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We study a new model of quintessential inflation which is inspired by supergravity and string
theory. The model features a kinetic pole, which gives rise to the inflationary plateau, and a
runaway quintessential tail. We envisage a coupling between the inflaton and the Peccei-Quinn
(PQ) field which terminates the roll of the runaway inflaton and traps the latter at an enhanced
symmetry point (ESP), thereby breaking the PQ symmetry. The kinetic density of the inflaton is
transferred to the newly created thermal bath of the hot big bang due to the decay of PQ particles.
The model successfully accounts for the observations of inflation and dark energy with natural values
of the model parameters, while also resolving the strong CP problem of QCD and generating axionic
dark matter, without isocurvature perturbations. Trapping the inflaton at the ESP ensures that the
model does not suffer from the infamous 5th force problem, which typically plagues quintessence.

I. INTRODUCTION

By now we have most of the history of the Universe
figured out. The Hot Big Bang model covers pretty much
the entire timeline, from a few seconds after the original
explosion until the present time, almost. However, the
edges of the story are still unclear, because observations
suggest that the Universe is undergoing accelerated ex-
pansion at very early and very late times and such expan-
sion cannot be part of the hot big bang, where the Uni-
verse is filled with relativistic and non-relativistic matter
only. General relativity dictates that accelerated expan-
sion can occur only if the Universe is filled by an exotic
substance, with negative enough pressure. For the early
Universe, the required substance is usually taken as one
(or more) potentially dominated scalar field and the ac-
celerated expansion phase is cosmic inflation [1–4] and
the scalar is called the inflaton field. Inflation sets the ini-
tial conditions of the Hot Big Bang. For the late Universe
however, the simplest explanation is vacuum density, due
to a non-zero value of the cosmological constant Λ.

The cosmological constant has to be there but what is
its value? The most natural choice is given by the Planck
scale, because this is the only scale in general relativity
and also because this is the cutoff scale of particle theory
(beyond this the theory breaks down). This however is
at odds with nature. This cosmological constant problem
[5] predates the observations of recent accelerated expan-
sion. The way it used to be addressed is by assuming
that the cosmological constant is set to zero by some un-
known symmetry. Once late accelerated expansion was
observed, many authors suggested that this amounted
to observing the true value of the cosmological constant.
The problem is that the associated vacuum density has
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to be comparable to the density of the Universe today,
which is about 120 orders of magnitude smaller than the
“natural” value of Λ. This has been called (by Lawrence
Krauss) “the worst fine-tuning in physics”. To avoid this
fine tuning, it was suggested that, as in inflation, the cur-
rent accelerated expansion is due to another potentially
dominated scalar field, called quintessence; the fifth ele-
ment after baryons, dark matter, photons and neutrinos
[6–8]. It is important to point out that the quintessence
proposal does not solve the cosmological constant prob-
lem because Λ is still assumed to be zero due to some
unknown symmetry.

Since they are both based on the same idea, it is nat-
ural to unify the two in quintessential inflation [9, 10] (for
a recent list of references see [11, 12] and [13, 14]), which
considers that the inflaton field survives until today
and becomes quintessence. Apart from being economic,
quintessential inflation attempts to treat the early and
late accelerated expansion phases in a single theoretical
framework. Moreover, there are some practical advant-
ages as well; for example the initial conditions of quint-
essence are determined by the inflationary attractor.

A scalar potential which satisfies all the requirements
of inflation and dark energy observations is hard to for-
mulate because of the ∼ 110 orders of magnitude differ-
ence in energy density between the inflationary energy
scale and the energy scale of dark energy today. To in-
corporate such a large difference in energy density scales
often requires a very curved scalar potential [15], which
produces inflationary predictions incompatible with the
Planck satellite observations [16]. Moreover, after infla-
tion, the field rolls down the incredibly steep potential
and gains so much kinetic energy that it is transposed
many Planckian distance in field space. This means the
potential is at risk from UV corrections, throwing the
predictability of the theory into question and destabil-
ising the flatness of the potential.

In this paper, to overcome the above problems, we
start with an exponential potential with a non-canonical
kinetic term, featuring a pole at the origin, which can
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be theoretically motivated e.g. in supergravity theories.
We utilise a field redefinition to regain canonical kinetic
terms and thereby transpose the pole to infinity. Doing
so, introduces a plateau into the potential, ensuring infla-
tionary observables match the observations of the Planck
satellite (which favours a plateau inflation model). The
model naturally features a quintessential tail. To ensure
the validity of our setup, we stop the roll of the inflaton
field by trapping it at an enhanced symmetry point (ESP)
before it travels over a super-Planckian distance in field
space. We demonstrate in detail that, through this trap-
ping, we can transform the kinetic density of the field
into the radiation density of the hot big bang, reheating
the Universe.

Reheating in quintessential inflation is a challenging
issue, because it cannot occur through inflaton decay
(as is otherwise typical in inflation) because the inflaton
must survive until the present and become quintessence.
A number of reheating mechanisms have been put for-
ward, the most important of which are gravitational re-
heating [17][18], instant preheating [19][20], curvaton re-
heating [21][22] and recently non-minimal reheating [23]
(also called Ricci reheating [24]). Reheating the Uni-
verse through trapping the runaway inflaton is a novel
mechanism, although the trapping mechanism has been
considered before in quintessential inflation [25] [26], but
only for being responsible for the inflation part of the
scenario as in trapped inflation [27].

