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Stochastic Asymmetric Blotto Game Approach for
Wireless Resource Allocation Strategies
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Abstract—The development of modellings and analytical tools
to structurise and study the allocation of resources through
noble user competitions become essential, especially considering
the increased degree of heterogeneity in application and service
demands that will be cornerstone in future communication
systems. Stochastic asymmetric Blotto games appear promising to
modelling such problems, and devising their Nash equilibrium
(NE) strategies by anticipating the potential outcomes of user
competitions. In this regard, this paper approaches the generic
energy efficiency problem with a new stochastic asymmetric
Blotto game paradigm to enable the derivation of joint optimal
bandwidth and transmit power allocations by setting multiple
users to compete in multiple auction-like contests for their
individual resource demands. The proposed modelling innovates
by abstracting the notion of fairness from centrally-imposed to
distributed-competitive, where each user’s pay-off probability is
expressed as quantitative bidding metric, so as, all users’ actions
can be interdependent, i.e., each user attains its utility given the
allocations of other users, which eliminates the chance of low-
valued carriers not being claimed by any user, and, in principle,
enables the full utilisation of wireless resources. We also con-
tribute by resolving the allocation problem with low complexity
using new mathematical techniques based on Charnes-Cooper
transformation, which eliminate the additional coefficients and
multipliers that typically appear during optimisation analysis,
and derive the joint optimal strategy as a set of linear single-
variable functions for each user. We prove that our strategy
converges towards a unique, monotonous and scalable NE, and
examine its optimality, positivity and feasibility properties in
detail. Simulation comparisons with relevant studies confirm the
superiority of our approach in terms of higher energy efficiency
performance, fairness index and quality-of-service provision.

Index Terms— Charnes-Cooper transformation, competitive
game, energy efficiency, green communications, Nash equilib-
rium, radio resource scheduling, stochastic asymmetric Blotto
games.

I. INTRODUCTION
In radio resource allocation, there is a fundamental trade-off
between efficiency and fairness metrics. Proportional games
are shown to strike a balance between these metrics by
maximising sum of utility functions, introducing, thereby, a
centrally-imposed kind of fairness, which appears to be unfair
from the individual user perspective as the respective Nash
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equilibriums (NEs) are not results of users’ competition [1].
A solution is to let users being responsible for their own
actions by providing them fictional budgets that can be spent
on-demand towards receiving fractions of resources through
engaging in competitive games, which facilitates abstracting
the notion of fairness from centrally-imposed to distributed,
with more degrees of freedom for resource control and poten-
tially better performance improvements.

Game competitions have a natural interpretation in terms
of lobbying for actions, and in their broader context can
be viewed as extensions of the Colonel Blotto game of the
auction/warfare theory [2]-[4]. Epigrammatically, the Blotto
game was firstly approached in 1921 as a two-player two-
contest zero-sum game [2], extended in 1950 to a two-player
over an N -contest play [3], and consolidated in 2017 as a
K-player N -contest game [4]. Interestingly, the latest ⟨K,N⟩
version of Blotto game offers a variety of probabilistic mech-
anisms for assigning each user with asymmetric (different)
attributes and goals, and determining the winner of each
contest stochastically through auction-like bidding process for
maximising a majority value across all contests, which makes
each user’s pay-off utility a continuous function, thus, results
in a unique strategy equilibrium allocation of user’s bids
across the N contests. By contrast, in the proportional (non-
competitive) game, such as the General Lotto game, Duelling
game, Stackelberg leadership, etc. [5], users are assigned with
symmetric (identical) attributes and goals, which yields to a
canonical deterministic mixed strategy that typically includes
auctions for each user to maximise its total expected pay-
off at each contest altruistically, thus, converges towards
a multiplicity of possible (non unique) equilibria. On this
basis, the stochastic asymmetric Blotto game can potentially
better realise the heterogeneity of mobile users’ needs and
the characteristics of their wireless environments, which are
always dynamically changing, and in turn, better coordinate
the systematic distribution of radio resources by anticipating
the results of users’ competitions.

The practical significance of stochastic asymmetric Blotto
games is paramount for evolving the decision-making logic
of next-generation communication systems by shifting from
centrally-imposed to distributed-competitive notions of fair-
ness, where the term ”users” (players) can expand from mobile
users to complete campus-wide networks, service providers,
smart verticals, or even virtual network functions (VNFs),
network nodes, etc., and wireless services (contests) can
draw on enhanced Mobile BroadBand (eMBB) profiles with
transformational Ultra Reliable Low Latency Communica-
tions (URLLC) and massive Machine Type Communications
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(mMTC) applications (3GPP Releases 15 & 16). For example,
stochastic asymmetric Blotto game logic can jointly integrate
eMBB, URLLC and mMTC services into single multi-network
profile when applied on, e.g., (i) cognitive radios (CRs) by
enabling unlicensed mobile users to simultaneously compete
for spare licensed carriers in both good and bad channel
conditions, which ensures that no resources are wasted [6]-
[7], (ii) mobile ad-hoc networks (MANETs) by deliberating
both best-effort and poorly-treated nodes, which maximises
the number of active routes and, thus, device connectivity
[8], (iii) software-defined networking (SDN) by hierarchising
the coexisting network nodes according to their instantaneous
capacity, which helps to self-configure the traffic load bal-
ancing rules in runtime [9]-[10], (iv) multi-hop networks by
distributing hops that are close as well as away from the gate-
ways, which maximises the number of data flows and, thus,
the network throughput overall [11], (v) Fog computing by
anticipating the benefit of each Edge-Cloud device considering
both free and congested computation/storage resources [12],
(vi) network sharing by enabling multiple mobile operators
with their networks deployed in the same area to collaborate
and maximise instantaneous service-critical requests, while
competing to improve their profits [13]-[14], and so on.

A. Open Challenges and Research Contributions
Although the rich literature dealing with the application of
game theory to resource allocation problems, the stochastic
asymmetric Blotto game has yet been carefully studied in
the context of wireless communications. The open research
challenges are summarised below.

● Most game theoretical problems are optimised with respect
to (w.r.t) either bandwidth or transmit power operands, while
joint allocation solutions are limited, e.g., [6]-[14], [19]-[20].

● Current optimisation utilities include the system sum-rate
and/or sum-power, e.g., [6]-[7], [13], [19]-[20], while more
inclusive objectives like the sum energy efficiency (sum-
EE) have yet been investigated, which can enable newer
and better versions of user experiences [21]-[30].

● The utility pay-off probability is commonly expressed as
qualitative biding metric to facilitate maximising users’ bids
at most profitable carriers, e.g., [5]-[7], [18]-[20], which
compromises the efficiency-versus-fairness trade-off as low-
budgeted users may win less or even no carriers than
high-budgeted users, while low-valued carriers may not be
claimed by any user.

● Most attempts draw on deterministic NE strategies for the
two-user two-contest Blotto game, e.g., [5]-[20], however, in
practical systems the number of users and contests is much
higher (tens or hundreds), which calls for broader multi-user
multi-contest setting where the respective heterogeneity can
be better captured through stochastic NE strategies.

● Existing optimisation analysis relies on dual programming
that reduces the solution accuracy due to the uncontrollable
duality gap [23]-[27], requires rather complex searching pro-
cesses to obtain the sub-gradients of each possible optimal
point, and cannot guarantee convergence as an optimal point
may have more than one sub-gradient or even non [30]-[31].

This work contributes by addressing the above open challenges
with unique game-theoretic design and solution method to
the radio resource allocation problem inferring to the hy-
pothesis that users’ behaviour during competitions is acquis-
itive, while in proportional games imperative, and therefore,
any efficiency-versus-fairness enhancements acquired stochas-
tically are fundamentally superior over that acquired determin-
istically. The key innovation draws on maximising the system
sum-EE w.r.t both bandwidth and transmit power operands by
introducing a new stochastic asymmetric Blotto game, where
K users bid fictional budgets across N spectrum carriers
simultaneously to compete for as many bandwidth portions
as possible at each carrier – not for the most profitable
carriers as done conventionally. Such game approach requires
radically different problem formulation and solution manip-
ulation, which we carry out by redefining the user pay-off
probability from qualitative to quantitative biding metric based
on the, so-called, competition for the majority [15]-[16] that
derives the optimal bandwidth allocations, while enhancing
the profile of low-budgeted users and low-valued carriers,
which combats resource scarcity by minimising the chances
that some users not to be allocated with carriers, and some
carriers not to be claimed by any user. As long as spectrum is
fully utilised, we apply Charnes-Cooper transformation (CCT)
[17] on the generic quasi-convex sum-EE problem to obtain
its equivalent concave for what we derive the optimal transmit
power allocations using standard (non-dual) Lagrangian opti-
misation analysis with robust mathematical method to render
the intermediate CCT coefficients and Lagrangian multipliers.
We show that our method resolves the optimal allocation
points for each user as low-complex single-variable func-
tions, and converges to a unique NE state that is positive,
monotonous and scalable as long as the signal-to-noise-rate
(SNR) of each carrier exceeds a certain minimum threshold,
which specifies the Pareto boundary of the wireless system.
We then prove that the proposed NE strategy complies with
the non-degenerate constraint qualification (NDCQ) condition,
and converges towards strict optimal points, which are also
global due to the convexity of the CCT transformed problem.
Finally, we adopt Long Term Evolution-Advanced (LTE-A)
channel configuration and similar simulation setting with the
relevant research studies in [21]-[30] to evaluate our findings
in terms of sum-EE performance, computational time, fairness
index and quality-of-service (QoS) provision, and provide
discussions to justify the observed discrepancies in comparison
to those studies.

