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Maximin-Projection Learning for Optimal Treatment Decision with

Heterogeneous Individualized Treatment Effects

Chengchun Shi, Rui Song and Wenbin Lu

North Carolina State University, Raleigh, USA.

Bo Fu

Fudan University, Shanghai, People’s Republic of China.

Summary. A saline feature of data from clinical trials and medical studies is inhomogeneity. Patients

not only differ in baseline characteristics, but also the way they respond to treatment. Optimal individu-

alized treatment regimes are developed to select effective treatments based on patient’s heterogeneity.

However, the optimal treatment regime might also vary for patients across different subgroups. In this

paper, we mainly consider patients heterogeneity caused by groupwise individualized treatment effects

assuming the same marginal treatment effects for all groups. We propose a new maximin-projection

learning for estimating a single treatment decision rule that works reliably for a group of future patients

from a possibly new subpopulation. Based on estimated optimal treatment regimes for all subgroups,

the proposed maximin treatment regime is obtained by solving a quadratically constrained linear pro-

gramming (QCLP) problem, which can be efficiently computed by interior-point methods. Consistency

and asymptotic normality of the estimator is established. Numerical examples show the reliability of the

proposed methodology.

Keywords: Heterogeneity; Maximin-projection learning; Optimal treatment regime; Quadratically

constrained linear programming.

1. Introduction

Data from clinical trials and medical studies are often characterized by some degree of inhomogene-

ity. Patients not only differ in baseline characteristics, but also the way they respond to the treat-

ment. There have been increasing interest in developing individualized optimal treatment regimes

(OTRs) to account for patients’ heterogeneity in response to treatment and to achieve the best treat-

ment effect for individual patients. Some common methods for estimating OTRs include Q-learning

(Watkins and Dayan, 1992; Chakraborty et al., 2010), A-learning (Robins et al., 2000; Murphy, 2003)

and value search methods which directly search OTRs by maximizing the estimated value function
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(Zhang et al., 2012; Zhao et al., 2012). However, the OTRs may also vary for patients from dif-

ferent subpopulations. This is typically the case in meta analysis, where we combine the results of

multiple studies conducted at different locations or times. One motivating example is from a multi

center randomised controlled trial as studied in Tarrier et al. (2004). The goal is to examine the

effectiveness of cognitive-behavioural therapy for patients with early schizophrenia. Patients can be

classified into three groups according to their treatment centres (Manchester, Liverpool and North

Nottinghamshire). As we can see in Section D in the supplementary article, the group-wise OTRs

can vary across different centres. Another example is from an observational study for investigating

the influence of early disease modifying antirheumatic drug (DMARD) treatment on patients with

recent onset inflammatory polyarthritis (Farragher et al., 2010). According to patients’ enrollment

time, they can be classified into three groups. As studied in Section 6, the group-wise OTRs can vary

across different enrollment periods. The heterogeneity in OTRs may be explained by the differences

in characteristics of treatment setting across subgroups. For instance, in the schizophrenia example,

the strength of therapeutic alliance between therapist and patient, the adherence to treatment proto-

cols and the quality of treatment provided can vary from one treatment centre to another (Dunn and

Bentall, 2007); in the inflammatory polyarthritis example, there are more use of hydroxychloroquine

for the methotrexate combination strategy in recruitment time group 3 (1997-2000) than in group 1

(1990-1992) or group 2 (1993-1996) as hydroxychloroquine was increasingly used in the UK before

anti-tumour necrosis factor therapy was introduced to treat rheumatoid arthritis in 2001. Moreover,

these characteristics are often unobserved or partially observed, and they may explain the interaction

between subgroups and OTRs.

The aim of this paper is to propose a reliable OTR for new patients based on the observed data from

different groups with heterogeneity in optimal treatment decision. The group of new patients may

differ from any of the currently observed groups in terms of optimal treatment decision. For example,

compared with existing data, the group of new patients, who come from a new treatment centre,

may have a different OTR because of different strength of therapeutic alliance or different quality

of treatment provided in the new treatment centre. Therefore, the true OTR for the group of new

patients is not estimable at all based on the observed data, and any of the group-wise OTRs may not be

the best choice. The challenge becomes how to derive a meaningful and reliable treatment regime that

can take into account the heterogeneity in optimal treatment decision for different groups of patients.

One simple approach is to pool the data of different groups together and obtain the “pooled” OTR

based on the pooled data. Another method is to first obtain the OTR for each group, and then

aggregate the group-wise OTRs in certain ways. Random effects meta-analysis (DerSimonian and

Laird, 1986) is commonly used to combine subject-specific studies. Using its multivariate extensions
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(cf. Jackson et al., 2010; Chen et al., 2012), we can aggregate the groupwise OTRs based on random

effects models. The resulting OTR is similar to the “pooled” OTR when we have large numbers of

subgroup patients. These OTRs maybe reasonable choices when the OTRs for different groups do not

vary much. However, when there is certain degree of heterogeneity in OTRs across different groups

as demonstrated in the toy example given in the next section, these OTRs are uniformly worse than

the proposed OTR for any of the groups. One possible reason is that these OTRs for different groups

may assign the same patient to different treatments and thus their effects are averaged out when

pooling the data from different groups.

Bühlmann and Meinshausen (2016) and Meinshausen and Bühlmann (2015) considered a maximin

criteria which has a nice characterization in linear models and proposed to use maximin aggregation

(magging) to obtain the maximin estimator. Their proposed estimator is shown to be more robust

than the pooled estimator in linear regression. The key idea of the maximin criteria is to find

an estimator that works the best under the worst-case scenario. In optimal treatment decision, the

percentage of making the correct decision (PCD) and value function are two commonly used measures

to evaluate the effectiveness of a treatment regime. A natural maximin criteria for optimal treatment

decision is to find an OTR that maximizes the minimum PCD or the minimum value function of all

groups. Such a maximin OTR is appealing due to its nice interpretation and robustness. However,

it is hard to implement in practice due to the following reasons. First, the PCD of a treatment

regime is generally not estimable from data since the true OTR is unknown. Second, the empirical

estimator of the value function as studied in Zhang et al. (2012) is non-smooth and non-concave, thus

the estimation of the associated maximin OTR is not feasible.

In this paper, we propose a novel maximin-projection learning (MPL) to aggregate linear OTRs

across different groups. Specifically, the proposed maximin-projection learning finds a linear decision

rule that maximizes the minimum “inner product” between the vectors of regression parameters in

the linear rule and the group-wise linear OTRs. We show that under certain model assumptions, the

OTR obtained by the maximin-projection learning maximizes the minimum percentage of making the

correct decision and value function of different groups, i.e. achieve the desired maximin properties. In

addition, the corresponding estimation procedure can be represented as a linear programming problem

with a quadratic constraint (Lee et al., 2016), which can be efficiently solved in O(Gs2 + s3) flops.

Here G denotes the number of groups and s the dimension of baseline covariates. Consistency and the

asymptotic distribution of the corresponding maximin-projection estimators are established. Such

kind of asymptotic results are rarely studied in the literature. To derive such asymptotic properties,

we establish a necessary and sufficient condition for the existence and uniqueness of the population

maximin-projection parameters and obtain a closed-form expression for the resulting estimator.
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The rest of the paper is organized as follows. We introduce the model, notations and assumptions

in Section 2. We also provide a heuristic comparison between the maximin OTR, the pooled OTR

and the OTR based on random effects models with a toy example. In Section 3, we formally intro-

duce the proposed maximin-projection learning including its statistical interpretation and geometrical

characterization. Section 4 presents the estimating procedure of the maximin-projection estimator

and the associated asymptotic properties. Simulation studies to evaluate the empirical performance

of the proposed maximin OTR are conducted in Section 5. We apply our method to a real examples

in Section 6, followed by a Conclusion Section. Proof of theorem 2 is provided in Section A. Other

proofs and additional numerical studies are given in the supplementary article.

