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LINEAR HYPOTHESIS TESTING FOR HIGH

DIMENSIONAL GENERALIZED LINEAR MODELS

By Chengchun Shi∗, Rui Song∗, Zhao Chen†, and Runze Li†

North Carolina State University and Pennsylvania State University

This paper is concerned with testing linear hypotheses in high-
dimensional generalized linear models. To deal with linear hypothe-
ses, we first propose constrained partial regularization method and
study its statistical properties. We further introduce an algorithm for
solving regularization problems with folded-concave penalty functions
and linear constraints. To test linear hypotheses, we propose a par-
tial penalized likelihood ratio test, a partial penalized score test and
a partial penalized Wald test. We show that the limiting null dis-
tributions of these three test statistics are χ2 distribution with the
same degrees of freedom, and under local alternatives, they asymp-
totically follow non-central χ2 distributions with the same degrees
of freedom and noncentral parameter, provided the number of pa-
rameters involved in the test hypothesis grows to ∞ at a certain
rate. Simulation studies are conducted to examine the finite sample
performance of the proposed tests. Empirical analysis of a real data
example is used to illustrate the proposed testing procedures.

1. Introduction. During the last three decades, there are many works
devoted to developing variable selection techniques for high dimensional re-
gression models. Fan and Lv (2010) presents a selective overview on this
topic. There are some recent works for hypothesis testing on Lasso estimate
(Tibshirani, 1996) in high-dimensional linear models. Lockhart et al. (2014)
proposed the covariance test which produces a sequence of p-values as the
tuning parameter, λn, decreases, and features become non-zero in the Lasso.
This approach does not give confidence intervals or p-values for an individ-
ual variable’s coefficient. Taylor et al. (2014) and Lee et al. (2016) extended
the covariance testing framework to test hypotheses about individual fea-
tures, after conditioning on a model selected by the Lasso. However, their
framework permits inference only about features which have non-zero coef-
ficients in a Lasso regression; this set of features likely varies across samples,
making the interpretation difficult. Moreover, these work focused on high di-
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mensional linear regression models, and it remains unknown whether their
results can be extended to a more general setting.

This paper will focus on generalized linear models (GLM, McCullagh and
Nelder, 1989). Let Y be the response, and X be its associate fixed-design
covariate vector. The GLM assumes that the distribution of Y belongs to
the exponential family. The exponential family with canonical link has the
following probability density function

(1.1) exp

(
Y βT

0 X − b(βT
0 X)

φ0

)
c(Y ),

where β0 is a p-dimensional vector of regression coefficients, and φ0 is some
positive nuisance parameter. In this paper, we assume that b(·) is thrice
continuously differentiable with b′′(·) > 0.

We study testing linear hypothesis H0 : Cβ0,M = t in GLM, where β0,M
is a subvector of β0, the true regression coefficients. The number of covariates
p can be much larger than the sample size n, while the number of parameters
in β0,M is assumed to be much smaller than n. Such type of hypotheses is
of particular interests when the goal is to explore the group structure of β0.
Moreover, it also includes a very important class of hypotheses β0,M = 0

by setting C to be the identity matrix and t = 0. In the literature, Fan and
Peng (2004) proposed penalized likelihood ratio test for H0a : Cβ0,S = 0

in GLM, where β0,S is the vector consisting of all nonzero elements of β0

when p = o(n1/5) where n stands for the sample size. Wang and Cui (2013)
extended Fan and Peng (2004)’s proposal and considered a penalized likeli-
hood ratio statistic for testing H0b : β0,M = 0, requiring p = o(n1/5). Ning
and Liu (2017) proposed a decorrelated score test for H0c : β0,M = 0 un-
der the setting of high dimensional penalized M-estimators with nonconvex
penalties. Recently, Fang, Ning and Liu (2017) extended the proposal of
Ning and Liu (2017) and developed a class of decorrelated Wald, score and
partial likelihood ratio tests for Cox’s model with high dimensional survival
data. Zhang and Cheng (2017) proposed a maximal type statistic based on
the desparsified Lasso estimator (van de Geer et al., 2014) and a bootstrap-
assisted testing procedure for H0d : β0,M = 0, allowing the cardinality of M
to be an arbitrary subset of [1, . . . , p]. In this paper, we aim to develop the-
ory of Wald test, score test and likelihood ratio test for H0 : Cβ0,M = t in
GLM under ultrahigh dimensional setting (i.e., p grows exponentially with
n).

It is well known that the Wald, score and likelihood ratio tests are equiv-
alent in the fixed p case. However, it can be challenging to generalize these
statistics to the setting with ultrahigh dimensionality. To better understand
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this point, we take the Wald statistic for illustration. Consider the null hy-
pothesisH0 : β0,M = 0. Analogous to the classical Wald statistic, in the high
dimensional setting, one might consider the statistic β̂T

M{ĉov(β̂M)}−1β̂M
for some penalized regression estimator β̂ and its variance estimator ĉov(β̂).
The choice of the estimators is essential here: some penalized regression es-
timator such as the Lasso, or the Dantzig estimator (Candes and Tao, 2007)
cannot be used due to their large biases when p ≫ n. The non-concave pe-
nalized estimator does not have this bias issue, but the minimal signal con-
ditions imposed in Fan and Peng (2004) and Fan and Lv (2011) implies that
the associated Wald statistic does not have any power for local alternatives
of the type Ha : β0,M = hn for some sequence hn such that ∥hn∥2 ≪ λn

where ∥ · ∥2 is the Euclidean norm. Moreover, to implement the score and
the likelihood ratio statistics, we need to estimate the regression parameter
under the null, which involves penalized likelihood under linear constraints.
This is a very challenging task and has rarely been studied: (a) the associated
estimation and variable selection property is not standard from a theoretical
perspective, and (b) there is a lack of constrained optimization algorithms
that can produce sparse estimators from a computational perspective.

We briefly summarize our contributions as follows. First, we consider a
more general form of hypothesis. In contrast, existing literature mainly fo-
cuses on testing β0,M = 0. Besides, we also allow the number of linear con-
straints to diverge with n. Our tests are therefore applicable to a wider range
of real applications for testing a growing set of linear hypotheses. Second,
we propose a partial penalized Wald, a partial penalized score and a par-
tial penalized likelihood-ratio statistic based on the class of folded-concave
penalty functions, and show their equivalence in the high dimensional set-
ting. We derive the asymptotic distributions of our test statistics under the
null hypothesis and the local alternatives. Third, we systematically study the
partial penalized estimator with linear constraints. We derive its rate of con-
vergence and limiting distribution. These results are significant in their own
rights. The unconstrained and constrained estimators share similar forms,
but the constrained estimator is more efficient due to the additional in-
formation contained in the constraints under the null hypothesis. Fourth,
we introduce an algorithm for solving regularization problems with folded-
concave penalty functions and equality constraints, based on the alternating
direction method of multipliers (ADMM, cf. Boyd et al., 2011).

The rest of the paper is organized as follows. We study the statistical
properties of the constrained partial penalized estimator with folded con-
cave penalty functions in Section 2. We formally define our partial penalized
Wald, score and likelihood-ratio statistics, establish their limiting distribu-
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tions, and show their equivalence in Section 3. Detailed implementations
of our testing procedures are given in Section 3.3, where we introduce our
algorithm for solving the constrained partial penalized regression problems.
Simulation studies are presented in Section 4. The proof of Theorem 3.1
is presented in Section 5. Other proofs and addition numerical results are
presented in the supplementary material (Shi et al., 2018).

2. Constrained partial penalized regression.

2.1. Model setup. Suppose that {Xi, Yi}, i = 1, · · · , n is a sample from
model (1.1). Denote by Y = (Y1, . . . , Yn) the n-dimensional response vector
andX = (X1, · · · ,Xn)

T is the n×p design matrix. We assume the covariates
Xi are fixed design. Let Xj denote the jth column of X. To simplify the
presentation, for any r× q matrix Φ and any set J ⊂ [1, 2, . . . , q], we denote
by ΦJ the submatrix of Φ formed by columns in J . Similarly, for any q-
dimensional vector φ, φJ stands for the subvector of φ formed by elements
in J . We further denote ΦJ1,J2 as the submatrix of Φ formed by rows in J1
and columns in J2 for any J1 ⊆ [1, . . . , r] and J2 ⊆ [1, . . . , q]. Let |J | be the
number of elements in J . Define Jc = [1, . . . , q] − J to be the complement
of J .

In this paper, we assume log p = O(na) for some 0 < a < 1 and focus on
the following testing problem:

H0 : Cβ0,M = t,(2.1)

for a given M ⊆ [1, . . . , p], an r×|M| matrix C and an r-dimensional vector
t. We assume that the matrix C is of full row rank. This implies there are
no redundant or contradictory constraints in (2.1). Let m = |M|, we have
r ≤ m.

Define the partial penalized likelihood function

Qn(β, λ) =
1

n

n∑

i=1

{YiβTXi − b(βTXi)} −
∑

j /∈M
pλ(|βj |).

for some penalty function pλ(·) with a tuning parameter λ. Further define

β̂0 = argmax
β

Qn(β, λn,0) subject to CβM = t,(2.2)

β̂a = argmax
β

Qn(β, λn,a).(2.3)

Note that in (2.2) and (2.3), we do not add penalties on parameters involved
in the constraints. This enables to avoid imposing minimal signal condition
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on elements of β0,M. Thus, the corresponding likelihood ratio test, Wald
test and score test have power at local alternatives.

We present a lemma to characterize the constrained local maximizer β̂0

in the supplementary material (see Lemma S.1). In Section 3, we show that
these partial penalized estimators help us to obtain valid statistical inference
about the null hypothesis.

