; Schwaighofer et al., 2015), two methodological features

may be a major source of variability between intervention studies—random assignment to

groups and the presence of an active control group to control for potential confounding

effects (e.g., differences at baseline level between experimental and control groups,

1 Weicker, Villringer, and Thöne-Otto’s (2016) meta-analysis reported several overall effect

sizes regarding the effect of WM training on TD children’s cognitive abilities such as fluid

intelligence and processing speed. However, the total sample included only nine studies.
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Hawthorne effect). The absence of these features may result in an inflation of the positive

effects of the training due to confounds such as differences at baseline level, self-selection of

the treated sample, and placebos. Therefore, we evaluated the potential moderating effects of

the type of control group (active or passive control group) and the presence of randomization

for the assignment to the groups. We also investigated the potential moderating effects of the

age of the participants and the total duration of the training. Third, we focused on the far-

transfer effects and investigated whether WM training is more (or less) successful in boosting

particular academic/cognitive skills. Fourth, we performed publication bias analyses. Finally,

we calculated the follow-up overall effect sizes for near- and far-transfer measures.

Method

Literature Search

In accordance with the PRISMA statement (Moher, Liberati, Tetzlaff, & Altman,

2009), a systematic search strategy was used to find the pertinent studies. Using several

combinations of the terms “working memory,” “training,” “cognitive,” “intervention,” and

“children”, we searched Scopus, ERIC, Psyc-Info, ProQuest Dissertation & Theses, and

Google Scholar databases to identify all the potentially relevant studies. Also, earlier

narrative reviews were examined, reference lists were scanned, and we e-mailed scholars in

the field (n = 13) requesting unpublished studies and inaccessible data.

Inclusion/Exclusion Criteria

The studies were included according to the following six criteria:

1. The design of the study included an intervention aimed to train working memory

skills (e.g., verbal working memory, visuospatial working memory); correlational

and ex-post facto studies were excluded;

2. The study presented a comparison between a treated group and at least one control
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group;

3. During the study, a measure of academic or cognitive skill other than working

memory was collected; importantly, to assess a genuine near-transfer effect, all

the measures of performance in the trained WM intervention task were excluded;

4. The participants in the study were aged three to sixteen;

5. The participants in the study were TD children without any specific learning

disability (e.g., ADHD) or borderline cognitive ability (e.g., low IQ, poor working

memory capacity);2

6. The data presented in the study (or provided by the author) were sufficient to

calculate an effect size.

To identify studies meeting these criteria, we searched for relevant published and

unpublished articles through April 1, 2016. We found 25 studies, conducted from 2007 to

2016, that met all the inclusion criteria. These studies included 26 independent samples and

104 effect sizes (30 for WM-related measures, see Table 1; 74 for non-WM-related measures,

see Table 2), with a total of 1,601 participants. Finally, a subsample of the included studies (n

= 6) reported follow-up effects. A total of 30 follow-up effect sizes were computed (6 for

WM-related measures, see Table 3; 24 for non-WM-related measures, see Table 4), with a

total of 249 participants.3 The entire procedure is summarized in Figure 1.

2 In Shavelson, Yuan, Alonzo, Klingberg, and Andersson (2008), eight participants (out of 37)

had ADHD or learning difficulties. Since separate results were not available, we calculated

the effect sizes considering the whole sample of 37 participants.

3 In Soderqvist and Bergman-Nutley (2015), no post-test assessment was administered

immediately after the training, but only 24 months later. Thus, we included the effect sizes

extracted from this study in both the main models and the follow-up models.
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Figure 1. Flow diagram of the studies included in the meta-analytic review.

Moderators

We selected five potential moderators:

1. Random allocation (dichotomous variable): Whether the participants were randomly

allocated to the groups;

2. Type of control group (active or passive; dichotomous variable): Whether the WM

training-treated group was compared to another activity;
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3. Duration of training (continuous variable): The total time of training in hours;

4. Age (continuous variable): The mean age (in years) of the participants; when the

mean age was not provided (n = 3) we used either the median age (n = 1) or an age

estimation based on the school grade (n = 2; e.g., third graders = 9-year-olds);

5. Domain (categorical variable): This variable, which was inserted only in the far-

transfer model, includes literacy/word decoding, mathematics, science, fluid

intelligence, crystallized intelligence, and cognitive control.4

The two authors coded each effect size for moderator variables independently. There was

no disagreement with respect to Random allocation, Type of control group, and Age.

Regarding the moderator Duration of training, 87% agreement was obtained. For the

moderator Domain, the Cohen’s kappa was κ = .95. The authors resolved every discrepancy.