The remainder of this paper is structured as follows. Section
II presents the system model and formulates the optimisation
problem under study. Section III designs the stochastic Blotto
game and derives the joint optimal strategy by explaining its
key features. Section IV proves the existence and uniqueness
of asymmetric NE in the proposed strategy and specifies
the Pareto boundaries of the system. Section V details the
implementation process, computational complexity and level
of optimality of the solution. Section VI provides simulation
evaluations and comparisons with relevant schemes, with
Section VII to conclude the paper.
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II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

The examined system aims at maximising the sum-EE by
deriving dynamically the allocations of bandwidths {bnk} and
transmit powers {pnk} of each user k ∈ {1,2, ...,K} over
each spectrum carrier n ∈ {1,2, ...,N}. The channel state
information of the k-th user over the n-th carrier depends
on the channel gain1 ∣hnk ∣2 = Υn ⋅ fnk ⋅ (dk)−α

n

, which,
in turn, depends on (i) the distance (dk)−α

n

between user
k and BS, where αn is the path-loss exponent of carrier
n, (ii) the Rayleigh random variable fnk that captures the
fading of the (k,n) radio link, and (iii) the path-loss constant
Υn ≅ (υ

n

4π
)2, where υn is the wavelength of carrier n. On

this basis, we define the signal-to-noise ratio (SNR) of user
k over carrier n by SNRnk = pnk ⋅∣h

n
k ∣

2

bn
k
⋅N0

, where N0 is the noise
power spectral density of the additive white Gaussian noise2.
Accordingly, we formulate the sum-rate as rTx = ∑Kk=1 rk,
with rk = ∑Nn=1(bnk ⋅ rnk ), ∀k, the rate allocated to user k, and
rnk =log2(1 + SNRnk), ∀k,n, the rate allocated to user k on
carrier n. Furthermore, to ensure QoS satisfaction we bound
the data rate rk of each user k with its minimum throughout
requirement qk, i.e.,

rk ≥ qk, ∀k.
(1)

Also, to assure that carriers do not overflow their physical
capacity, we bound (i) the total bandwidth of each carrier with
maximum load3 wn that can be handled in carrier n, i.e., [21]

∑Kk=1 b
n
k ≤ wn, ∀n,

(2)

and (ii) the total power transmitted from the BS to all users
over all carriers with the available (supplied) power at the BS
pmax, i.e.,

pTx = ∑Kk=1∑
N
n=1 p

n
k ≤ pmax.

(3)

As a common practice in the literature, the generic sum-
EE optimisation problem of the considered system can be
formulated as [21]-[26], [27]-[30]

max
bn
k
>0,pn

k
≥0
EE = rTx

ζ⋅pTx+pc
s.t. (1), (2), (3), (4)

where pc denotes the circuit power consumed at the BS’s
transmitter and the distant receiver for each (k,n) radio link
due to signal processing, battery backup, etc., while coefficient
ζ captures the power consumption due to the BS’s amplifier
inefficiency, feeder losses, etc.

B. Problem Formulation
Problem (4) aims at deriving bandwidth and transmit power
allocations, so as to maximise the sum-EE subject to the QoS,
bandwidth and transmit power allocation constraints. A main
contribution of this work is to enable the property of compet-

1Notation ∣ ⋅ ∣
2 indicates absolute value of complex numbers, e.g., ∣x∣2 =

x[x]T , with [⋅]
T the complex conjugate transpose.

2The considered channel can be extended to more realistic model, e.g.,
imperfect channel state information under fast fading channel, bandwidth
broken in discrete chunks, etc. [27]. However, the main scope of this work is
to analyse the design, solution and properties of the proposed game approach.
Therefore, we choose a channel model similar to [1], [6]-[14], [20]-[22], which
includes the reference channel dynamics of LTE-A, while simplifies presenting
the scope of this work. Also, our work can be easily extended from single-
to multi-cell scenarios if regarding the inter-cell interference as noise.

3The maximum load wn depends on the carrier’s frequency, e.g., carriers in
mmWave bands have higher wn than carriers in radio frequency (RF) bands.

itive fairness in problems in the form of (4) for capturing the
heterogeneity among multiple users of different attributes and
goals, while boosting the sum-EE performance through diver-
sity gains due to the multi-user competition. Also, we will not
compromise the complexity of the optimisation problem (4)
by considering additional fairness constraints as, e.g., in [6]-
[14], [20], [23]. In contrast, we will simplify the problem with
stochastic asymmetric Blotto game logic and CCT transfor-
mation to derive the optimal bandwidth and power allocations
with low complexity. Particularly, we consider that each user k
is allocated with a total bandwidth (budget) Bmaxk ≥ ∑Nn=1 b

n
k

to be spent on N carriers (contests)4. Users compete with each
other by bidding their resources between carriers at each time
slot simultaneously, while the user who acquires the highest
amount of resources to a specific carrier wins this carrier.
In this regard, we describe the stochastic asymmetric Blotto
game by B = ⟨K,{Bk}, uk(bk,pk)⟩, where K is the index
set for the bidders (users), Bk = [0,Bmaxk ] the bandwidth
allocation strategy set, and uk(bk,pk) the user utility function,
with bk= (b1k, ..., bnk , ..., bNk ) and pk= (p1

k, ..., p
n
k , ..., p

N
k ) the

bandwidth and the corresponding transmit power allocation
vectors for the k-th user, respectively. The spectrum sharing
process of problem (4) can be then described by

(B1) : max
bn
k
>0
uk((bk, pk), (bk′ , pk′))

s.t. (C1) : ∑Kk=1,k≠k′ b
n
k ≤ wn, ∀n,

(5)

where utility uk((bk, pk), (bk′ , pk′)) = ∑Nn=1 (Prnk ⋅wn⋅rnk ) ,
∀k, k′, is the stochastic pay-off of each user in the game,
(bk′ , pk′) the pay-off of user k′, and Prnk the probability of
user k ≠ k′ to win carrier n. Note that the utility in (5) does
not measure the actual throughput a user can achieve at the
end of the game. Instead, it provides a game utility to evaluate
how users bid their resources (budgets) to different carriers
(contests) based on their expected throughout (interest) on
those carriers. This utility will be quantified later in the actual
throughput to calculate the optimal sum-EE.

Furthermore, given that numerator and denominator of the
sum-EE objective function in (4) is concave and affine,
respectively, legitimises applying CCT technique to track
the fractional problem (4) with its equivalent concave-linear
problem for adaptive power distribution [17]. That is, con-
sidering the variable transformation ynk = pnk ⋅ t with t =

1

∑
K
k=1∑

N
n=1(ζ⋅p

n
k
)+pc

> 0 such that ∑Kk=1∑
N
n=1 (ζ ⋅ ynk )+ t ⋅pc = 1,

problem (4) can be transformed into its CCT equivalent
problem given below.

(B2) : max
yn
k
,t≥0
∑Kk=1∑

N
n=1 η0 ⋅ t ⋅ bnk ⋅ log2 (1 + ynk ⋅∣h

n
k ∣

2

t⋅bn
k
⋅N0

)

s.t. (C2) : ∑Kk=1∑n∈Ωk y
n
k ≤ t ⋅ pmax,∀k,n,

(C3) : t ⋅ (∑Nn=1 b
n
k ⋅ log2 (1 + ynk ⋅∣h

n
k ∣

2

t⋅bn
k
⋅N0

) − qk) = 0,

(C4) : ∑Kk=1∑
N
n=1 (ζ ⋅ ynk ) + t ⋅ pc − 1 = 0.

(6)

4For game competitions to end up with a feasible solution, players should
express their needs through bidding common and valuable resources, like, e.g.,
real money, stocks, soldiers, etc. In the context of wireless communications,
the most common and valuable resource is bandwidth [6]-[14], [20], [23].
The practicality of assuming that a user possesses bandwidth for biding
purposes can be perceived upon expanding the notion of mobile users to
network operators and service providers, which contest to attract more clients
by bidding more bandwidth to improve the services required by those clients.
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Problem (6) aims at maximising the sum-EE (B2) w.r.t the
CCT operands ynk and t, subject to total downlink transmit
power (C2), minimum user QoS requirements (C3), and the
CCT constraint (C4) for global optimality. Note that problem
(6) is concave-linear since its objective (B2) and constraint
(C3) are concave, while constraints (C2) and (C4) are affine
w.r.t ynk and t. Also, recall problem (5), which is linear w.r.t
bnk as both its objective (B1) and constraint (C1) are affine.
Therefore, the initial (fractional) sum-EE problem (4) can be
decoupled into two linear problems written as (a) maximise
(B1) w.r.t bnk s.t. (C1), and (b) maximise (B2) w.r.t ynk and t s.t.
(C2)-(C4). The set of feasible solutions over (bnk , ynk ) in (4) is
the union of the set of feasible solutions of the linear problems
(a) and (b) as mentioned previously, and can be represented by
the intersection of the double cone {bnk ∣(C1), bnk > 0} ∪ {ynk =
pnk ⋅ t∣(C2)-(C3), t > 0} inside R(K×N)+1 (due to the additional
parameter t), with the half-space (C4), i.e., yT ⋅ ζ + tT ⋅pc = 1.
The intersection of this double cone with the half-space is a
union of two convex sets w.r.t {bnk , pnk} in an affine subspace of
K×N dimensions. In this regard, we can draw this intersection
by applying convex optimisation analysis on problems (5) and
(6) to derive the optimal solutions over bnk and pnk , respectively,
which will be elaborated in Section III.