2.2. Partial penalized regression with linear constraint. In this section,
we study the statistical properties of β̂0 and β̂a by restricting pλ to the
class of folded concave penalty functions. Popular penalty functions such
as SCAD (Fan and Li, 2001) and MCP (Zhang, 2010) belong to this class.
Let ρ(t0, λ) = pλ(t0)/λ for λ > 0. We assume that ρ(t0, λ) is increasing
and concave in t0 ∈ [0,∞), and has a continuous derivative ρ′(t0, λ) with
ρ′(0+, λ) > 0. In addition, assume ρ′(t0, λ) is increasing in λ ∈ (0,∞) and
ρ′(0+, λ) is independent of λ. For any vector v = (v1, . . . , vq)

T , define

ρ̄(v, λ) = {sgn(v1)ρ′(|v1|, λ), · · · , sgn(vq)ρ′(|vq|, λ)}T ,
µ(v) = {b′(v1), . . . , b′(vq)}, Σ(v) = diag{b′′(v1), . . . , b′′(vq)},

where sgn(·) denotes the sign function. We further define the local concavity
of the penalty function ρ at v with ∥v∥0 = q as

κ(ρ,v, λ) = lim
ϵ→0+

max
1≤j≤q

sup
t1<t2∈(|vj |−ϵ,|vj |+ϵ)

−ρ′(t2, λ)− ρ′(t1, λ)
t2 − t1

.

We assume that the true regression coefficient β0 is sparse and satisfies
Cβ0,M−t = hn for some sequence of vectors hn → 0. When hn = 0, the null
holds. Otherwise, the alternative holds. Let S = {j ∈ Mc : β0,j ̸= 0} and
s = |S|. Let dn be the half minimum signal of β0,S , i.e, dn = minj∈S |βj |/2.
DefineN0 = {β ∈ R

p : ∥βS∪M−β0,S∪M∥2 ≤
√

(s+m) log(n)/n,β(S∪M)c =
0}. We impose the following conditions.

(A1) Assume that

max
1≤j≤p

∥Xj∥∞ = O
(√

n/ log(p)
)
, max

1≤j≤p
∥Xj∥2 = O(

√
n),

inf
β∈N0

λmin

(
XT

S∪MΣ(Xβ)XS∪M
)
≥ cn,

λmax

(
XT

S∪MΣ(Xβ0)XS∪M
)
= O(n),

∥XT
(S∪M)cΣ(XTβ0)XS∪M∥2,∞ = O(n),

max
1≤j≤p

sup
β∈N0

λmax

(
XT

S∪Mdiag{|Xj | ◦ |b′′′(Xβ)|}XS∪M
)
= O(n),
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for some constant c > 0, where for any vector v = (v1, . . . , vq)
T , diag(v)

denotes a diagonal matrix with the j-th diagonal elements being vj , |v| =
(|v1|, . . . , |vq|)T , and ∥B∥2,∞ = supv:∥v∥2=1 ∥Bv∥ for any matrix B with q
rows.
(A2) Assume that dn ≫ λn,j ≫ max{

√
(s+m)/n,

√
(log p)/n}, p′

λn,j
(dn) =

o((s+m)−1/2n−1/2), λn,jκ0,j = o(1) where κ0,j = maxβ∈N0 κ(ρ,β, λn,j), for
j = 0, a.
(A3) Assume that there exist some constants M and v0 such that

max
1≤i≤n

E

{
exp

(∣∣Yi − µ(βT
0 Xi)

∣∣
M

)
− 1−

∣∣Yi − µ(βT
0 Xi)

∣∣
M

}
M2 ≤ v0

2
.

(A4) Assume that ∥hn∥2 = O
(√

min(s+m− r, r)/n
)
, and λmax

(
(CCT )−1

)
=

O(1).
In Section S4.1 of the supplementary material, we show that Condition

(A1) holds with probability tending to 1 if the covariate vectors X1, . . . ,Xn

are uniformly bounded or realizations from a sub-Gaussian distribution.
The first condition in (A2) is a minimum signal assumption imposed on
nonzero elements in Mc only. This is due to partial penalization, which
enables us to evaluate the uncertainty of the estimation for small signals.
Such conditions are not assumed in van de Geer et al. (2014) and Ning and
Liu (2017) for testing H0 : β0,M = 0. However, we note that these authors
impose some additional assumptions on the design matrix. For example, the
validity of the decorrelated score statistic depends on the sparsity of w∗. For
testing univariate parameters, this requires the degree of a particular node
in the graph to be relatively small when the covariate follows a Gaussian
graphical model (see Remark 6 in Ning and Liu, 2017). In Section S4.3 of the
supplementary material, we show Condition (A3) holds for linear, logistic,
and Poisson regression models.

Theorem 2.1. Suppose that Conditions (A1)-(A4) hold, and s + m =
o(
√
n), then the following holds: (i) With probability tending to 1, β̂0 and

β̂a defined in (2.2) and (2.3) must satisfy β̂0,(S∪M)c = β̂a,(S∪M)c = 0.

(ii) ∥β̂a,S∪M − βa,S∪M∥2 = Op(
√

(s+m)/n) and ∥β̂0,S∪M − β0,S∪M∥2 =
Op(

√
(s+m− r)/n). If further s+m = o(n1/3), then we have

√
n

(
β̂a,M − β0,M
β̂a,S − β0,S

)
=

1√
n
K−1

n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}+ op(1),
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√
n

(
β̂0,M − β0,M
β̂0,S − β0,S

)
=

1√
n
K−1/2

n (I − Pn)K
−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}

− √
nK−1/2

n PnK
−1/2
n

(
CT (CCT )−1hn

0

)
+ op(1),

where I is the identity matrix, Kn is the (m+ s)× (m+ s) matrix

Kn =
1

n

(
XT

MΣ(Xβ0)XM XT
MΣ(Xβ0)XS

XT
SΣ(Xβ0)XM XT

SΣ(Xβ0)XS

)
,

and Pn is the (m× s)× (m× s) projection matrix

Pn = K−1/2
n

(
CT

OT
r×s

){
(COr×s)K

−1
n

(
CT

OT
r×s

)}−1

(COr×s)K
−1/2
n ,

where Or×s is an r × s zero matrix.

Remark 2.1. Since dn ≫
√

(s+m)/n, Theorem 2.1(ii) implies that

each element in β̂0,S and β̂a,S is nonzero. This together with result (i) shows
the sign consistency of β̂0,Mc and β̂a,Mc .

Remark 2.2. Theorem 2.1 implies that the constrained estimator β̂0

converges at a rate of Op(
√
s+m− r/

√
n). In contrast, the unconstrained

estimator converges at a rate of Op(
√
s+m/

√
n). This suggests that when

hn is relatively small, the constrained estimator β̂0 converges faster than
the unconstrained β̂a defined in (2.3), when s+m− r ≪ s+m. This result
is expected with the following intuition: the more information about β0 we
have, the more accurate the estimator will be.

Remark 2.3. Under certain regularity conditions, Theorem 2.1 implies
that √

n{(β̂0,M − β0,M)T , (β̂0,S − β0,S)
T } → N(−ξ0,V0),

where ξ0 and V0 are limits of
√
nK

−1/2
n PnK

−1/2
n (hT

n ,0
T )T and K

−1/2
n (I −

Pn)K
−1/2
n , respectively. Similarly, we can show

√
n{(β̂a,M − β0,M)T , (β̂a,S − β0,S)

T } → N(0,Va),

where Va = limnK
−1
n . Note that aTV0a ≤ aTVaa for any a ∈ R

s+m. Under
the null, we have ξ0 = 0, which suggests that β̂0 is more efficient than β̂a

in terms of a smaller asymptotic variance. Under the alternative, β̂0,M is
asymptotically biased. This can be interpreted as a bias-variance trade-off
between β̂0 and β̂a.
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3. Partial penalized Wald, score and likelihood ratio statistics.

3.1. Test statistics. We begin by introducing our partial penalized like-
lihood ratio statistic,

TL = 2n{Ln(β̂a)− Ln(β̂0)}/φ̂,(3.1)

where Ln(β) =
∑

i{YiβTXi − b(βTXi)}/n, β̂0 and β̂a are defined in (2.2)

and (2.3) respectively, and φ̂ is some consistent estimator for φ0 in (1.1). For
Gaussian linear models, φ0 corresponds to the error variance. For logistic or
Poisson regression models, φ0 = 1.

The partial penalized Wald statistic is based on
√
n(Cβ̂a,M − t). Define

Ωn = K−1
n , and denote Ωmm as the first m rows and columns of Ωn. It

follows from Theorem 2.1 that its asymptotic variance is equal toCΩmmCT .
Let Ŝa = {j ∈ Mc : β̂a,j ̸= 0}. Then, with probability tending to 1, we have

Ŝa = S. Define

Ω̂a = n

(
XT

MΣ(Xβ̂a)XM XT
MΣ(Xβ̂a)XŜa

XT
Ŝa
Σ(Xβ̂a)XM XT

Ŝa
Σ(Xβ̂a)XŜa

)−1

,

and Ω̂a,mm as its submatrix formed by its first m rows and columns. The
partial penalized Wald statistic is defined by

TW = (Cβ̂a,M − t)T
(
CΩ̂a,mmCT

)−1
(Cβ̂a,M − t)/φ̂.(3.2)

Analogous to the classical score statistic, we define our partial penalized
score statistic as

TS = {Y − µ(Xβ̂0)}T
(

XM
X

Ŝ0

)
Ω̂0

(
XM
X

Ŝ0

)T

{Y − µ(Xβ̂0)}/φ̂,(3.3)

where Ŝ0 = {j ∈ Mc : β̂0,j ̸= 0}, and

Ω̂0 = n

(
XT

MΣ(Xβ̂0)XM XT
MΣ(Xβ̂0)XŜ0

XT
Ŝ0
Σ(Xβ̂0)XM XT

Ŝ0
Σ(Xβ̂0)XŜ0

)−1

.