In the spirit of economy, aligned with the philosophy
behind quintessential inflation, we consider that the ESP
is due to a coupling of the inflaton direction with the
Peccei-Quinn field [28, 29], so that after trapping, the
Peccei-Quinn phase transition confines the inflaton and
generates a large inflaton mass such that there is no
threat of violation of the equivalence principle (5th force
problem), which typically is a problem with quintessence
[30–32]. The field remains trapped with non-zero poten-
tial density, which explains the dark energy observations,
while the theory also incorporates the QCD axion, which
can be the dark matter [33].

We use natural units where c = ~ = kB = 1 and
8πG = m−2

P , where mP = 2.43× 1018 GeV is the reduced
Planck mass.

II. THE MODEL

We start with a Lagrangian density well motivated in
both supergravity and string theory1 with a perturbative

1 For example, the Kähler potential for a string modu-
lus T , is K/m2

Pl = −3 ln(T + T ) = −3 ln(
√

2φ/mPl), where

T = 1√
2

(φ+ iσ)/mPl, with φ, σ ∈ IR. Then the kinetic term is

given by

Lkin = KTT̄ ∂µT∂
µT̄ =

3

2

(
mPl

φ

)2 [1

2
(∂φ)2 +

1

2
(∂σ)2

]
,

and non-perturbative part:

L =
α

2

(mPl

φ

)2

(∂φ)2 +
(∂χ)

2

2
− V0 e

−κφ/mPl

− V (χ)− g2

2
(φ− φESP)

2
χ2 , (1)

The χ field is taken to be the Peccei-Quinn field [28,
29] associated with the U(1) Peccei-Quinn symmetry,
whose Pseudo-Nambu-Godlstone boson is the QCD ax-
ion, which is a prominent dark matter candidate [33].
The order parameter f is called the axion decay constant.
In this case, we have

V (χ) =
λ

4

(
χ2 − f2

)2
, (2)

λ ∼ 1 , (3)

f ∼ 1012 GeV . (4)

In fact, the most likely range for the axion decay con-
stant is 1010 GeV . f . 1012 GeV. The lower bound in
this range comes from the SN1987A energy loss rate,
while the upper bound is required to avoid overproduc-
tion of axions. However, this latter limit is dependent
on assumptions regarding the initial axion misalignment
angle [33]. In this paper we consider the estimate shown
in Eq. (4), noting that this choice does not make much
difference in our results.

It is important to point out that no bare cosmological
constant (CC) is included in the Lagrangian density in
Eq. (1). This is because an unknown symmetry is pre-
sumed to set the CC to zero, as was typically assumed
even before the observations of dark energy in order to
overcome the infamous “cosmological constant problem”.
This problem is twofold: First, general relativity may in-
troduce a classical CC term in the Einstein-Hilbert ac-
tion. The only mass-scale in general relativity is due to
Newton’s gravitational constant and is the Planck mass
8πG = 1/m2

Pl. But this cannot be the mass-scale of
the CC, so a new scale must be included which is at
most 10−30mPl. The problem is explaining why these
two scales differ so much. Second, quantum fields in-
troduce a contribution to vacuum energy which diverges
and is presumed capped at the cutoff-scale of the theory,
resulting in a CC. At the moment this is at least the
supersymmetry breaking scale > 10−15mPl. But this is
unacceptable because observations suggest that the CC

where we considered T + T =
√

2φ/mPl and the subscripts of the
Kähler potential denote differentiation. In our considerations we
assume that the ESP lies at a minimum in the direction of σ. We
also assume that σ is heavy during inflation so that there are no
issues with excessive non-Gaussianity or isocurvature perturba-
tions. In this example, α = 3/2.
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is at most 10−30mPl, for otherwise structure formation
would be inhibited. The “solution” to the CC problem
(which predates the observation of dark energy, as we
mentioned) is to assume that some unknown mechanism
sets the CC to exactly zero. This is why there is no CC
in our model. Then, quintessence is used to explain the
dark energy observations.

To assist our intuition, we can make a field redefinition
to regain a canonical kinetic term with

ϕ =
√
αmPl ln

(
φ

mPl

)
, (5)

the Lagrangian density then becomes

L =
(∂ϕ)2

2
+

(∂χ)2

2
− V0 exp

(
− κ e

ϕ√
αmPl

)
− V (χ)

− g2φ2
ESP

2

(
e
ϕ−ϕESP√
αmPl − 1

)2

χ2 . (6)

The inflaton potential now features a double exponen-
tial providing a bridge between the vastly different en-
ergy scales of inflation and dark energy. The model has
a pole at φ = 0, which is transposed to ϕ = −∞ by
the field redefinition, and a plateau appears in the scalar
field potential, providing the perfect location for slow-roll
inflation.2

After inflation has completed, the field enters a period
of kination [34, 35], where the dominant contribution to
its energy density is its kinetic energy, the field is ob-
livious to the potential during this time and standard
kination equations can be used [11]. After a brief period
of kination, the field crosses an enhanced symmetry point
(ESP) at φESP and, due to its coupling to the χ field, non-
perturbative effects will generate a sea of χ particles. The
energy budget for the particle production comes from the
inflaton’s kinetic energy and as such the particle produc-
tion promptly traps the inflaton at φESP. If χ is coupled
to the standard model, its subsequent decays reheat the
Universe. At this point the inflaton field’s mass is primar-
ily dependent on χ, which until this point has been held
at χ = 0. At a particular symmetry breaking scale (given
by f) χ moves to its non-zero vacuum expectation value
(VEV), providing the inflaton with a huge mass which
acts to stop its motion. As such the ϕ field is trapped at
the ESP until late times when the residual energy density
can act as dark energy. We consider χ to be the radial
component of a complex field (the Peccei-Quinn field),
whose angular degree of freedom is an axion-like particle
(ALP) (it can be the QCD axion itself) which, whilst
oscillating in the minimum of its potential, can describe
the dark matter in the Universe.