III. JOINT OPTIMAL BLOTTO GAME STRATEGY FOR
RADIO RESOURCE ALLOCATION

This section derives the joint optimal bandwidth and trans-
mit power allocations of the proposed stochastic asymmetric
Blotto game model incorporating the property of competitive
fairness. Meanwhile, we highlight and discuss key features and
contributions of the proposed solution.

A. Gaming Strategy for Joint Optimal Bandwidth and Trans-
mit Power Scheduling

A main factor to impact the bandwidth allocation strategy in
game B = ⟨K,{Bk}, uk(bk,pk)⟩ is probability Prnk of the
pay-off in (5), which has been conventionally expressed as
qualitative biding metric assuming each user aims to maximise
the aggregate value of its budgets at most profitable carriers,
e.g., Prnk = bnk

∑
K
k=1 b

n
k

[5]-[7], [18]-[20]. This way, however, the
bidding process may turn into purely egocentric (competition
for endogenous sharing) rather than altruistic (competition for
a majority value), which potentially violates fairness (i.e. low-
budgeted users are most likely to win much less carriers than
high-budgeted users or even none), and/or waste resources (i.e.
low-valued carriers may not be claimed by any user) [15]-
[16]. Instead, we define Prnk = bnk

∑
N
n=1 b

n
k

as quantitative biding
estimation metric in uk((bk, pk), (bk′ , pk′)) to encourage users
maximising the aggregate value of their budgets at the majority
of the carriers (not only at the most profitable carriers as done
conventionally). Our scope is to enhance the profile of low-
budgeted users and low-valued carriers in the bidding process,
which reduces the chance (i) some users not to be allocated
with carriers, and (ii) some carriers not to be claimed by any
user. Theorem 1 follows readily.

Theorem 1. Given problems (5) and (6) the stochas-
tic asymmetric Blotto game is formulated as B =
⟨K,{B∗

k}, uk(b∗k,p∗k)⟩, with the winning strategy B∗
k of

each user k ∈ K to be specified by the allocation pro-
file (b∗k,p∗k), where the optimal bandwidth allocation vector
b∗k = (b1∗k , ..., bn∗k , ..., bN∗

k ) includes the individual optimal
bandwidth allocation of user k on carrier n defined as

bn∗k = bn ⋅

√
rn∗k ⋅ ∑Nn′=1,n′≠n b

n′∗
k

∑Kk′=1

√
rn∗k′ ⋅ ∑

N
n′=1,n′≠n b

n′∗
k′

, ∀k,n, (7)

rn∗k = 1
ln(2)

⋅ [ln (1 + SNRn∗k ) − SNRn∗k
(1+SNRn∗

k
)
⋅ (1 + βnk )] and

βnk = bn∗k
∑
N
n′=1 b

n′∗
k

> 0, and the corresponding optimal transmit

power allocation vector p∗k = (p1∗
k , ..., p

n∗
k , ..., pN∗

k ) includes
the individual optimal transmit power of user k on carrier n
defined as

pn∗k = bn∗k ⋅
⎛
⎝
ωk′

γk ⋅
bk′
bk ⋅

∏
N
n=1(

∣hn
k′ ∣

2

N0
)

γk

bn∗
k′
bk

∏
N
n=1(

∣hn
k
∣2

N0
)

bn∗
k
bk

− N0

∣hn
k
∣2

⎞
⎠
, ∀k,n,

(8)

ωk′
∗ =

(
pc

ζ⋅bm∗
k′

⋅K⋅N −
N0
∣hm
k′
∣2 )

W(∏Nm=1(
∣hm
k′
∣2

N0
)

bm∗
k′
bk′

⋅(
pc

ζ⋅bm∗
k′

⋅K⋅N −
N0
∣hm
k′
∣2 )⋅e

−1)
, γk = qk

qk′

and W (⋅) the Lambert-W function.

Proof. The proofs of the optimal bandwidth and power allo-
cation solution in (7) and (8) of Theorem 1 are presented in
Appendix A and Appendix B, respectively.

B. Features of the Proposed Gaming Strategy
The proposed joint optimal game strategy in Theorem 1
comprises two main features. First, the optimal bandwidth bn∗k
and transmit power pn∗k in (7) and (8), respectively, depend
neither on the CCT coefficients ynk and t, nor on Lagrangian
optimisation multipliers, i.e. the multipliers ξ∗k , λ∗, µ∗, which
correspond to constraints (C2), (C3), (C4), respectively, and
were used during the convex analysis in Appendix A and
Appendix B. Instead, bn∗k and pn∗k have been rendered into
functions of the known system parameters pc, ζ, K, N , hnk .
As we discuss in Appendix B and confirm later through sim-
ulations in Section IV, such feature reduces significantly the
implementation complexity of the proposed strategy, especially
compared to dual approaches, where additional multipliers are
commonly included in the optimal formulas [21]-[28], [31].

The second feature is that the optimal bn∗k and pn∗k in (7) and
(8), respectively, demonstrate interdependence among users,
i.e., bn∗k (or pn∗k ) of user k on carrier n depends on bn∗k (or pn∗k )
of user k on carrier n′. This is mainly due to our consideration
of Prnk as quantitative biding metric into uk(bnk , pnk), which
allows outlining the NE of optimal bandwidth allocations,
whereby all users are satisfied with the pay-off attained given
the allocations of other users, that has yet been considered
by previous studies. In general, acquiring NE solutions offers
a predictable and stable outcome for games where multiple
players with conflicting interests compete to reach a NE state,
where no player wishes to deviate. Nevertheless, such NE state
(i) may not be unique, (ii) may bound the system to certain
SNR thresholds or (iii) may not even exist. In Section IV,
we study the existence, uniqueness and boundary conditions
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of NE along with key properties of the proposed joint game
strategy in Theorem 1.

IV. NASH EQUILIBRIUM AND PROPERTIES OF THE
PROPOSED BLOTTO GAME STRATEGY

This section examines the competitive fairness properties of
the proposed joint optimal strategy in Theorem 1, and its
convergence towards unique NE state.

A. Existence and definition of NE in the Proposed Gaming
Strategy

To show that the proposed joint optimal strategy complies with
the property of competitive fairness it is sufficient to prove that
it converges towards an existing and unique NE state. We do
so, by focusing on the marginal rate of substitutions (MRSs)
to capture how much additional satisfaction a unit of resource
bn∗k (or resource bn

′
∗

k ) can bring to user k, while maintaining
the same level of (utility) satisfaction [33]. In Theorem 1, the
MRSs of user k are the slopes of bandwidth equations bn∗k in
(7) of vector b∗k of the winning strategy B∗

k of each user k,
which can be written in functional form as

B∗
k = −bn∗k + bn ⋅

√

rn∗
k
⋅∑
N
n′=1,n′≠n b

n′∗
k

∑
K
k′=1

√

rn∗
k′ ⋅∑

N
n′=1,n′≠n b

n′∗
k′

= 0. (9)

In principle, MRSs are represented by the partial derivatives
(elements) of the Jacobian matrix JB∗

k
of the winning strategy

B∗
k , and they are identical when B∗

k converges to a NE state.
This implies that if matrix JB∗

k
is non-singular then, according

to Implicit Function Theorem [37], MRSs are identical, and
thus, NE exists (see e.g., [35] pp.128). Proposition 1 follows
readily.

Proposition 1. The Jacobian matrix JB∗
k

of B∗
k in (9) is non-

singular for SNRn∗k > 5.306dB.

Proof. The proof of Proposition 1 is presented in Appendix
C.

Proposition 1 identifies the minimum SNR threshold as the
Pareto system boundary above which the Blotto game B =
⟨K,{B∗

k}, uk(b∗k,p∗k)⟩ in Theorem 1 can reach the NE state
where

∀k, (bk,pk) ∈ B∗
k ∶ uk((b∗k,p∗k), (b∗−k,p∗−k))

≥ uk((bk,pk), (b∗−k,p∗−k)),
(10)

with (b∗−k,p∗−k) to represent the strategy profiles of all users
except user k. The boundary implies that each carrier’s signal
power should be at least 3.4-times higher than noise power,
which corresponds to the worst case scenario for all carriers’
conditions where users have no incentive to contest. In this
situation, although the game can carry on, it will not reach
the NE in (10). Note that the considered SNR threshold is
lower than the minimum SNR levels set by LTE-A and WiFi
standards5, which indicates that the proposed game strategy is
likely to reach its NE in practical setting. Another outcome of

5In a typical LTE-A and/or WiFi setting the SNR varies from 40dB (ex-
cellent signal and association) to 10dB (no signal and association). Generally,
a signal with an SNR value of 20dB or more is recommended for data
applications where as an SNR value of 25dB or more is recommended for
voice applications [21], [26].