Table 1

Studies and moderators of the 30 near-transfer effect sizes included in the meta-analysis

4 These broad categories were built by aggregating different outcomes related to a particular

domain (e.g., go/no-go task and Stroop task under the category of cognitive control). For all

the details about the reviewed studies, see Tables S1.1 to S1.4 in the Supplemental material

available online.
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Study Age

Duration of

training

Random

allocation

Type of

control group

Bergman-Nutley

et al. (2011) - M1 4.27 6.25 Yes Active

Bergman-Nutley

et al. (2011) - M2 4.27 6.25 Yes Active

Henry, Messer, &

Nash (2014) 7.00 3.00 Yes Active

Karbach,

Strobach, &

Schubert (2015) 8.30 9.33 Yes Active

Kroesbergen,

Noordende, &

Kolkman (2014)

- M1 5.87 4.00 Yes Passive

Kroesbergen,

Noordende, &

Kolkman (2014)

- M2 5.87 4.00 Yes Passive

Kuhn & Holling

(2014) - S1 9.00 5.00 Yes Passive

Kuhn & Holling

(2014) - S2 9.00 5.00 Yes Active

Kun (2007) - S1 -

M1 12.84 8.00 Yes Active
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Kun (2007) - S1 -

M2 12.84 8.00 Yes Active

Kun (2007) - S2 -

M1 13.52 14.58 Yes Active

Kun (2007) - S2 -

M2 13.52 14.58 Yes Active

Kun (2007) - S2 -

M3 13.52 14.58 Yes Active

Lee (2014) 9.00 3.00 Yes Active

Lindsay (2012) 5.49 3.00 Yes Active

Passolunghi &

Costa (2016) - S1

- M1 5.44 10.00 Yes Active

Passolunghi &

Costa (2016) - S1

- M2 5.44 10.00 Yes Active

Passolunghi &

Costa (2016) - S2

- M1 5.42 10.00 Yes Passive

Passolunghi &

Costa (2016) - S2

- M2 5.42 10.00 Yes Passive

Pugin et al.

(2015) - M1 13.00 8.05 No Passive

Pugin et al. 13.00 8.05 No Passive



NEAR- AND FAR-TRANSFER EFFECTS OF WM TRAINING 14

(2015) - M2

Rode, Robson,

Purviance, Geary,

& Mayr (2014) 9.00 7.14 Yes Passive

Shavelson et al.

(2008) - M1 13.50 14.58 Yes Active

Shavelson et al.

(2008) - M2 13.50 14.58 Yes Active

St Clair-

Thompson,

Stevens, Huth, &

Bolder (2010) 6.83 6.00 No Passive

Studer-Luethi,

Bauer, & Perrig

(2016) - S1 8.25 4.50 Yes Active

Studer-Luethi,

Bauer, & Perrig

(2016) - S2 8.25 4.50 Yes Passive

Thorell,

Lindqvist,

Bergman, Bohlin,

& Klingberg

(2008) - S1 4.67 6.25 No Active

Thorell,

Lindqvist, 4.67 6.25 No Passive
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Bergman, Bohlin,

& Klingberg

(2008) - S2

Witt (2011) 9.68 7.50 No Passive
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Table 2

Studies and moderators of the 74 far-transfer effect sizes included in the meta-analysis
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Study Age

Duration of

training Random allocation

Type of control

group Domain

Bergman-Nutley et al.

(2011) 4.27 6.25 Yes Active Fluid intelligence

Henry, Messer, &

Nash (2014) - M1 7.00 3.00 Yes Active Literacy/WD

Henry, Messer, &

Nash (2014) - M2 7.00 3.00 Yes Active Mathematics

Horvat (2014) not given not given No Passive Fluid intelligence

Jaeggi, Buschkuehl,

Jonides, & Shah

(2011) - M1 8.98 5.00 No Active Fluid intelligence

Jaeggi, Buschkuehl,

Jonides, & Shah

(2011) - M2 8.98 5.00 No Active Fluid intelligence
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Karbach, Strobach, &