2 We consider only φ > 0.

III. INFLATION

The contribution to the inflaton potential from the
coupling to the χ field will not affect the inflationary dy-
namics because χ = 0 during inflation, due to the large
mass it obtains from the interaction term:

m2
χ (ϕ) = g2φ2

ESP

(
e
ϕ−ϕESP√
αmPl − 1

)2

, (7)

where ϕ → −∞ during inflation. Hence, we have the
inflaton potential:

V (ϕ) = V0 exp
(
−κ e

ϕ√
αmPl

)
. (8)

From the expression above it is easy to compute the slow-
roll parameters, which are given by

ε ≡ m2
Pl

2

(
Vϕ
V

)2

=
κ2

2α
e

2ϕ√
αmPl , (9)

η ≡ m2
PlVϕϕ
V

=
κ

α
e

ϕ√
αmPl

(
κe

ϕ√
αmPl − 1

)
. (10)

Defining the end of inflation as ε = 1 leads us to

ϕend = mPl

√
α ln

√
2α

κ
, (11)

and

ϕ̇end '
√

2

3
Vend , (12)

where the latter was estimated by using the slow-roll
equation 3Hϕ̇ ' −Vϕ and

Vend ≡ V (ϕend) = V0e−
√

2α . (13)

We can use ϕend to find ϕ when observable scales first
left the horizon3

ϕ∗ = −
√
α ln

[
κ

α

(
N∗ +

√
α

2

)]
mPl , (14)

3 We can also use this result to compute the field excursion during
inflation. For the non-canonical field we find

φend − φ∗
mPl

=

√
2α

κ

N∗

N∗ +
√
α
2

'
√

2α

κ
� 1 ,

which is well bellow the Planck range. Switching to the canonical
field we get

ϕ− ϕend = −
√
αmP ln

(
1 +

√
2

α
N∗

)
⇒ ∆ϕ '

√
αmP ,

which is Planckian. Thus, we expect r ∼ 0.01 from the Lyth
bound.



4

where N∗ is the number of e-folds of inflation since the
pivot scale exits the horizon. This gives us an idea of the
value of the slow-roll parameters as a function of N∗

ε∗ =
α/2(

N∗ +
√
α/2

)2 '
α

2N2
∗
, (15)

η∗ =
α−N∗ −

√
α/2(

N∗ +
√
α/2

)2 '
α

N2
∗
− 1

N∗
(16)

which it is nice to note are independent of κ. The spectral
index and tensor to scalar ratio are hence also independ-
ent of κ and given by

ns = 1 + 2η∗ − 6ε∗

' 1− α

N2
∗
− 2

N∗
, (17)

r = 16ε∗ '
8α

N2
∗
. (18)

As we would expect for a plateau inflation model, they
match the Planck results [16] exceptionally well for a
range of parameter values. The limiting observational
constraint is ns = 0.968 ± 0.006 (2σ result) and the up-
per bound on the tensor to scalar ratio r < rbound, where
rbound = 0.06 (at 2σ confidence level).

Using eqs. (17) and (18) we can compute the upper
bound on N∗. Assuming N∗ > 31, we find

N∗ <
16

8 (1− ns)− rbound
. (19)

Moreover, using Eq. (17) we can relate α to the number
of e-folds N∗:

α = (1− ns)N
2
∗ − 2N∗ . (20)

Constraining the maximum possible value4 of N∗ < 70
and α ≥ 1 we find the allowed range for N∗ and α which
is compatible with CMB observations to be

53 ≤ N∗ < 70 , (21)

1 ≤ α < 37 . (22)

4 We can estimate this as follows. The value of N∗ is increased by
considering that, after inflation there is an “stiff” epoch when the
barotropic parameter of the Universe is 1

3
< w ≤ 1. The upper

bound ensures that the speed of sound is not superluminal. The
larger w is and the longer this stiff period lasts, the more N∗
becomes. Thus, we can take w = 1 as in kination, and we can
assume that kination starts immediately after the end of inflation
and until reheating. Then we have

N∗ = 57 +
1

3
ln

(
V

1/4
end

Treh

)
,

where Treh is the reheating temperature. The observational

bound on the inflation scale is V
1/4
end . 1016 GeV. Saturat-

ing this bound, while considering the lowest Treh possible
(Treh & 10 MeV, to avoid spoiling Big Bang Nucleosynthesis) we
find Nmax

∗ ' 70.

Figure 1. The allowed range of V0 values (upper) and the field
velocity at the end of inflation ϕ̇end (lower) as a function of
N∗. Each curve represents a fixed value of the scalar spectral
index ns. The blue leftmost curve is for the 2σ lower bound
ns = 0.962 and the red rightmost curve is for ns = 0.971. We
used the central value ln

(
1010As

)
= 3.094 of the spectrum

normalisation in Eq. (25).

Note that the allowed parameter range above depends
sensitively on the value of ns. The above region is the
maximum region within the 2σ range of ns. For com-
parison, fixing ns at the best fit value ns = 0.968 gives
63 ≤ N∗ < 70 and 1 ≤ α < 15.8.