Proposition 1 is that since JB∗
k

is non-singular, the MRSs are
identical for any point b that lays in the tangent space at the
variety of bn∗k [33]. This indicates that the NE of B∗

k remains
same for any descriptive point of bn∗k such as the maximum,
minimum, mean or actual value of bn∗k , which allows to rewrite
rn∗k in (7) as

rn∗k = 1
ln(2) ⋅ (ln (1 + SNRn∗k ) − SNR

n∗
k

(1+SNR
n∗
k )

×(1 + b

∑
N
n′=1 b

n′∗
k

)), SNR
n∗

k = pn∗k ⋅∣hnk ∣
2

b⋅N0
.

(11)

In view that throughput is large enough in practice (i.e. rn∗k >>
1 usually in Mbps), SNR

n∗
k

(1+SNR
n∗
k )

< 1 and term b

∑
N
n′=1 b

n′∗
k

is in the

order of 10−3 [21], [29], the rate rn∗k in (11) can be approached
as
rn∗k = 1

ln(2) ⋅ (ln (1 + SNRn∗k ) − SNR
n∗
k

(1+SNR
n∗
k )

´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<1

⋅ (1 + b

∑
N
n′=1 b

n′∗
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
10−3

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≈1

)

≈ 1
ln(2) ⋅ (ln (1 + SNRn∗k ) − 1)

= log2 ( 1+SNR
n∗
k

e
) ,

(12)

with b → {bmax = max{bn
′∗

k }, bmin = min{bn
′
∗

k }, bmean =
1
N ∑

N
n′=1 b

n′∗

k } and e the Euler’s constant. Due to its compact
form, rn∗k in (12) can be implemented much more readily
than conventional rn∗k in (7), while (as shown later through
simulations) the impacts of both expressions on sum-EE
are comparable. In summary, Proposition 1 yields the SNR
boundary for the existence of asymmetric NE in strategy of
Theorem 1, as well as a robust expression of user throughputs
to speed up the implementation of scheduling process with the
comparable sum-EE performance.

B. Uniqueness of NE in the Proposed Gaming Strategy

To ensure the convergence of the game strategy in Theorem 1,
it is important to show that its NE not only exists but it is also
unique. We examine the uniqueness of NE based on principles
of the fixed-point theory [37], where the time of a discrete-time
model is divided into iterations, while during each iteration t
all users can act only once and remain static. By letting b∗k(t)
and b∗k(t+ 1) denote the bandwidth allocation vectors of user
k at current and next iteration t and (t + 1), respectively, and
by recalling B∗

k in (9) we rewrite the winning strategy of k-th
user as

f(b∗k(t)) ∶= b∗k(t + 1) = bn ⋅

√

rn∗
k
⋅∑
N
n′=1,n′≠n b

n′∗
k
(t)

∑
K
k′=1

√

rn∗
k′ ⋅∑

N
n′=1,n′≠n b

n′∗
k′ (t)

,

(13)
with f(b∗k(t)) = (f1(bn∗k (t)), ..., fk(bn∗k (t)), ..., fK(bn∗k (t)))
the arbitrary set of the k-th user joint best response functions
at iteration t. From (13) we see that the convergence of
b∗k(t + 1) at the next iteration (t + 1) depends on the current
state of f(b∗k(t)) at iteration t. However, it is yet ensured that
the NE state acquired at iteration t exists and is unique at
iteration t + 1, especially when there are changes in some of
the bidding resources, e.g., if fk(bn∗k (t)) ≷ fk(bn∗k (t + 1)).

Therefore, we need to ensure that, regardless of the number
of iterations, the NE exists and is unique even if a best
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response function in f(b∗k(t)) changes. According to Banach’s
[38] and Rosen’s [39] fixed-point theorems and as shown
in [4], [34], pp. 553, among others, if the best response
functions of a non-cooperative game intersect and are standard
functions for all users, then they converge to a unique NE
state at each iteration. A function f ∶ b∗k → RK+ is said
to be standard if and only if it is jointly (i) positive,i.e.,
∀bn∗k ∈ b∗k ⇒ f(b∗k) > 0, (ii) monotonous, i.e., ∀bn∗k , bn

′
∗

k ∈ b∗k,
bn∗k ≤ bn

′
∗

k ⇒ f (bn∗k ) ≷ f (bn
′
∗

k ) (component-wise), and (iii)

scalable, i.e., ∀ρ > 1, bn∗k ∈ b∗k ⇒ ρ ⋅ f (bn∗k ) > f (ρ ⋅ bn∗k ).
Proposition 2 follows readily.

Proposition 2. The joint best response functions of set
f(b∗k(t)) in (13) are jointly positive, monotonous and scalable,
and intersect to a fixed and unique NE, where f(b∗k(t)) ∶=
b∗k(t + 1),∀k ∈K.

Proof. The proof of Proposition 2 is presented in Appendix
D.

In physical terms, (i) the positivity property in Proposition 2
certifies game feasibility, i.e., for any initial {bnk(t)} values,
the best response functions {fk(bn∗k (t))} will generate a
feasible NE solution {bn∗k (t), pn∗k (t)} in f(b∗k(t)) that is also
admissible for all users in f(b∗k(t + 1)), (ii) the monotonicity
property ensures game performance, i.e., each successful iter-
ation will produce NE points {bnk(t + 1)} that are better than
any previous points {bnk(t)}, and (iii) the scalability property
confirms game reliability, i.e., if user k has a winning chance
under strategy {b∗k,p∗k}, then user k will have a higher winning
chance when all resources scale up uniformly.

In summary, Section IV shows that the proposed strategy in
Theorem 1 converges towards a unique NE state, which can
exist above a certain SNR threshold. In such NE state, our
strategy inherits all properties of competitive fairness as listed
in, e.g., [4]-[16]. That is, (i) all users in the Blotto game B will
adhere to the joint strategy if the knowledge of the bandwidth
and transmit power allocations of other users is not available,
but it is believed that the available budget will be allocated
according to (7) and (8). (ii) The NE in B has a monotonic
property where the user with the higher budget has a better
chance of winning the targeted carriers. (iii) All users in B
compete for carriers, where even a small amount of additional
budget improves the chance of winning more carriers. (iv) All
users in B tend to fully spend their budget to increase the
chance of winning more carriers regardless of the conditions
on each carrier.

V. IMPLEMENTATION, COMPLEXITY AND
OPTIMALITY OF THE PROPOSED STRATEGY

This section discusses the implementation process with com-
putational complexity of the Blotto-type game strategy for
joint optimal bandwidth and transmit power scheduling. Mean-
while, we study the level of optimality of the proposed
mathematical methodology.

A. Implementation process and Computational Complexity
of the Proposed Game Strategy

The joint optimal solution in Theorem 1 implements using two
loops as shown in the pseudo-code of Algorithm 1. The outer

Algorithm 1 Blotto-type Game Algorithm for Solving the Joint Optimal
Allocation Strategy in Theorem 1.

1 begin
2 set i = 0, C(0) = 1, EE(0) = 1 and bnk (0) =

wn

K , ∀k, n using (2)
3 generate {hnk (i)}
4 loop 1 (begin transmit power distribution process)
5 while i < Imax and C(i) > α, with α a very small number (convergence criterion

of loop 1) do
6 for k = 1 to K do
7 for n = 1 to N do
8 compute: powers {pnk (i)} with coefficients {ωk(i)} and

{ω1(i)} using (8), (40) and (45), respectively
9 if ∑Nn=1 p

n
k (i)>pmax and SNRnk (i)<5.306dB then

10 set: i = i + 1 and go to step (2)
11 else
12 loop 2 (begin Blotto-type bandwidth allocation process)
13 for k = 1 to K do
14 for n = 1 to N do
15 compute:
16 (i) throughputs r̄ = {rn(max)

k
(i),

r
n(min)
k

(i), r
n(mean)
k

(i), r
n(log)
k

(i)}
using (12) and by setting
b̄ = {bmax, bmin, bmean, blog

} =
{max{bnk (i)},min{bnk (i)},
1
N ∑

N
n=1 b

n
k (i), b

n
k (i)}, ∀k,n

17 (ii) bandwidths {bnk (i)} using (7)
18 (iii) SNRs {SNRnk (i)} using r̄ in (12) ∀k,n
19 (iv) accuracy metric {C(i)}
20 (v) energy efficiency {EE(i)} using (4)
21 if {C(i)} ≤ α (convergence criterion of loop 2)

then
22 set {bnk (i)} → {bn∗k }, {p

n
k (i)} →

{pn∗k },{EE(i)} → {EE∗} (optimal solu-
tion)

23 else
24 go to step (2)

loop 1 is to define the optimal power pn∗k in (8), while the
inner loop 2 the bandwidth bn∗k in (7). In Steps 1-3, Algorithm
1 loads the starting values for bandwidths bnk(0) and energy
efficiency EE(0), while setting the stopping criterion C(0)

based on the metric C(i) =
√

∑
K
k=1∑

N
n=1(b

n
k
(i+1)−bn

k
(i))

2

√

∑
K
k=1∑

N
n=1(b

n
k
(i))

2
≤ α,

which is shown to effectively capture the predefined ac-
curacy tolerance α w.r.t {bn∗k (i), pn∗k (i)} at each iteration
i = 0, ..., Imax, where Imax is the maximum number of
iterations. With the initial values of bnk(0), EE(0) and
C(0), loop 1 in Steps 4-11 computes the allocated powers
{pnk(i)} for each link (k,n) at each iteration i such that the
feasibility criteria related to power constraint (3) and SNR
threshold in Theorem 1 are both fulfilled. Then, in Steps 12-
25 loop 2 implements the Blotto game to update each user’s
bandwidths b̄ with corresponding rates r̄, system’s energy
efficiency EE(i) and stopping criterion C(i). The process
terminates when either the number of iterations reaches the
maximum threshold Imax (time criterion) or C(i) becomes
smaller than α (optimality criterion). Notice that due to NE
states in (12), points {bn∗k (i), pn∗k (i)} remain the same for any
descriptive point b and therefore, in Step 17 of loop 2 we can
choose between four measures for powers and bandwidths, i.e.,
{pnk(bmax, i), pnk(bmin, i), pnk(bmean, i), pnk(bnk , i)}. As will be
evidenced later with simulations, choosing bmean among those
four options can bring about higher rate and sum-EE perfor-
mance.