Schubert (2015) - M1 8.30 9.33 Yes Active Literacy/WD

Karbach, Strobach, &

Schubert (2015) - M2 8.30 9.33 Yes Active Mathematics

Karbach, Strobach, &

Schubert (2015) - M3 8.30 9.33 Yes Active Cognitive control

Karbach, Strobach, &

Schubert (2015) - M4 8.30 9.33 Yes Active Cognitive control

Kroensbergen,

Noordende, &

Kolkman (2014) - M1 5.87 4.00 Yes Passive Cognitive control

Kroensbergen,

Noordende, &

Kolkman (2014) - M2 5.87 4.00 Yes Passive Mathematics

Kuhn & Holling

(2014) - S1 9.00 5.00 Yes Passive Mathematics



NEAR- AND FAR-TRANSFER EFFECTS OF WM TRAINING 19

Kuhn & Holling

(2014) - S2 9.00 5.00 Yes Active Mathematics

Kun (2007) - S1 - M1 12.84 8.00 Yes Active Fluid intelligence

Kun (2007) - S1 - M2 12.84 8.00 Yes Active Science

Kun (2007) - S2 - M2 13.52 14.58 Yes Active Science

Lee (2014) - M1 9.00 3.00 Yes Active Literacy/WD

Lee (2014) - M2 9.00 3.00 Yes Active Literacy/WD

Lindsay (2012) - M1 5.49 3.00 Yes Active Literacy/WD

Lindsay (2012) - M2 5.49 3.00 Yes Active Literacy/WD

Loosli, Buschkuehl,

Perrig, & Jaeggi

(2012) - M1 9.50 2.00 No Passive Fluid intelligence

Loosli, Buschkuehl,

Perrig, & Jaeggi

(2012) - M2 9.50 2.00 No Passive Literacy/WD

Mansur-Alves & 11.17 13.33 Yes Passive Fluid intelligence
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Flores-Mendoza

(2015) - M1

Mansur-Alves &

Flores-Mendoza

(2015) - M2 11.17 13.33 Yes Passive Fluid intelligence

Mansur-Alves,

Flores-Mendoza, &

Tierra-Criollo (2013)

- M1 9.19 10.00 Yes Active Fluid intelligence

Mansur-Alves,

Flores-Mendoza, &

Tierra-Criollo (2013)

- M2 9.19 10.00 Yes Active Fluid intelligence

Mansur-Alves,

Flores-Mendoza, &

Tierra-Criollo (2013) 9.19 10.00 Yes Active

Crystallized

intelligence
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- M3

Mansur-Alves,

Flores-Mendoza, &

Tierra-Criollo (2013)

- M4 9.19 10.00 Yes Active Literacy/WD

Mansur-Alves,

Flores-Mendoza, &

Tierra-Criollo (2013)

- M5 9.19 10.00 Yes Active Mathematics

Mansur-Alves,

Flores-Mendoza, &

Tierra-Criollo (2013)

- M6 9.19 10.00 Yes Active Literacy/WD

Nevo & Breznitz

(2014) - M1 8.50 4.80 Yes Active Literacy/WD

Nevo & Breznitz 8.50 4.80 Yes Active Literacy/WD
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(2014) - M2

Passolunghi & Costa

(2016) - S1 5.44 10.00 Yes Active Mathematics

Passolunghi & Costa

(2016) - S2 5.42 10.00 Yes Passive Mathematics

Pugin et al. (2015) -

M1 13.00 8.05 No Passive Fluid intelligence

Pugin et al. (2015) -

M2 13.00 8.05 No Passive Cognitive control

Pugin et al. (2015) -

M3 13.00 8.05 No Passive Cognitive control

Pugin et al. (2015) -

M4 13.00 8.05 No Passive Cognitive control

Rode, Robson,

Purviance, Geary, &

Mayr (2014) - M1 9.00 7.14 Yes Passive Mathematics
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Rode, Robson,

Purviance, Geary, &

Mayr (2014) - M2 9.00 7.14 Yes Passive Mathematics

Rode, Robson,

Purviance, Geary, &

Mayr (2014) - M3 9.00 7.14 Yes Passive Literacy/WD

Rode, Robson,

Purviance, Geary, &

Mayr (2014) - M4 9.00 7.14 Yes Passive Literacy/WD

Shavelson et al.

(2008) 13.50 14.58 Yes Active Fluid intelligence

Soderqvist &

Bergman-Nutley

(2015) - M1 9.85 not given No Passive Literacy/WD

Soderqvist &

Bergman-Nutley 9.85 not given No Passive Mathematics
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(2015) - M2

St Clair-Thompson,

Stevens, Huth, &

Bolder (2010) - M1 6.83 6.00 No Passive Literacy/WD

St Clair-Thompson,

Stevens, Huth, &

Bolder (2010) - M2 6.83 6.00 No Passive Mathematics

St Clair-Thompson,

Stevens, Huth, &

Bolder (2010) - M3 6.83 6.00 No Passive Mathematics

St Clair-Thompson,

Stevens, Huth, &

Bolder (2010) - M4 6.83 6.00 No Passive Mathematics

Studer-Luethi, Bauer,

& Perrig (2016) - S1-

M1 8.25 4.50 Yes Active Literacy/WD
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Studer-Luethi, Bauer,