The normalisation of the power spectrum further con-
strains the model. The amplitude of the scalar spectrum
at the pivot scale is given by

As =
1

24π2m4
Pl

V

ε
. (23)

Plugging eqs. (8), (14) and (15) into the expression above
we find

V0

m4
Pl

=
12π2

e2

[
(1− ns)−

2

N∗

]
e(1−ns)N∗As , (24)

where we used Eq. (20). This expression relates the en-
ergy scale of inflation to the number of e-folds N∗. The
Planck collaboration reports the value of As as [16]

ln
(
1010As

)
= 3.094± 0.034 (25)

(at the 1σ confidence level). On the upper panel of Fig. 1
we display the allowed range of V0 for the best fit value
of As.

Using As in Eq. (25) and plugging Eq. (24) into (12)
we can find ϕ̇end. For the best fit value of As the allowed
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range of ϕ̇end is show on the lower panel of Fig. 1. We
see that the range is

0.6 <
ϕ̇end

m2
Pl

× 106 < 4.2 . (26)

The κ parameter in Eq. (1) determines the ratio of
inflation energy density to the vacuum energy density.5

Plugging φ = φESP and χ = f into that expression gives

κ =
mPl

φESP
ln

V0

Vvac
, (27)

where Vvac = V (φ = φESP, χ = f) ' 10−12 eV4 '
10−120m4

Pl is the vacuum energy density. Taking V
1/4
0 <

10−2mPl (see Fig. 1) we find

κ
φESP

mPl
< 261 . (28)

IV. KINATION

Once inflation ends, almost immediately the period of
kination sets in.6 During kination the field is oblivious of
the potential and the Klein-Gordon (KG) equation takes
the form

ϕ̈+ 3Hϕ̇ ' 0 , (29)

and the Friedmann equation is

3m2
PlH

2 =
ϕ̇2

2
. (30)

Substituting Eq. (30) into Eq. (29) gives

ϕ̈+

√
3

2

ϕ̇2

mPl
= 0 . (31)

Integrating the above equation, we find the solutions

ϕ = ϕ0 +

√
2

3
mPl ln

[
1 +

√
3

2

ϕ̇0

mPl
(t− t0)

]
, (32)

ϕ̇ = ϕ̇0 exp

[
−
√

3

2

(ϕ− ϕ0)

mPl

]
. (33)

5 As we have shown in footnote 3, for the non-canonical field during
inflation we have that φ ∼

√
αmP /κ. Thus, for the mass of the

χ-field during inflation from Eq. (1) we find mχ ∼ (g
√
α/κ)mP .

Because α, g ∼ 1 and κ ∼ 100 we have that the mass of the
χ-field during inflation is mχ ∼ 10−2mP , i.e. comparable to the
scale of grand unification and bigger that the Hubble scale during
inflation. This means that the χ-field is heavy during inflation, as
we have assumed. In contrast, the inflaton field is light because
η, calculated in Eq. (10), is much smaller than unity and this is
why the value of the spectral index is close to unity.

6 We have confirmed this using numerical simulations.

Figure 2. The inflaton kinetic energy density at ESP (blue
curve) and the false vacuum energy density (green line) as
a function of α. In this plot we used the best fit value of
ns (within 2σ range the result depends mildly on the precise
value of ns) and we took λ = 1 and f = 1012 GeV.

where the subscript ‘0’ refers to the initial value in the
integration. In our case ϕ0 ' ϕend and ϕ̇0 ' ϕ̇end in
eqs. (11) and (12) respectively, meaning the above equa-
tions become

ϕkin = mPl

√
α ln

√
2α

κ
+

√
2

3
mPl ln

[
1 +

√
Vend

mPl
(t− t0)

]
,

(34)

ϕ̇kin =

√
2

3
Vend

(√
2α

κ

)√ 3α
2

e
−
√

3
2

ϕ
mPl . (35)

Taking ϕ0 ' ϕend and ϕ̇0 ' ϕ̇end presumes an immediate
transition from inflation to kination, when ε = 1.

During kination, the kinetic energy density of the in-
flaton scales as ϕ̇2/2 ∝ a−6, where a is the scale factor.
Therefore the false vacuum energy density λf4/4 might
come to dominate at some later times. For the sake of
simplicity we restrict the model to the parameter range
where this never happens until ϕ reaches ESP.

To find this regime we can compute ϕ̇ESP using
Eq. (35). Plugging eqs. (5) and (13) into the latter we
obtain

ϕ̇ESP =

√
2V0 (α) /3

e
√
α/2

( √
2αmPl

κ (α)φESP

)√ 3α
2

, (36)

where the argument in V0 (α) and κ (α) is to remind us
that observations constrain κ and V0 to be functions of
α via eqs. (27), (24) and (20).

Using Eq. (36), we plot ϕ̇ESP/2 as a function of α in
Fig. 2 along with the constant value of λf4/4. As we can
easily see the universe is in the regime of kination at the
ESP if

λf4

2ϕ̇2
ESP

< 1 ⇒ α < 10 . (37)

The precise value of course depends on f and (only
mildly) on ns, but we adopt this bound as our reference
value.

V. INFLATON TRAPPING AT THE ESP

During the period of kination, the inflaton follows the
equation of motion (29). Once it approaches φ → φESP,
the tachyonic and resonant excitations of the χ field pro-
duce large numbers of particles. These particles backre-
act onto the motion of the inflaton, creating an effect-
ive linear potential for the latter. If the production of
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χ particles is efficient, then the inflaton’s fast rolling is
halted by trapping it at the ESP.