Furthermore, recalling our analysis in Appendix A and
Appendix B, and particularly Lemma 1 and equations (36)-
(45), which specifies that the utility uk(bn∗n , pn∗n ) of each
user k is increasing, strictly concave and twice continuously
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differentiable in bn∗n and pn∗n , the purely theoretical complexity
for deriving {bn∗n } and {pn∗n } of the strategy in Theorem 1
increases linearly with the number of users and carriers, and
it is in the order of O(K ⋅N) with O(⋅) the Big-O notation.
However in practice, the complexity of the game strategy
in Theorem 1 depends on the computational complexity of
Algorithm 1, which, in turn, depends on the complexity of
the two considered loops. The complexity of loop 1 depends
on the number of users and bandwidths and can be estimated
by O(α−1 ⋅K ⋅ N) times at each iteration i. Similarly, loop
2 (Blotto game) requires O(α−1 ⋅ K ⋅ N) times to reach a
steady NE state. By denoting TImax as the time duration of
each iteration, the total complexity of Algorithm 1 is in the
order of O(TImax ⋅ Imax ⋅ α−2 ⋅K ⋅N), which is much lower
than complexities O(TImax ⋅ α−2 ⋅ (L +K ⋅N ⋅ (logN))) and
O(2⋅TImax ⋅Imax⋅α−2⋅K ⋅N2⋅L) of the relevant schemes in [21]
and [25], respectively, where L is the number of optimisation
constraints. This notable difference is because Dinkelbach-
type schemes resolve the sum-EE problem using dual pro-
gramming, which includes time-consuming processes for the
sequential search of the sub-gradients of each dual-optimal
multiplier at each iteration (e.g. related to constraints (1)-(3)).
Instead, our analysis relies on primary (non-dual) Lagrangian
optimisation, where CCT approach stokes out from the final
solution any extra (dual) multiplier and, therefore, Algorithm
1 is independent from subgradient searching procedures.

B. Optimality Level of the Proposed Gaming Strategy
Notice that neither dual nor non-dual optimisation can provide
any information about how optimal the final solution can be
[31], [33]. That means the derived {bn∗k , pn∗k } from Algorithm
1 (and the dual algorithms in [21] and [25]) may refer to
either global optimal, local optimal or critical points of the
sum-EE problem (4). To ensure that {bn∗k , pn∗k } are (at least)
local optimal points of (4), it is sufficient to prove that the
NDCQ condition for global optimality holds for the set

C (gi(ynk , t)) = {
K

∑
k=1

N

∑
n=1

ynk − t ⋅ pmax
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

g0(ynk ,t)

≤ 0,

t ⋅ (
N

∑
n=1

bnk ⋅ log2 (1 + ynk ⋅∣h
n
k ∣

2

t⋅bn
k
N0

) − qk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
gk(ynk ,t)

≥ 0, k = 1, . . . ,K,

and
K

∑
k=1

N

∑
n=1

(ς ⋅ ynk ) + t ⋅ pc − 1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
gK+1(ynk ,t)

= 0},

(14)
which is determined by all CCT equivalent constraints
{gi(ynk , t)} of problems (5) and (6) w.r.t points {yn∗k , t∗}.
The NDCQ optimality translates into three requisites: (i) the
Jacobian matrix

G (gi(ynk , t)) =
⎛
⎝

∇g0(ynk , t)⋮
∇gK+1(ynk , t)

⎞
⎠

=
⎛
⎜
⎝

∂g0(y
n
k ,t)

∂y11
⋯ ∂g0(y

n
k ,t)

∂yn
k⋮ ⋱ ⋮

∂gK+1(y
n
k ,t)

∂y11
⋯ ∂gK+1(y

n
k ,t)

∂yn
k

⎞
⎟
⎠

(15)

of set C (gi(ynk , t)) (or the vector of gradients of {gi(ynk , t)})
should be of rank K + 2 (i.e. K + 1 inequality and 1 CCT

TABLE I: Parameters for simulation of system and channel mod-
elling

Noise power spectral density -174dBm/Hz
Size of cell 500m

Number of users 4-160
User distance from the BS 50 to 500m

Number of bandwidth allocations 16-2048
Path loss exponent 3
Carrier bandwidth 8MHz

Carrier wavelength 0.12m
Central frequency 2.5GHz

Accuracy tolerance (α) 10−4

Channel gain i.i.d Rayleigh
Path loss model COST231 with correction
Device Rx type MMASE-IRC

BS antenna gain 15dBi (actual pattern)
User antenna gain 0dBi

Max Tx power (BS to user) 46dBm
User noise figure 9dB

BS noise figure 5dB
Circuit power 46dBm

Max number of iterations (Imax) 100
Total power at the BS (pmax) 10W

equality constraints w.r.t {yn∗k , t∗}), (ii) there exists a non-
zero vector ψ which resolves each constraint gi(ynk , t) of
G (gi(ynk , t)) w.r.t {yn∗k , t∗}, and (iii) constraints {gi(ynk , t)},
i = 0, ...,K + 1 should be continuous and twice differentiable
in R(K⋅N)+1. Otherwise, if one or more NDCQ requisites
are not fulfilled, constraints (C1)-(C4) may be violated for
some {yn∗k , t∗} points in C (gi(ynk , t)), hence our solution w.r.t
{bn∗k , pn∗k } can refer to critical points of the sum-EE problem
(4). Proposition 3 and Proposition 4 follow readily.

Proposition 3. The Jacobian matrix G (gi(ynk , t)) in (15) of
set C (gi(ynk , t)) in (14) is of rank K+2 and there exists non-
zero vector ψ such that G (gi(ynk , t)) ⋅ψ

T = 0.

Proposition 4. Constraints {gi(ynk , t)}, i = 0, ...,K + 1 of
problems (5) and (6) are continuous and twice differentiable
in R(K⋅N)+1.
Proof. The proofs of Proposition 3 and Proposition 4 are
presented in Appendix E.

Proposition 3 and Proposition 4 indicate that the NDCQ
requisites hold for the solution of Theorem 1 hence, Algorithm
1 results in strict local optimal {bn∗k , pn∗k } points. Also, since
the CCT transformed problem (6) is convex, we can assert that
points {bn∗k , pn∗k } are global solutions of the initial problem
(4) and the proposed Algorithm 1 converges towards the
global optimal sum-EE solution, i.e., EE(rn∗k (pn∗k , bn∗k )). We
evaluate our schemes using simulations in Section VI.

VI. PERFORMANCE EVALUATIONS
This section presents simulation results of the proposed
solution and performs performance comparisons with most
relevant resource scheduling schemes to examine the level
of optimality and implementation complexity as well as the
fairness, throughput/QoS and sum-EE performances.

A. System and Channel Simulation Modelling
For the ease of presentation, we name our proposed solution in
this paper as sum-EE optimisation based on Asymmetrically-
fair Blotto game and CCT non-Dual approach (EE-ABCD).
Also, for fair comparisons, we adopt the same modelling
as LTE-A channel configuration used in [21]-[30]. These
studies are most relevant to our work because they maximise
the sum-EE objective subject to QoS and carrier sharing
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Fig.1a: Homogeneous user QoS (small scale)
q{1,2,3,4} = 10Mbit/sec
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Fig.1c: Heterogeneous user QoS (small scale)
q{1,2,3,4} = {8.5, 9.5, 10.5, 11.5}Mbit/sec
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Fig.1b: Homogeneous user QoS (large scale)
q{1−12} = 3.33Mbit/sec
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Fig.1d: Heterogeneous user QoS (large scale)
q{1−4,5−8,9−12} = {1, 3, 6}Mbit/sec

 

 

EE-ABCD(rn∗k (bn∗k ))
EE-ABCD(r̄n∗k (bmax))
EE-ABCD(r̄n∗k (bmean))
EE-ABCD(r̄n∗k (bmin))

EE-ABCD(rn∗k (bn∗k ))
EE-ABCD(r̄n∗k (bmax))
EE-ABCD(r̄n∗k (bmean))
EE-ABCD(r̄n∗k (bmin))

Convergence points

Convergence points

Fig. 1: Sum-EE vs. number of iterations over various system scales and user heterogeneity: comparisons between the four versions of the
proposed solution in Proposition 1.

constraints. However, our EE-ABCD differs because the sum-
EE optimisations in [21]-[23] rely on Dual-Optimal Sum-of-
ratios Optimisation (EE-DOSO) solution [31] with no game
considerations. In addition, the Dinkelbach Algorithm-Type
Approach (EE-DATA) in [24]-[30] is shown to derive the
dual-optimal sum-EE more accurately than EE-DOSO but
at higher complexity. Also, we consider comparing with our
previous game approach in [1], where we maximise the sum-
rate using Symmetrically-fair Nash bargaining Solution (Rx-
TSNS) for joint bandwidth and power allocations in an effort
to gain insights into the impact of proportional fairness (Rx-
TSNS) versus the impact of competitive fairness (EE-ABCD)
on system performance. The simulation parameters are given
in Table I unless otherwise stated.