3.2. Limiting distributions of the test statistics. For a given significance
level α, we reject the null hypothesis when T > χ2

α(r) for T = TL, TW or
TS where χ2

α(r) is the upper α-quantile of a central χ2 distribution with r
degrees of freedom and r is the number of constraints. Assume r is fixed.
When φ̂ is consistent to φ0, it follows from Theorem 2.1 that TL, TW and TS
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converge asymptotically to a (non-central) χ2 distribution with r degrees of
freedom. However, when r diverges with n, there is no such theoretical guar-
antee. This is because the concept of weak convergence is not well defined
in such settings. To resolve this issue, we observe that when the following
holds,

sup
x

|Pr(T ≤ x)− Pr(χ2(r, γn) ≤ x)| → 0,

where χ2(r, γn) is a chi square random variable with r degrees of freedom
and noncentrality parameter γn which is allowed to vary with n, our testing
procedure is still valid using χ2 approximation.

Theorem 3.1. Assume Conditions (A1)-(A4) hold, s+m = o(n1/3),
and |φ̂− φ0| = op(1). Further assume the following holds:

r1/4

n3/2

n∑

i=1

{
(Xi,M∪S)TK−1

n Xi,M∪S
}3/2 → 0.(3.4)

Then, we have

sup
x

∣∣Pr(T ≤ x)− Pr(χ2(r, γn) ≤ x)
∣∣→ 0,(3.5)

for T = TW , TS or TL, where γn = nhT
n

(
CΩmmCT

)−1
hn/φ0.

Remark 3.1. By (3.5), it is immediate to see that

sup
x

|Pr(T1 ≤ x)− Pr(T2 ≤ x)| → 0,

for any T1, T2 ∈ {TW , TS , TL}. This establish the equivalence between the
partial penalized Wald, score and likelihood-ratio statistics. Condition (3.4)
is the key to guarantee χ2 approximation in (3.5). When r = O(1), this
condition is equivalent to

1

n3/2

n∑

i=1

{
(Xi,M∪S)TK−1

n Xi,M∪S
}3/2 → 0,

which corresponds to the Lyaponuv condition that ensures the asymptotic
normality of β̂0,M∪S and β̂a,M∪S . When r diverges, (3.4) guarantees that
the following Lyaponuv type bound goes to 0,

sup
C

|Pr
(
(CΩmmCT )−1/2(Cβ̂a,M − t)/

√
φ0 ∈ C

)
− Pr(Z ∈ C)| → 0,
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where Z represents an r-dimensional multivariate normal with identity co-
variance matrix, and the supremum is taken over all convex subsets C in R

m.
The scaling factor r1/4 accounts for the dependence of the above Lyaponuv
type estimate on the dimension and it remains unknown whether the factor
r1/4 can be improved (see related discussions in Bentkus, 2004).

Remark 3.2. Theorem 3.1 implies that our testing procedures are con-
sistent. When the null holds, we have hn = 0 and hence γn = 0. This
together with equation (3.5) suggests that our tests have correct size under
the null. Under the alternative, we have hn ̸= 0 and hence γn ̸= 0. Since
χ2(r, 0) is stochastically smaller than χ2(r, γn), (3.5) implies that our tests
have non-negligible powers under Ha. We summarize these results in the
following corollary.

Corollary 3.1. Assume Conditions (A1)-(A3) and (3.4) hold, s+m = o(n1/3),
λmax((CCT )−1) = O(1), and |φ̂−φ0| = op(1). Then, under the null hypoth-
esis, for any 0 < α < 1, we have

lim
n

Pr(T > χ2
α(r)) = α,

for T = TW , TL and TS, where χ2
α(r) is the critical value of χ2-distribution

with r degrees of freedom at level α. Under the alternative Cβ0,M − t = hn

for some hn satisfying hn = O(
√

min(s+m− r, r)/n), we have for any
0 < α < 1, and T = TW , TS and TL,

lim
n

|Pr(T > χ2
α(r))− Pr(χ2(r, γn) > χ2

α(r))| = 0,

where γn = nhT
n

(
CΩmmCT

)−1
hn/φ0.

Remark 3.3. Corollary 3.1 shows that the asymptotic power functions
of the proposed test statistics are

Pr(χ2(r, γn) > χ2
α(r)).(3.6)

It follows from Theorem 2 in Ghosh (1973) that the asymptotic power func-
tion decreases as r increases for a given γn. This is the same as that for
traditional likelihood ratio test, score test and Wald’s test. However, hn is
an r-dimensional vector in our setting. Thus, one may easily construct an
example in which γn grows as r increases. As a result, the asymptotic power
function may not be monotone increasing function of r.

In Section S3 of Shi et al. (2018), we study in depth that how the penalty
on individual coefficient affects the power, and find that the tests are most
advantageous if each unpenalized variable is either an important variable
(i.e., in S) or a variable in M.
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Remark 3.4. Notice that the null hypothesis reduces to β0,M = 0 if
we set C to be the identity matrix and t = 0. The Wald test based on the
desparsified Lasso estimator (van de Geer et al., 2014) and the decorrelated
score test (Ning and Liu, 2017) can also be applied to testing such hypothe-
sis. Based on (3.6), we show that these two tests achieve less power than the
proposed partial penalized tests in Section S1 of Shi et al. (2018). This is
due to the increased variances of the de-sparsified Lasso estimator and the
decorrelated score statistic after the debiasing procedure.

3.3. Some implementation issues.

3.3.1. Constrained partial penalized regression. To construct our test statis-
tics, we need to compute the partial penalized estimators β̂0 and β̂a. Our
algorithm is based upon the alternating direction method of multipliers
(ADMM), which is a variant of standard augmented Lagrangian method.
Below, we present our algorithm for estimating β̂0. The unconstrained esti-
mator β̂a can be similarly computed. For a fixed regularization parameter
λ, define

β̂λ
0 = argmin

β


−Ln(β) +

∑

j∈Mc

pλ(|βj |)


 , subject to CβM = t.

The above optimization problem is equivalent to

(β̂λ
0 , θ̂

λ
0 ) = arg min

β∈Rp

θ∈Rp−m


−Ln(β) +

p−m∑

j=1

pλ(|θj |)


 ,(3.7)

subject to CβM = t, βMc = θ.

The augmented Lagrangian for (3.7) is

Lρ(β,θ,v) = −Ln(β) +

p−m∑

j=1

pλ(|θj |) + vT

(
CβM − t

βMc − θ

)

+
ρ

2
∥CβM − t∥22 +

ρ

2
∥βMc − θ∥22,
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for a given ρ > 0. Applying dual ascent method yields the following algo-
rithm:

βk+1 = argmin
β

{
(vk)T

(
CβM − t

βMc − θk

)
+

ρ

2

∥∥∥∥
CβM − t

βMc − θk

∥∥∥∥
2

2

− Ln(β)

}
,

θk+1 = argmin
θ





p−m∑

j=1

pλ(|θj |) +
ρ

2
∥βk+1

Mc − θ∥22 + (vk)T
(

Cβk+1
M − t

βk+1
Mc − θ

)
 ,

vk+1 = vk + ρ

(
Cβk+1

M − t

βk+1
Mc − θk+1

)
,

for the (k + 1)th iteration.
Since Ln is twice differentiable, βk+1 can be obtained by the Newton-

Raphson algorithm. θk+1 may have a closed form for some popular penalties
such as Lasso, SCAD or MCP penalty. In our implementation, we use the
SCAD penalty,

pλ(|βj |) = λ

∫ |βj |

0

{
I(t ≤ λ) +

(aλ− t)+
a− 1

I(t > λ)

}
dt,

and set a = 3.7, ρ = 1.
To obtain β̂0, we compute β̂λ

0 for a series of log-spaced values in [−λmin, λmax]

for some λmin < λmax. Then we choose β̂0 = β̂λ̂
0 by minimizing the following

information criterion:

λ̂ = argmin
λ

(
−nLn(λ) + cn∥β̂λ∥0

)
,

where cn = max{log n, log(log(n)) log(p)}. Using similar arguments in Schwarz
(1978) and Fan and Tang (2013), we can show such information criterion is
consistent in both fixed p and ultrahigh dimension setting.

3.3.2. Estimation of the nuisance parameter. It can be shown that φ0 =
1 for logistic or Poisson regression models. In linear regression models, we
have φ0 = E(Yi − βT

0 Xi)
2. In our implementation, we estimate φ0 by

φ̂ =
1

n− |Ŝa| −m

n∑

i=1

(Yi − β̂T
a Xi)

2,

where β̂a is defined in (2.3).
In Section S2 of the supplementary material (Shi et al., 2018), we show

φ̂ = φ0 + Op(n
−1/2), under the conditions in Theorem 2.1, which implies

selection consistency. Alternatively, one can estimate φ0 using refitted cross-
validation (Fan, Guo and Hao, 2012) or scaled lasso (Sun and Zhang, 2013).
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Table 1

Rejection probabilities (%) of the partial penalized Wald, score and likelihood ratio
statistics with standard errors in parenthesis (%), under the setting where

Σ = {0.5|i−j|}i,j=1,...,p .

p = 50 p = 200

TL TW TS TL TW TS

h(1) H
(1)
0

0 4.33(0.83) 4.33(0.83) 4.67(0.86) 5.67(0.94) 5.67(0.94) 5.67(0.94)
0.1 13.17(1.38) 13.50(1.40) 13.50(1.40) 11.67(1.31) 11.67(1.31) 11.67(1.31)
0.2 39.83(2.00) 40.17(2.00) 40.00(2.00) 39.67(2.00) 39.67(2.00) 39.67(2.00)
0.4 92.33(1.09) 93.17(1.03) 93.17(1.03) 92.67(1.06) 92.67(1.06) 92.67(1.06)

h(2) H
(2)
0

0 5.17(0.90) 5.17(0.90) 5.67(0.94) 5.33(0.92) 5.33(0.92) 5.33(0.92)
0.1 11.00(1.28) 11.00(1.28) 11.33(1.29) 12.50(1.35) 12.50(1.35) 12.50(1.35)
0.2 30.67(1.88) 30.67(1.88) 31.00(1.89) 33.67(1.93) 33.67(1.93) 33.67(1.93)
0.4 85.17(1.45) 85.00(1.46) 85.00(1.46) 87.83(1.33) 87.83(1.33) 87.83(1.33)

h(2) H
(3)
0

0 6.50 (1.01) 6.33(0.99) 6.50(1.01) 5.67(0.94) 5.67(0.94) 5.67(0.94)
0.1 11.83 (1.32) 11.67(1.31) 11.67(1.31) 11.00(1.28) 11.00(1.28) 11.00(1.28)
0.2 31.67 (1.90) 31.50(1.90) 31.67(1.90) 33.17(1.92) 33.17(1.92) 33.17(1.92)
0.4 84.33 (1.48) 84.17(1.49) 84.50(1.48) 86.00(1.42) 86.17(1.41) 86.17(1.41)

4. Numerical Examples. In this section, we examine the finite sample
performance of the proposed tests. Simulation results for linear regression
and logistic regression are presented in the main text. In the supplementary
material (Shi et al., 2018), we present simulation results for Poisson log-linear
model and illustrate the proposed methodology by a real data example.