& Perrig (2016) - S1-

M2 8.25 4.50 Yes Active Mathematics

Studer-Luethi, Bauer,

& Perrig (2016) - S1-

M3 8.25 4.50 Yes Active

Crystallized

intelligence

Studer-Luethi, Bauer,

& Perrig (2016) - S1-

M4 8.25 4.50 Yes Active Fluid intelligence

Studer-Luethi, Bauer,

& Perrig (2016) - S1-

M5 8.25 4.50 Yes Active Cognitive control

Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M1 8.25 4.50 Yes Passive Literacy/WD

Studer-Luethi, Bauer, 8.25 4.50 Yes Passive Mathematics
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& Perrig (2016) - S2-

M2

Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M3 8.25 4.50 Yes Passive

Crystallized

intelligence

Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M4 8.25 4.50 Yes Passive Fluid intelligence

Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M5 8.25 4.50 Yes Passive Cognitive control

Thorell, Lindqvist,

Bergman, Bohlin, &

Klingberg (2008) - S1

- M1 4.67 6.25 No Active Cognitive control

Thorell, Lindqvist, 4.67 6.25 No Active Cognitive control
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Bergman, Bohlin, &

Klingberg (2008) - S1

- M2

Thorell, Lindqvist,

Bergman, Bohlin, &

Klingberg (2008) - S1

- M3 4.67 6.25 No Active Fluid intelligence

Thorell, Lindqvist,

Bergman, Bohlin, &

Klingberg (2008) - S1

- M4 4.67 6.25 No Active Cognitive control

Thorell, Lindqvist,

Bergman, Bohlin, &

Klingberg (2008) - S2

- M1 4.67 6.25 No Passive Cognitive control

Thorell, Lindqvist, 4.67 6.25 No Passive Cognitive control
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Bergman, Bohlin, &

Klingberg (2008) - S2

- M2

Thorell, Lindqvist,

Bergman, Bohlin, &

Klingberg (2008) - S2

- M3 4.67 6.25 No Passive Fluid intelligence

Thorell, Lindqvist,

Bergman, Bohlin, &

Klingberg (2008) - S2

- M4 4.67 6.25 No Passive Cognitive control

Wang, Zhou, & Shah

(2014) - S1 10.50 6.67 Yes Active Fluid intelligence

Wang, Zhou, & Shah

(2014) - S2 10.50 6.67 Yes Active Fluid intelligence

Wang, Zhou, & Shah 10.50 6.67 Yes Active Fluid intelligence
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(2014) - S3

Wang, Zhou, & Shah

(2014) - S4 10.50 6.67 Yes Active Fluid intelligence

Witt (2011) 9.68 7.50 No Passive Mathematics

Zhao, Wang, Liu, &

Zhou (2011) 9.76 not given Yes Passive Fluid intelligence

Table 3

Studies and moderators of the 6 near-transfer follow-up effect sizes included in the meta-analysis

Study Age Duration of training Random allocation Type of control group

Henry, Messer, & Nash

(2014) 7.00 3.00 Yes Active

Karbach, Strobach, &

Schubert (2015) 8.30 9.33 Yes Active

Pugin et al. (2015) - M1 13.00 8.05 No Passive



NEAR- AND FAR-TRANSFER EFFECTS OF WM TRAINING 30

Pugin et al. (2015) - M2 13.00 8.05 No Passive

Studer-Luethi, Bauer, &

Perrig (2016) - S1 8.25 4.50 Yes Active

Studer-Luethi, Bauer, &

Perrig (2016) - S2 8.25 4.50 Yes Passive

Table 4

Studies and moderators of the 24 near-transfer follow-up effect sizes included in the meta-analysis

Study Age Duration of training Random allocation

Type of control

group Domain

Henry, Messer, &

Nash (2014) - M1 7.00 3.00 Yes Active Literacy/WD

Henry, Messer, &

Nash (2014) - M2 7.00 3.00 Yes Active Mathematics
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Jaeggi, Buschkuehl,

Jonides, & Shah

(2011) - M1 8.98 5.00 No Active Fluid intelligence

Jaeggi, Buschkuehl,

Jonides, & Shah

(2011) - M2 8.98 5.00 No Active Fluid intelligence

Karbach, Strobach, &

Schubert (2015) - M1 8.30 9.33 Yes Active Literacy/WD

Karbach, Strobach, &

Schubert (2015) - M2 8.30 9.33 Yes Active Mathematics

Karbach, Strobach, &

Schubert (2015) - M3 8.30 9.33 Yes Active Cognitive control

Karbach, Strobach, &

Schubert (2015) - M4 8.30 9.33 Yes Active Cognitive control

Pugin et al. (2015) -

M1 13.00 10.00 No Passive Fluid intelligence
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Pugin et al. (2015) -