B. Impact of Descriptive Bandwidth Allocations on sum-EE

Fig.1 examines the level of optimality and computational
complexity between all versions of EE-ABCD extracted by
Proposition 1. In particular, we compare the performance of
sum-EE versus number of iterations between the expression
of ”actual” throughput rn∗k (bn∗k ) with ”actual” bandwidth bn∗k
in (7), and the ”simplified” throughput rn∗k (b) with ”descrip-
tive” bandwidths (b) → {bmax, bmin, bmean} in (12). We see
that by using ”actual” values of measures bn∗k attains higher

sum-EE than using ”simplified” versions b but requires more
time to converge, especially as the system scales up and/or user
QoS heterogeneity increases. For example, with homogeneous
QoS (Fig.1a-Fig.1b) EE-ABCD requires half the time to
converge compared with heterogeneous QoS (Fig.1c-Fig.1d)
(i.e. 3 iterations instead of 6 iterations, respectively), while in
both cases performances are comparable (i.e. 0.03Mbit/Joule
difference in average). Interestingly, using mean bandwidth
points (rn∗k (bmean)) results in almost similar sum-EE with
”actual” (rn∗k (bn∗k )) (i.e. 0.02Mbit/Joule difference in average)
and converges much faster regardless of the system scale and
heterogeneity (i.e. in Fig1.c-Fig.1d the sum EE(rn∗k (bmean))
converges in 3 iterations only). In conclusion, using the
simplified expression of mean bandwidth (rn∗k (bmean)) in
(12) attains the best optimality-vs-complexity trade-off among
all versions of EE-ABCD.

C. Evaluations on sum-EE and Computational Complexity

Fig.2 expands the results of Fig.1 in order to compare between
the sum-EE performances of the proposed EE-ABCD and
the relevant schemes EE-DOSO, EE-DATA and Rx-TSNS.
For this experiment, we consider an additional algorithmic
approach as reliable metric for global optimality of the original
sum-EE problem (4), namely exhaustive search (ES) [1], [21],
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Fig.2a: Homogeneous user QoS (small scale)
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Fig.2c: Heterogeneous user QoS (small scale)
q{1,2,3,4} = {8.5, 9.5, 10.5, 11.5}Mbit/sec
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Fig.2d: Heterogeneous user QoS (large scale)
q{1−4,5−8,9−12} = {1, 3, 6}Mbit/sec

 

 

ES (opt. metric)
EE-ABCD
EE-DOSO
EE-DATA
Rx-TSNS

ES (opt. metric)
EE-ABCD
EE-DOSO
EE-DATA
Rx-TSNS

Convergence points

Convergence points

Fig. 2: Sum-EE vs. number of iterations over various system scales and user heterogeneity: comparisons between the proposed EE-ABCD
and relevant EE-DOSO, EE-DATA and Rx-TSNS.
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Fig. 3: Normalised CPU time vs. number of users and number of carriers in large scale system: comparisons on implementation complexity
between the proposed EE-ABCD and relevant EE-DOSO, EE-DATA and Rx-TSNS.

[25], [28]. Note that due to the particularly high complexity of
the ES (i.e. O(KN)), we present its solutions independently
from the number of iterations. We see that EE-ABCD attains
sum-EE almost similar to ES and considerably higher than
EE-DOSO, EE-DATA and Rx-TSNS. This is because the space
{bnk ∣(C1), bnk > 0} ∪ {ynk = pnk ⋅ t∣(C2)-(C3), t > 0}, where EE-
ABCD determines the optimal points {bn∗k , pn∗k }, postulates
the complete fulfilment of both QoS and transmit power
constraint (1) and (3), respectively, otherwise NE states could
never be reached and sum-EE would rebate. In contrast, the
corresponding spaces in EE-DOSO and EE-DATA depend on
the weak duality that holds for either the QoS or transmit
power constraint hence, some of the ”actual” optimal points
{bn∗k , pn∗k } are excluded leading to lower performances, es-
pecially when the system scales up and/or user heterogeneity
increases (see e.g. [26] pp. 76-77 for more details). Note that
Rx-TSNS achieves the lowest sum-EE than EE-DOSO and
EE-DATA since it maximises throughput instead of energy
efficiency. Furthermore, EE-ABCD in Fig.2a-Fig.2d converges
in 3 iterations only, while EE-DOSO, EE-DATA and Rx-TSNS
require from 7 up to 12 iterations. Such complexity difference
is clearer in Fig.3, which considers realistic system scale of
2048 carriers and 160 users with increased QoS heterogeneity.
Indeed, EE-ABCD converges in 28sec and 137sec, while

all other schemes require more than 100sec and 320sec to
converge under full user and carrier load, respectively. This is
because the implementation time of EE-ABCD is practically
linear w.r.t both K and N , and it is mainly dependent
on the predefined accuracy tolerance α, since the optimal
bandwidths (7) in Theorem 1 have been decoupled between
the N >> K system carriers. On the contrary, sub-gradient
searching make EE-DOSO and EE-DATA to take longer to
converge. In conclusion, EE-ABCD achieves higher sum-EE
in significantly less time than all the other examined schemes,
especially in practical setting.

D. Evaluations on Fairness and QoS Provision

Fig.4 illustrates how fairly each scheme allocates the radio
resources to system users by relying on the measure so-

called Fairness Index FI =
(∑

K
k=1(

rk
qk
))

2

K⋅∑
K
k=1(

rk
qk
)2

, where FI = 1

indicates perfectly fair resource allocation, while FI = 0
totally opportunistic scheduling [32]. For this experiment, we
assume that ES’s bandwidth assignments are fixed such that
ES can serve as metric for perfect fairness provision. Our
intention is to examine the ability of each scheme to distribute
the available resources (i.e. bnk , pnk and pmax) in a way where
(i) either all users are satisfied under resource sufficiency, or
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Fig.4a: Homogeneous user QoS q(1−30) = 5Mbit/sec
with noisePSD=-174dBm/Hz
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Fig.4b: Heterogeneous user QoS and noisePSD
given in Table II
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Fig. 4: Fairness index vs. number of users in homogeneous and heterogeneous large scale system: comparisons on fairness provision between
the proposed EE-ABCD and relevant EE-DOSO, EE-DATA and Rx-TSNS
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TABLE II: User characteristics for simulations settings in Fig.4b and Fig.5

user 1 2 3 4 5 6 7 8 9 10
qk (Mbit/sec) 5 5 5 5 5 8 5 5 5 5

NoisePSD (dBm/Hz) -127 -174 -174 -174 -174 -102 -174 -174 -174 -174
user 11 12 13 14 15 16 17 18 19 20

qk (Mbit/sec) 5 7 5 5 5 5 5 6 5 5
NoisePSD (dBm/Hz) -174 -182 -174 -174 -174 -174 -174 -182 -174 -174

user 21 22 23 24 25 26 27 28 29 30
qk (Mbit/sec) 5 5 5 5 5 5 5 5 5 5

NoisePSD (dBm/Hz) -174 -174 -174 -174 -174 -174 -174 -174 -174 -174

(ii) all users suffer the same QoS loss under resource scarcity6.
More precisely, we set the resource sufficiency state by

considering in Fig.4a that all channels have same SNR
(noisePSD=-174dBm/Hz) and all users request homogeneous
QoS (q{1−30} =5Mbit/sec, noisePSD=-174dBm/Hz) such that
the available power pmax at the BS is enough to serve
all users. We see the proposed EE-ABCD along with the
game theoretical Rx-TSNS are able to allocate the resources
almost perfectly fair (i.e. all users are allocated with same
throughputs) achieving similar FI to ES. On the other hand,
EE-DOSO and EE-DATA score much lower FI → 0.62
by opportunistically allocating more resources to some users
meaning that some other users may not be able to satisfy their
minimum QoS requirements [26].