As we are going to see, the trapping can be very ab-
rupt. Therefore, it is a good approximation to neglect
the expansion of the universe. Moreover, as we will
show a posteriori, ϕ oscillates around the ESP with an
amplitude much smaller than mPl, |ϕ− ϕESP| � mPl.
Therefore, in considerations of the trapping process, it is
enough to study the Lagrangian up to the first order in
|ϕ− ϕESP| /mPl. In this case, we find from Eq. (6)

V ' Vvac

(
Vvac

V0

)ϕ−ϕESP√
αmPl

+
1

2
γ2 (ϕ− ϕESP)

2
χ2 + V (χ) ,

(38)
where

γ2 ≡ g2φ2
ESP

αm2
Pl

(39)

is the effective quartic coupling constant close to the ESP.
The first term in Eq. (38) sets the scale of the vacuum en-
ergy. It is much smaller than λf4/4 and can be neglected
during the inflaton trapping phase.

With the above assumptions in mind we can write the
equation of motion for the inflaton as

ϕ̈+ γ2
〈
χ2
〉

(ϕ− ϕESP) ' 0 . (40)

Initially the expectation value of the χ field is zero,
which makes ϕ massless at the classical level. However,
quantum corrections due to the interaction term generate
an effective mass for the ϕ field. At the first order such
corrections can be accounted for by using the Hartree ap-
proximation, which has been employed in the expression
above.

The trapping of the inflaton ϕ by the resonant pro-
duction of χ particles has been studied in great detail in
Ref. [27]. In that work, the primary source of particle
production is the parametric resonance. In our case,
ω2
k (defined below) is not positive definite, therefore the
χ field is also excited by the tachyonic instability close
to the ESP. Moreover, in our model the quartic self-
interaction of the χ field can affect the particle produc-
tion too. To investigate these processes we start by writ-
ing the equation of motion for the mode functions of the
χ field:

χ̈k + ω2
kχk = 0 , (41)

where

ω2
k = k2 + γ2 (ϕ− ϕESP)

2
+ λ

(
3
〈
χ2
〉
− f2

)
. (42)

Initially
〈
χ2
〉

is negligible and we can clearly see in the
above equation that χk modes with k < kc acquire an
effective imaginary mass as ϕ → ϕESP, where kc is the
critical wavenumber

kc ≡
√
λf . (43)

These modes are unstable and start growing due to the
tachyonic instability. The process is similar to the one
analysed in Ref. [36]. To compute the production of χ
particles note, first, that in a narrow window

|ϕ− ϕESP| ≤
√
λf

γ
(44)

we can approximate the evolution of ϕ linearly (see
Eq. (32))

ϕ− ϕESP ' ϕ̇ESPτ , (45)

where τ ≡ t−tESP and tESP is defined as ϕ (tESP) ≡ ϕESP

and ϕ̇ESP in the above equation is the field velocity at
the ESP from Eq. (36).

Using Eq. (45) we find that after the first crossing of
the ESP the occupation number of χk mode is given by
[36]

nk = exp

τ+ˆ

τ−

2
√
−ω2 (τ ′) dτ ′ (46)

and ω2 (τ±) = 0, that is

τ± = ±

√
λf2 − k2

γ2ϕ̇2
ESP

. (47)

It is easy to integrate Eq. (46), which gives

nk = e
π λf

2−k2
γϕ̇ESP . (48)

Integrating over all k wavenumbers, we obtain the total
occupation number of newly produced particles after the
first passage of the ESP

nχ1 '
1

2π2

∞̂

0

nkk
2dk (49)

' (γϕ̇ESP)
3/2

(2π)
3

[
−2s1/4 + eπs

1/2

Erf
(√

πs1/4
)]

,

(50)

where Erf (x) ≡ 2/
√
π
´ z

0
e−t

2

dt is the error function and

s ≡
(

λf2

γϕ̇ESP
+

2

33/2

)2

. (51)

The first term in the parenthesis is positive. There-
fore, s1/4 ≥

√
2/33/4 and Erf

(√
πs1/4

)
' 1. Moreover,

exp{π
√
s} > s1/4 and we can write

nχ1 '
(γϕ̇ESP)

3/2

(2π)
3 e

π
(

λf2

γϕ̇ESP
+ 2

33/2

)
. (52)
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Similarly we can compute the dispersion
〈
χ2
〉

[37]

〈
χ2
〉

=
1

2π2

ˆ
nkk

2

ωk
dk (53)

' nχ
γ |ϕ− ϕESP|

, (54)

where we used the fact that γ (ϕ− ϕESP) > kc in the
non-tachyonic regime.