M2 13.00 10.00 No Passive Cognitive control

Pugin et al. (2015) -

M3 13.00 8.05 No Passive Cognitive control

Pugin et al. (2015) -

M4 13.00 8.05 No Passive Cognitive control

Soderqvist &

Bergman-Nutley

(2015) - M1 9.85 not given No Passive Literacy/WD

Soderqvist &

Bergman-Nutley

(2015) - M2 9.85 not given No Passive Mathematics

Studer-Luethi, Bauer,

& Perrig (2016) - S1-

M1 8.25 4.50 Yes Active Literacy/WD

Studer-Luethi, Bauer, 8.25 4.50 Yes Active Mathematics
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& Perrig (2016) - S1-

M2

Studer-Luethi, Bauer,

& Perrig (2016) - S1-

M3 8.25 4.50 Yes Active

Crystallized

intelligence

Studer-Luethi, Bauer,

& Perrig (2016) - S1-

M4 8.25 4.50 Yes Active Fluid intelligence

Studer-Luethi, Bauer,

& Perrig (2016) - S1-

M5 8.25 4.50 Yes Active Cognitive control

Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M1 8.25 4.50 Yes Passive Literacy/WD

Studer-Luethi, Bauer,

& Perrig (2016) - S2- 8.25 4.50 Yes Passive Mathematics
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M2

Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M3 8.25 4.50 Yes Passive

Crystallized

intelligence

Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M4 8.25 4.50 Yes Passive Fluid intelligence

Studer-Luethi, Bauer,

& Perrig (2016) - S2-

M5 8.25 4.50 Yes Passive Cognitive control
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Effect Size

The standardized means difference (Cohen’s d) was calculated with the following formula:

(1)

where SDpooled-pre is the pooled standard deviation of the two pre-test standard deviations, and Mg-e

and Mg-c are the gain of the experimental group and the control group, respectively (Schmidt &

Hunter, 2015).5 The follow-up effect sizes were calculated by using the standardized difference

between the follow-up and the pre-test measures.

Finally, the Comprehensive Meta-Analysis (Version 3.0; Biostat, Englewood, NJ) software package

was used for correcting the effect sizes for upward bias (Hedges’ g; Hedges & Olkin, 1985),

computing the overall effect sizes ( s), and conducting statistical analyses.

Statistical Dependence of the Samples

The effect sizes were calculated for each relevant measure reported in the studies (Schmidt

& Hunter, 2015). When several subscales of a test were used to measure the same construct (e.g.

block recall and digit recall as measures of working memory), the measures were averaged,

following Schmidt and Hunter’s (2015) recommendation. Also, when the study presented a

comparison between the treatment group and two control groups (passive and active), two effect

sizes – one for each comparison with experimental and control groups – were calculated. As this

procedure violates the principle of statistical independence of the samples, Cheung and Chan’s

(2004) method was applied to all the meta-analytic models. This method reduces the weight of

dependent samples in the analysis by estimating an adjusted (i.e., smaller) N (for a list of the

adjusted Ns, see Tables 2.1 to 2.13 in the Supplemental material available online). Since the method

5 When only the t-statistics were available, the t-values were converted into Cohen’s ds (Lee, 2014;

Witt, 2011).
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of Cheung and Chan (2004) cannot be used for partially dependent samples,6 we ran our analyses as

if the comparisons between experimental samples and two different control groups were statistically

independent. As shown by Bijmolt and Pieters (2001) and Tracz, Elmore, and Pohlmann (1992), the

violation of statistical independence has little or no effect on means, standard deviations, and

confidence intervals. Thus, the entire procedure is a reliable way to deal with the statistical

dependence of part of the samples.

Results

Near-Transfer Effects

The random-effects meta-analytic overall effect size was = 0.46, 95% CI [0.35; 0.57], k =

30, p < .001. The forest plot is shown in Figure 2. The degree of heterogeneity between effect sizes

was close to zero, I2 = 7.94.7

6 In addition, in three studies, a few participants did not take part in all the tests (i.e., attrition). In

these cases, we used the mean number of participants as the number to be adjusted.

7 The I2 statistic refers to the percentage of between-study variance due to true heterogeneity and

not to random error (Higgins, Thompson, Deeks, & Altman, 2003).
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Figure 2. Forest plot of the near-transfer model. Hedges’ gs (circles) and 95% CIs (lines) are shown
for all the effects entered into the meta-analysis. The diamond at the bottom indicates the meta-
analytically weighted mean . When studies had multiple samples, the table reports the result of
each sample (S1, S2, etc.) separately. Similarly, when studies used multiple outcome measures, the
table reports the result of each measure (M1, M2, etc.) separately.
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Moderator analyses

Age was marginally significant, Z(1) = –1.80, b = –0.03, p = .072. None of the other three

moderators were significant: Random allocation, Z(1) = –0.58, b = –0.08, p = .562; Type of control

group, Z(1) = –0.31, b = –0.04, p = .760; and Duration of training, Z(1) = 0.42, b = 0.01, p = .678.