4.1. Linear regression. Simulated data with sample size n = 100 were
generated from

Y = 2X1 − (2 + h(1))X2 + h(2)X3 + ε

where ε ∼ N(0, 1) and X ∼ N(0p,Σ), and h(1) and h(2) are some constants.
The true value β0 = (2,−2−h(1), h(2),0Tp−3)

T where 0q denotes a zero vector
of length q.

4.1.1. Testing linear hypothesis. We focus on testing the following three
pairs of hypotheses:

H
(1)
0 : β0,1 + β0,2 = 0, v.s H(1)

a : β0,1 + β0,2 ̸= 0.

H
(2)
0 : β0,2 + β0,3 = −2, v.s H(2)

a : β0,2 + β0,3 ̸= −2.

H
(3)
0 : β0,3 + β0,4 = 0, v.s H(3)

a : β0,3 + β0,4 ̸= 0.



14 SHI, SONG, CHEN AND LI

These hypotheses test linear structures between two regression coefficients.

When testing H
(1)
0 , we set h(2) = 0, and hence H

(1)
0 holds if and only if

h(1) = 0. Similarly when testing H
(2)
0 and H

(3)
0 , we set h(1) = 0, and hence

the hull hypotheses hold if and only if h(2) = 0.
We consider two different dimensions, p = 50 and p = 200, and two differ-

ent covariance matricesΣ, corresponding toΣ = I andΣ = {0.5|i−j|}i,j=1,...,p.
This yields a total of 4 settings. For each hypothesis and each setting, we
further consider four scenarios, by setting h(j) = 0, 0.1, 0.2, 0.4. Therefore,
the null holds under the first scenario and the alternative holds under the
rest three. Table 1 summarizes the rejection probabilities for H

(1)
0 , H

(2)
0 and

H
(3)
0 under the settings where Σ = {0.5|i−j|}. Rejection probabilities of the

proposed tests under the settings where Σ = I are given in Table S1 in the
supplementary material. The rejection probabilities are evaluated via 600
simulation replications.

Based on the results, it can be seen that under these null hypotheses, Type
I error rates of the three tests are well controlled and close to the nominal
level for all four settings. Under the alternative hypotheses, the powers of
these three test statistics increase as h(1) or h(2) increases, showing the con-
sistency of our testing procedure. Moreover, the empirical rejection rates
between these three test statistics are very close across all different sce-
narios and settings. For example, the rejection rates are exactly the same

for testing H
(1)
0 and H

(2)
0 when p = 200 in Table 1, although we observed

that the values of these three statistics in our simulation are slightly differ-
ent. This is consistent with our theoretical findings that these statistics are
asymptotically equivalent even in high dimensional settings. Figures S1, S2
and S3 in the supplementary material depicts the kernel density estimates

of three test statistics under H
(1)
0 and H

(2)
0 with different combinations of p

and the covariance matrices respectively. It can be seen that these three test
statistics converge to their limiting distributions under the null hypotheses.

4.1.2. Testing univariate parameter. Consider testing the following two
pairs of hypotheses:

H
(4)
0 : β0,2 = −2, v.s H(1)

a : β0,2 ̸= −2.

H
(5)
0 : β0,3 = 0, v.s H(2)

a : β0,3 ̸= 0.

We set h(2) = 0 when testing H
(4)
0 , and set h(1) = 0 when testing H

(5)
0 .

Therefore, H
(4)
0 is equivalent to h(1) = 0 and H

(5)
0 is equivalent to h(2) = 0.

We use the same 4 settings described in Section 4.1.1. For each setting,
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Table 2

Rejection probabilities (%) of the partial penalized Wald, score and likelihood ratio
statistics, the Wald test statistic based on the de-sparsified Lasso estimator and the
decorrelated score statistic under the settings where Σ = {0.5|i−j|}i,j=1,...,p, with

standard errors in parenthesis (%).

TL TW TS TD
W TD

S

h(1) H
(4)
0 and p = 50

0 5.17(0.90) 5.33(0.92) 5.50(0.93) 12.67(1.36) 7.00(1.04)
0.1 15.67(1.48) 16.00(1.50) 16.00(1.50) 6.00(0.97) 14.67(1.44)
0.2 41.00(2.01) 41.33(2.01) 41.50(2.01) 14.83(1.45) 38.83(1.99)
0.4 92.50(1.08) 93.00(1.04) 93.00(1.04) 67.67(1.91) 88.67(1.29)

H
(4)
0 and p = 200

0 4.83(0.88) 4.83(0.88) 4.83(0.88) 21.83(1.69) 5.50(0.93)
0.1 11.00(1.28) 11.00(1.28) 11.00(1.28) 5.83(0.96) 10.83(1.27)
0.2 40.50(2.00) 40.50(2.00) 40.50(2.00) 6.17(0.98) 37.83(1.98)
0.4 91.50(1.14) 91.50(1.14) 91.50(1.14) 49.33(2.04) 88.00(1.33)

h(2) H
(5)
0 and p = 50

0 6.33(0.99) 6.00(0.97) 6.50(1.00) 5.33(0.92) 3.00(0.70)
0.1 13.67(1.40) 13.50(1.40) 14.00(1.42) 5.33(0.92) 9.17(1.18)
0.2 40.17(2.00) 40.33(2.00) 40.50(2.00) 15.67(1.48) 28.50(1.84)
0.4 90.83(1.18) 91.33(1.15) 91.67(1.13) 69.17(1.89) 83.33(1.52)

H
(5)
0 and p = 200

0 5.67(0.94) 5.67(0.94) 5.67(0.94) 6.50(1.01) 2.67(0.66)
0.1 13.67(1.40) 13.67(1.40) 13.67(1.40) 3.67(0.77) 8.17(1.12)
0.2 39.17(1.99) 39.17(1.99) 39.17(1.99) 9.67(1.21) 24.67(1.76)
0.4 91.50(1.14) 91.50(1.14) 91.50(1.14) 51.33(2.04) 80.50(1.62)

we set h(1) = 0.1, 0.2, 0.4 under H
(4)
a and h(2) = 0.1, 0.2, 0.4 under H

(5)
a .

Comparison is made among the following test statistics:

(i) The proposed likelihood ratio (TL), Wald (TW ) and score (TS) statistic.
(ii) The Wald test statistic based on the de-sparisfied Lasso estimator (TD

W ).
(iii) The decorrelated score statistic. (TD

S ).

The test statistic TD
W is computed via the R package hdi (Dezeure et al.,

2015). We calculate TD
S according to Section 4.1 in Ning and Liu (2017).

More specifically, the initial estimator β̂ is computed by a penalized linear
regression with SCAD penalty function, and ω̂ is computed by a penalized
linear regression with l1 penalty function (see Equation (4.4) in Ning and
Liu, 2017). These penalized regressions are implemented via the R package
ncvreg (Breheny and Huang, 2011). The tuning parameters are selected via
10-folded cross-validation. The rejection probabilities of these test statistics
under the settings where Σ = {0.5|i−j|} are reported in Table 2. In the
supplementary material, we report the rejection probabilities of these test
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Table 3

Rejection probabilities (%) of the partial penalized Wald, score and likelihood ratio
statistics with standard errors in parenthesis (%), under the settings where

Σ = {0.5|i−j|}i,j=1,...,p .

p = 50 p = 200

TL TW TS TL TW TS

h(1) H
(6)
0

0 4.83(0.88) 4.50(0.85) 4.67(0.86) 4.83(0.88) 4.83(0.88) 4.83(0.88)
0.2 28.17(1.84) 28.17(1.84) 28.50(1.84) 28.50(1.84) 28.50(1.84) 28.50(1.84)
0.4 80.33(1.62) 80.17(1.63) 80.33(1.62) 79.83(1.64) 79.83(1.64) 79.83(1.64)
0.8 99.83(0.17) 100.00(0.00) 100.00(0.00) 100.00(0.00) 100.00(0.00) 100.00(0.00)

h(1) H
(7)
0

0 4.50(0.85) 4.50(0.85) 4.50(0.85) 5.00(0.89) 5.00(0.89) 5.00(0.89)
0.2 18.17(1.57) 18.33(1.58) 18.33(1.58) 18.33(1.58) 18.33(1.58) 18.33(1.58)
0.4 53.83(2.04) 54.17(2.03) 54.00(2.03) 57.33(2.02) 57.33(2.02) 57.33(2.02)
0.8 98.50(0.50) 99.00(0.41) 99.00(0.41) 98.50(0.50) 98.50(0.50) 98.50(0.50)

h(1) H
(8)
0

0 5.17 (0.90) 5.00(0.89) 5.17(0.90) 5.67(0.94) 5.67(0.94) 5.67(0.94)
0.2 14.33 (1.43) 14.33(1.43) 14.33(1.43) 13.67(1.40) 13.67(1.40) 13.67(1.40)
0.4 42.00 (2.01) 42.17(2.02) 42.17(2.02) 41.67(2.01) 41.67(2.01) 41.67(2.01)
0.8 92.83 (1.05) 92.83(1.05) 92.83(1.05) 93.00(1.04) 93.00(1.04) 93.00(1.04)

statistics under the settings where Σ = I in Table S2. Results are averaged
over 600 simulation replications.

