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Abstract

This paper experimentally investigates, the suit-
ability of an organic pixelated plastic scintillator
for a coded aperture neutron/gamma imaging sys-
tem. The scintillator used in this study has been
designed as a small scaled detector with an indi-
vidual pixel size of 2.8 mm x 2.8 mm x 15 mm.
Individual blocks of the scintillator have been sep-
arated from one another with ESRTM re�ector foil
to provide over 70% of optical isolation between
pixels. Individual scintillator cells are arranged
into 13x13 array with overall dimension of 39.52
mm x 39.52 mm. In this study the scintillator was
attached to a single channel photomultiplier tube
to assess its pulse shape discrimination capabili-
ties. Initially the scintillator was irradiated with
137Cs gamma-ray source, and gamma-ray pulses
were benchmarked with respect to a mathemati-
cal model. The detector was then irradiated with a
spontaneous �ssion source, 252Cf, and preliminary
results suggested good pulse shape discrimination
potential of the scintillator. It is believed, that it is
the �rst time a small scale pixelated organic plas-
tic scintillator has been tested in context of PSD
capabilities for a coded aperture neutron/gamma
imaging system.

1 Introduction

For decades organic liquid scintillators have been
established as the preferred choice in the �eld of
fast neutron detectors, based on Pulse Shape Dis-
crimination (PSD) methods for mixed-�led charac-
terisation applications [1, 2]. Fluorescence emitted
as a result of particle (neutron or gamma-ray pho-
ton) interaction within the organic medium scin-
tillator is proportional to the rate of energy decay
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of the interacting particle. The �uorescence can
be detected by a dedicated photodetector, such as
photomultiplier tube (PMT). Interactions detected
on the PMT cathode can be further processed to
perform particle separation based on the shape of
the generated pulses [3].
Numerous characterisation studies of organic liq-

uid scintillators have been performed in the past
[4�6]. Despite their proven PSD capabilities, or-
ganic liquid scintillators have been reported to be
�ammable and prone to leaks [7]. Such character-
istics make them not suitable for harsh decommis-
sioning or security environments.
In recent years signi�cance of the organic solid

scintillators has been steadily growing, owing to
their continuously improving PSD performance and
less hazardous characteristics. Even though PSD
performance of plastic scintillators was deemed in-
ferior to liquid counterparts in the past [8], re-
cent �ndings present a comparable performance of
the latest organic plastic scintillator (EJ-276) and
one of the most widely used liquid detectors � EJ-
309 [9].
Up to now, coded aperture neutron imaging sys-

tems utilising organic scintillators (liquid and plas-
tic) comprise scintillator blocks of relatively large
dimensions [10], [11]. Further information related
to coded aperture imaging can be found in authors'
preceding work [12].
In this study a small scale pixelated plastic scin-

tillator (pixel size: 2.8 mm x 2.8 mm x 15 mm)
has been characterised with regards to its neu-
tron/gamma separation performance. The scintil-
lator was irradiated with gamma-ray photons from
a 137Cs source, and the recorded pulses compared
with a mathematical model of a gamma-ray pulse.
Further, the scintillator was exposed to 252Cf spon-
taneous �ssion source and results obtained were
compared with the characterisation results of a sin-
gle block (25.4 mm x 25.4 mm) cylindrical PSD
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Figure 1: Solid organic plastic scintillator (EJ-299-
34).

plastic scintillator.

2 Methodology

Pixelated plastic scintillator (Fig. 1) was coupled
to a single channel ET Enterprises 9107B bialkali
type PMT and placed in a cylindrical light-proof
box made of Al. The complete assembly was then
exposed for 10 minutes to 137Cs gamma-ray source
and a number of pulses recorded using 4 GS/s high
accuracy oscilloscope. Following that the assembly
was exposed for 30 minutes to 252Cf source located
at Lancaster University, Lancaster, UK. The os-
cilloscope was replaced with a customised FPGA
based 12-bit 150 MS/s digitising system to allow
for real-time neutron/gamma discrimination.
The spontaneous �ssion source 252Cf is stored in

a centre of a steel tank �lled with water in order to
modulate the neutron �eld around. When required,
the source is pneumatically release to the edge of
the water tank. The source however, is still ap-
proximately 20 cm away from the edge of the water
tank. Therefore, the actual distance between the
detector front and the source is approximately 35
cm. Furthermore, because of the water and steel in-
teractions before reaching the detector, the neutron
energy spectrum measured at the detector approx-
imates the average energy to 0.7 - 0.8 MeV [12].

3 Results

One of the pulses recorded with the oscilloscope, as
shown in Fig. 2b, has been compared to the mathe-
matical model shown in Fig. 2a. Since the recorded
pulse resembles the expected shape closely, partic-

ularly for the region where neutron/gamma separa-
tion sensitive, it suggests the pixelated scintillator
is capable of producing a pulse that is proportional
to the rate of the energy loss of the interacting par-
ticle; despite the small size of the individual blocks
and the separation between adjoining blocks of 0.24
mm.