Furthermore, we set resource scarcity, by considering in
Fig.4b that the two users k = {1,6} have heterogeneous
QoS q{1,6} = {5,8} and suffer from noisy channels with
noisePSD={-127,-102,}dBm/Hz, while users k = {12,18}
with q{12,18} = {7,6} have best channel conditions among oth-
ers with noisePSD={-182,-182,}dBm/Hz, respectively, shown
in Table II. As expected, the FIs of all schemes decrease
with the increased number of users that join the system since
the supplied to the BS power pmax is (on purpose) not
enough. However, the EE-ABCD and Rx-TSNS score notably
higher FIs than EE-DOSO and EE-DATA schedulers, which
affirms the practical difference between game-theoretical and
opportunistic scheduling. That is, taking no consideration of
fairness patterns practically leads to violation of the QoS

6Resource scarcity can be identified by observing the performance of each
scheme at the boundary point beyond which the supplied power at the BS is
not enough to accommodate all the users, and captures how fairly resources
are allocated to users.

constraint (1) for some users even if the BS is supplied with
enough power to support all users’ minimum QoS (as also
pointed out in Fig.2). For example, by examining in Fig.5c
and Fig.5d the corresponding throughputs allocated by EE-
DOSO and EE-DATA to each individual user, respectively,
we see that in both resource sufficiency and resource scarcity
states, the minimum QoS of user k = {18} (with best channel
quality) is fulfilled within the large region 0 ≤ K ≤ 25, while
the QoS of user k = {1} (with worst channels) within the much
smaller region of 0 ≤K ≤ 13. More importantly, in Fig.4b the
proposed EE-ABCD scores higher average FI = 0.91 than
the FI = 0.82 of Rx-TSBS, which reveals the key difference
between asymmetric and symmetric fair scheduling.

That is, in Blotto game strategies, users compete with each
other to gain as many resources as possible, while in propor-
tional NBS-based games users negotiate towards compromised
(bargaining) solutions. This key difference between ”compet-
ing” and ”negotiating” seems to have significant impact on
the behaviour of networks with increased degree of user and
channel heterogeneity. For example, by observing Fig.5a and
Fig.5b we see that (i) EE-ABCD satisfies all user’s minimum
QoS within region 1 ≤K ≤ 23, which is larger than the region
1 ≤ K ≤ 21 of Rx-TSNS, and (ii) in resource scarcity state,
Rx-TSNS throughputs decay at the same pace, while in EE-
ABCD the throughputs of less demanded users k = {1,18}
have larger decaying rate than throughputs of most demanded
users k = {6,12}. In conclusion, Fig.4 and Fig.5 show that
the proposed EE-ABCD provides higher throughputs than all
other examined schemes by distributing radio resources more
fairly in both homogeneous and heterogeneous system setting.
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Fig. 5: QoS provision to individual users versus number of users. Comparisons on QoS performance between the proposed EE-ABCD and
relevant EE-DOSO, EE-DATA and Rx-TSNS
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VII. CONCLUSION

This paper developed a new sum-EE maximisation scheme
to derive joint optimal bandwidth and transmit power allo-
cations using auction game theory. Our focus was drawn on
a stochastic asymmetric Blotto game designed by considering
the ”competition of the majority”, where multiple user utilities
can be interdependent, which in turn, enables the resources to
be fairly distributed among users. We show that with such fea-
ture our system can better capture the user heterogeneity, and
improve fairness and performance compared to proportional
games. In addition, we proposed a new solution method based
on CCT and standard Lagrangian analysis, which renders the
intermediate CCT coefficients and Lagrangian multipliers than
commonly burden the optimisation analysis. This minimises
the complexity of our solution so that the optimal points can
be derived by solving a single-variable linear function for each
user. We provided proofs with full analysis of key features
and properties of our proposal in terms of the existence and
uniqueness of NE, interdependency between users, Pareto
boundaries, global optimality, implementation complexity and
convergence. Finally, we provided simulation comparisons
with relevant decision making systems to highlight the superi-
ority of our scheme in terms of higher sum-EE performance
in significantly less time and with the guaranteed convergence.
Our approach has the potential to be developed into generic
slicing framework to accommodate next-generation applica-
tions under joint eMBB, mMTC, URLLC use cases.

APPENDIX A
PROOF OF THE OPTIMAL BANDWIDTH ALLOCATION SOLUTION

(7) IN THEOREM 1

Considering (B1) and (C1), as well as the definitions of rnk
and uk(pnk , bnk) in (1) and (5), respectively, we can write the
Lagrangian function L(1) of problem (5) as

L(1) = ∑Nn=1 ( bnk
∑
N
l=1 b

l
k

⋅wn ⋅ log2 (1 + pnk ⋅∣h
n
k ∣

2

bn
k
⋅N0

))

−νn (∑Kk=1 b
n
k −wn) ,∀k,

(16)

with νn the Lagrangian multiplier related to bandwidth con-
straint (C1). From the KKT conditions [31], the differentiation
of L w.t.r bnk yields

∂L
∂bn
k
∣
{pn
k
,bn
k
,νn,SNRn

k
}={pn∗

k
,bn∗
k
,νn∗,SNRn∗

k
}
= 0⇒

∑
N
n′=1,n′≠n b

n′∗
k

(∑
N
n′′=1 b

n′′∗
k
)
2 ⋅ 1

ln 2 ⋅ [ln (1 + SNRn∗k ) − SNRn∗k
(1+SNRn∗

k
)

× (1 + bn∗k
∑
N
n′=1,n′≠n b

n′∗
k

)] ⇒ ∑
N
n′=1,n′≠n b

n′∗
k

(∑
N
n′′=1 b

n′′∗
k
)
2 ⋅ rn∗k = νn∗

wn
,

(17)

where rn∗k = 1
ln 2 ⋅ [ln (1 + SNRn∗k ) − SNRn∗k

(1+SNRn∗
k
)

× (1 + bn∗k
∑
N
n′=1,n′≠n b

n′∗
k

)] . We rewrite relation (17) as

∑
N
n′=1,n′≠n b

n′∗
k

(∑
N
n′′=1 b

n′′∗
k
)
2 ⋅ rn∗k = ... = ∑

N
n′=1,n′≠n b

n′∗
k′

(∑
N
n′′=1 b

n′′∗
k′ )

2 ⋅ rn∗k′ = ...

... = ∑
N
n′=1,n′≠n b

n′∗
K

(∑
N
n′′=1 b

n′′∗
K
)
2 ⋅ rn∗K = νn∗

wn
,

(18)

which, recalling the budget bk = ∑Nn=1 b
n∗

k , calculates to
∑
N
n′=1,n′≠n b

n′∗
k

(bk)2
⋅ rn∗k = ... = ∑

N
n′=1,n′≠n b

n′∗
k′

(bk′)
2 ⋅ rn∗k′ = ...

... =
∑
N

n
′ =1,n′≠n

bn
′∗
K

(bK)2
⋅ rn∗K = νn∗

wn
,⇒

rn∗k ⋅ (bk′)2 ⋅ (∑Nn′=1,n′≠n b
n′∗
k )

= rn∗k′ ⋅ (bk)2 ⋅ (∑Nn′=1,n′≠n b
n′∗
k′ )

. (19)

By setting B = ∑Kk=1 bk = ∑Kk=1∑
N
n=1 b

n∗
k =∑Nn=1∑

K
k=1 b

n∗
k =

∑Nn=1 b
n, relation (19) yields

bk′ = bk ⋅

√

rn∗
k′ ⋅∑

N
n′′=1,n′′≠n b

n′′∗
k′

√

rn∗
k
⋅∑
N
n′′=1,n′′≠n b

n′′∗
k

⇒ (20)

B = ∑Kk′=1 bk′ = bk ⋅
∑
K
k′=1

√

rn∗
k′ ⋅∑

N
n′′=1,n′′≠n b

n′′∗
k′

√

rn∗
k
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N
n′′=1,n′′≠n b

n′′∗
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⇒ (21)

bk = B ⋅

√
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k
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N
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n′′∗
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√
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N
n′′=1,n′′≠n b

n′′∗
k′

. (22)

Further, with (20)-(22), relation (18) defines the ratio for
carrier n over carrier n′ of user k as

rn∗k ⋅∑
N
n′′=1,n′′≠n b

n′′∗
k

rn
′∗
k

⋅∑
N
n′′=1,n′′≠n′ b
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= ... = rn∗
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′∗
K

⋅∑
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′′∗
K
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⇒

(23)

rn∗k ⋅(bk−b
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′∗
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⋅(bk−b
n′∗
k
)
= ... = rn∗

k′ ⋅(bk′−b
n∗
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K
)
= νn∗
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(24)

Relation (23) resolves to
νn

′
∗ ⋅ rn∗k ⋅ ∑Nn′′=1,n′′≠n b

n′′∗
k = νn∗ ⋅ rn

′
∗

k

×∑Nn′′=1,n′′≠n′ b
n′′∗
k ⇒ νn∗

νn′∗
= rn∗k ⋅∑

N
n′′=1,n′′≠n b

n′′∗

rn
′∗
k
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n′′=1,n′′≠n′ b

n′′∗

= rn∗k ⋅(B−bn∗)
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n′ ⋅(B−b

n′∗)
.

