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Abstract 13 

Questions 14 

Rates of plant community shifts after environmental changes depend on how quickly affected 15 

species are gained and lost. Understanding how the balance between extinction and colonisation 16 

varies over time, and how it is influenced by local and landscape factors, is essential to 17 

understanding overall change trajectories. Investigating change requires data at several time-18 

steps over sufficient periods, and the paucity of such data represents an important knowledge 19 

gap. We ask: 1. how variation over time in the rates of species’ extinction and species’ 20 

colonization controls the trajectory of biodiversity change in abandoned semi-natural grasslands? 21 

and 2. can landscape composition and habitat history modify change trajectories by acting 22 

independently on groups within plant communities?    23 

Location 24 

Sweden, Stockholm Archipelago. 25 

 26 

Methods 27 

We use data on plant composition, management history and landscape context in former 28 

grasslands, abandoned at different points since 1901, in a space-for-time analysis, comparing 29 

rates of grassland species loss and forest species establishment and investigating resulting 30 

biodiversity trajectories.  31 

Results 32 

Grassland species declined steeply in recently abandoned habitats before levelling off, while the 33 

accumulation of forest species was linear, with no plateau reached even at the longest time since 34 

abandonment. Hence, we observed a trough in biodiversity, with an initial decline in overall 35 
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species richness followed by a partial recovery. Only forest species gain was enhanced by nearby 36 

habitat availability. 37 

Conclusions 38 

Information on community compositional changes over short time periods may be misleading 39 

about the extent and even direction of ongoing biodiversity gains and losses. Moreover, the non-40 

linear changes observed suggest thresholds in time, after which succession to the forest 41 

community accelerates and the ability to manage a return to the grassland community 42 

diminishes. Accounting for the combined influence of landscape composition and history is key 43 

to fully understanding community shifts over time.  44 

Keywords: Biodiversity, Colonization, Extinction, Grassland abandonment, Succession, Land 45 

use change, Time lag, Vegetation dynamics. 46 

Introduction 47 

Ongoing global land use changes are causing loss, fragmentation and degradation in quality of 48 

many natural and semi-natural habitats (Foley et al. 2005). Such changes are generally expected 49 

to result in significant biodiversity losses, as local conditions become unsuitable for many 50 

species and important meta-population dynamics are disrupted (Newbold et al. 2015). Specialist 51 

species, frequently limited to undisturbed or extensively managed habitats, are particularly 52 

vulnerable due to the narrow range of conditions they can tolerate and their poor ability to rescue 53 

threatened populations via dispersal (Ewers & Didham 2006; Lindborg et al. 2012). Despite this, 54 

observed temporal trends in local biodiversity are often inconsistent, and heavily dependent on 55 

the type of environmental change that occurs (Vellend et al. 2013; Vellend et al. 2017).  56 
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Long lived plants or those that regenerate clonally or via the soil seed bank are capable of 57 

persisting as remnant populations following unfavourable change, even where their future local 58 

extinction is likely (Eriksson 1996; Vellend et al. 2006; Plue & Cousins 2013). Similarly, poorly-59 

dispersing species take time to colonize new habitat, particularly where it is isolated from source 60 

populations (Brunet 2007; Kimberley et al. 2014). The timescales over which species richness 61 

change are therefore dependent on the relative magnitudes of these co-occurring “extinction 62 

debts” and “colonization credits”, and the rates at which they are settled (Jackson & Sax 2010). 63 

Where delayed colonisations and extinctions equilibrate over different periods, transient 64 

“biodiversity deficits” or “biodiversity surpluses” (sensu Jackson and Sax, 2010) may develop, 65 

leading to short term troughs or peaks in overall diversity. Furthermore, plant community 66 

compositional change can become decoupled from changes in biodiversity, with changes in 67 

species composition occurring more quickly than changes in absolute species richness 68 