Plugging Eq. (54) into (40), we can write the inflaton
equation of motion as

ϕ̈+ γnχsign (ϕ− ϕESP) ' 0 , (55)

where sign (ϕ− ϕESP) is the signature of ϕ−ϕESP. This
equation describes oscillations in a linear potential: at
the time

τ1 ≡
ϕ̇ESP

γnχ1
(56)

the field ϕ reaches the value ϕ1 = ϕESP + Φ1 and rolls
back toward ϕESP, where

Φ1 '
1

2

ϕ̇2
ESP

γnχ1
(57)

is the amplitude of the first oscillation.
Up to now we have assumed that the expansion of the

universe does not affect the trapping process. This is jus-
tified if the timescale τ1 ' 2 (ϕ1 − ϕESP) /ϕ̇ESP is much
shorter than the Hubble time H−1

ESP at the ESP; that

is HESP � ϕ̇ESP/2Φ1. Using HESP ' ϕ̇ESP/
√

6mPl, in
agreement with our assumption α < 10 (see Fig. 2), we
find that this is the case when

Φ1 �
√

3

2
mPl . (58)

Plugging eqs. (36) and (52) into Eq. (57), we find

Φ1 '
4π3

γ5/2

[
2
3V0 (α)

]1/4
e
π
(

λf2

γϕ̇ESP
+ 2

33/2

)
( √

2α

e1/
√

3

mPl

κ (α)φESP

) 1
2

√
3α
2

.

(59)
To find the range where Eq. (58) is satisfied we plot
log10 Φ1 as a function of α and γ in Fig. 3. We can
see that Eq. (58) can be easily satisfied for reasonable
values of γ.

Each time ϕ crosses the ESP, the χ field experiences
a burst of particle production. New particles strengthen
the backreaction onto the motion of ϕ, causing an ex-
ponential decay of the oscillation amplitude. Via the
quartic self-interaction term these particles also generate
a contribution to the effective mass of the χ field. At
the level of the Hartree approximation these interactions
are taken care of by the 3λ

〈
χ2
〉

term in Eq. (42). The
tachyonic particle production is effective as long as the
3λ
〈
χ2
〉

term is smaller than λf2.
To compute the occupation number at the end of the

tachyonic instability we first find the minimum of ω2
k=0

Figure 3. A contour plot of log10 (Φ1/mPl) values as a
function of α and γ (see Eq. 59). In this plot we used

λf2/γϕ̇ESP � 2/33/2 and the best fit value ns = 0.968. The
plot changes insignificantly within the allowed 2σ range of
ns. The white region is where the condition in Eq. (58) is
violated, i.e. where the expansion of the Universe cannot be
neglected.

in Eq. (42) which is located at [γ (ϕmin − ϕESP)]
3

=
3λnχ/2, where we used Eq. (54). Plugging this back
into the expression of ω2

k=0 and equating it to zero, we
find that the tachyonic resonance stops at

nχ,tach '
2

35/2

√
λf3 · (60)

At this moment the oscillation amplitude is given by

Φtach '
35/2

4

ϕ̇2
ESP

γ
√
λf3

. (61)

We can compare nχ,tach with the number density pro-
duced after the first oscillation in Eq. (52)

nχ1

nχ,tach
' 35/2

16π3
λ

(
γϕ̇ESP

λf2

)3/2

e
π
(

λf2

γϕ̇ESP
+ 2

33/2

)
. (62)

For γϕ̇ESP/λf
2 = 2π/3 the right-hand side of the above

expression is minimal and given by

nχ1

nχ,tach

∣∣∣∣
min

∼ λ . 1 . (63)

Thus, depending on the magnitude of γϕ̇ESP/λf
2, it

might take several passages through the ESP before the
tachyonic resonance is terminated.

The end of the tachyonic resonance does not necessar-
ily imply the end of particle production though. After
ω2
k becomes positive definite for all values of k, particles

may still be produced by the parametric resonance. Such
a production continues as long as the adiabaticity condi-
tion

|ω̇k|
ω2
k

< 1 (64)
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is broken within some range of ϕ values ∆ϕnad, that is
|ω̇k| /ω2

k ≥ 1 for ϕ−ϕESP ∈ [−∆ϕnad,∆ϕnad] /2. As
〈
χ2
〉

continues to grow with each burst of particle production,
it will eventually shut down the parametric resonance
too.

The shut-down is caused by one of the two effects,
whichever happens first: either the oscillation amplitude
Φ becomes smaller than ∆ϕnad [27] (Case 1) or quartic
self-interactions of the χ field render it too heavy to be
excited (Case 2). The choice between the two cases is
determined by the magnitude of the ratio λ/γ2.

Let us consider these two possibilities in turn. To do
that we can safely employ Eq. (45) within the narrow
non-adiabaticity window. Hence we can write

ω̇k
ω2
k

' γ2 (ϕ− ϕESP) ϕ̇ESP[
k2 + γ2 (ϕ− ϕESP)

2
+ λ (3 〈χ2〉 − f2)

]3/2 ,
(65)

where in the adiabatic regime
〈
χ2
〉

is given by the ex-
pression in Eq. (54).

In Case 1 the resonance stops before the
λ
(
3
〈
χ2
〉
− f2

)
term in Eq. (65) becomes import-

ant and we neglect it. This gives ∆ϕnad ' (ϕ̇ESP/γ)
1/2

.
Once the oscillation amplitude Φ = ϕ̇2

ESP/2γnχ drops
below this value, particles no longer grow via the process
of parametric resonance. Equating ∆ϕnad = Φ we find

Φfin1 '
(
ϕ̇ESP

γ

)1/2

(66)

and

nχ,fin1 '
1

2

ϕ̇
3/2
ESP

γ1/2
, (67)

where the subscript ‘fin1’ signifies the case where the res-
onance stops because the inflaton oscillation amplitude
drops bellow ∆ϕnad. We can compute the energy density
ρχfin1 ' γΦfin1nχ,fin1 in the χ particles at that moment

ρχfin1 '
1

2
ϕ̇2

ESP , (68)

which is about the same as the initial kinetic energy dens-
ity of the inflaton when it first crosses the ESP.