2. Preliminaries and a toy example

2.1. Preliminaries

For simplicity, we consider a single stage study with two treatments. Let Y denote a patient’s response

of interest, the larger the better by convention, A ∈ A = {0, 1} the treatment received by the patient

and X the associated s-dimensional vector of baseline covariates. In addition, let Y ∗(0) and Y ∗(1)

denote the potential outcomes that a patient would get if he or she was given treatment 0 and 1,

respectively. A treatment regime d is a deterministic function that maps a patient’s covariates to

{0, 1}. Define the potential outcome

Y ∗(d) = Y ∗(1)d(X) + Y ∗(0){1− d(X)},

representing the response that a patient would get if treated according to the regime d. The optimal

treatment regime is defined as the regime dopt that maximizes E{Y ∗(d)}. Under the stable unit

treatment value assumption (SUTVA) and no unmeasured confounders assumption (Rubin, 1974),

the optimal treatment regime can be written as dopt(x) = I{C(x) > 0} where

C(x) = E(Y |A = 1, X = x)− E(Y |A = 0, X = x).

Function C(·) is referred to as the contrast function. In practice, for simplicity, we may assume

the contrast takes a linear form, i.e, C(x) = βTx+ c. To take population heterogeneity into account,

we assume that the contrast function varies for patients from different groups. Specifically, we assume

there are G groups of patients and consider the following semiparametric model:

Yg = hg(Xg) +Ag(β
T
g Xg + cg) + eg, g = 1, . . . , G. (1)

where E(eg|Xg, Ag) = 0. In Model (1), Yg, Ag and Xg ∈ R
s stand for the response, the treatment

and the covariates of patients in Group g, respectively, and hg denotes the unspecified baseline func-

tion in Group g. Without loss of generality, we further assume all covariates Xg are standardized
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to have zero mean and identity covariance matrix. Otherwise, we consider variable transformation

X∗
g = Σ

−1/2
g (Xg − µg), β

∗
g = Σ1/2βg, c

∗
g = cg + µTg βg where µg = E(Xg) and Σg = cov(Xg). Then

Model (1) can be represented as Yg = h∗g(X
∗
g ) +Ag(β

∗
g
TX∗

g + c∗g) + eg, for some function h∗g. The pa-

rameter cg stands for the marginal treatment effects (average causal effects) after adjusting covariates.

Mathematically, we have

cg = E{Y ∗
g (1)} − E{Y ∗

g (0)}.

When cg > 0, treatment 1 is generally better for patients in Group g. The vector βg describes

individualized treatment effects. For patients in Group g with covariates x, the larger βTg x, the more

benefits he or she receives if assigned to treatment 1.

Define πg(x) = Pr(Ag = 1|Xg = x) as the propensity score in Group g. Model (1) allows hg and

πg to vary across groups, which we refer to baseline effect heterogeneity and treatment assignment

heterogeneity respectively. These sources of heterogeneity are not related to treatment decisions since

they do not appear in the contrast function. The following sources of groupwise heterogeneity will

affect decision making: the marginal treatment effects cg and the individualized treatment effects βg.

In this paper, we mainly focus on heterogeneity caused by different βg’s. We assume c1 = · · · = cG =

c0 for some c0, that is, the same marginal treatment effect for all groups.

To introduce the pooled and the maximin optimal treatment regime, we need some optimality

criterion. Here, we consider the difference of patient’s mean response (value function) between a

regime d(x) = I(βTx > −c) and d0(x) = 0, which assigns all patients to treatment 0. Specifically,

the difference of value functions is defined as

VDg(β, c) = E{Y ∗
g (d)} − E{Y ∗

g (d0)} = E{(XT
g βg + c0)I(X

T
g β > −c)}.

In this section, for illustrative purposes only, we consider a special case with c0 = c = 0. A general

discussion will be given in the next section. When the distributions of Xgs are the same across groups,

we can represent VDg(β, 0) as

VD(β, βg) = E{(XT
g βg)I(X

T
g β > 0)}.

We assume the same number of patients across all groups. Then, the pooled optimal treatment regime

is defined as doptP (x) = I(xTβP > 0) where

βP = arg max
∥β∥2=1

1

G

G
∑

g=1

VD(β, βg), (2)

and the maximin optimal treatment regime is defined as doptM (x) = I(xTβM > 0) where

βM = arg max
∥β∥2=1

min
g∈{1,...,G}

VD(β, βg). (3)
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We add the L2 constraint on β to make βP and βM identifiable. Therefore, the pooled optimal

treatment regime aims to maximize the average value difference while the maximin optimal treatment

regime aims to maximize the minimum value difference in G groups, i.e. maximize the reward of the

worst-case scenario.

The random effects meta-analyses assume the following model for βg’s:

βg = β0 + εg,

where εg’s are independent and satisfy E(εg) = 0, cov(εg) = Ω0 for all g. For any subgroup estimators

β̂1, . . . , β̂G with cov(β̂g) = Ωg, the aggregated estimator is given by

β̂R =





G
∑

g=1

(Ω̂g + Ω̂0)
−1





−1



G
∑

g=1

(Ω̂g + Ω̂0)
−1β̂g



 ,

where Ω̂g’s and Ω̂0 denote some estimators for Ωg’s and Ω0. Given sufficiently many observations, we

have ∥β̂g − βg∥2 P→ 0 and ∥Ω̂g∥2 P→ 0. As a result, we have

β̂R
P→





G
∑

g=1

(Ω̂0)
−1





−1



G
∑

g=1

(Ω̂0)
−1βg



 =
1

G

∑

g

βg ≡ βR. (4)

The corresponding optimal treatment regime is defined as doptR (x) = I(xTβR > 0).

More generally, we can treat the parameters βg in the group-specific contrast function as a mul-

tivariate random variable and assume that the parameters βg’s of training groups are generated

according to some distribution Fb, either continuous or discrete, and let Hb denote the support of Fb.

Then, we define βR, βP and βM as

βR = Etrain,b(b),

βP = arg max
∥β∥2=1

Etrain,b{VD(β, b)},

βM = arg max
∥β∥2=1

min
b∈Hb

VD(β, b),

where the expectation Etrain,b is taken with respect to Fb. Definitions in (2), (3) and (4) correspond to

the special case where Fb only takes values in {β1, . . . , βG} with an equal probability. Our objective

is to minimize Etest,b{VD(β, b)}, where Etest,b is taken with respect to Gb, the distribution of βg for

future groups of patients.

2.2. A toy example

Recall that s is the dimension ofXg. For illustration, we take s = 2, and assume that patients’ baseline

covariates are generated independently from a standard normal distribution. Since ∥β∥2 = 1, after
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some calculation, we have

VD(β, βg) = E{XT
g βgI(X

T
g β > 0)} = E{(XT

g βg − βTg βX
T
g β + βTg βX

T
g β)I(X

T
g β > 0)}

= βTg βE
{

XT
g βI(X

T
g β > 0)

}

= βTg β
1√
2π
.

The first equality in the second line is due to the independence between XT
g βg − βTg βX

T
g β and

XT
g β. Hence, we obtain

βP = arg max
∥β∥2=1

1

G

G
∑

g=1

βTβg =

∑

g βg

∥
∑

g βg∥2
,

βM = arg max
∥β∥2=1

min
g∈{1,...,G}

βTβg. (5)

Therefore, βP is proportional to βR which equals a simple average of all subgroup parameters,

while βM maximizes its minimum inner product across different βg’s. When all βg’s have the same

L2 norm, βM becomes

βM = arg max
∥β∥2=1

min
g∈{1,...,G}

βTβg
∥βg∥2

, (6)

or equivalently

βM = arg min
∥β∥2=1

max
g∈{1,...,G}

∠(β, βg), (7)

where ∠(a, b) = arccos(aT b) stands for the angle between two vectors. The equivalence between

(6) and (7) is due to the monotonicity of the arccos function. In (6) or (7), βM is defined to

maximize (minimize) the minimum correlation (maximum angle) between all subgroup coefficients.