(Hillebrand et al. 2018). The full implications for species diversity are unlikely to become 69 

apparent until after all delayed extinctions and colonisations are realised. 70 

Despite the theory detailed above, knowledge of community change at long-term but fine-71 

grained temporal scales remains limited. In particular, differing trajectories followed by 72 

concurrently declining and increasing species after human induced change have rarely been 73 

examined in depth (McGill et al. 2015; Halley et al. 2017). Studies of trends in species diversity 74 

are often over relatively short timescales, hindered by a lack of temporal resolution in data, or 75 

generally focus upon a single set of declining or colonizing species, often within one particular 76 

habitat type (e.g. Saar et al. 2012; Naaf & Kolk 2015; Lehtilä et al. 2016, Vellend et al, 2017, but 77 

see e.g. Van Calster et al. 2008). Rates and even directions of compositional change can be 78 

modified by aspects of habitat history and landscape configuration (Vellend 2003; Perring et al. 79 
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2018). Hence, long-term empirical data examining trends underlying general biodiversity 80 

patterns, ideally across broad spatial scales, are essential to fully understand and predict plant 81 

community changes following environmental change (Hillebrand et al. 2018). 82 

In semi-natural grasslands the removal of regular, non-intensive disturbance with the 83 

abandonment of traditional management methods results in substantial changes in plant 84 

communities.  Frequently succession to forest occurs, along with a shift towards species able to 85 

compete for light or tolerate shade, and away from those adapted to disturbance (Poschlod et al. 86 

2005; Vandewalle et al. 2014; Neuenkamp et al. 2016).  Together with pressures of agricultural 87 

intensification and habitat loss within the wider landscape, management abandonment has 88 

contributed to a loss of vulnerable species across multiple taxa (Öckinger et al. 2006; Uchida & 89 

Ushimaru 2014). Although this has negative consequences for some aspects of biodiversity, 90 

succession on former semi-natural grasslands or former agricultural land might provide habitat 91 

for species suited to deciduous forest, many of which are also threatened by habitat loss and 92 

fragmentation in intensively managed landscapes (Kimberley et al. 2014; McCune & Vellend 93 

2015).  94 

There is some evidence that forest species accumulation occurs more quickly than grassland 95 

specialist loss, leading to an increase in biodiversity, potentially preceding a later decline as the 96 

extinction debts of grassland species are settled (Bagaria et al. 2015). However, the extent to 97 

which this process applies generally and how it might be influenced by different local and 98 

landscape scale factors is unclear. Although some plants are able to remain for some time 99 

following grassland fragmentation or abandonment (Lindborg and Eriksson 2004, Vandewalle et 100 

al. 2014), substantial grassland specialist extinctions have been detected over periods of less than 101 

30 years (Pykälä et al. 2005; Deák et al. 2016; Neuenkamp et al. 2016). While the presence of 102 
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nearby intact grasslands may help slow population declines of grassland species (Evju et al. 103 

2015; Hooftman et al. 2015), this may only be the case in very recently abandoned areas, where 104 

light availability remains high enough for grassland species establishment (Bagaria et al. 2015; 105 

Lindgren et al. 2018). Conversely, poorly-dispersing forest specialist species are slow to colonize 106 

new habitat, particularly where it is isolated from source populations (De Frenne et al. 2011; 107 

Brunet et al. 2011; Brunet et al. 2012; Naaf & Kolk 2015; Kimberley et al. 2016). Hence, in such 108 

cases grassland species extinction would be expected to occur at a faster rate than forest species 109 

colonization, although this difference may be less clear in areas with higher amounts of nearby 110 

forest habitat. Trajectories of community compositional change are therefore likely to be 111 

dependent on the balance between the suitability of both local environment and landscape 112 

composition for winning and losing species, emphasizing the need to understand better the 113 

factors that control the presence and magnitude of temporal lags (Hylander & Ehrlén 2013).  114 

Here, we investigate temporal trends in species richness during forest succession on abandoned 115 

semi-natural grasslands. Using land-cover information from several time points, in combination 116 

with detailed plant survey data, we create a space-for-time analysis capturing the progression of 117 

plant communities across multiple stages of succession over a period greater than 100 years. 118 

From this we aim to assess how rates of forest species gain and grassland species loss differ, and 119 

the extent to which present day and historical surrounding landscape influence the extinction and 120 

colonization of species with differing habitat preferences, thus providing an insight into 121 

biodiversity change in typical rural landscapes. 122 

Methods 123 

Study area 124 
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The study area comprises a 4323-hectare region on four islands within the Stockholm 125 

archipelago, located in the Baltic Sea northeast of Stockholm, Sweden, within the boreo-nemoral 126 

zone. The area has been subject to human activity for many hundreds of years, comprising 127 

farming, low intensity grassland management and wood production. Mowing and grazing 128 

practices were almost entirely abandoned in the mid-20th century, leading to a decline in the 129 

areas of meadow (traditionally mown grasslands, often on wetter land) and outfield (marginal 130 