From Table 2, it can be seen that TD
W failed to test H

(4)
0 under the settings

where Σ = {0.5|i−j|}. Under the null hypotheses, the Type I error rates of
TD
W are greater than 12%. Under the alternative hypotheses, the proposed

test statistics and the decorrelated score test are more powerful than TD
W

in almost all cases. Besides, we note that TL, TW , TS and TD
S perform

comparable under the settings where Σ = I. When Σ = {0.5|i−j|} however,
the proposed test statistics achieve greater power than TD

S . This is in line
with our theoretical findings (see Section S1 of the supplementary material
for details).

4.1.3. Effects on m. In Section 4.1.1, we consider linear hypotheses in-
volving two parameters only. As suggested by one of the referee, we further
examine our test statistics under settings where more regression parameters
are involved in the hypotheses. More specifically, we consider the following
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three pairs of hypotheses:

H
(6)
0 :

4∑

j=1

β0,j = 0, v.s H(6)
a :

4∑

j=1

β0,j ̸= 0.

H
(7)
0 :

8∑

j=1

β0,j = 0, v.s H(7)
a :

8∑

j=1

β0,j ̸= 0.

H
(8)
0 :

12∑

j=1

β0,j = 0, v.s H(8)
a :

12∑

j=1

β0,j ̸= 0.

The numbers of parameters involved in H
(6)
0 , H

(7)
0 and H

(8)
0 are equal to 4,

8 and 12, respectively. We consider the same 4 settings described in Section
4.1.1. For each setting, we set h(1) = 0, 0.2, 0.4, 0.8 and h(2) = 0. Hence, the
null hypotheses hold when h(1) = 0 and the alternatives hold when h(1) > 0.
We report the rejection probabilities over 600 replications in Table 3, under
the settings where Σ = {0.5|i−j|}. Rejection probabilities under the settings
where Σ = I are reported in Table S3 in the supplementary material.

The Type I error rates of the three test statistics are close to the nominal
level under the null hypotheses. The powers of the test statistics increase as
h(1) increases, under the alternative hypotheses. Moreover, we note that the
powers decrease asm increases. This is in line with Corollary 3.1 which states
that the asymptotic power function of our test statistics is a function of r
and γn. Recall that γn = nhT

n

(
CΩmmCT

)−1
hn/φ0. Consider the following

sequence of null hypotheses indexed by m ≥ 2: Cmβ0 = 0 where Cm =
(1, · · · , 1,0p−m). Let γn,m = nhT

n

(
CmΩmmCT

m

)−1
hn/φ0. Under the given

settings, we have Ωmm = (ωij) is a banded matrix with ωij = 0 for |i− j| ≥
2, ωij = −1/(1 − ρ2) for |i − j| = 1, ω11 = ωmm = 1/{ρ(1 − ρ2)}, and
ωjj = (1 + ρ2)/{ρ(1− ρ2)} for j ̸= 1 and m, where ρ is the auto-correlation
between X1 and X2. It is immediate to see γn,m decreases as m increases.

4.2. Logistic regression. In this example, we generate data with sample
size n = 300 from the logistic regression model

logit{Pr(Y = 1|X)} = 2X1 − (2 + h(1))X2 + h(2)X3,

where logit(p) = log{p/(1− p)}, the logit link function, and X ∼ N(0p,Σ).
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4.2.1. Testing linear hypothesis. We consider the same linear hypotheses
as those in Section 4.1.1:

H
(1)
0 : β0,1 + β0,2 = 0, v.s H(1)

a : β0,1 + β0,2 ̸= 0.

H
(2)
0 : β0,2 + β0,3 = −2, v.s H(2)

a : β0,2 + β0,3 ̸= −2.

H
(3)
0 : β0,3 + β0,4 = 0, v.s H(3)

a : β0,3 + β0,4 ̸= 0.

Similarly, we set h(2) = 0 when testing H
(1)
0 , and set h(1) = 0 when testing

H
(2)
0 . Therefore, H

(1)
0 is equivalent to h(1) = 0 and H

(2)
0 is equivalent to

h(2) = 0. We use the same 4 settings described in Section 4.1.1. For each of

the four settings, we set h(j) = 0.2, 0.4, 0.8 under H
(j)
a .The rejection proba-

bilities for H
(1)
0 and H

(2)
0 over 600 replications are given in Table S4 in the

supplementary material. We also plot the kernel density estimates of three

test statistics under H
(1)
0 and H

(2)
0 in Figures S4, S5 and S6 in the sup-

plementary material. The findings are very similar to those in the previous
examples.

4.2.2. Testing univariate parameter. To compare the proposed partial
penalized Wald (TW ), score (TS) and likelihood ratio (TL) test statistics
with the Wald test based on the de-sparsified Lasso estimator (TD

W ) and the
decorrelated score test (TD

S ), we consider testing the following hypotheses:

H
(4)
0 : β0,2 = −2, v.s H(4)

a : β0,2 ̸= −2.

H
(5)
0 : β0,3 = 0, v.s H(5)

a : β0,3 ̸= 0.

Similar to Section 4.1.2, we set h(2) = 0 when testingH
(4)
0 , and set h(1) = 0

when testing H
(5)
0 . We set h(1) = 0 under H

(4)
0 , h(1) = 0.2, 0.4, 0.8 under H

(4)
a

and set h(2) = 0 under H
(5)
0 , h(2) = 0.2, 0.4, 0.8 under H

(5)
a . We consider the

same 4 settings described in Section 4.1.1. The test statistic TD
W is com-

puted via the R package hdi and TD
S is obtained according to Section 4.2 of

Ning and Liu (2017). We compute the initial estimator β̂ in TD
S by fitting

a penalized logistic regression with SCAD penalty function, and calculate
ω̂ by fitting a penalized linear regression with l1 penalty function. These
penalized regressions are implemented via the R package ncvreg. We re-
port the rejection probabilities of TW ,TS ,TL,T

D
W and TD

S in Table S5 in the
supplementary article, based on 600 simulation replications.

Based on the results, it can be seen that the Type I error rates of TD
W

and TD
S are significantly larger than the nominal level in almost all cases for

testing H
(4)
0 . On the other hand, the Type I error rates of the proposed test
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statistics are close to the nominal level under H
(4)
0 . Besides, under H

(5)
a , the

powers of the proposed test statistics are greater than or equal to TD
W and

TD
S in all cases.

4.2.3. Effects on m. As in Section 4.1.3, we further examine the proposed
test statistics by allowing more regression coefficients to appear in the linear
hypotheses. Similarly, we consider the following three pairs of hypotheses:

H
(6)
0 :

4∑

j=1

β0,j = 0, v.s H(6)
a :

4∑

j=1

β0,j ̸= 0.

H
(7)
0 :

8∑

j=1

β0,j = 0, v.s H(7)
a :

8∑

j=1

β0,j ̸= 0.

H
(8)
0 :

12∑

j=1

β0,j = 0, v.s H(8)
a :

12∑

j=1

β0,j ̸= 0.

We set h(2) = 0, and set h(1) = 0 under the null hypotheses, h(1) =
0.4, 0.8, 1.6 under the alternative hypotheses. The same 4 settings described
in Section 4.1.1 are used. The rejection probabilities of the proposed test
statistics are reported in Table S6 in the supplementary article. Results are
averaged over 600 replications. Findings are very similar to those in Section
4.1.3.

5. Technical proofs. This section consists of the proof of Theorem 3.1.
To establish Theorem 3.1, we need the following lemma. The proof of this
lemma is given in Section 5.1. For any symmetric and positive definite matrix
A ∈ R

q×q, it follows from the spectral theorem that A = UTΛU for some
orthogonal matrix U and diagonal matrix Λ = diag(λ1, . . . , λq). Since the
diagonal elements in Λ are positive, we use Λ1/2 and Λ−1/2 to denote the di-

agonal matrices diag(λ
1/2
1 , . . . , λ

1/2
q ) and diag(λ

−1/2
1 , . . . , λ

−1/2
q ), respectively.

In addition, we define A1/2 = UTΛ1/2U and A−1/2 = UTΛ−1/2U .

Lemma 5.1. Under the conditions in Theorem 3.1, we have

λmax(Kn) = O(1),(5.1)

λmax(K
1/2
n ) = O(1),(5.2)

λmax(K
−1/2
n ) = O(1),(5.3)

λmax

(
(CΩmmCT )−1

)
= O(1),(5.4)

∥Ψ−1/2C∥2 = O(1),(5.5)
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∥Ψ1/2(CΩ̂a,mmCT )−1Ψ1/2 − I∥2 = Op

(
s+m√

n

)
,(5.6)

∥I −K1/2
n K̂−1

n,0K
1/2
n ∥2 = Op

(
s+m√

n

)
,(5.7)

where Ψ = CΩmmCT and

K̂n,0 =
1

n

(
XT

MΣ(Xβ̂0)XM XT
MΣ(Xβ̂0)XS

XT
SΣ(Xβ̂0)XM XT

SΣ(Xβ̂0)XS

)
.

We break the proof into four steps. In the first three steps, we show TW /r,
TS/r and TL/r are equivalent to T0/r, respectively, where

T0 =
1

φ0
(ωn +

√
nhn)

T (CΩmmCT )−1(ωn +
√
nhn),

and

ωn =
1√
n

(
CT

OT
s×r

)T

K−1
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}.

In the final step, we show the χ2 approximation (3.5) holds for TW , TS and
TL.