Such formulation is referred to as the maximin correlation approach in the classification literature

(c.f, Avi-Itzhak et al., 1995; Lee et al., 2016). In general, we weight the correlation βTβg/∥βg∥2 by the

L2 norm of βg. The βM defined in (5) is more informative since it not only takes the heterogeneity

due to different directions βg/∥βg∥2 into consideration, but different magnitudes ∥βg∥2 as well.

Since βP is proportional to βR, the VD under doptP is the same as doptR . Therefore, in the following,

we focus on comparing βP with βM . We set G = 4 and assume ∥βg∥2 = 1, g = 1, 2, 3, 4. Since s = 2,

we represent each βg as βg = {cos(ψg), sin(ψg)} with ψg ∈ [0, π). The parameter ψg is the angle

between βg and the x-axis in a 2-dimensional coordinate system. In this special case, βM lies on the

bisector of the largest angles formed by all βg’s and it can be shown that βM = {cos(ψM ), sin(ψM )}
where

ψM =
1

2

(

ψ(1) + ψ(4)

)

,

ψ(1) and ψ(4) denote the smallest and largest angles of ψg’s. Similarly define βP = {cos(ψP ), sin(ψP )}.
We set ψ1 = 0◦, ψ2 = 15◦, ψ3 = 70◦ and ψ4 = 90◦. Consider the following leave-one-group-out cross
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validation procedure. For the ith round, we choose the ith group as the testing group, and obtain

βP and βM based on the remaining 3 groups. Then we evaluate the value difference of the pooled

and maximin OTRs based on the ith group. In other words, we set Fb to be a discrete distribution

that takes value on {β1, . . . , β4}/{βi} with equal probability, and Gb a degenerate distribution that

concentrates on βi. Table 1 summarizes the results.

Table 1: Different combinations of training groups and the corresponding ψP , ψM , and their value differences

on the testing group

Training groups ψM (deg) ψP (deg) ψtest (deg) VD(βM , βtest) VD(βP , βtest)

(1, 2, 3) 35 27.44 90 0.23 0.18

(1, 2, 4) 45 32.63 70 0.36 0.32

(1, 3, 4) 45 55.32 15 0.35 0.30

(2, 3, 4) 52.5 59.25 0 0.24 0.20

From Table 1, we can see that for all four cases, the value differences of the maximin optimal

treatment regime are uniformly larger than those of the pooled optimal treatment regime on the

testing groups. To illustrate the idea graphically, we plot βP (denoted by the snow symbol), βM

(denoted by the circle symbol), and βg of the training (denoted by the square symbol) and testing

(denoted by the plus symbol) groups for the second and third cases in Figure 1, where the left panel

is for the second case and the right one is for the third case. For both cases, βM is closer to βg of the

testing groups, while βP is pulled towards the area where most βg’s of the training groups locate due

to the averaging effect.

Fig. 1: Plots of βP (denoted by the snow symbol), βM (denoted by the circle symbol), and βg of the training

(denoted by the square symbol) and testing groups (denoted by the plus symbol) for the second (left panel)

and third (right panel) cases.
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3. Maximin-projection learning

We now formally introduce our maximin projection treatment regime. Based on model (1) and the

common marginal treatment effect assumption, the optimal treatment regime for the gth subgroup

is doptg (x) = I(xTβg > −c0). Here, our goal is to find a single treatment regime doptM (x) = I(xTβM >

−cM ) with ∥βM∥2 = 1 that performs uniformly well for heterogeneous data. Motivated by the toy

example in the previous section, our proposed maximin-projection learning is aim to find

βM = arg max
β:∥β∥2=1

min
g∈{1,...,G}

βTβg.

3.1. Statistical interpretation

In this subsection, we show that the maximin projection, represented by βM , has two nice statistical

interpretations in terms of maximizing the minimum PCD and value difference (VD). Specifically, in

group g, the PCD of a treatment regime d(x) = I(xTβ > −c) is defined as

PCDg(β, c) = 1− E
{

|I(XT
g β > −c)− I(XT

g βg > −c0)|
}

,

and the VD is defined as

VDg(β, c) = E[Y ∗
g {I(XT

g β > −c)}]− E{Y ∗
g (0)} = E

{

(XT
g βg + c0)I(X

T
g β > −c)

}

.

Here, the larger PCD and VD values, the better the treatment regime d(x) approximates the groupwise

optimal treatment regime doptg (x).

Based on the defined PCD and VD, for any fixed constant c, we consider the following maximin

treatment regimes: d1(x) = I(xTβM(1) > −c) where

βM(1) = arg max
β:∥β∥2=1

min
g∈{1,...,G}

PCDg(β, c), (8)

and d2(x) = I(xTβM(2) > −c) where

βM(2) = arg max
β:∥β∥2=1

min
g∈{1,...,G}

VDg(β, c). (9)

Remark 3.1. The two maximin treatment regimes, defined by βM(1) and βM(2), are appealing for

their nice statistical interpretations. However, we note that the definition of βM(1) involves unknown

parameters. The empirical estimators of VD are of non-smooth and non-concave functional forms

of the corresponding estimators. Therefore, their estimations are not feasible and they may not be

practically useful.

Remark 3.2. It is worth noting that βM(1) would be meaningless when not all ∥βg∥2’s are the same.

This is because PCD only measures the similarity between the overall and groupwise optimal treatment
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decisions, but does not account for the magnitude of groupwise contrast function. When ∥βg∥2’s are

not the same, the L2 norm of groupwise contrast function {E(XT
g βg + c0)

2}1/2 would be different.

This implies that PCDs are not comparable across different groups. In comparison, VD is a better

criterion since it takes both the sign and magnitude of contrast function into consideration. Below,

under some conditions, we establish the equivalence between these two maximin treatment regimes

and our proposed maximin-projection treatment regime.

Theorem 1 (Equivalence of βM and βM(1)). Assume that Xg’s are i.i.d. spherically distributed,

and all ∥βg∥2’s are the same. Then, for any fixed c,

βM = arg max
∥β∥2=1

min
g∈{1,...,G}

PCDg(β, c).

Theorem 2 (Equivalence of βM and βM(2)). Assume Xg’s are i.i.d. spherically distributed.

Then, for any fixed c,

βM = arg max
∥β∥2=1

min
g∈{1,...,G}

VDg(β, c).

Remark 3.3. Theorems 1 and 2 require Xg to have a spherical distribution (see Definition F.1),

which is a rich class of symmetric multivariate distributions (see Fang et al., 1990).

The definition of βM has nice statistical interpretations. However, it has two drawbacks. First,

when F0 ≡ max∥β∥2=1ming β
Tβg < 0, the uniqueness of βM is not guaranteed. This may cause

identifiability issues when we establish properties of the corresponding estimators. In addition, the

optimization problem in (5) is not concave. This can make the implementation of the estimating

procedure infeasible.

To address these concerns, we define

βM(0) = arg max
∥β∥2≤1

min
g∈{1,...,G}

βTβg. (10)

Compared to βM , it replaces the feasible set ∥β∥2 = 1 with a closed convex set ∥β∥2 ≤ 1. Lemma

1 below states that βM(0) is well defined, when F0 ̸= 0. Moreover, the optimization problem (10) is

concave, which can be easily implemented.