Publication bias analysis

To test whether our analysis was affected by publication bias, we examined a funnel plot

representing the relation between effect sizes and standard errors. The contour-enhanced funnel plot

(Peters, Sutton, Jones, Abrams, & Rushton, 2008) is shown in Figure 3.

Figure 3. Contour-enhanced funnel plot of standard errors and effect sizes (Hedges’ gs) in the near-
transfer meta-analysis. The black circles represent the effect sizes included in the meta-analysis.
Contour lines are at 1%, 5%, and 10% levels of statistical significance.

The symmetry of the funnel plot around the meta-analytic mean was tested by Egger’s regression

test (Egger, Smith, Schneider, & Minder, 1997). The test showed no evidence of publication bias (p

= .217). In addition, the trim-and-fill analysis (Duval & Tweedie, 2000) estimated no weaker-than-

average missing study (left of the mean). Finally, a p-curve analysis was run with all the p-values <

.05 related to positive effect sizes (Simonsohn, Nelson, & Simmons, 2014). The results showed

evidential values (i.e., no evidence of publication bias), Z(9) = –3.39, p = .003 (Figure 4).
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Figure 4. p-curve analysis. The blue line shows that most of the significant p-values are smaller
than .025, suggesting evidential value.

Far-Transfer Effects

The random-effects meta-analytic overall effect size was = 0.12, 95% CI [0.06; 0.18], k =

74, p < .001. The forest plot is shown in Figure 5. The degree of heterogeneity between effect sizes

was I2 = 0.00.
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Figure 5. Forest plot of the far-transfer model. Hedges’ gs (circles) and 95% CIs (lines) are shown
for all the effects entered into the meta-analysis. The diamond at the bottom indicates the meta-
analytically weighted mean . When studies had multiple samples, the table reports the result of
each sample (S1, S2, etc.) separately. Similarly, when studies used multiple outcome measures, the
table reports the result of each measure (M1, M2, etc.) separately.
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Moderators analysis

Random Allocation was a significant moderator, Z(1) = –2.76, b = –0.20, p = .006. The

overall effect sizes in randomized and non-randomized samples were = 0.07, 95% CI [0.00; 0.14],

k = 50, p = .046, and = 0.27, 95% CI [0.15; 0.39], k = 24, p < .001, respectively. Type of control

group was marginally significant, Z(1) = –1.83, b = –0.12, p = .067. The overall effect sizes when

WM training was compared to active and passive control groups were = 0.05, 95% CI [–0.05;

0.15], k = 40, p = .311, and = 0.18, 95% CI [0.09; 0.26], k = 34, p < .001, respectively. Also, the

overall effect size in randomized samples with active control groups was = 0.03, CI [–0.07; 0.14],

k = 34, p = .521. Finally, Duration of training was marginally significant, Z(1) = –1.81, b = –0.02, p

= .070. No other moderator was significant: Age, Z(1) = –1.60, b = –0.03, p = .110; and Domain, p

= .703.

Additional meta-analytic models

We calculated the random-effects meta-analytic overall effect sizes of each of the six

domains. The only significant overall effect size was = 0.20, 95% CI [0.03; 0.36], k = 17, p =

.018, for mathematics. To test the robustness of the result, we ran two moderator analyses for this

domain. Random Allocation was a significant moderator, Z(1) = –2.01, b = –0.35, p = .045. The

overall effect sizes in randomized and non-randomized samples were = 0.10, 95% CI [–0.05;

0.25], k = 12, p = .193, and = 0.49, 95% CI [0.11; 0.88], k = 5, p = .012, respectively. Type of

control group was significant, Z(1) = –2.41, b = –0.43, p = .016. The overall effect sizes when WM

training was compared to active and passive control groups were = –0.11, 95% CI [–0.38; 0.16], k

= 6, p = .426, and = 0.31, 95% CI [0.13; 0.49], k = 11, p = .001, respectively.

Literacy/WD overall effect size was marginally significant, = 0.11, 95% CI [–0.00; 0.22],

k = 17, p = .055. None of the other overall effect sizes was significant: = 0.11, 95% CI [–0.02;

0.24], k = 21, p = .101 for fluid intelligence; = 0.09, 95% CI [–0.08; 0.26], k = 14, p = .302 for
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cognitive control; = – 0.02, 95% CI [–0.75; 0.71], k = 3, p = .956 for crystallized intelligence; and

= –0.20, 95% CI [–0.65; 0.25], k = 2, p = .386 for science.