Step 1: We first show that TW /r is equivalent to T0/r. It follows from
Theorem 2.1 that

√
n

(
β̂a,M − β0,M
β̂a,S − β0,S

)
=

1√
n
K−1

n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}+Ra,

for some vector Ra that satisfies

∥Ra∥2 = op(1).(5.8)

Therefore, we have

√
nC(β̂a,M − β0,M) = ωn +CRa,J0 ,(5.9)

where J0 = [1, . . . ,m]. Since Cβ0,M = t+ hn, it follows from (5.9) that

√
n(Cβ̂a,M − t) = ωn +CRa,J0 +

√
nhn,

and hence

√
nΨ−1/2(Cβ̂a,M − t) = Ψ−1/2(ωn +CRa,J0 +

√
nhn).(5.10)
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By (5.8) and (5.5) in Lemma 5.1, we have

∥Ψ−1/2CRa,J0∥2 ≤ ∥Ψ−1/2C∥∥Ra,J0∥2 ≤ ∥Ψ−1/2C∥∥Ra∥2 = op(1).

This together with (5.10) gives

√
nΨ−1/2(Cβ̂a,M − t) = Ψ−1/2(ωn +

√
nhn) + op(1).(5.11)

Note that

E∥Ψ−1/2ωn∥22 = tr
(
Ψ−1/2Eωnω

T
nΨ

−1/2
)
= φ0tr

(
Ψ−1/2ΨΨ−1/2

)
= rφ0.

By Markov’s inequality, we have

∥Ψ−1/2ωn∥2 = Op(
√
r).(5.12)

Besides, it follows from (5.4) in Lemma 5.1 and Condition (A4) that

∥√nΨ−1/2hn∥2 = O(
√
r).(5.13)

This together with (5.11) and (5.12) implies that

∥√nΨ−1/2(Cβ̂a,M − t)∥2 = Op(
√
r).(5.14)

Combining this together with (5.6) in Lemma 5.1 gives

∥{√nΨ−1/2(Cβ̂a,M − t)}T {Ψ1/2(CΩ̂a,mmCT )−1Ψ1/2 − I}{√nΨ−1/2(Cβ̂a,M − t)}∥22
≤ ∥{√nΨ−1/2(Cβ̂a,M − t)}∥22∥{Ψ1/2(CΩ̂a,mmCT )−1Ψ1/2 − I}∥2 = Op

(
r(s+m)√

n

)
.

The last term is op(r) under the condition s+m = o(n1/3). By the definition
of TW , we have shown that

φ̂|TW − TW,0| = op(r),(5.15)

where

TW,0 =
n(Cβ̂a,M − t)TΨ−1(Cβ̂a,M − t)

φ̂
.

Under the conditions in Theorem 3.1, we have φ̂ = φ0+ op(1). Since φ0 > 0,
we have

1/φ̂ = Op(1),(5.16)
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which together with (5.15) entails that TW = TW,0 + op(r).
It follows from (5.10)-(5.13) and the condition s+m = o(n1/3) that

φ̂TW,0 =
∥∥∥Ψ−1/2ωn +

√
nΨ−1/2hn + op(1)

∥∥∥
2

2
(5.17)

=
∥∥∥Ψ−1/2ωn +

√
nΨ−1/2hn

∥∥∥
2

2
+ op(1) + op

(
Ψ−1/2(ωn +

√
nhn)

)

=
∥∥∥Ψ−1/2ωn +

√
nΨ−1/2hn

∥∥∥
2

2
+ op(1) + op(r)

=
∥∥∥Ψ−1/2ωn +

√
nΨ−1/2hn

∥∥∥
2

2
+ op(r) = φ̂TW,1 + op(r),

where

TW,1 =

∥∥Ψ−1/2ωn +
√
nΨ−1/2hn

∥∥2
2

φ̂
.

By (5.16), we obtain TW,0 = TW,1 + op(r) and hence TW = TW,1 + op(r). In
the following, we show TW,1 = T0 + op(r).

Observe that

|TW,1 − T0| =
|φ0 − φ̂|
φ̂φ0

∥∥∥Ψ−1/2ωn +
√
nΨ−1/2hn

∥∥∥
2

2
.(5.18)

It follows from (5.12), (5.13), (5.16) and the condition |φ̂− φ0| = op(1) that
right-hand side (RHS) of (5.18) is of the order op(r). This proves TW,1 =
T0 + op(r).

Step 2: We show that TS/r is equivalent to T0/r. Based on the proof of
Theorem 2.1 in Section S5.1 of the supplementary article, we have

1√
n

(
XT

M
XT

S

)
{Y − µ(Xβ̂0)} =

1√
n

(
XT

M
XT

S

)T

{Y − µ(Xβ0)}(5.19)

− 1√
n

(
XT

M
XT

S

)
Σ(Xβ0)

(
XT

M
XT

S

)T (
β̂0,M − β0,M
β̂0,S − β0,S

)
+ op(1),

and

√
n

(
β̂0,M − β0,M
β̂0,S − β0,S

)
=

1√
n
K−1/2

n (I − Pn)K
−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}

− √
nK−1

n

(
CT

OT
r×s

)
Ψ−1hn + op(1).(5.20)
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Combining (5.1) with (5.20) gives

√
nKn

(
β̂0,M − β0,M
β̂0,S − β0,S

)
=

1√
n
K1/2

n (I − Pn)K
−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}

− √
n

(
CT

OT
r×s

)
Ψ−1hn + op(1),

which together with (5.19) implies that

1√
n

(
XT

M
XT

S

)
{Y − µ(Xβ̂0)} =

1√
n

(
XT

M
XT

S

)T

{Y − µ(Xβ0)}+ op(1)

− 1√
n
K1/2

n (I − Pn)K
−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}+

√
n

(
CT

OT
r×s

)
Ψ−1hn

=
1√
n
K1/2

n PnK
−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}+

√
n

(
CT

OT
r×s

)
Ψ−1hn + op(1).

By (5.3), we have

1√
n
K−1/2

n

(
XT

M
XT

S

)
{Y − µ(Xβ̂0)} =

1√
n
PnK

−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}

+
√
nK−1/2

n

(
CT

OT
r×s

)
Ψ−1hn + op(1).(5.21)

It follows from (5.5) and (5.13) that

∥∥∥∥
(

CT

OT
r×s

)
Ψ−1hn

∥∥∥∥
2

≤ ∥CTΨ−1/2∥2∥Ψ−1/2hn∥2 = Op(
√

r/n).

This together with (5.3) yields

√
n

∥∥∥∥K−1/2
n

(
CT

OT
r×s

)
Ψ−1hn

∥∥∥∥
2

= Op(
√
r).(5.22)

Notice that

E

∥∥∥∥
1√
n
PnK

−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}

∥∥∥∥
2

2

= tr(Pn) = rank(Pn) = r.

It follows from Markov’s equality that

∥∥∥∥
1√
n
PnK

−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}

∥∥∥∥
2

= Op(
√
r).



24 SHI, SONG, CHEN AND LI

Combining this with (5.21) and (5.22) yields

∥∥∥∥
1√
n
K−1/2

n

(
XT

M
XT

S

)
{Y − µ(Xβ̂0)}

∥∥∥∥
2

= Op(
√
r).(5.23)

This together with (5.7) and the condition s+m = o(n1/3) gives that

∣∣∣∣∣
1

n

{(
XT

M
XT

S

)
{Y − µ(Xβ̂0)}

}T

(K−1
n − K̂−1

n,0)

(
XT

M
XT

S

)
{Y − µ(Xβ̂0)}

∣∣∣∣∣ ≤

1

n

∥∥∥∥K−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ̂0)}

∥∥∥∥
2

2

∥I −K1/2
n K̂−1

n,0K
1/2
n ∥2 = Op

(
r(s+m)√

n

)
= op(r).

When Ŝ0 = S, we have

φ̂TS =
1

n

{(
XT

M
XT

S

)
{Y − µ(Xβ̂0)}

}T

K̂−1
n,0

(
XT

M
XT

S

)
{Y − µ(Xβ̂0)}.

Since Pr(Ŝ0 = S) → 1, we obtain φ̂|TS − TS,0| = op(r), where

TS,0 =
1

nφ̂

{(
XT

M
XT

S

)
{Y − µ(Xβ̂0)}

}T

K−1
n

(
XT

M
XT

S

)
{Y − µ(Xβ̂0)}.

This together with (5.16) implies that |TS − TS,0| = op(r). Using similar
arguments in (5.17) and (5.18), we can show that TS,0/r is equivalent to
TS,1/r, where TS,1 is defined as

1

φ0

∥∥∥∥
1√
n
PnK

−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}+

√
nK−1/2

n

(
CT

OT
r×s

)
Ψ−1hn

∥∥∥∥
2

2

.

Recall that

Pn = K−1/2
n

(
CT

OT
r×s

)
Ψ−1

(
CT

OT
r×s

)T

K−1/2
n ,

we have

TS,1 =
1

φ0

∥∥∥∥K−1/2
n

(
CT

OT
r×s

)
Ψ−1ωn +

√
nK−1/2

n

(
CT

OT
r×s

)
Ψ−1hn

∥∥∥∥
2

2

=
1

φ0

∥∥∥Ψ−1/2ωn +
√
nΨ−1/2hn

∥∥∥
2

2
= T0.

This proves the equivalence between TS/r and T0/r.
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Step 3: By Theorem 2.1, we have

√
n

(
β̂a,M − β̂0,M
β̂a,S − β̂0,S

)
=

1√
n
K−1/2

n PnK
−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}

+
√
nK−1/2

n PnK
−1/2
n

(
CT (CCT )−1hn

0

)
+ op(1).

Notice that

K−1/2
n PnK

−1/2
n

(
CT (CCT )−1hn

0

)

= K−1
n

(
CT

OT
r×s

)
Ψ−1

(
CT

OT
r×s

)T (
CT (CCT )−1hn

0

)
= K−1

n

(
CT

OT
r×s

)
Ψ−1hn.