Lemma 1. The maximin-projection estimator βM(0) always exists. Moreover, when F0 ̸= 0, βM(0) is

unique.

Remark 3.4. The existence of βM(0) is guaranteed by the continuity of the objective function F (β) =

ming∈{1,...,G} β
Tβg, boundedness and closeness of the feasible set β : ∥β∥2 ≤ 1. Its uniqueness is a
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byproduct of lemma 3, which is stated in the next subsection. When F0 = 0, βM(0) is not unique and

the set of solutions is given by

{aβ : a ∈ [0, 1], ∥β∥2 = 1, max
∥β∥2=1

min
g∈{1,...,G}

βTβg = 0}.

The problem of estimating βM(0) then becomes non-regular and all the large sample theories about the

maximin estimator fail (see Section 4).

Define G0 = max∥β∥2≤1ming β
Tβg. It is obvious that G0 ≥ 0. In addition, G0 > 0 if and only if

F0 > 0. When G0 = 0, we can set βM(0) = 0, which leads to a trivial regime by assigning the same

treatment to all patients. From now on, we focus on the situation when G0 > 0. In this case, we

have βM = βM(0). Define

cM(0) = c0/G0.

Note that cM(0) and c0 are sign equivalent. Our maximin-projection OTR is given by

doptM (x) = I(xTβM(0) > −cM(0)).

Theorem 3. Under conditions of theorem 1, if G0 > 0, we have

cM(0) = argmax
c

min
g∈{1,...,G}

PCDg(β
M
(0), c).

Theorem 4. Under conditions of theorem 2, if G0 > 0, we have

cM(0) = argmax
c

min
g∈{1,...,G}

VDg(β
M
(0), c).

Together with theorems 1 and 2, theorems 3 and 4 suggest that the treatment regime doptM (x)

maximizes the minimum PCD and the minimum VD among different groups.

3.2. Geometrical characterization

In this subsection we give a geometrical view of βM(0) when G0 > 0. Findings in this subsection are

similar in rationale with the results in Avi-Itzhak et al. (1995). However, we generalize their results

by getting rid of the unit L2-norm condition ∥βg∥2 = 1 and allowing the set of vectors {β1, . . . , βG}
to be linear dependent, which is the case when s ≥ G.

We first introduce some notation. For an arbitrary s×G matrix Ψ and a set K ⊆ {1, . . . , G}, let
ΨK denote the submatrice of Ψ formed by columns in K. Define the equicorrelated points set

EK(Ψ) =
{

t ∈ R
s|tTΨj = tTΨi, ∀i, j ∈ K

}

,

and the optimal equicorrelated point

E⋆K(Ψ) = arg max
t∈EK(Ψ)
∥t∥2=1

{

tTΨi, ∀i ∈ K
}

,
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where Ψi refers to the ith column vector of matrix Ψ. When |K| = 1 and ΨK = ψ, E⋆K(Ψ) =

ψ/∥ψ∥2. Readers can refer to Section B of the supplementary article for a detailed discussion on the

equicorrelated points set and the optimal equicorrelated point.

For any matrix Ω, Let Ω+ denote the Moore-Penrose matrix inverse of Ω and C(Ω) the column

space of Ω. Let e denote a vector of ones. We have the following result.

Lemma 2. For any Ψ and K ⊆ [1, . . . , n], when e ∈ C(ΨT
K), the optimal equicorrelated point of

ΨK exists and is unique. Moreover, it takes the form

E⋆K(Ψ) = [eT (ΨT
KΨK)

+e]−1/2ΨK(Ψ
T
KΨK)

+e. (11)

Define matrix B = (β1, β2, . . . , βG) whose gth column is the subgroup parameter βg.

Lemma 3. Assume G0 > 0. Then there exists a unique nonempty set K0 ⊆ [1, . . . , G] such that

βM(0) = E⋆K0
(B) and ming∈Kc

0
βM(0)

T
βg > G0, where K

c
0 = [1, . . . , G]−K0. Moreover, if the set of vectors

βg, g ∈ K0 are linearly independent, then a necessary and sufficient condition for βM(0) = E⋆K0
(B) is

that each element in the vector (BT
K0
BK0

)−1e is nonnegative.

We denote K0 as the maximin optimal equicorrelated points set when G0 > 0. In lemma 2, the

condition e ∈ C(ΨT
K) automatically holds when ΨT

K has full row rank. In lemma 3, we assume the

set of vectors βg, g ∈ K0 are linearly independent. This implies the matrix BT
K0

has full row rank. As

a result, we have e ∈ C(BT
K0

).

In lemma 3, the non-negativity of (BT
K0
BK0

)−1e is sufficient and necessary for βM(0) = EK0
(B).

Together with lemma 2, lemma 3 implies that βM(0) is uniquely defined by

βM(0) = E⋆K0
(B) = [eT (BT

K0
BK0

)−1e]−1/2BK0
(BT

K0
BK0

)−1e.

This implies E⋆K0
(B) is proportional to BK0

(BT
K0
BK0

)−1e and can be represented as a linear com-

bination of the column vectors in BK0
. Geometrically, the non-negativity of (BT

K0
BK0

)−1e requires

E⋆K0
(B) to lie in the convex cone of βg, g ∈ K0, i.e, {

∑

g∈K0
agβg : ag ≥ 0, ∀g ∈ K0}. To better

understand lemma 3, in Figure 2, we take s = 3, G = 3 and B = (β1, β2, β3) where β1 = (1, 1, 0),

β2 = (1,−1, 0) and β3 = (1.2, 0, 0.5). Both E⋆{1,2,3}(B) and E⋆{1,2}(B) satisfy the necessary conditions

of lemma 3. While E⋆{1,2}(B) lies in the convex cone of β1 and β2, E
⋆
{1,2,3}(B) appears outside the

convex cone of β1, β2 and β3. Therefore, E
⋆
{1,2}(B) satisfies the sufficient conditions of lemma 3 and

E⋆{1,2,3}(B) doesn’t. As a result, we have βM(0) = E⋆{1,2}(B).

4. Estimation procedure

The data are summarized as (Ygj , Agj , Xgj), for g = 1, . . . , G, j = 1, . . . ,mg, wheremg is the number of

patients in Group g. We assume that the data are independent across g = 1, . . . , G and j = 1, . . . ,mg.
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Fig. 2: Plots of βg (denoted by the square symbol), E⋆
{1,2,3}(B) (denoted by the snow symbol) and E⋆

{1,2}(B)

(denoted by the circle symbol)
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Based on the data, parameters β1, . . . , βG and c0 in model (1) can be estimated with existing methods.

In this paper, we implement with the popular Q-learning and A-learning and give a brief discussion

on estimating these parameters in Section 4.2. Let β̂1, . . . , β̂G and ĉ0 be the corresponding estimators.

We propose to estimate βM(0) by solving the following optimization problem:

β̂M = arg max
β:∥β∥2≤1

min
g∈{1,...,G}

βT β̂g. (12)

Note that the objective function ming β
T β̂g is concave in β and the region ∥β∥2 ≤ 1 is convex.

Therefore, (12) is a tractable convex optimization problem. It can be further casted as a quadratic

constraint linear programming (QCLP) problem, specifically, β̂M is equivalent to the solution of

maximize t ∈ R

subject to βT β̂g ≥ t, g = 1, . . . , G

βTβ ≤ 1.

The above optimization problem can be efficiently computed using existing softwares. Define ĉM =

ĉ0/Ĝ0, where Ĝ0 = ming β̂
T
g β̂

M .