Publication bias analysis

The contour-enhanced funnel plot of the main model (k = 74) is shown in Figure 6.

Figure 6. Contour-enhanced funnel plot of standard errors and effect sizes (gs) in the far-transfer
meta-analysis. Contour lines are at 1%, 5%, and 10% levels of statistical significance.

Egger’s regression test showed no evidence of publication bias (p = .511). In addition, the trim-and-

fill analysis estimated no weaker-than-average missing studies (left of the mean). Finally, we

performed a p-curve analysis. Both the full and half p-curve tests were right skewed with p < .100

(Z(3) = –1.40, p = .081 and Z(3) = –1.38, p = .084, respectively) suggesting evidential value

(Simonsohn, Simmons, & Nelson, 2015; Figure 7).8

8 Since only three values were inputted, the results of this p-curve analysis might be unreliable.

However, it must be kept in mind that the occurrence of publication bias is quite unlikely when the

overall effect size is close to zero.
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Figure 7. p-curve analysis. The blue line shows that most of the significant p-values are smaller
than .025, suggesting evidential value.

A trim-and-fill analysis was performed for four additional meta-analytic models, (fluid

intelligence, cognitive control, mathematics, and literacy/WD models). In the fluid intelligence

model, five studies were filled in, and the point estimate was = 0.03, 95% CI [–0.09; 0.15]. In the

literacy/word decoding model, two studies were filled in, and the point estimate was = 0.08, 95%

CI [–0.03; 0.19]. No missing study was found in the other two models. Due to the scarcity of effect

sizes, no publication bias analysis was run for the science and crystallized intelligence models.
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Follow-Up Effects

For near-transfer follow-up effects, the random-effects meta-analytic overall effect size was

= 0.33, 95% CI [0.00; 0.65], k = 6, p = .049. The degree of heterogeneity between effect sizes was

I2 = 40.50.

For far-transfer follow-up effects, the random-effects meta-analytic overall effect size was

= 0.09, 95% CI [–0.02; 0.20], k = 24, p = .122. The degree of heterogeneity between effect sizes

was I2 = 0.00.

Moderator analyses

Due to the small number of effect sizes, no moderator analysis was run for the near-transfer

effects model. (For the same reason, no publication bias analysis was carried out for this model.)

Regarding the far-transfer effects model, no moderator was significant.

Publication bias analysis

In the far-transfer effect model, Egger’s regression test showed no evidence of publication

bias (p = .345). In addition, the trim-and-fill analysis estimated no weaker-than-average missing

studies (left of the mean). No p-curve analysis was carried out because none of the effect sizes in

the model reached statistical significance.

Discussion

The purpose of this meta-analysis was to evaluate the impact of WM training on TD

children’s cognitive and academic skills. The results showed a clear pattern. Similar to previous

meta-analyses (e.g., Melby-Lervag & Hulme, 2013; Schwaighofer et al., 2015), WM training

significantly affected WM-related skills (post-test overall effect size, = 0.46, p < .001) and

remained several months after the end of training (follow-up overall effect size, = 0.33, p = .049).

However, we found little or no evidence that WM training enhances fluid intelligence or domain-

general processes such as cognitive control. The same applied to academic abilities such as literacy
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or science. Only the mathematics-related overall effect size was significant, albeit quite modest ( =

0.20, p = .018). However, methodological issues cast some doubts on the authenticity of the effect

(we will take up this point below). Thus, the results of the meta-analysis do not support the

hypothesis according to which WM training benefits cognitive or academic abilities in TD children.

Interestingly, WM training seems to produce approximately the same negligible effects on

measures outside the domain of WM regardless of the age of participants and domain. The

significant (or marginally significant) moderators in the far-transfer main model (k = 74) were the

random allocation of the participants to the samples, the type of control group, and duration of

training. The overall effect size was much smaller in randomized samples ( = 0.07, p = .046) than

in non-randomized samples ( = 0.27, p < .001). This outcome suggests that episodes of self-

selection in the experimental groups or differences at baseline level between experimental and

control groups may have inflated the effect sizes in samples with no random allocation.9

Analogously, the overall effect size was smaller when the experimental group was compared to an

active control group ( = 0.05, p = .311) than a passive control group ( = 0.18, p < .001). This

finding corroborates the idea that the positive effect sizes reported in some primary studies are due

to placebos as well. Moreover, when only the effect sizes in randomized samples with active control

groups were considered, the overall effect size was almost null ( = 0.03, p = .521). Finally, the

duration of training seems to be slightly inversely related to the size of the effects (b = –0.02). This

result is difficult to interpret. However, the null degree of heterogeneity suggests caution in

9 In the present case, the difference between groups at baseline level in some of the dependent

variables seems to be the most likely explanation. In several studies (e.g., Thorell, Lindqvist,

Bergman, Bohlin, & Klingberg, 2008), the control groups performed better than the experimental

groups at the pre-test. The difference between the groups decreased at the post-test, suggesting that

the positive effect size is probably due to some statistical artefact (e.g., regression to the mean,

ceiling effect).
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interpreting these outcomes. In fact, the moderator analyses may have detected effects due to

random error rather than true heterogeneity between-effect sizes (see footnote 7). In any case, far

transfer effects of WM training appear to be negligible or, at best, modest.