In Case 1 we could neglect χ field self-interactions in
Eq. (65). This rendered ∆ϕnad ' constant. On the other
hand, if λ/γ2 is large, which corresponds to Case 2, such
self-interactions cannot be neglected and the

〈
χ2
〉

term
in Eq. (65) becomes significant. As the importance of this
term grows, the non-adiabaticity region ∆ϕnad shrinks to
zero eventually halting the resonance.

To estimate the end of the resonance we find the mo-
ment when the maximum value of the ratio in Eq. (65)
becomes smaller than one. For the k = 0 mode the max-
imum value of this ratio is approximately

ω̇k=0

ω2
k=0

∣∣∣∣
max

' γϕ̇ESP

6 (λnχ)
2/3

, (69)

where we used 3
〈
χ2
〉
> f2 and Eq. (54). The reson-

ance becomes inefficient once this value falls bellow unity.
Hence, we can consider the particle production to be over
when

nχ,fin2 '
(γϕ̇ESP/6)

3/2

λ
. (70)

Plugging this value into Eq. (55) we find that the inflaton
oscillation amplitude at this point is

Φfin2 ' 7
λ

γ2

(
ϕ̇ESP

γ

)1/2

. (71)

Comparing Eq. (67) with (70) and Eq. (66) with (71)
we see that the first mechanism is responsible for the end
of the resonance if

λ

γ2
<

1

7
. (72)

In this case the energy density of χ particles is compar-
able to the inflaton’s initial kinetic energy (see Eq. (68)).
In the opposite regime, the strong quartic self-interaction
λχ4 shuts down the resonance much earlier, leaving a lar-
ger fraction of the energy budget in the inflaton sector.
Moreover, the inflaton oscillation amplitude is larger too.
In summary, a stronger χ field self-interaction results in
less efficient inflaton trapping.

VI. REHEATING

As we have shown, after crossing the ESP the total kin-
etic density of the inflaton decays into radiation through
resonant production of χ-particles.7 Thus we expect

1

2
ϕ̇2

ESP '
π2

30
g∗T

4
reh , (73)

where g∗ = O(100) is the effective relativistic degrees of
freedom. Using the above and Eq. (36) we obtain

Treh =

 10

π2g∗
Vend

(√
2α

κ

mPl

φESP

)√6α
1/4

, (74)

where we used Vend = V0e
−
√

2α according to Eq. (13).
To get a feeling about the magnitude of Treh we take

φESP = mPl and V
1/4
end ∼ V

1/4
0 ∼ 10−2mPl, in which case

we have

Treh ∼ 10−3mPl

(√
2α

κ

)√3α/8

. (75)

7 The case when the quartic self-interaction of the χ-particles stops
their resonant production early (Case 2, discussed above) intro-
duces the extra complication of the perturbative decay of the
oscillating inflaton condensate. For simplicity, we consider only
Case 1, which amounts to satisfying the bound in Eq. (72).
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As we show below κ = O(100) in order to have
successful dark energy. Then α ∈ [1.5, 10] gives
Treh ∼ 1011−13 GeV. This means that, if Treh is large,
thermal corrections might restore the Peccei-Quinn sym-
metry, unless κ is rather large, approaching the bound in
Eq. (28). Actually, in this case, the Peccei-Quinn sym-
metry is thermally broken later on, after the onset of
radiation domination. In contrast, if the reheating tem-
perature is not very large, the Peccei-Quinn symmetry is
broken once the inflaton rolls towards the VEV regard-
less of thermal corrections. In both cases, the axion does
not exist during inflation and so there is no problem with
axion isocurvature perturbations.

Knowing the reheating temperature in Eq. (74), we
can calculate the number of e-folds of inflation from the
recognisable equation

N∗ = 61.2 +
1

3(1 + w)
ln

(
g∗π

2

60

)
+

(3w − 1)

3(1 + w)
ln

(
V

1/4
end

Treh

)
+ ln

(
V

1/4
end

mPl

)
. (76)

Presuming the kinetically dominated inflaton field is still
the dominant component of the energy density until the
produced radiation dominates, we have w = 1 and the
above becomes

N∗ = 61.7 +
1

3
ln

(
V

1/4
end

Treh

)
+ ln

(
V

1/4
end

mPl

)
. (77)

VII. RESULTS

To find the energy scale at the end of inflation we can
first substitute ns from Eq. (20) into Eq. (24) to obtain

V0

m4
Pl

=
12π2αAs

N2
∗

eα/N∗ , (78)

which is independent of κ. Using that α < N∗ and
As = (2.208± 0.075)× 10−9 (cf. Eq. (25)), this always
gives

V
1/4
0 ' 2× 10−3α1/4mPl . (79)

Using this value to find Vend = V0e
−
√

2α we see

V
1/4
end = 2× 10−3α1/4e−

√
α/8mPl ∼ 10−3mPl , (80)

where α ∈ [1.5, 10] (see also Fig. (1)). This is close to the
scale of a grand unified theory (GUT) as expected.

Rearranging Eq. (74) we readily obtain

V
1/4
end

Treh
=

[
π2g∗
10

(
κ√
2α

φESP

mPl

)√6α
]1/4

. (81)

α N∗ ns r

3/2 57.5 0.965 0.0024

10 58.9 0.963 0.023

Table I. Inflationary observables taking ϕESP = 0.