Given a group of future patients, denoted by {XG+1,j}nj=1 their baseline covariates. We calculate

µ̂G+1 =
∑n

j=1XG+1,j/n and Σ̂G+1 =
∑n

j=1(XG+1,j−µ̂G+1)(XG+1,j−µ̂G+1)
T /(n−1). The recommend

treatment for the jth patient is given by

I{(XG+1,j − µ̂G+1)
T Σ̂

−1/2
G+1 β̂

M > −ĉM}.
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4.1. Statistical properties

In this subsection we investigate the asymptotic properties of the maximin-projection estimator β̂M

obtained by solving the optimization problem (12). We first study the consistency of the estimator

by assuming the following two conditions.

(C1.) Assume that β̂1, . . . , β̂G and ĉ0 converge in probability to β1, . . . , βG and c0, respectively.

(C2.) Assume that F0 ̸= 0. When F0 > 0, assume that the column vectors in BK0
are linearly

independent and all elements in the vector (BT
K0
BK0

)−1e are nonzero, where K0 is the maximin

optimal equicorrelated points set as defined previously.

Remark 4.1. Condition (C1) requires each subgroup estimator to be consistent. The condition

F0 ̸= 0 in (C2) ensures the existence and uniqueness of βM(0). Apparently, βM(0) is not stable when F0

approaches to 0, since its L2 norm will change from 1 to 0. To ensure the stability of βM(0) in the sense

that it will not deviate too much when there are minor changes in the set of vectors β1, . . . , βG, we

would expect

∥[B̃T
K0
B̃K0

]+ − [BT
K0
BK0

]+∥2 → 0, (13)

as B̃K0
→ BK0

, where B̃ = (β̃1, . . . , β̃G) represents the coefficient matrix with some disturbance. A

sufficient condition to establish (13) is that BK0
is of full column rank, as assumed in Condition

(C2). Lemma 2 suggests βM(0) can be represented as ωT0 BK0
, for some weight vector ω0 proportional to

(BT
K0
BK0

)−1e. Condition (C2) further assumes the weights are nonzero. Such a condition guarantees

that for any coefficient matrix B̃ → B, K0 is the optimal equicorrelated points set of B̃ as well.

Theorem 5 (Consistency). Define B̂ = (β̂1, . . . , β̂G). Assume Conditions C1 and C2 are sat-

isfied. Then with probability tending to 1, the estimator β̂M is equal to






{eT (B̂T
K0
B̂K0

)−1e}−1/2B̂K0
(B̂T

K0
B̂K0

)−1e if F0 > 0,

0 if F0 < 0.

In addition, assume there exist some r
(1)
n , r

(2)
n → 0 such that maxg∈K0

∥β̂g − βg∥2 = Op(r
(1)
n ) and

ĉ0 = c0 +Op(r
(2)
n ). When F0 > 0, we have ∥β̂M − βM(0)∥2 = Op(r

(1)
n ), ĉM = cM(0) +Op(r

(1)
n + r

(2)
n ).

Remark 4.2. Theorem 5 implies that (β̂M , ĉM ) is consistent as long as each subgroup estimator

is consistent. The first part of the theorem follows as a consequence of lemma 3.

Next, we study the asymptotic normality of the estimator. For notational simplicity, we assume

m1 = · · · = mG = m and posit the following condition.

(C3.) Assume that for all g ∈ K0,
√
m(β̂g − βg) and

√
m(ĉ0 − c0) are jointly asymptotically normal

with mean zero.
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Theorem 6 (Asymptotic normality). Assume that Conditions C1–C3 hold, and that F0 > 0.

We have that
√
m(β̂M − βM(0)) and

√
m(ĉM − cM(0)) are jointly asymptotically normal with mean zero

and some covariance matrix VM . The expression of VM is given in Appendix C.

Since the expression of the asymptotic covariance matrix VM is quite complicated, we propose to

estimate it using a bootstrap method. Here, the bootstrap sampling is done within each subgroup.

Specifically, we independently generate B bootstrap samples for each group g = 1, . . . , G,

{

(Y
(j)
g1 , A

(j)
g1 , X

(j)
g1 ), . . . , (Y

(j)
gm , A

(j)
gm, X

(j)
gm)

}

,

j = 1, . . . , B. For each j, we obtain estimators β̂(j) and ĉ(j) based on the data

{

(Y
(j)
11 , A

(j)
11 , X

(j)
11 ), . . . , (Y

(j)
1m , A

(j)
1m, X

(j)
1m)

}

, . . . ,
{

(Y
(j)
G1 , A

(j)
G1, X

(j)
G1), . . . , (Y

(j)
Gm, A

(j)
Gm, X

(j)
Gm)

}

.

Confidence intervals of β̂M and ĉM are calculated based on quantiles of (β̂(1), . . . , β̂(B)) and (ĉ(1), . . . , ĉ(M)).

4.2. Estimation of group-specific regimes

In this subsection we discuss two popular approaches to obtain subgroup estimators β̂g and ĉ0.

Example 1 (Q-learning). We estimate βg and c0 by modeling the Q-functions, which represent

the conditional mean of the response given the covariates and the treatment. Specifically, the baseline

function is assumed to have some parametric form hg(x, ηg) with parameter ηg. Then,

Qg(Xg, Ag;βg, c0, ηg) ≡ E(Yg|Ag, Xg) = hg(Xg, ηg) +Ag(X
T
g βg + c0), g = 1, . . . , G.

Since c0 is common across all subgroups, we propose to estimate β1, . . . , βG and c0 by jointly solving

the following set of estimating equations:

∑

j

∂hg(Xgj , ηg)

∂ηg
{Ygj −Qg(Xgj , Agj ;βg, c0, θg)} = 0, g = 1, . . . , G,

∑

j

AgjXgj{Ygj −Qg(Xgj , Agj ;βg, c0, θg)} = 0, g = 1, . . . , G,

∑

g

∑

j

Agj{Ygj −Qg(Xgj , Agj ;βg, c0, θg)} = 0.

When the parametric models hg(x, ηg)’s are correctly specified, the resulting estimators β̂g’s and ĉ0

are consistent and jointly asymptotically normal.

Example 2 (A-learning). Here, we posit some parametric model πg(X,αg) for the propensity

score and hg(X, ηg) for the baseline function. The parameters αg’s, ηg’s, βg’s and c0 are estimated
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by solving the following set of estimating equations:

∑

j

1

πg(X,αg){1− πg(X,αg)}
∂πg(X,αg)

∂αg
{Agj − πg(X,αg)} = 0, g = 1, . . . , G,

∑

j

∂hg(Xgj , ηg)

∂ηg
{Ygj − hg(Xgj , ηg)−Agj(X

T
gjβg + c0)} = 0, g = 1, . . . , G,

∑

j

Xgj{Agj − πg(Xgj , αg)}{Ygj − hg(Xgj , ηg)−Agj(X
T
gjβg + c0)} = 0, g = 1, . . . , G,

∑

g

∑

j

{Agj − πg(Xgj , αg)}{Ygj − hg(Xgj , ηg)−Agj(X
T
gjβg + c0)} = 0.

It can be shown that when either the propensity score or the baseline function for each group is correctly

specified, the resulting estimators β̂g’s and ĉ0 are consistent and jointly asymptotically normal. This

is the so-called doubly robust property of the A-learning estimation.

5. Simulation studies

We consider four groups of patients. In each group, we generate 200 samples according to the following

model

Ygj = h(Xgj) +AgjX
T
gjβg + εgj ,

where Xgj = (X
(1)
gj , X

(2)
gj )

T iid∼ N(0, I2) and εgj
iid∼ N(0, 0.25). Two baseline models are considered

for h, including a linear model h(Xgj) = 1 + 0.5X
(1)
gj + 0.5X

(2)
gj and a nonlinear model h(Xgj) =

1 + sin(0.5πX
(1)
gj + 0.5πX

(2)
gj ). We generate treatments from two propensity score models, a constant

model, Pr(Agj = 1) = 0.5 and a probit model, Pr(Agj = 1|Xgj) = Φ(X
(1)
gj −X

(2)
gj ), where Φ(·) is the

standard normal cumulative distribution function. This yields four simulation settings.