land used for livestock grazing around houses and crop fields). Consequently, forest habitat now 131 

dominates (mostly coniferous but with some deciduous or mixed areas, particularly on former 132 

meadows or grazed outfield), along with arable land and built-up areas. Hence, the area 133 

represents a typical modern agricultural/forest landscape, where the traditionally heterogeneous 134 

landscape has become more homogeneous following land use change. 135 

Landscape data 136 

We used economic maps from 1901 (“Häradsekonomiska kartan”), in combination with black 137 

and white aerial ortho-rectified photographs dating from 1942 to identify areas of past grassland 138 

habitat. The economic maps contain information on major land use (the locations of open water, 139 

arable fields, meadows and outfield land (Swedish “Utmark”; a combined class representing 140 

forest and grazed non-arable land)), in addition to major settlements and roads. Land that was 141 

categorised as meadow in 1901 was manually digitized and classified as meadow grassland. 142 

Land mapped as “outfield” in 1901 and where no trees were present in the 1942 aerial 143 

photographs was also digitized and classified as grazed grassland. Non-arable areas that were 144 

open in 1942 are highly likely to have been subject to grazing activity in 1901. These digitized 145 

grasslands were used as potential plant survey sampling sites (.  146 
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A series of subsequent aerial photographs was used to determine the point at which former 147 

grasslands became encroached by forest (i.e. an unbroken canopy was present over the whole 148 

area). This series included the 1942 images, in addition to others from 1960, 1995 (also black 149 

and white), 2008 and 2015 (colour infra-red). To ensure consistency of data collection the point 150 

of forest encroachment was assumed to have occurred midway between the latest date an open 151 

area was observed and the earliest showing a closed canopy. This time point was subsequently 152 

used in all analyses as an estimate of the age of wooded habitat on former managed grassland 153 

areas.  154 

We used several spatial variables to investigate the influence of the surrounding landscape on 155 

plant species composition. The presence of nearby open habitat enables grassland species to 156 

rescue threatened populations through dispersal (Eriksson 1996; Evju et al. 2015), while 157 

proximity to a dispersal source is important for colonization of new habitat areas by forest 158 

specialists (Vellend 2003; Brunet 2007; Paal et al. 2017).  Hence, we extracted the amount of 159 

both present day open and forest habitat within a 200 m radius of sampling plots from a 160 

manually digitized layer, created by classifying land as open, forest or built-up based on the 2015 161 

aerial photographs. Since many grassland species display a stronger association with past 162 

landscape configuration than from the present day (Lindborg & Eriksson 2004; Otsu et al. 2017), 163 

the amount of open and forest habitat present in 1901 was also estimated for the same areas, by 164 

summing the meadow and grazed grassland areas identified from the historical maps 165 

(Supplementary material Appendix S1). 166 

Plant species data 167 

In July and August 2016, all plant species were inventoried in 130 plots of 5 x 5 m. These were 168 

placed randomly within a random selection of grasslands as classified in 1901. Exact numbers in 169 



9 
 

each category varied according to their frequency in the landscape (open in 2016 = 31, 170 

abandoned 2008-2016 = 2, abandoned 1995-2008 = 13, abandoned 1960-1995 = 34, abandoned 171 

1945-1960 = 33, abandoned 1901-1945 = 17). Seventy-six of these plots were located in former 172 

meadow habitat and fifty-four in former grazed outfield locations. 173 

Statistical analyses 174 

We tested for nested patterns within plant communities across sampling sites. Nestedness 175 

analyses allow for the identification of consistent shifts in both species richness and composition 176 

across communities. They are therefore an effective tool for observing ordered extinction and 177 

colonization events (Ulrich et al. 2009; Sasaki et al. 2012). The degree of nestedness was 178 

investigated using the NODF (nestedness based on overlap and decreasing fill) metric (Almeida-179 

Neto et al. 2008). NODF uses the extent to which row and column sums decrease from left to 180 

right and top to bottom across a maximally packed community presence-absence matrix (i.e. 181 

sorted by species frequency of occurrence and plot species richness), with perfect nestedness 182 

occurring where all species found in less species-rich sites are also present in all more species 183 

rich communities (Sasaki et al. 2012).   184 

Here, three separate analyses were performed. The first included the full plant occurrence 185 

dataset, to investigate trends in overall species richness. Additionally, two subsets of the full 186 

dataset were created, based on species’ preferences for either deciduous forest (species found 187 

mainly in closed forest and species found in forest openings or edges) or open land (occurring 188 

mainly or solely in open habitats) according to Heinken et al. (2019). These were considered 189 

forest and grassland specialist communities respectively. Generalist species, capable of surviving 190 

in both forest and open habitats and therefore equally likely to exist across former grasslands of 191 

all ages, were excluded from both forest and grassland species datasets to prevent noise 192 
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dampening the signal observed in more specialized species (see Supplementary material 193 