It follows that

√
n

(
β̂a,M − β̂0,M
β̂a,S − β̂0,S

)
=

1√
n
K−1/2

n PnK
−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}

+
√
nK−1

n

(
CT

OT
r×s

)
Ψ−1hn + op(1).(5.24)

Similar to (5.23), we can show that

n∥β̂a,M∪S − β̂0,M∪S∥22 = Op(r).(5.25)

Under the event β̂0,M∪S = β̂a,M∪S = 0, using third-order Taylor expan-
sion, we obtain that

Ln(β̂0)− Ln(β̂a) =
1

n

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T (
XT

M
XT

S

)
{Y − µ(Xβ̂a)}

− 1

2n

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T (
XT

M
XT

S

)
Σ(Xβ̂a)

(
XT

M
XT

S

)T (
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)

+

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T

R,

where n∥R∥∞ is upper bounded by

max
j∈M∪S

∣∣∣(β̂0,M∪S − β̂a,M∪S)TXT
M∪Sdiag{|Xj | ◦ |b′′′(Xβ∗)|}XM∪S(β̂0,M∪S − β̂a,M∪S)

∣∣∣

≤ ∥β̂0,M∪S − β̂a,M∪S∥22 max
j∈M∪S

λmax

(
XT

M∪Sdiag{|Xj | ◦ |b′′′(Xβ∗)|}XM∪S
)
,
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for some β∗ lying on the line segment between β̂a and β̂0. By Theorem 2.1,
we have β∗

(M∪S)c = 0 and ∥β∗
M∪S − β0,M∪S∥2 ≤

√
(s+m) log n/n with

probability tending to 1. By Condition (A1), we obtain

∥R∥∞ = Op

( r
n

)
.

This together with (5.25) yields that
∥∥∥∥∥

(
β̂a,M − β̂0,M
β̂a,S − β̂0,S

)T

R

∥∥∥∥∥
2

≤ ∥β̂a,M∪S − β̂0,M∪S∥1∥R∥∞ = op

(
r

n

√
r√
n

√
s+m

)
.

The last term is op(
√
r/n) since r ≤ s+m and s+m = o(n1/3).

Similarly, we can show
∥∥∥∥∥

(
β̂a,M − β̂0,M
β̂a,S − β̂0,S

)T (
XT

M
XT

S

)
Σ(Xβ̂a)

(
XT

M
XT

S

)T (
β̂a,M − β̂0,M
β̂a,S − β̂0,S

)
−

(
β̂a,M − β̂0,M
β̂a,S − β̂0,S

)T (
XT

M
XT

S

)
Σ(Xβ0)

(
XT

M
XT

S

)T (
β̂a,M − β̂0,M
β̂a,S − β̂0,S

)∥∥∥∥∥
2

= op(
√
r).

As a result, we have

n{Ln(β̂0)− Ln(β̂a)} =

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T (
XT

M
XT

S

)
{Y − µ(Xβ̂a)}

− n

2

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T

Kn

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)
+ op(

√
r).(5.26)

Recall that β̂a is the maximizer of nLn(β)−n
∑

j /∈M pλn,a
(|βj |). By The-

orem 2.1, we have with probability tending to 1 that minj∈S |β̂a,j | ≥ dn.
Under the condition p′λn,a

(dn) = o((s+m)−1/2n−1/2), we have

(
XT

M
XT

S

)
{Y − µ(Xβ̂a)} = n

(
0

ρ̄(β̂a,S , λn,a)

)
= op(n

1/2).

This together with (5.25) yields

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T (
XT

M
XT

S

)
{Y − µ(Xβ̂a)} = op(

√
r).

By (5.26), we obtain that

n{Ln(β̂0)− Ln(β̂a)} = −n

2

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T

Kn

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)
+ op(

√
r).
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In view of (5.24), using similar arguments in (5.17), we can show that
∣∣∣∣∣n
(

β̂0,M − β̂a,M
β̂0,S − β̂a,S

)T

Kn

(
β̂0,M − β̂a,M
β̂0,S − β̂a,S

)

− 1

n

∥∥∥∥PnK
−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}+ nK−1/2

n

(
CT

OT
r×s

)
Ψ−1hn

∥∥∥∥
2

2

∣∣∣∣∣ = op(
√
r).

As a result, we have

1

n

∥∥∥∥PnK
−1/2
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}+ nK−1/2

n

(
CT

OT
r×s

)
Ψ−1hn

∥∥∥∥
2

2

−2n{Ln(β̂a)− Ln(β̂0)} = op(
√
r).

By (5.16), this shows
∣∣∣∣TL − φ0

φ̂
T0

∣∣∣∣ = op(r).

Under the condition |φ̂ − φ0| = op(1), we can show |T0(1 − φ0/φ̂)| = op(r).
As a result, we have TL = T0 + op(r).

Step 4: We first show the χ2 approximation (3.5) holds for T = T0. Recall
that

T0 =
1

φ0

∥∥∥∥
1√
n
Ψ−1/2ωn +

√
nΨ−1/2hn

∥∥∥∥
2

2

.

By the definition of ωn, we have

1√
nφ0

Ψ−1/2ωn =
1√
nφ0

Ψ−1/2

(
CT

OT
r×s

)T

K−1
n

(
XT

M
XT

S

)
{Y − µ(Xβ0)}

=

n∑

i=1

1√
nφ0

Ψ−1/2

(
CT

OT
r×s

)T

K−1
n {Yi − µ(βT

0 Xi)}
(

Xi,M
Xi,S

)
=

n∑

i=1

ξi.

With some calculation, we can show that

n∑

i

cov(ξi) = Ir.(5.27)

It follows from Condition (A3) that

max
i=1,...,n

E

( |Yi − µ(βT
0 Xi)|3

6M3
M2

)

≤ max
i=1,...,n

E

{
exp

(∣∣Yi − µ(βT
0 Xi)

∣∣
M

)
− 1−

∣∣Yi − µ(βT
0 Xi)

∣∣
M

}
M2 ≤ v0

2
.
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This implies maxi=1,...,n E|Yi − µ(βT
0 Xi)|3 = O(1).

Hence, with some calculations, we have

r1/4
n∑

i

E∥ξi∥32

=
r1/4

(nφ0)3/2

n∑

i

E

∥∥∥∥∥Ψ
−1/2

(
CT

OT
r×s

)T

K−1
n Xi,M∪S{Yi − µ(βT

0 Xi)}
∥∥∥∥∥

3

2

=
r1/4

(nφ0)3/2

n∑

i

∥∥∥∥∥Ψ
−1/2

(
CT

OT
r×s

)T

K−1
n Xi,M∪S

∥∥∥∥∥

3

2

E|Yi − µ(βT
0 Xi)|3

= O(1)
r1/4

(nφ0)3/2

n∑

i

∥∥∥∥∥Ψ
−1/2

(
CT

OT
r×s

)T

K−1
n Xi,M∪S

∥∥∥∥∥

3

2

≤ O(1)
r1/4

(nφ0)3/2

n∑

i

∥∥∥∥∥Ψ
−1/2

(
CT

OT
r×s

)T

K−1/2
n

∥∥∥∥∥

3

2

∥∥∥K−1/2
n Xi,M∪S

∥∥∥
3

2

≤ O(1)
r1/4

(nφ0)3/2

n∑

i=1

{
(Xi,M∪S)TK−1

n Xi,M∪S
}3/2

= o(1),

where O(1) denotes some positive constant, the first inequality follows from
Cauchy-Schwarz inequality, the last inequality follows from the fact that

∥∥∥∥∥Ψ
−1/2

(
CT

OT
r×s

)T

K−1/2
n

∥∥∥∥∥

2

2

= λmax

{
Ψ−1/2

(
CT

OT
r×s

)T

K−1
n

(
CT

OT
r×s

)
Ψ−1/2

}
= 1,

and the last equality is due to Condition (3.4).
This together with (5.27) and an application of Lemma S.3 in the supple-

mentary material gives that

sup
C

∣∣∣∣Pr
(

1√
nφ0

Ψ−1/2ω0 ∈ C
)
− Pr(Z ∈ C)

∣∣∣∣→ 0,(5.28)

where Z ∈ R
r stands for a mean zero Gaussian random vector with identity

covariance matrix, and the supremum is taken over all convex sets C ∈ R
r.

Consider the following class of sets:

Cx =

{
z ∈ R

r :

∥∥∥∥z −
√

n

φ0
Ψ−1/2hn

∥∥∥∥
2

≤ x

}
,
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indexed by x ∈ R. It follows from (5.28) that

sup
x

∣∣∣∣Pr
(

1√
nφ0

Ψ−1/2ω0 ∈ Cx
)
− Pr(Z ∈ Cx)

∣∣∣∣→ 0.

Note that 1√
nϕ0

Ψ−1ω0 ∈ Cx is equivalent to T0 ≤ x, and Pr(Z ∈ Cx) =
Pr(χ2(r, γn) ≤ x) where γn = nhT

nΨ
−1/2hn/φ0. This implies

sup
x

|Pr(T0 ≤ x)− Pr(χ2(r, γn) ≤ x)| → 0.(5.29)

Consider any statistic T ∗ = T0 + op(r). For any x and ε > 0, it follows
from (5.29) that

Pr(χ2(r, γn) ≤ x− rε) + o(1) ≤ Pr(T0 ≤ x− rε) + o(1)(5.30)

≤ Pr(T ∗ ≤ x) ≤ Pr(T0 ≤ x+ rε) + o(1) ≤ Pr(χ2(r, γn) ≤ x+ rε) + o(1).