(a)

(b)

Figure 2: A comparison of a) A mathemati-
cal model of gamma-ray photon and neutron in-
duced pulses from organic scintillator, b) A recoded
gamma-ray pulse from 137Cs.

Following that, oscilloscope was replaced with
the customised digitiser system, which was previ-
ously used to compare the performance of three
solid organic scintillators [14]. Charge comparison
method (CCM) was used to discriminate between
neutron and gamma-ray events [3]. As shown in
Fig. 2, the di�erence between the two particle types
can be observed through the di�erent rate of the
tail of the pulse. Therefore, the area between the
peak sample and the last detected sample have been
investigated. Long integral corresponds to integral
calculated over the entire pule tail (the peak sample
is used as the �rst sample), whereas the short in-
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tegral was calculated between a speci�c point after
the peak sample and the last sample of the signal.
The same experimental set-up and method were

used to collect the data for both experiments. The
scintillator and PMT assembly was placed 15 cm
away from a water-�lled steel tank where 252Cf
source is normally stored. During the experiments
the source is pneumatically released to the edge of
the tank. In order to reduce the number of gamma-
ray photons a Pb block of 5 cm thickness was placed
adjacent to the water tank. PSD scatter plots pro-
duced during both experiments are presented in
Fig. 3a and Fig. 3b.
The �gure-of-merit (FOM), as de�ned in Eq. (1),

was calculated for the pixelated scintillator and
compared with the FOM �gure previously obtained
for the cylindrical plastic scintillator sample (Ta-
ble 1). In line with the visual analysis of the re-
spective �gures, it can be noticed that the cylin-
drical scintillator sample provides slightly better
neutron/gamma discrimination performance at the
cost of neutron detection e�ciency. The results pre-
sented suggest that the small scale pixelated plastic
scintillator should be capable of performing neu-
tron/gamma separation based on pulse shape anal-
ysis.

FOM =
Peak separation

FWHMg + FWHMn
(1)

Table 1: FOM calculations for each scintillator

Scintillator Exposure time FOM

Cylindrical Sample 30 min 0.551

Pixelated (EJ-299-34) 30 min 0.337

4 Conclusions

Small size of an individual scintillator blocks could
be perceived as a concern, when used as a sensitive
detector neutron/gamma identi�cation application.
Small volume of the blocks could a�ect the interac-
tion probability of the incoming particles. However,
the shape of the pulses obtained (Fig. 3) and lack
of pulse pile-up suggest that not only the correct
signal from individual pixels can be extracted, but
also the pixel separation is su�cient for cross-talk
reduction.
Experiment performed with 252Cf supports the

claim that despite the small pixel size, the pro-
posed sensitive detector is capable of performing
PSD. It should be noted that the pixelated array
was manufactured in August 2017, before the lat-
est plastic scintillator EJ-276 was released by Eljen

(a)

(b)

Figure 3: PSD scatter plots using CCM for: a) Pix-
elated EJ-299-34 plastic scintillator, b) Cylindrical
PSD plastic sample.

Technology. Based on the recently published work
of characterising EJ-276 (replacement for EJ-299-
33/34), it is expected that similar array built with
this new material would signi�cantly improve PSD
performance of the system tested in this paper [9].
Moreover, the presented scintillator could be

matched to a position sensitive PMT (PSPMT),
such as Hamamatsu H9500, to perform localisation
of the particle interactions. Based on previously
performed simulation work, it is believed that such
system be capable of simultaneous neutron/gamma
2D imaging [15]. Moreover, because of the identical
pixel size of the scintillator and cells of the PSPMT,
the optical bond should be improved, and as a re-
sult the quality of neutron/gamma-ray separation.
Further, as shown in Fig. 3a it is very di�cult

to distinguish between the neutron and gamma-
ray plumes. It is expected that low sampling rate
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of the FPGA based digitiser can be insu�cient
for good neutron/gamma-ray separation. Previous
study performed with 250 MS/s digitiser suggests
the PSD quality improvement when the sampling
rate is increased to 500 MS/s [16]. Therefore, it
would be advisable for any readout electronics or
further testing equipment to operate at 500 MS/s.
Water and steel modulation, experienced by

many produced particles, will also contribute to
the lack of clarity in regard to plumes' separation
in Fig. 2a. The quoted 0.7-0.8 MeV average neu-
tron energy is considerably lower than that of the
expected 2.1 MeV. The plastic scintillator EJ-299-
34, which was used in the study, is more suitable
for block machining than EJ-299-33 at the cost
of poorer PSD performance. Previous study has
shown that EJ-299-34 is capable of performing good
PSD with higher average neutron energy sources
(>1 MeV), such as AmBe [17].
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