Theoretical and Practical Implications

The present meta-analysis reviewed the studies in which participants were TD children. For

this reason, the results we reported do not apply to other populations – such as children with

learning disabilities or adults. Nonetheless, the fact that, in the general population of children, WM

training induces improvements in WM-related outcomes but not in other types of cognitive and

academic measures suggests some theoretical and practical implications.

To begin with, if far-transfer is more likely to occur in children than adults when cognitive

and academic skills are developing, then our findings cast serious doubts on the idea that training a

domain-general mechanism such as WM improves fluid intelligence, cognitive control, or academic

achievement.10 Second, and linked to the first point, the lack of an effect of WM training on fluid

intelligence supports the idea that WM and fluid intelligence are two different constructs

(Ackerman, Beier, & Boyle, 2005; Hornung, Brunner, Reuter, & Martin, 2011; Kane, Hambrick, &

Conway, 2005).

However, it must be noticed that the positive effects in near-transfer measures might reflect

an improvement in WM tasks performance, rather than a genuine enhancement in WM capacity

(Shipstead et al., 2012). In other words, participants learn how to do the task without improving

their WM capacity. If this is the case, nothing can be inferred about the relationship between fluid

intelligence (or any other far-transfer measure) and WM capacity. Moreover, following this line of

10 It must be noticed that this argument does not apply to the population of older adults. In fact, the

aim of WM training in the elderly is to slow down cognitive decline, not to extend developing

cognitive abilities. For a review, see Karbach and Verhaeghen (2014).
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reasoning, the absence of fluid intelligence enhancement could be interpreted as a failed

improvement in WM capacity after the training (see also the discussion in Melby-Lervag & Hulme,

2013). Regrettably, the information provided in the primary studies is not sufficient to solve the

issue.

The fact that the participants showed improvements in a large variety of tasks different from

the WM trained tasks (see Table S1.1 in the Supplemental Material available online) might suggest

that WM capacity was actually boosted. However, pervasive improvement in WM-related measures

may stem from amelioration in some general skill at performing WM tasks rather than an increased

WM capacity. Thus, testing whether WM training enhances WM capacity requires not only a set of

multivariate measures of WM capacity, but also that task-related improvements occur through a

common factor that is measurement invariant across treatment and control groups (i.e., training

effects that are proportional to the factor loadings in a structural equation model). If such conditions

can be met in a well-powered single study, then it can be convincingly claimed that WM capacity

has been enhanced.

Beyond these theoretical aspects, the most obvious practical implication of our results is that

WM training, at the moment, cannot be recommended as an educational tool. WM training seems to

have little or no effect on far-transfer measures of cognitive abilities and academic achievement.

More generally, this meta-analysis provides further evidence that the occurrence of far-transfer is

too infrequent to offer solid educational advantages. For this reason, cognitive and academic

enhancement interventions should be as close as possible to the skills that are meant to be trained.

Limitations of the Present Meta-Analysis

Near-transfer effects seem to remain even a few months after the end of the training.

However, the limited number of studies (n = 4) and effect sizes (k = 6) does not allow to draw any

reliable conclusion about this. The same limitation applies, to a lesser degree, to the far-transfer

follow-up effects (n = 6, k = 24). In this case, however, the findings are consistent with the
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immediate post-test outcomes: modest or null effects in both the measures. In fact, it is hard to see

why negligible effects immediately after training, such as those reported in this meta-analysis,

should become significantly larger several months after the end of training.

Finally, other potential moderators – such as the type of training program – were not

considered in the meta-analytic models because of the limited number of the effect sizes. However,

the small degree of heterogeneity in both the near- and far-transfer models discourages us from

thinking that other moderators could have affected the overall results.

Conclusions

The findings of the present meta-analysis do not invite optimism about the effectiveness of

WM training at improving cognitive skills and academic achievement in TD children. WM training

seems to enhance children’s performance in WM- and STM-related measures. However, with

regard to skills outside the domain of WM such as fluid intelligence, cognitive control,

mathematics, and literacy, this training seems to have little or no effect. Consistent with Thorndike

and Woodworth’s (1901) common element theory, our findings show that the occurrence of far-

transfer is, at best, sporadic.
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