Appendix S2 for species categorizations).  194 

Nestedness was determined by testing for a significant difference between the observed NODF 195 

value and the mean NODF of 999 simulated random communities using the function oecosimu in 196 

the R package vegan (Almeida-Neto et al. 2008, Oksanen et al. 2017). The default “r00” method 197 

was applied, with a one-tailed significance test (with the null hypothesis that the nestedness 198 

statistic of the overall community was not greater than the average randomly simulated 199 

community). The plot ranks of individual sampling plots (overall community plot rank order, 200 

grassland community plot rank order and forest community plot rank order) were then used as 201 

response variables in subsequent statistical models. These ranks, ranging from 1 to 130, are 202 

derived from the position of each plot in the maximally packed nested matrix. Plant communities 203 

in plots of higher absolute rank value are considered nested subsets of the communities in plots 204 

with lower absolute rank value. Hence, we were able to explicitly establish whether the response 205 

variable used represents ordered extinctions/colonizations over time as forests age and extinction 206 

debts and colonization credits created by forest encroachment are gradually settled, rather than a 207 

temporal turnover of distinct communities. Raw rankings generated were reversed to provide a 208 

more intuitive variable, whereby a low value represents a small number of species present within 209 

a plot and a high value represents a large number of species present.  210 

Subsequent models were fit using the gamm function in the package mgcv in R (Wood, 2006). 211 

Generalized additive mixed models (GAMMs) use penalized regression splines to model smooth 212 

terms where the exact shape of the relationship between predictor and response is not known a 213 

priori. Time since forest encroachment was included as a smooth term, to allow potential non-214 

linear effects of time since change to be identified. The maximum degrees of freedom for the 215 
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smooth term was limited to six, due to the number of unique values obtainable from the aerial 216 

photographs. The significance of the smooth term in the GAMM indicates the importance of 217 

time since grassland abandonment in determining the nested plot rank, while the estimated 218 

degrees of freedom indicates the shape of the relationship between time since change and 219 

community composition (Wood, 2011). 220 

Three GAMMs were fit using the three plot rank orders (overall and for forest specialists and 221 

grassland species) as response variables. All models included time since grassland abandonment, 222 

habitat class in 1901 (meadow or outfield) and amount of surrounding open habitat in 1901 as 223 

explanatory variables (surrounding forest habitat in 1901 was too closely correlated with 224 

surrounding forest in 2015 to be included). The model of forest species plot rank also contained 225 

the area of surrounding forest habitat in 2015 as an additional predictor, while the model for 226 

grassland species contained the surrounding open land area in 2015. These two landscape 227 

variables were non-independent (land occupied by forest cannot also be occupied by open 228 

habitats) and therefore they were not included within the same model. For the overall species 229 

richness model, since it was hypothesized a priori that the amount of surrounding suitable 230 

habitat would have a stronger effect on forest species colonization than grassland species 231 

extinction, the amount of forest habitat was used. It should be noted however that higher levels 232 

of forest habitat also mean lower levels of open habitat when interpreting these results. To 233 

account for possible spatial autocorrelation occurring where multiple sampling points occurred 234 

within the same former grassland patch, 1901 grassland patch identity was included as a random 235 

intercept.   236 
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Results 237 

Overall, forest and grassland communities all showed significant nested patterns (Table 1). 238 

Communities within the least species rich sites (overall and in terms of both forest and grassland 239 

species) can therefore be considered more nested subsets of the species present in more species 240 

rich areas than would be expected under a random distribution. 241 

In all models, the plot rank order of communities within the nested matrix was significantly 242 

related to time since forest encroachment (Table 2, Figure 1). As expected, the number of forest 243 

specialists within sampling plots increased with time since grassland abandonment. The increase 244 

was modelled with an estimated degree of freedom of one in the GAMM, suggesting a linear 245 

relationship over the age gradient (Figure 1b). There was no evidence of levelling off, even in the 246 

oldest woodland habitats. Conversely, the relationship between grassland species and time since 247 

woody encroachment was non-linear (Figure 1c, Table 2). A large reduction in grassland species 248 

plot rank was observed with increasing time since abandonment. However, the steepness of the 249 

decline reduced and then leveled off in former grasslands that had been abandoned for more than 250 