Also, using Vend = V0e
−
√

2α and Eq. (78) we find

V
1/4
end

mPl
=

(
12π2αAs

)1/4
√
N∗

exp

(
α

4N∗
−
√
α

8

)
. (82)

Combining eqs. (81) and (82) with Eq. (77) and after
some algebra we end up with

N∗ ' 56.3 +

√
α

24
ln

(
κ√
2α

φESP

mPl

)
, (83)

where we took exp
(

α
4N∗
−
√

α
8

)
∼ 1.

The value of κ is determined by the necessity for the
residual potential energy of ϕ to act as dark energy at
late times (see Eq. (27)). As such

V (ϕESP) = V0 exp
(
−κe

ϕESP√
αmPl

)
' 10−120m4

Pl , (84)

which rearranges to

κ ≈ 244 e
ϕESP√
αmPl (85)

(cf. Eq. (28)) Using this, Eq. (83) is written as

N∗ ' 56.3 +

√
α

24

[
ln

(
244√

2α

)
+

2ϕESP√
αmPl

]
, (86)

where we used ln
(
φESP

mPl

)
= ϕESP√

αmPl
, according to Eq. (5).

We know that the pole in the non-canonical field po-
tential, φ = 0 is transposed to ϕ = −∞ with our field
redefinition, generating a plateau in the model which
provides the slow-roll regime for inflation. The value of κ
effectively shifts the position of the edge of the plateau,
which explains why the value of ϕESP differs for each κ
value in this equation.

It is straightforward to obtain the inflationary ob-
servables ns(α) and r(α) using eqs. (17) and (18) with
Eq. (86). As an indicative choice we consider ϕESP = 0.
In this case, the results are shown in Table I and depicted
in Fig. 4. As evident, there is excellent agreement with
the Planck results [38].

Remarkably, the values of the inflationary observables
do not change much when varying ϕESP. For example,
taking ϕESP = mPl adds 2/

√
24 ' 0.4 to the value of N∗,

so that N∗(3/2) = 57.9 (N∗(10) = 59.3). Yet, the result-
ing values of ns and r remain virtually unchanged, given
by the same values shown in Table I. Thus, our results
are robust and only very weakly dependent on the loc-
ation of the ESP (value of ϕESP), which means that no
tuning is required to match the observations.
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Figure 4. The 1σ and 2σ contours of the Planck constraints
from Ref. [38]. The red curve is the prediction of our model
assuming Eq. (73).

This is less so with the value of κ. Indeed, from
Eq. (85) we see that setting ϕESP = 0 requires

κ ≈ 244 , (87)

to obtain the correct energy density for dark energy. If
instead we have ϕESP = mPl, with α = 10, we have

κ ≈ 335 . (88)

In all cases however, we see that κ = O(100), which
means that the inflaton field in the exponent of the
potential in Eq. (1) is suppressed by the GUT scale
mPl/κ ∼ 1016 GeV.

VIII. CONCLUSIONS

We have analysed a new model of quintessential in-
flation, inspired by supergravity and superstrings. The
inflaton field features a runaway potential with a kinetic
pole at the origin that generates the inflationary plat-
eau. After the field rolls over the edge of this plateau, it
becomes kinetically dominated, driving a period of kin-
ation. The rapid roll of the inflaton is halted, when it
crosses an enhanced symmetry point (ESP), where its
kinetic density is transferred to the generation of the
thermal bath of the hot big bang, through interaction
with the Peccei-Quinn (PQ) field. Thereby, the roll of the
inflaton is stopped before it travels over super-Planckian
distances in field space, which would otherwise under-
mine the validity of the scalar potential. Trapping the
field at the ESP not only reheats the Universe but also
ensures that the field becomes heavy and does not give
rise to the 5th force problem, which typically plagues

quintessence models. The residual potential density of
the field can explain dark energy without resorting to a
non-zero value of the cosmological constant. Another as-
pect of our model which significantly differs from other
quintessential inflation models in the literature is that
radiation production occurs at reheating and not before,
meaning that there is no subdominant thermal bath dur-
ing kination.8

We have studied in detail how the kinetic density of
the inflaton is transferred to radiation through the tachy-
onic and parametric resonant production of PQ particles.
Coupling the inflaton to the PQ field is aligned with the
economy philosophy of quintessential inflation, in that
no arbitrary new field is introduced by hand to interact
with the inflaton field responsible for both inflation and
dark energy, but the field considered (the PQ field) is
already envisaged by beyond the standard model physics
to account for the strong CP problem of QCD and for the
dark matter in the Universe. Moreover, in our model, the
interaction between the inflaton and the PQ field ensures
that the PQ symmetry is restored during inflation. As a
result, the axion field does not exist during inflation, so
it does not obtain a superhorizon spectrum of perturba-
tions of its expectation value. This means that there is
no issue of axion isocurvature perturbations, which can
otherwise be a concern when considering axionic dark
matter.9

Our model manages to account for observations with
natural values of the model parameters. The inflationary
observables obtained (see Table I) are in excellent agree-
ment with the Planck satellite findings and are rather
robust, in that they do not significantly depend on the
location of the ESP down the runaway inflaton direc-
tion. This is not surprising, given that the inflationary
plateau is generated by the presence of a kinetic pole.
For dark energy, the strength of the exponential charac-
terising the potential slope only implies that the inflaton
is suppressed by the GUT scale.

All in all, we have presented a new quintessential infla-
tion model which successfully accounts for inflation and
dark energy and may well have a basis in fundamental
physics.
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