We further consider two scenarios for the subgroup parameters to exhibit different degrees of het-

erogeneity. In the first scenario, we set βT1 = (2, 0), βT2 = (2 cos(15◦), 2 sin(15◦)), βT3 = (2 cos(70◦), 2 sin(70◦)),

βT4 = (0, 2). Hence, all βg’s have the same L2 norm and their directions βg/∥βg∥2 differ. For

the second scenario, we choose subgroup parameters to have similar directions but allow their L2

norms to vary. Specifically, βT1 = (2.2 cos(30◦), 2.2 sin(30◦)), βT2 = (1.5 cos(45◦), 1.5 sin(45◦)), βT3 =

(2.2 cos(54◦), 2.2 sin(54◦)), βT4 = (2 cos(60◦), 2 sin(60◦)). It can be shown that βM(0) = (cos(45◦), sin(45◦))

and cM(0) = 0 for all scenarios.

We first obtain the subgroup estimators of βg and c0 using the A-learning estimating equations

discussed in Section 4.2. Here, a logistic regression model is fitted for the propensity score and a

linear model for the baseline function. As a result, both the propensity score model and the baseline

model are correctly specified in the first setting; either of them is misspecified in the second and the

third setting; while both are misspecified in the last setting. We then obtain the estimators β̂M and
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ĉM using the proposed maximin-projection learning. Confidence intervals for the resulting estimators

are obtained based on 600 bootstrap samples.

Table 2: Biases, standard deviations (in parenthesis) of β̂M , ĉM and coverage probabilities (CP) of 95%

Wald-type confidence intervals for βM
(0) and c

M
(0).

Scenario 1 β̂M
1 β̂M

2 ĉM CP for β̂M
1 CP for β̂M

2 CP for ĉM

Setting 1 −0.002(0.027) 0.001(0.027) 0.0003(0.024) 96.0% 96.0% 95.3%

Setting 2 −0.003(0.053) −0.001(0.052) 0.001(0.045) 94.7% 94.7% 93.8%

Setting 3 −0.003(0.036) 0.001(0.035) −0.0005(0.035) 96.2% 96.2% 94.5%

Setting 4 −0.003(0.068) −0.004(0.068) 0.002(0.068) 96.0% 96.0% 95.0%

Scenario 2 β̂M
1 β̂M

2 ĉM CP for β̂M
1 CP for β̂M

2 CP for ĉM

Setting 1 −0.002(0.036) 0.0002(0.036) 0.0002(0.023) 95.5% 95.5% 95.3%

Setting 2 −0.009(0.061) 0.003(0.060) −0.001(0.043) 96.0% 96.0% 93.8%

Setting 3 −0.010(0.091) −0.002(0.089) −0.001(0.033) 93.7% 93.7% 94.5%

Setting 4 −0.029(0.136) 0.034(0.130) −0.002(0.056) 98.3% 98.3% 95.0%

For each setting, we conduct 600 simulations. The biases, standard deviations (SD) of β̂M and ĉM ,

and coverage probabilities (CP) of 95% Wald-type confidence intervals for βM(0) and c
M
(0) are reported in

Tables 2. In all scenarios, the proposed estimators achieve the smallest biases and standard deviations

in Setting 1, where the baseline function and the propensity score are both correctly specified. In

Settings 2 and 3, the proposed estimators are nearly unbiased, showing the doubly robust property

of the subgroup estimators obtained using the A-learning estimating equations. In Setting 4, where

the baseline function and the propensity score are both misspecified, biases and standard deviations

of the estimators tend to be larger, however, the biases are still reasonably small. In addition, the

coverage probabilities of 95% Wald-type confidence intervals are close to the nominal level for all

cases.

To further assess the performance of the proposed maximin OTRs, we compare it with the es-

timated pooled OTR, d̂P (x) = I(xT β̂P > −ĉP ) and the OTR based on random effects models,

d̂R(x) = I(xT β̂R > −ĉR). Here, β̂P and ĉP are obtained based on pooled data by solving a single

A-learning estimating equation. To obtain β̂R and ĉR, we first obtain β̂g, ĉg by solving A-learning

estimating equations, based on {Xgj , Agj , Ygj}mj=1. The covariance of (β̂Tg , ĉg)
T is estimated by the

sandwich estimator. Based on these estimators, we calculate β̂R and ĉR using the R package mvmeta.

The between-group covariance matrix is estimated by the method of moments. For both scenarios, we

consider the following leave-one-group-out cross-validation procedure for evaluation. We first obtain

estimators β̂M , ĉM , β̂P , ĉP , β̂R and ĉR based on pooled samples of any three groups. Then, we
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evaluate the PCD and the VD as defined in Section 3.1 under the obtained maximin OTR and the

pooled OTR for the remaining testing group, using Monte Carlo simulations based on the true model

for the testing group.

Table 3 and 4 summarize the results of the VD for Scenario 1 and Scenario 2. The results of the

PCD are given in Table 21 and 22 in the supplementary article. The OTR obtained by random effects

meta-analyses is close to the estimated pooled OTR in both scenarios. In Scenario 1, both the PCD

and the VD under our maximin OTR are much higher than those under the other two OTRs for all

the testing groups. Taking PCD as an example, on average, the PCD under the maximin OTR is

approximately 5 ∼ 6% higher than those under the other OTRs. This demonstrates the advantages

of the proposed maximin-projection learning when there is relatively large heterogeneity in optimal

treatment decision-making across subgroups. In Scenario 2, since the groupwise optimal treatment

regimes are “close” to each other in “angles”, all the estimated OTRs do not differ much. From Table

4, it can be seen that our maximin OTR performs better than the other OTRs when the first group

is taken as the testing group, while it has comparable performance with the other OTRs for other

groups as testing groups.

In Section C.2 in the supplementary article, we conduct some additional simulation experiments

with non-normal covariates. Findings are similar to those with normal covariates.

Table 3: VD results (with standard errors in parenthesis) for Scenario 1 under the estimated maximin OTR

d̂M , the pooled OTR d̂P and the OTR obtained by random effects meta-analyses d̂R.

Testing group First group Second group Third group Fourth group

Setting 1

d̂P 0.407(0.002) 0.606(0.001) 0.632(0.002) 0.368(0.002)

d̂R 0.408(0.001) 0.608(0.001) 0.633(0.001) 0.367(0.001)

d̂M 0.486(0.001) 0.690(0.001) 0.723(0.001) 0.458(0.001)

Setting 2

d̂P 0.406(0.002) 0.606(0.002) 0.630(0.002) 0.366(0.002)

d̂R 0.407(0.001) 0.608(0.001) 0.633(0.001) 0.366(0.001)

d̂M 0.483(0.002) 0.689(0.001) 0.719(0.001) 0.452(0.002)

Setting 3

d̂P 0.407(0.003) 0.604(0.002) 0.630(0.002) 0.367(0.003)

d̂R 0.405(0.002) 0.606(0.001) 0.632(0.001) 0.367(0.002)

d̂M 0.483(0.002) 0.688(0.001) 0.723(0.001) 0.454(0.002)

Setting 4

d̂P 0.406(0.003) 0.602(0.003) 0.628(0.003) 0.365(0.003)

d̂R 0.406(0.002) 0.606(0.001) 0.632(0.001) 0.366(0.002)

d̂M 0.473(0.003) 0.686(0.002) 0.716(0.001) 0.439(0.004)
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Table 4: VD results (with standard errors in parenthesis) for Scenario 2 under the estimated maximin OTR

d̂M , the pooled OTR d̂P and the OTR obtained by random effects meta-analyses d̂R.