20 years. Overall plot rank order followed a concave relationship, falling initially with increasing 251 

age while increasing gradually again in the oldest plots, although the plot ranks of the oldest 252 

abandoned grasslands were still lower than those that remained open. 253 

Former meadow habitats differed in overall plot rank from former grazed outfields, with former 254 

outfields significantly more species rich. The lack of a similar effect of grassland management 255 

history on either forest or grassland communities suggests that this is related to the number of 256 

generalist species able to colonize these sites. Meadows are often sited on moister, more 257 

productive land, potentially providing environmental conditions suited to a narrower range of 258 

species. 259 
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A larger area of forest surrounding a vegetation plot in 2015 had a positive effect on forest plot 260 

rank, indicating that forest specialist species accumulated faster where there was more forest 261 

habitat nearby. Surrounding forest area also had a significant positive effect on overall plot rank. 262 

Conversely, the amount of open habitat in 2015 had no effect on the number of grassland species 263 

present in sampled plots. The amount of surrounding grassland in 1901 also had no significant 264 

effect in any of the models tested. 265 

Discussion 266 

Our results show that rates of species’ extinction and colonisation vary both separately and over 267 

time within habitats following land use change, with important consequences for how shifts in 268 

community composition progress. Such differences in rates of species turnover for different 269 

species groups have previously been predicted, however they have seldom been observed due to 270 

difficulties in obtaining local scale data at sufficient temporal resolution (Jackson & Sax 2010; 271 

McGill et al. 2015). Here, using a detailed space-for-time substitution in recently abandoned 272 

grasslands, we show that substantial early losses of grassland species are not initially offset by a 273 

corresponding increase in forest species. Over time however, the rate of grassland species loss 274 

slows, with a continuing gradual increase in forest specialists contributing to a partial recovery in 275 

overall biodiversity at later successional stages. Since forest specialist colonization credits still 276 

appeared to remain, species richness might be expected to continue to increase for some time 277 

(Naaf & Kolk 2015). Hence, grassland abandonment and slow forest succession has possibly led 278 

here to a short-term trough in biodiversity, likely to diminish (to some degree) once future 279 

colonisations are complete. Eventually, a relatively modest impact on total species numbers may 280 

be observed at the local scale once communities have equilibrated, despite a substantial shift in 281 

community composition (Hillebrand et al. 2018). This suggests the presence of a point following 282 



14 
 

grassland abandonment, before which community shifts are dominated by the initial loss of open 283 

species, and after which ongoing change becomes dominated by forest specialist colonisation. 284 

Once this point has been crossed, the lack of remnant populations means that any attempt to 285 

restore the grassland community will rely largely on colonisation from other sites, or from the 286 

soil seed bank.  287 

The non-linear changes seen here suggest that long-term trends may differ substantially from 288 

short-term patterns observed between any two intermediate points (Ewers et al. 2013). Hence, it 289 

is likely to be difficult to understand and predict eventual biodiversity change from changes 290 

which have occurred over a short period. Similarly, trends in abandoned grasslands which are at 291 

different stages of succession may appear inconsistent unless their varying history is properly 292 

accounted for. Understanding the factors that control the balance between co-occurring 293 

extinction and colonization is therefore vital in predicting future shifts in biodiversity and 294 

community composition within changing landscapes. In particular, if colonisation and/or 295 

extinction are affected by landscape habitat configuration, this may mean processes such as 296 

habitat fragmentation or loss of dispersal vectors can fundamentally change successional 297 

trajectories (Bullock et al. 2002). Although the amount of nearby forest habitat had a positive 298 

effect on forest species colonization, we saw no effect of open habitat amount (past or present) 299 

on grassland specialists. This is contrary to other studies, which have found relationships 300 

between historical landscape composition and present day grassland species occurrence (Helm et 301 

al. 2006; Auffret et al. 2018). The difference is likely due to the relative lack of remaining semi-302 

natural grassland within the study area. The likelihood of threatened species being rescued by 303 

immigration from neighbouring populations declines with increasing isolation and decreasing 304 

habitat amount (Evju et al. 2015; Hooftman et al. 2015), and grassland species are often heavily 305 
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reliant on grazing livestock to disperse seeds (Plue & Cousins 2018). Hence the complete loss of 306 

landscape-scale grazing and grassland management in the study area used here is likely to have 307 

drastically reduced species’ resilience to changes in habitat availability (Kuussaari et al. 2009; 308 

