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ABSTRACT

Recidivism prediction provides decision makers with an assessment of the likelihood that a criminal
defendant will reoffend that can be used in pre-trial decision-making. It can also be used for prediction
of locations where crimes most occur, profiles that are more likely to commit violent crimes. While
such instruments are gaining increasing popularity, their use is controversial as they may present
potential discriminatory bias in the risk assessment. In this paper we propose a new fair-by-design
approach to predict recidivism. It is prototype-based, learns locally and extracts empirically the data
distribution. The results show that the proposed method is able to reduce the bias and provide human
interpretable rules to assist specialists in the explanation of the given results.
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1 Introduction

Predictive algorithms are becoming popular within the criminal justice system as they operate as risk assessment
instruments. Such instruments may be used in pre-trial decision-making, prediction of locations where crimes most
occur, profiles that are more likely to commit violent crimes, as well as to predict people who are likely to reoffend
[1, 2]. In each of these cases, a high-risk misclassification may negatively impact on a criminal defendant’s outcome
[3, 4]. Therefore, it is highly important to guarantee that such instruments are free from discriminatory biases [5]. Some
state-of-the-art algorithms may provide unethical practices and inequitable outcomes for minorities [6].

The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) risk assessment tool, has been
developed in 1998, and since then has been used to assess more than 1 million offenders [3]. In a study conducted
by ProPublica [3] that analyzed the efficacy of COMPAS on more than 7000 individuals arrested in Broward County,
Florida between 2013 and 2014 it was found that the likelihood of a non-recidivating black defendant being assessed as
high risk is nearly twice that of white defendants. African-american defendants who did not recidivate were incorrectly
predicted to reoffend at a rate of 44.9%. On the other hand, their white counterparts were incorrectly classified with
23.5%. Moreover, white defendants who recidivated were incorrectly predicted as not high risk to reoffend with 47.7%,
African-americans who recidivated were incorrectly predicted as not high risk to reoffend with 28.0%. These findings
indicate that the COMPAS instrument has considerably higher false positive rates and lower false negative rates for
black defendants than for white defendants [3].

In this paper we propose a method and algorithm that offers self-learning locally generative models that work together
and require very light supervision in the form of few training labeled data samples. This is in sharp contrast to the
traditional approach where learning is, in essence, only an averaging of the history. The proposed approach is based on
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using prototypes and learning locally around them extracting the empirical data distribution called typicality as well
as the data density [7]. The proposed approach is recursive, non-iterative, non-parametric, thus computationally very
lean. This adds to its efficiency in terms of time and computational resources. From the user perspective, the proposed
approach is clearly understandable to human users since it can be represented in a linguistic IF...THEN form. It
combines reasoning and logic with machine learning. It can also be presented as a deep neural network. Finally, it also
has a statistical nature an empirical form of the pdf [7].

In this paper we apply our proposed approach to the COMPASS data in order to provide more fair results, avoiding
discrimination and bias.

The remainder of this paper is organized as follows: The methods and algorithms section introduces the proposed
fair-by-design approach. The experimental data employed in the analysis and results are presented in the results section.
Conclusion is presented in the last section of this paper.

2 Methods and Algorithms

The prototype-based learning is the core of the proposed method which represents (their focal points are prototypes)
locally valid generative models described by multimodal Cauchy distribution [7]. The meta-parameters are initialized
with the first observed data sample. The proposed algorithm works per class.

P ← 1; µ← x̄i; (1)
where µ denotes the global mean of data samples of the given class. P is the total number of the identified prototypes
from the observed data samples.

Each class C is initialized by the first data sample of that class:

C1 ← x1; p1 ← x̄1;

S1 ← 1; r1 ← r∗;
(2)

where, p1 is the prototype of C1; S1 is the corresponding support (number of members); r1 is the corresponding radius
of the area of influence of C1.

The next step is to calculate the data density at x̄i and pj (j = 1, 2, ..., P ) is a Cauchy function.

Di(x̄i) =
1

1 + ||xi−pi||2
1−||µi||2

. (3a)

Then the algorithm absorbs the new data samples one by one by assigning them to the nearest (in the feature space)
prototype:

n∗ = argmin
j=1,2,...,P

(||x̄i − pj ||2) (4)

Because of this form of assignment, the shape of the data partitioning is of the so-called Voronoi tesselation type [8].
We call all data points associated with a prototype data clouds, because their shape is not regular (e.g., hyper-spherical,
hyper-ellipsoidal, etc.) and the prototype is not necessarily the statistical and geometric mean [7].

Then we check if the following condition [7] is met:

IF (Di(x̄i) ≥ max
j=1,2,...,P

Di(pj)) OR (Di(x̄i) ≤ min
j=1,2,...,P

Di(pj))

THEN (add a new data cloud)
(5)

It means that x̄i is out of the influence area of pj . Therefore, x̄i becomes a new prototype of a new data cloud with
meta-parameters initialized by equation (6).