Testing group First group Second group Third group Fourth group

Setting 1

d̂P 0.803(<0.001) 0.597(<0.001) 0.865(<0.001) 0.762(<0.001)

d̂R 0.803(<0.001) 0.598(<0.001) 0.865(<0.001) 0.761(<0.001)

d̂M 0.847(<0.001) 0.588(<0.001) 0.865(<0.001) 0.769(<0.001)

Setting 2

d̂P 0.802(0.001) 0.597(<0.001) 0.864(<0.001) 0.761(<0.001)

d̂R 0.803(<0.001) 0.598(<0.001) 0.865(<0.001) 0.762(<0.001)

d̂M 0.843(0.001) 0.587(<0.001) 0.863(<0.001) 0.767(0.001)

Setting 3

d̂P 0.801(0.001) 0.597(<0.001) 0.863(<0.001) 0.760(0.001)

d̂R 0.801(0.001) 0.597(<0.001) 0.864(<0.001) 0.761(0.001)

d̂M 0.841(0.001) 0.588(<0.001) 0.861(0.001) 0.765(0.001)

Setting 4

d̂P 0.799(0.001) 0.595(<0.001) 0.861(0.001) 0.758(0.001)

d̂R 0.804(0.001) 0.597(<0.001) 0.863(<0.001) 0.759(0.001)

d̂M 0.826(0.002) 0.587(0.001) 0.853(0.001) 0.756(0.002)

Although our maximin estimators have better performance for treatment decision making in the

above simulation examples, they can have larger variances compared with the random effects models.

This is a potential disadvantage of our method.

6. Health assessment questionnaire progression data

The health assessment questionnaire progression data comes from an observational study to investi-

gate the influence of early disease modifying antirheumatic drug (DMARD) treatment and its duration

for patients with recent onset inflammatory polyarthritis (Farragher et al., 2010). Early DMARDs

treatment was routinely used in the management of rheumatoid arthritis (RA). Among conventional

DMARDs, Methotrexate is the most widely used one and is now considered a benchmark against

new treatments to be used. Previous studies showed that RA patients who have failed to respond

to methotrexate may have clinically important improvements if treated with combination DMARDs,

such as methotrexate-sulfasalazine-hydroxychloroquine, methotrexate-sulfasalazine-steroids or other

Methotrexate combinations (Boers et al., 1997). However, Methotrexate combinations did not work

for all RA patients, and they may not add benefits in some patients who were stable on DMARD

monotherapy (Symmons et al., 2005). It is of clinical interest to develop individualized OTRs and to

know which patients will benefit from treating with Methotrexate combinations. The study sample

include 420 patients who were recruited to the study from 1990 to 2000 and were treated with either
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methotrexate monotherapy or methotrexate combinations. Age, gender, duration of disease, HAQ

score, number of swollen joints and number of tender joints were recorded at baseline. We standard-

ize all six covariates such that their sample covariance matrix equals the identity matrix within each

group. We compare methotrexate combinations (A = 1) with methotrexate monotherapy (A = 0).

The difference HAQ scores between baseline and 5-year is set to be the response. Here, we classify 420

patients into three groups according to their recruitment time. Specifically, group 1 includes patients

enrolled from 1990 to 1992; group 2 includes those enrolled from 1993 to 1996; and group 3 includes

those enrolled from 1997 to 2000. Sample sizes of the three groups are 265, 78 and 77, respectively.

In our analysis, we use the last two standardized covariates to fit the contrast function, since the

regression coefficients of other variables are not significant. Denoted these two covariates by X
(1)
gj and

X
(2)
gj , respectively. For each group g, we consider the following model

E(Ygj |Xgj , Agj) = hg(Xgj) +Agj(c0 + βg1X
(1)
gj + βg2X

(2)
gj ).

The parameters c0, βg1, βg2 are estimated using the A-learning estimating equations as discussed

in Section 4.2. Here, a linear model is fitted for the baseline function and a logistic regression

model is fitted for the propensity score. When fitting the propensity score model, all six covariates

are included. Table 5 reports the group-wise estimators obtained using the A-learning estimating

equations, suggesting there is some heterogeneity in optimal treatment regimens across three groups.

Table 5: Estimators of groupwise OTR (standard errors in paranthesis) for the HAQ data.

Group 1 Group 2 Group 3

β̂g1 0.05(0.11) −0.40(0.17) 0.07(0.21)

β̂g2 0.07(0.11) 0.06(0.21) 0.32(0.16)

Table 6: d̂M , d̂P , d̂R and their value functions

Testing group Group 1 Group 2 Group 3

d̂M d̂P d̂R d̂M d̂P d̂R d̂M d̂P d̂R

ĉ −0.87 −0.14 −0.12 −2.38 −0.21 −0.11 −3.08 −0.31 −0.32

β̂1 −0.48 −0.02 −0.00 0.61 0.16 0.16 −0.02 0.06 −0.01

β̂2 0.88 0.25 0.23 0.79 0.10 0.14 1.00 0.06 0.10

ÊY ⋆
g (d) −0.08 −0.09 −0.09 −0.09 −0.19 −0.22 −0.12 −0.13 −0.12

We use the same leave-one-group-out cross validation procedure as done in simulations to evaluate

the performance of the proposed method. We calculate the maximin OTR d̂M , the pooled OTR d̂P ,

and the OTR obtained by random effects meta-analyses d̂R based on every two groups of patients, and
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evaluate them on the remaining group based on the estimated value function. For a given treatment

regime d and group g, the estimated value function is given by

ÊY ⋆
g (d) =

1

mg

mg
∑

j=1

[

Ygj +
(

ĉ0 + β̂g1X
(1)
gj + β̂g2X

(2)
gj

)

{d(Xgj)−Agj}
]

,

which is computed based on the advantage function as introduced in Murphy (2003). Results are

given in Table 6. Value under the maximin OTR are uniformly better than those under other OTRs

across all three groups, showing a big improvement for group 2. Besides, the estimators involved in

the regimes d̂P and d̂R are very close.

7. Discussion

In this paper, we propose a maximin-projection learning to aggregate OTRs for patients from different

populations with heterogeneity. It has appealing statistical interpretations in the sense of maximizing

the minimum PCD and the minimum value difference across subgroups. The corresponding estimation

procedure is easy to implement via quadratically constrained linear programming, and the asymptotic

properties of the resulting estimators are studied.

7.1. Alternative maximin formulation

Our procedure requires to scale the baseline covariatesXg to mean zero and identity covariance matrix

for g = 1, 2, . . . , G,G+ 1. Let Xg,0 be the original variable prior to transformation and βg,0, cg,0 the

corresponding individualized and marginal treatment effects, respectively. The proposed maximin

OTR is constructed based on βM = argmax∥β∥2=1ming∈{1,...,G} β
Tβg, or equivalently,

βM∗ = arg max
∥Σ

1/2
G+1β∥2=1

min
g∈{1,...,G}

βTΣ
1/2
G+1Σ

1/2
g βg,0,

where Σg is the covariance matrix of Xg,0 for g = 1, . . . , G+ 1.

As pointed by one of the referee, we can also consider the maximin OTR based on βM∗∗ where

βM∗∗ = arg max
∥Σ

1/2
G+1β∥2=1

min
g∈{1,...,G}

βTΣG+1βg,0.