Eriksson & Cousins 2014; Neuenkamp et al. 2016). This may have contributed to a more rapid 309 

loss of vulnerable species and a relatively brief period before extinction debts were fully paid. 310 

Semi-natural grasslands are a key biodiversity refuge within European landscapes. Their long 311 

continuity of low-intensity mowing or livestock grazing, without significant application of 312 

artificial fertilizers, means that they act as a habitat for many rare and specialised plant species 313 

(Wilson et al. 2012; Eriksson & Cousins 2014). The loss of grassland species observed here is 314 

therefore of conservation concern. Grassland specialists initially declined steeply, suggesting that 315 

local management abandonment leads to a relatively fast rate of extinction (Kahmen & Poschlod 316 

2004; Öckinger et al. 2006; Uchida & Ushimaru 2014; Neuenkamp et al. 2016). This is in 317 

contrast to grasslands that are still regularly grazed or mown but which have been subjected to 318 

similar landscape fragmentation, where extinction debts lasting up to 100 years have been 319 

identified (Krauss et al. 2010; Cousins & Vanhoenacker 2011), although this may depend on the 320 

magnitude and rate of fragmentation, since other studies have found no evidence of extinction 321 

debts (Adriaens et al. 2006). However, despite general declines overall, abandoned grasslands 322 

(especially those wooded for 20 years or less) retained a proportion of the grassland specialist 323 

species found in open areas, with a number of species persisting even in forest habitat older than 324 

60 years.  325 

One explanation for the inferred delayed loss of grassland species is the continued presence of 326 

remnant populations of persistent plants that are doomed to eventual local extinction in areas that 327 

have recently become unsuitable (Eriksson 1996; Jonason et al. 2014). Plants forming remnant 328 
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populations in abandoned semi-natural grasslands tend to be long lived and capable of clonal 329 

reproduction, rather than able to tolerate increased shading and competition from woody species 330 

(Johansson et al. 2011). The response of grassland species to afforestation is complex however, 331 

and depends on the rate of successional change and on the degree of specialization of affected 332 

species (Lehtilä et al. 2016). In some cases persistence in abandoned grasslands might also be 333 

related to a greater ability to tolerate the changed environment (Kahmen & Poschlod 2004; 334 

Falster et al. 2017). A gradual change across a successional gradient might result in slow 335 

(apparently delayed) changes in plant species composition, yet species might be lost rapidly if 336 

and when individual environmental thresholds are crossed. The reverse may be true for the slow 337 

colonization of forest specialist species. Those that are more able to tolerate an early 338 

successional environment or take advantage of modified abiotic conditions may arrive more 339 

quickly, with stricter specialists arriving at a later date (Baeten et al. 2010). Both persistence and 340 

greater environmental tolerance are likely to result in an eventual shift in community 341 

composition, but the mechanisms responsible for the continued existence of remnant populations 342 

and apparent extinction debts and colonization credits may vary (Hylander & Ehrlén 2013). In 343 

fact, the environmental limitations constraining species establishment can vary even at a species 344 

level over relatively short timescales (Baeten & Verheyen 2017). 345 

Space-for-time analyses must be interpreted carefully, to avoid the possibility of wrongly 346 

attributing observed patterns to temporal factors rather than other, underlying environmental 347 

differences (Johnson & Miyanishi, 2008). However such comparisons are highly valuable tools 348 

in investigating long term trends where genuine time series data is difficult or impossible to 349 

obtain. Chronosequences are particularly applicable where, as here, the analysis addresses highly 350 

comparable sites (in terms of history, climate and environment) which are converging over time, 351 
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using multiple aspects of community composition and with data from several intermediate time 352 

steps (Walker et al. 2010). Time since forest encroachment was used as a proxy for time since 353 

grassland abandonment, but this is likely an underestimate due to the lag before canopy cover 354 

fully develops (Hudjetz et al. 2014). The exact periods over which changes are occurring may 355 

therefore be somewhat longer. Additionally, even remaining open land may have previously lost 356 

species due to reductions in habitat at the landscape scale (Hooftman et al. 2015). Comparison 357 

with the state of grasslands prior to these losses likely would have revealed an additional step of 358 

species decline.  359 

The rate of grassland species loss following management abandonment highlights the importance 360 

of continued management to maintain grassland species diversity, and suggests that longer 361 

abandoned grasslands are likely to be less viable as targets for grassland restoration efforts 362 