Besides, by Lemma S.4, we have

lim
ε→0

lim sup
n

|Pr(χ2(r, γn) ≤ x+ rε)− Pr(χ2(r, γn) ≤ x− rε)| → 0.(5.31)

Combining (5.30) with (5.31), we obtain that

sup
x

|Pr(T ∗ ≤ x)− Pr(χ2(r, γn) ≤ x)| → 0.(5.32)

In the first three steps, we have shown T0 = TS + op(1) = TW + op(1) =
TL + op(1). This together with (5.32) implies that the χ2 approximation
holds for our partial penalized Wald, score and likelihood ratio statistics.
The proof is hence completed.

5.1. Proof of Lemma 5.1. Assertion (5.1) is directly implies by Condi-
tion (A1). This means the square root of the maximum eigenvalue of Kn

is O(1). By definition, this proves (5.2). Under Condition (A1), we have

λmax(K
−1
n ) = O(1). Using the same arguments, we have λmax(K

−1/2
n ) =

O(1). Hence, (5.3) is proven. We now show (5.4) holds. It follows from the
condition λmax

(
(CCT )−1

)
= O(1) in Condition (A4) that lim infn λmin(CCT )−1 >

0, and hence

a0
∆
= lim inf

n
inf

a∈Rr:∥a∥2=1
∥CTa∥22 = lim inf

n
inf

a∈Rr:∥a∥2=1
aTCCTa > 0.

This implies that for sufficiently large n, we have

∥CTa∥2 >
√

a0/2∥a∥2, ∀a ̸= 0.(5.33)
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By (5.1), we have lim infn λmin(Ωn) > 0, or equivalently,

inf
a∈Rm+s:∥a∥2=1

lim inf
n

aTΩna > 0.

Hence, we have

inf
a∈Rm+s:∥a∥2=1,ac

J0
=0

lim inf
n

aTΩna > 0,

where J0 = [1, . . . ,m]. Note that this implies

inf
a∈Rm+s:∥a∥2=1

lim inf
n

aTΩmma > 0.

Therefore, we obtain

lim inf
n

λmin(Ωmm) > 0.(5.34)

Combining this together with (5.33) yields

inf
a∈Rr:∥a∥2=1

lim inf
n

aTCΩmmCTa ≥ inf
a∈Rm:∥a∥2=

√
a0/2

lim inf
n

aTΩmma > 0.

By definition, this suggests

lim inf
n

λmin(CΩmmCT ) > 0,

or equivalently,

λmax

(
(CΩmmCT )−1

)
= O(1).

This gives (5.4).
Using Cauchy-Schwarz inequality, we have

∥(CΩmmCT )−1/2C∥2 ≤ ∥(CΩmmCT )−1/2CΩ1/2
mm∥2︸ ︷︷ ︸

I1

∥Ω−1/2
mm ∥2︸ ︷︷ ︸
I2

.

Observe that

I21 = λmax

(
(CΩmmCT )−1/2CΩmmCT (CΩmmCT )−1/2

)
= 1.(5.35)

Besides, by (5.34), we have

I22 = λmax

(
(Ωmm)−1

)
= O(1),

which together with (5.35) implies that I1I2 = O(1). This proves (5.5).
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We now show (5.6) holds. Assume for now, we have

∥Kn − K̂n,a∥2 = Op

(
s+m√

n

)
,(5.36)

where

K̂n,a =
1

n

(
XT

MΣ(Xβ̂a)XM XT
MΣ(Xβ̂a)XS

XT
SΣ(Xβ̂a)XM XT

SΣ(Xβ̂a)XS

)
.

Note that

lim inf
n

λmin(K̂n,a) ≥ lim inf
n

inf
a∈Rm+s

∥a∥2=1

aTKna− lim sup
n

sup
a∈Rm+s

∥a∥2=1

|aT (K̂n,a −Kn)a|

≥ lim inf
n

λmin(Kn,a)− lim sup
n

∥Kn − K̂n,a∥2.

Under Condition (A1), we have lim infn λmin(Kn) > 0. Under the condition
max(s,m) = o(n1/2), this together with (5.36) implies

lim inf
n

λmin(K̂n,a) > 0,(5.37)

with probability tending to 1. Hence, we have

∥K−1
n − K̂−1

n,a∥2 = ∥K−1
n (Kn − K̂n,a)K̂

−1
n,a∥2(5.38)

≤ λmax(K
−1
n )∥Kn − K̂n,a∥2λmax(K̂

−1
n ) = Op

(
s+m√

n

)
.

By Lemma S.2, this gives

sup
a∈Rm+s:∥a∥2=1

|aT (K−1
n − K̂−1

n,a)a| = Op

(
s+m√

n

)
,

and hence,

sup
a∈Rm+s:∥a∥2=1,ac

J0
=0

|aT (K−1
n − K̂−1

n,a)a| = Op

(
s+m√

n

)
,

where J0 = [1, . . . ,m]. Using Lemma S.2 again, we obtain

∥(K−1
n )J0,J0 − (K̂−1

n,a)J0,J0∥2 = Op

(
s+m√

n

)
.(5.39)

By definition, we have Ωmm = (K−1
n )J0,J0 . According to Theorem 2.1, we

have that with probability tending to 1, Ŝa = S where Ŝa = {j ∈ Mc :
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β̂a,j ̸= 0}. When Ŝa = S, we have K̂−1
n,a = Ω̂a and (K̂−1

n,a)J0,J0 = Ω̂a,mm.
Therefore, by (5.39), we have

∥Ωmm − Ω̂a,mm∥2 = Op

(
s+m√

n

)
.

Using Cauchy-Schwarz inequality, we obtain

∥Ω−1/2
mm (Ωmm − Ω̂a,mm)Ω−1/2

mm ∥2(5.40)

≤ ∥Ω−1/2
mm ∥22∥Ωmm − Ω̂a,mm∥2 = Op

(
s+m√

n

)
,

by (5.34). Let Ψ = CΩmmCT , we obtain

∥Ψ−1/2C(Ωmm − Ω̂a,mm)CTΨ−1/2∥2(5.41)

≤ ∥Ψ−1/2CΩ1/2
mmΩ−1/2

mm (Ωmm − Ω̂a,mm)Ω−1/2
mm Ω1/2

mmCTΨ−1/2∥2

≤ ∥Ψ−1/2CΩ1/2
mm∥22∥Ω−1/2

mm (Ωmm − Ω̂a,mm)Ω−1/2
mm ∥2 = Op

(
s+m√

n

)
,

by (5.40) and that

∥Ψ−1/2CΩ1/2
mm∥22 = λmax

(
Ψ−1/2ΨΨ−1/2

)
= O(1).

Similar to (5.37), by (5.41), we can show that

lim inf
n

λmin

(
Ψ−1/2CΩ̂a,mmCTΨ−1/2

)
> 0.(5.42)

Combining (5.41) together with (5.42), we obtain

∥(Ψ−1/2CΩ̂a,mmCTΨ−1/2)−1 − Im∥2
≤ ∥(Ψ−1/2CΩ̂a,mmCTΨ−1/2)−1∥2∥Ψ−1/2C(Ωmm − Ω̂a,mm)CTΨ−1/2∥2

= Op

(
s+m√

n

)
.

This proves (5.6).
Similar to (5.38), we can show

∥K−1
n − K̂−1

n,0∥2 = Op

(
s+m√

n

)
.

By (5.2), we obtain

∥I −K1/2
n K̂−1

n,0K
1/2
n ∥2 ≤ ∥K1/2

n ∥2∥K−1
n − K̂−1

n,0∥2∥K1/2
n ∥2 = Op

(
s+m√

n

)
.
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This proves (5.7).

It remains to show (5.36). Since Kn and K̂n,a are symmetric, by Lemma
S.5, it suffices to show

∥Kn − K̂n,a∥∞ = Op

(
s+m√

n

)
.

By definition, this requires to show

max
j∈S∪M

∥(Xj)T {Σ(Xβ̂a)−Σ(Xβ0)}XM∪S∥1 = Op

(√
n(s+m)

)
,

For any vector a ∈ R
q, we have ∥a∥1 ≤ √

q∥a∥2. Hence, it suffices to show

(5.43)

max
j∈S∪M

∥(Xj)T {Σ(Xβ̂a)−Σ(Xβ0)}XM∪S∥2 = Op

(√
n(s+m)

)
.

Using Taylor’s theorem, we have

(Xj)T {Σ(Xβ̂a)−Σ(Xβ0)}XM∪S(5.44)

≤
∫ 1

0
(β̂a − β0)

TXdiag
{
Xj ◦ b′′′(X{tβ̂a + (1− t)β0})

}
XM∪Sdt.

By Theorem 2.1, we have Pr
(
β̂a ∈ N0

)
→ 1. Hence, we have

Pr


 ∪

t∈[0,1]

{
tβ̂a + (1− t)β0 ∈ N0

}

→ 1.

By Condition (A1),

sup
t∈[0,1]

λmax

{
XM∪Sdiag

(
Xj ◦ b′′′(X{tβ̂a + (1− t)β0})

)
XM∪S

}
= Op(n).

By Cauchy-Schwarz inequality, we have

∥(Xj)T {Σ(Xβ̂a)−Σ(Xβ0)}XM∪S∥2
≤ sup

t∈[0,1]

∥∥∥(β̂a − β0)
TXdiag

{
Xj ◦ b′′′(X{tβ̂a + (1− t)β0})

}
XM∪S

∥∥∥
2

≤ ∥β̂a − β0∥2 sup
t∈[0,1]

λmax

{
XM∪Sdiag

(
Xj ◦ b′′′(X{tβ̂a + (1− t)β0})

)
XM∪S

}

= Op(
√
n(s+m)).

This proves (5.43).
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SUPPLEMENTARY MATERIAL

Supplement to “Partial penalization for high dimensional test-

ing with linear constraints”:

(doi: COMPLETED BY THE TYPESETTER; .pdf). This supplemental
material includes power comparions with existing test statistics, additional
numerical studies on Poisson regression and a real data application, dis-
cussions of Condition (A1)-(A4), some technical lemmas and the proof of
Theorem 2.1.
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