Assuming EX1,0 = EX2,0 = · · · = EXG,0 = EXG+1,0 = 0, c1,0 = c2,0 = · · · = cG,0 and XG+1 is

spherically distributed, we can show

βM∗∗ = arg max
∥Σ

1/2
G+1β∥2=1

min
g∈{1,...,G}

E(XT
G+1,0βg,0 + cg,0)I(X

T
G+1,0β + c),

for any c > 0. This implies that βM∗∗ maximizes the minimum groupwise value difference function

under the new distribution XG+1,0.
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It is worthwhile to investigate the performance of the OTR based on βM∗∗. However, this is

beyond the scope of the current paper. Below, we briefly compare the proposed maximin OTR

with the maximin OTR based on βM∗∗ and discuss their connections. First, βM∗∗ maximizes the

minimum groupwise value difference function under the new distribution XG+1,0 while β
M maximizes

the minimum groupwise value difference function under the new distribution XG+1 after scaling. To

see this, note that when c1 = · · · = cG and XG+1 is spherically distributed, we have

βM = arg max
∥β∥2=1

min
g∈{1,...,G}

E(XT
G+1βg + cg)I(X

T
G+1β + c),

for any c > 0. Second, βM∗∗ usually doesn’t coincide with βM∗. A sufficient condition for βM∗ = βM∗∗

is that Σ1 = Σ2 = · · · = ΣG = ΣG+1. Lastly, estimating βM∗∗ might exhibit less variances than βM∗,

since it doesn’t require the estimation of Σ1, . . . ,ΣG. However, the OTR based on βM∗∗ is not scale

invariant. To see this, let X∗∗
G+1 = CXG+1,0 for some invertible matrix C. The covariance matrix of

XG+1,0 is equal to CΣG+1C
T . Let

βM∗∗∗ = arg max
∥Σ

1/2
G+1C

Tβ∥2=1
min

g∈1,...,G
βTCΣG+1C

Tβg,0,

there’s no guarantee that βM∗∗∗ = (CT )−1βM∗∗.

7.2. Extensions

In current work, we mainly deal with heterogeneity caused by groupwise individualized treatment

effects βg’s, and assume the same marginal treatment effects cg for all groups. It is possible to extend

our proposed maximin projection learning to the case when cg’s vary across different groups as well.

Specifically, consider

(β̂M , ĉM ) = arg max
∥β∥2

2+c
2≤1

min
g∈{1,...,G}

(

β̂Tg β + ĉgc
)

,

where β̂g and ĉg are subgroup estimators. Statistical properties of β̂M and ĉM can be similarly

established. For example, β̂M and ĉM can be shown to converge almost surely to some βM(0) and

cM(0), respectively. However, the defined βM(0) and cM(0) can no longer preserve the interpretation of

maximizing the minimum PCD and the minimum VD, due to the fact that the PCD and the VD

are complicated functions of (βg, cg) and (β, c) when cgs vary across groups. Consequently, the angle

interpretation as demonstrated by the toy example given in Section 2.2 does not hold.

To establish the consistency and asymptotic normality of β̂M and ĉM , we require βg, g ∈ K0 to

be linearly independent. In Section C.1 in the supplementary article, we conduct some additional

simulation studies to examine our methods under settings where some of the βg’s are the same.

Results suggest that β̂M and ĉM are still consistent to βM(0) and cM(0), in these settings. We further
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evaluate the VD and the PCD under the estimated maximin OTR and compare them with those

under the estimated pooled OTR. Findings are similar to those in Section 5.

In addition, in our current work, we assume a linear interaction between treatment and baseline

covariates. It is interesting to consider a more general model as follows:

Yg = hg(Xg) +AgQ(βTg Xg + cg) + eg, g = 1, . . . , G, (14)

where Q is a strictly monotone increasing function with Q(0) = 0. The parameters βg in each group

can be consistently estimated using the concordance-assisted learning method by Fan et al. (2017).

The properties of the corresponding maximin-projection estimator warrant further investigation.
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A. Proof of theorem 2

Before proving theorem 2, we state the following lemma whose proof is given in Section F of the

on-line supplementary article.

Lemma 4. Consider a set of vectors β1, . . . , βG of dimension s and function h(β, b, t) defined on

the domain
{

(βT , bT , t) ∈ R
s × R

s × T : ∥β∥2 = 1
}

. Assume h(β, b, t) = g(βT b, t) for some function

g(·, ·). Besides, assume for any fixed t, g(c, t) is monotonically increasing as a function of c. Then,

for any random variable T defined on T , we have

arg max
β∈Rp

∥β∥2=1

min
g

Eh(βg, β, T ) = arg max
β∈Rp

∥β∥2=1

min
g
βg
Tβ.

Since Xg’s are identically distributed for g = 1, . . . , G, we omit the subscript g for brevity. We need

to show βM maximizes

min
g

[

E
{

hg(X) + (XTβg + c0)I(X
Tβ > −c)

}

− Ehg(X)
]

= min
g

E(XTβg + c0)I(X
Tβ > −c).

We first show for any ∥β∥2 = 1 and c, the probability Pr(XTβ > c) is constant as a function of β.

Since ∥βg∥2 = 1, it follows from lemma F.1 that there exists some orthogonal matrix U such that

Uβ = e1 = (1, 0, . . . , 0)T . Hence

Pr(XTβ > c) = Pr(XTUTUβ > c) = Pr(XTUT e1 > c) = Pr(XT e1 > c), (15)

where the last equality is due to the definition of spherical distribution (see Definition F.1). By (15),

it suffices to show βM maximizes

min
g

E(XTβg)I(X
Tβ > −c). (16)

Let ρg = βTβg/∥βg∥2. Since X is spherically distributed, we have

E(XTβg)I(X
Tβ > −c) = ∥βg∥2E

(

ρgX
(1) +

√

1− ρ2gX
(2)

)

I
(

X(1) > −c
)

, (17)

for all βg, c and β such that ∥β∥2 = 1, where X(1) and X(2) are the first two components of the

random vector X. It follows from theorem 2.6 in Fang et al. (1990) that

(X(1), X(2))
d
= rd(U1, U2), (18)
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with r = ∥X∥2, d ∼ B(1, p/2 − 1), U1 and U2 uniformly distributed on the surface u21 + u22 = 1,

where B(p, q) stands for the Beta distribution with parameters p, q. The random variables r, d are

independent of U1 and U2. Set T = rd. Combining (17) with (18) gives

E(XTβg)I(X
Tβ > −c) = E∥βg∥2T (ρgU1 +

√

1− ρ2gU2)I(TU1 > −c) (19)

= E
[{

E∥βg∥2t(ρgU1 +
√

1− ρ2gU2)I(U1 > −c/t)
}

|T = t
]

≡ E[h(β, βg, t)|T = t],

for any β and c such that ∥β∥2 = 1.

When c/t ≤ −1, we have I(U1 > −c/t) = I(U1 > 1) = 0 and hence h = 0. When c/t ≥ 1,

h(β, βg, t) = t∥βg∥2E(ρgU1 +
√

1− ρ2gU2) = 0.

Obviously, in these two trivial cases, h is an increasing function of βTβg. Now we consider the case

where c/t = cos(ψ1) for some ψ1 ∈ (0, π). Assume ρg = cos(ψ2) for some ψ2 ∈ (0, π). The function h

can further be simplified to

h(β, βg, t) =
1

2π

∫ ψ1

−ψ1

∥βg∥2t{cos(ψ2) cos(ψ) + sin(ψ2) sin(ψ)}dψ

=
1

2π
t∥βg∥2

∫ ψ1

−ψ1

cos(ψ − ψ2)dψ =
1

π
t∥βg∥2 sin(ψ1) cos(ψ2) =

1

π
t sin(ψ1)β

Tβg.

This proves h is an increasing function of βTβg. Hence, (16) follows by an application of lemma 4.