(Öckinger et al. 2006; Waldén & Lindborg 2016; Otsu et al. 2017; Waldén et al. 2017). 363 

Similarly, since forest species accumulation continued in former grasslands that had been 364 

wooded for over 60 years, offsetting the loss of older forest areas with newly created or restored 365 

habitat is likely to take a long time to pay off. This is likely to be particularly true where forest 366 

habitat is less abundant within the landscape, meaning unoccupied newly created areas are 367 

isolated from potential source populations (Brunet et al. 2011; Naaf & Kolk 2015). Maintaining 368 

existing semi-natural grasslands and forests of long continuity is therefore vital to preserving 369 

specialist plant species (Peterken 2000; Verheyen & Hermy 2004; Johansson et al. 2008). 370 

Time since change is a key factor determining how changes in community composition progress. 371 

Our results show that overall changes in plant communities in successional grasslands comprise 372 

parallel changes across forest species and open land species, which vary independently in rate 373 

both over time and depending upon the composition of the surrounding landscape. Untangling 374 
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the separate responses of declining and increasing species as communities adjust to 375 

environmental and landscape change over the long-term is vital to help to understand the 376 

ecological mechanisms driving extinction debts and colonization credits, and therefore 377 

biodiversity responses to ongoing global change drivers.  378 
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Table 1. Nestedness based on overlap and decreasing fill metrics for 130 observed plant 574 

communities in grasslands abandoned at different times, the mean of 999 random 575 

simulated communities, and the result of a one-tailed significance test between these two 576 

values to test the nestedness of observed communities, presented for the overall, forest 577 

specialist and grassland specialist species communities. 578 

Community Observed NODF Mean sim NODF P value 

Overall 18.099 9.141 <0.001 

Forest specialist 38.029 11.965 <0.001 

Grassland specialist 15.263 6.109 <0.001 

 579 

  580 
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Table 2. Results from GAMM models of nestedness plot ranks versus time since 581 

abandonment and landscape variables, for overall plant communities, forest specialist 582 

plant communities and grassland specialist plant communities. Estimated degrees of 583 

freedom are shown for smooth terms and indicate the shape of the modelled relationship 584 

between the richness of separate communities and time since forest encroachment. 585 

Adjusted R squared values are for the entire model, as output from GAMM in mgcv. 586 

Significant terms (at the 0.05 level) are shown in bold. 587 

Model Predictor Est. 

df 

Parameter 

estimate 

P 

value 

  Adjusted 

R2 

Overall plot 

rank 

Intercept  31.414     

 1901 Class  15.783 0.042    

 Surrounding forest 

(2015) 

 2.545 0.039    

 Surrounding open 

(1901) 

 2.424 0.256    

 Time since 

encroachment 

1.932  0.037   0.096 

        

Forest plot 

rank 

Intercept  39.703     

 1901 Class  10.923 0.083    
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 Surrounding forest 

(2015) 

 2.248 0.027    

 Surrounding open 

(1901) 

 1.138 0.518    

 Time since 

encroachment 

1.00  <0.001   0.365 

        

Grassland 

plot rank 

Intercept  71.875     

 1901 Class  0.175 0.975    

 Surrounding open 

(2015) 

 0.374 0.760    

 Surrounding open 

(1901) 

 -2.017 0.207    

 Time since 

encroachment 

2.778  <0.001   0.449 

  588 
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Figures 589 

 590 

Figure 1. Modelled relationship between species diversity and time since forest 591 

encroachment in abandoned grasslands. Solid lines show the fitted partial response of plot 592 

rank to time since forest encroachment, scaled and centred on zero and with all other 593 

covariates held constant. Dashed lines represent 95% confidence bands. GAMM models 594 
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shown for (a) overall plant communities, (b) forest specialist plant communities and (c) 595 

grassland specialist communities.   596 
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Appendix S1: Map showing the islands included in the study and the locations of remaining 600 

and former open grasslands. 601 

 602 


	FC wiley bullock
	Manuscript_JVS_Revision_clean