P ← P + 1; CP ← {x̄i}; pP ← x̄i; SP ← 1; rP ← ro; (6)

A new data cloud is then formed around this new prototype. Otherwise, parameters of the nearest existing data cloud
are updated online. It has to be stressed that all calculations per data cloud are performed on the basis of data points
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associated with a certain data cloud only (i. e. locally, not globally, on the basis of all data points). One of the strongest
aspects of the proposed approach is its high level of interpretability which comes from its prototype-based, local
generative models as well as as its ability to be expressed as a set of linguistic IF...THEN rule of the following type:

R : IF (x ∼ p1) OR ... OR (x ∼ pP ) THEN (Class c) (7)

where ∼ denotes association/similarity to the prototypes.

The learning algorithm of the proposed method is summarized below.

Learning Procedure

1: While the new data sample of the the c−th class xc,k is available
2: IF k = 1
3: Pc ← 1; µ← x1; C1 ← x1; p1 ← x1; S1 ← 1; rc,1 ← ro;
4: ELSE
5: Calculate Df

i using equation (3a);
6: Update pj (j = 1, 2, ..., P ) using equation (6);
7: IF Condition (eq. 5) is satisfied THEN
8: Add a new data cloud;
9: ELSE

10: Updated nearest data cloud;
11: END
12: END

3 Results

The analysis and results provided in this paper are based on the Broward County data made publicly available by
ProPublica [3]. This data set contains COMPAS recidivism risk decile scores, 2-year recidivism outcomes, and a
number of demographic and crime-related variables on individuals who were scored in 2013 and 2014.

We compare the overall accuracy and groups accuracy with results provided by [3]. We also compare results on false
positives (a defendant is predicted to recidivate but they do not) and false negatives (a defendant is predicted to not
recidivate but they do). It is important to highlight that the proposed approach uses weak supervision (only, 10% of the
available data was used to train the model).

As shown in Table 1, the proposed approach can obtain a better performance in terms of overall accuracy than its
competitors. Moreover, it is important to highlight that the proposed approach works per class, in parallel, therefore, it
can obtain a more balanced result than other state-of-the-art approaches. As shown in Table 1, the proposed approach
was able to reduce the false positive rate for black people from 31.6% (best case with NL-SVM) to 30.2%, additionally,
the false negative rate, when a defendant is predicted to not recidivate but they do, for white population has decreased
from 46.1% in the best scenario with LR2 to 29.6% in the proposed approach.

Table 1: Experimental results
Results LR7[3] LR2[3] NL-SVM [3] COMPAS [3] Proposed Approach

Accuracy (overall) 66.6% 66.8% 65.2% 65.4% 67.7%
Accuracy (black) 66.7% 66.7% 64.3% 63.8% 67.90%
Accuracy (white) 66.0% 66.4% 65.3% 67.0% 68.5%
False positive (black) 42.9% 45.6% 31.6% 44.8% 30.2%
False positive (white) 25.3% 25.3% 20.5% 23.5% 36.8%
False negative (black) 24.2% 21.6% 39.6% 28.0% 34.1%
False negative (white) 47.3% 46.1% 56.6% 47.7% 29.6%
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The proposed approach is prototype-based and it learns locally around the prototypes extracting the empirical data
distribution called typicality [7] as well as the data density. Figure 1 shows the prototypes identified during the learning
phase of the proposed method.

Figure 1: Voronoi Tesselation for the identified prototypes

The rule-based characteristic of the proposed method allows interpretability and explainability of the data. The
prototypes identified for the ‘Two year recidivism for black people’ rule are demonstrated on Table 2.

Table 2: Identified Prototypes for the ‘Two year recidivism for black people’ rule

Features p1 p2 p3 p4 p5 p6 p7 p8 p9
Number of Priors (NP) 14 13 8 8 10 7 2 0 21

Score Factor (SF) 1 1 0 1 0 1 0 0 1
Age above 45 (A45) 0 1 0 0 0 0 0 0 0
Age below 25 (A25) 0 0 0 0 0 0 0 1 0

African American (AA) 1 1 1 1 0 1 1 1 1
Female (F) 0 0 0 0 1 1 1 0 0

Misdemeanor (M) 0 0 0 1 0 0 1 1 0

The rule generated is as follows:

R : IF (



NP
SF
A45
A25
AA
F
M

 ∼


14
1
0
0
1
0
0

) OR (



NP
SF
A45
A25
AA
F
M

 ∼


13
1
1
0
1
0
0

) OR...OR (



NP
SF
A45
A25
AA
F
M

 ∼


21
1
0
0
1
0
0

) THEN ‘Two year recidivism’

(8)

These characteristics favour fairer results than traditional approaches that use only an averaging of the history of the
data, and may ignore relevant information about individuals. In contrast, the proposed approach works locally building
multiple models that have higher chance to capture more diverse data distribution.

4 Conclusion

In this paper we propose a new fair-by-design method to predict recidivism. It learns locally with very light supervision
(using 10% of labeled data) and extracts the empirical data distribution from the data. The results demonstrated that the
proposed method is able to produce fairer and more accurate results than the traditional approaches. Moreover, human
interpretable rules are provided to assist specialists in the explanation of the generated results.
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