(25)

By substituting (25) into (24) we get (bk−b
n∗
k )

(bk−b
n′∗
k
)
= (B−bn∗)

(B−bn′∗)
,

which can be reformed as
bn∗k = bk − (B−bn∗)

(B−bn′∗)
⋅ (bk − bn

′
∗

k )

= bk ⋅ (b
n∗
−bn

′∗
)

(B−bn
′∗
)
+ (B−bn∗)

(B−bn
′∗
)
⋅ bn

′
∗

k .
(26)

By setting bk = ∑Nn=1 b
n∗

k , relation (26) calculates to

bk = bk ⋅ ∑Nn=1

(bn∗−bn
′∗
)

(B−bn′∗)
+∑Nn=1

(B−bn∗)

(B−bn′∗)
⋅ bn

′
∗
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= 1
(B−bn′∗)

(bk ⋅ ∑Nn=1 (bn∗ − bn
′
∗) +B ⋅ bn
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∗

k =
bk ⋅(B−b
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bk ⋅(B−b

n′∗
−B+N ⋅bn

′∗
)

B⋅(N−1)

= bn
′
∗ ⋅ bk

B
.

(27)

By substituting (21) into (27) we obtain the optimal expression
of bn∗k in (7) of Theorem 1. Note that due to constraint (C1),
bn∗k is maximal for bn = wn. Also, due to the square root terms
included in (7), rn∗k and rn∗k′ should be positive, otherwise bn∗k
is a complex number.

Lemma 1. rn∗k in (7) is positive for βnk = bn∗k
∑
N
n′=1 b

n′∗
k

> 0.

Proof. Recall relation (17) to rewrite term rn∗k in (7) as

rn∗k = ln(1 + SNRn∗k ) − SNRn∗k
(1+SNRn∗

k
)
⋅ (1 + bn∗k

∑
N
n′=1 b

n′∗
k

)

= ln(1 + SNRn∗k ) − SNRn∗k
(1+SNRn∗

k
)
⋅ (1 + βnk ).

(28)

Supposing rn∗k > 0, relation (28) yields
(1 + SNRn∗k ) ⋅ e−(1+β

n
k ) ⋅ ln ((1 + SNRn∗k ) ⋅ e−(1+β

n
k ))

> −(1 + βnk ) ⋅ e−(1+β
n
k ). (29)
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If z = ln ((1 + SNRn∗k ) ⋅ e−(1+β
n
k )) then from Lambert-W

function W (⋅) [36], (29) we resolve
ez ⋅ z > −(1 + βnk )e−(1+β

n
k ) ⇒

(1 + SNRn∗k ) > eW(−(1+β
n
k )⋅e

−(1+βn
k
)
)+(1+βnk )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T1

. (30)

Since 1 + SNRn∗k is real, T1 in (30) is real too. Clearly, T1

is real for βnk > 0. This completes the proof of Lemma 1 and
optimal bandwidth allocation (7) in Theorem 1.

APPENDIX B
PROOF OF THE OPTIMAL TRANSMIT POWER ALLOCATION

SOLUTION (8) IN THEOREM 1

Considering (B2) and (C2)-(C4), we write the Lagrangian
function L(2) of problem (6) as

L(2) = t ⋅ ∑Kk=1∑
N
n=1 η0 ⋅ bnk ⋅ log2 (1 + ynk ⋅∣h

n
k ∣

2

t⋅bn
k
⋅N0

)

+t ⋅ (∑Kk=1 ξk ⋅ (∑
N
n=1 b

n
k ⋅ log2 (1 + ynk ⋅∣h

n
k ∣

2

t⋅bn
k
⋅N0

) − qk))
+µ ⋅ (∑Kk=1∑

N
n=1 (ζ ⋅ ynk ) + t ⋅ pc − 1)

−λ ⋅ (∑Kk=1∑
N
n=1(ynk ) − t ⋅ pmax) , (31)

where ξk, λ and µ are the Lagrangian multipliers asso-
ciated with constraints (C2), (C3) and (C4), respectively.
According to the KKT conditions [31], the differentia-
tion of L(2) in (21) w.r.t the CCT coefficient t yields
∂L
∂t

∣
{pn
k
,yn
k
,t,ξk,λ,µ}={p

n∗
k
,yn∗
k
,t∗,ξ∗

k
,λ∗,µ∗}

= 0⇒

η0 ⋅ ∑Kk=1∑
N
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n
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n
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2
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k
⋅N0

)
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n
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ln 2⋅N0⋅(1+
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k
⋅∣hn
k
∣2
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k
⋅N0

)

)

+µ ⋅ pc + λ ⋅ pmax = 0.

(32)

Also, the differentiation of L(2) in (31) w.r.t the CCT coeffi-
cient ynk yields

∂L
∂yn
k
∣
{pn
k
,yn
k
,t,ξk,λ,µ}={p

n∗
k
,yn∗
k
,t∗,ξ∗

k
,λ∗,µ∗}

= 0⇒
(η0+ξ

∗
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n
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2

ln 2⋅N0⋅(1+
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k

⋅∣hn
k
∣2
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k

⋅N0
)

+ µ∗ ⋅ ζ − λ∗ = 0.
(33)

Multiplying (33) with pn∗k and summarising w.r.t k and n we
have

∑Kk=1∑
N
n=1

pn∗k ⋅∣hnk ∣
2
⋅(η0+ξ

∗
k)

ln 2⋅N0⋅(1+
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k

⋅N0
)

= (λ∗ − ζ ⋅ µ∗) ⋅ ∑Kk=1∑
N
n=1 (pn∗k ) ,

(34)

which can be substituted into (32) to derive
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K
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N
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k
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+ µ∗ = 0.

(35)

Recalling the KKT conditions of complementary slackness,
i.e., λ∗ = 0, ∑Kk=1∑

N
n=1(pn∗k ) − pmax > 0 or λ∗ > 0,

∑Kk=1∑
N
n=1(pn∗k ) − pmax = 0 and ξk = 0, ∑Nn=1 b

n∗
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log2 (1 + pn∗k ⋅∣hnk ∣
2

bn∗
k
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) − qk > 0 or ξk > 0, ∑Nn=1 b
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2

bn∗
k
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) − qk = 0, relation (35) becomes
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k
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+ µ∗ = 0, (36)

otherwise the available power at the BS pmax can never be
totally exploited and/or the minimum user QoS requirement
qk may not be always satisfied [31]. A conventional way to
resolve relation (36) w.r.t the optimal pn∗k s is to calculate the
user powers K-times per iteration considering that each user’s
QoS requirement qk is dependent on the (unknown) multiplier
µ∗, as shown in [21]-[30], [35]. Instead, we shall correlate
the QoS requirements between users such that pn∗k s can be
independent from µ∗ and thus, they can be calculated only
once per iteration for all users, which significantly reduces
complexity. Particularly, from the CCT-oriented relation (33)
we observe that for each user k there exists a common
coefficient ωk for all carriers, i.e.,

ωk ∶= ωnk = ... = ωmk =
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k
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k
∣2
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k
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k
∣2

bm∗
k

⋅N0
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∗
k

ln 2⋅(λ∗−µ∗⋅ζ) , ∀n ≠m,

(37)

which describes the optimal transmit power operand as

pn∗k = bn∗k ⋅ (ωk − N0

∣hn
k
∣2
) . (38)

In addition, recalling our definition of user’s throughput in (1)
and by using (37), we calculate the QoS ratio γk = qk

qk′
between

the k-th and k′-th user over all N available carrier as

γk = qk
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=
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,

(39)

which with some manipulations can be resolved w.r.t coeffi-
cient ωk as

ωk = ωk′γk ⋅
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2
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)b
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bk /∏Nn=1(

∣hnk ∣
2
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)
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.
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With relations (40) and (38) the total power consumption
(denominator of (36)) is rewritten as
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(41)

while the total throughput (numerator of (36)) is rewritten as
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N
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(42)
By substituting the power and throughput formulas (41) and
(42), respectively, into (36), we get
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The differentiation of (43) w.r.t ωk′ yields a relation over the
optimal coefficient ω∗k′ , i.e.,

∑Kk=1∑
N
n=1 ζ ⋅ bn∗k ⋅ ((ω∗k′)

γk ⋅
bk′
bk ⋅ (∏Nm=1

(∣hm
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2
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×(1 − ln (∏Nm=1 (ω∗k′ ⋅ ∣hmk′ ∣2)
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k′
bk )) − N0
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k
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) + pc = 0,

(44)
which, by using Lambert-W function W (⋅) properties [36],
resolves to

ω∗k′ =
pc
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pc

ζ⋅bm∗
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k′
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−1)
(45)

The optimal coefficient ω∗k′ in (45) can be easily computed as
it is independent from multiplier µ∗ and depends on known
system variables only. Once we compute ω∗k′ , we can calculate
ω∗k from (40) (using one iteration for all the K users) and
substitute it into (38) to obtain the optimal powers {pn∗k }.
This completes the proof of the optimal transmit power (8) in
Theorem 1. ◻

APPENDIX C
PROOF OF PROPOSITION 1

To ensure non-singularity of the Jacobian matrix JB∗
k

of
function B∗

k in (9) it is sufficient to show that its diago-
nal elements are equal to -1 and its off-diagonal elements
equal to zero, i.e., ∂B∗
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= -1 and ∂B∗
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=0, respectively

[35]. Let us set ϕbn∗
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(46)

The diagonal elements ∂B∗
k

∂bn∗
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of the Jacobian matrix JB∗
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of B∗
k

are calculated as
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In order for ∂B∗
k

∂bn∗
k

= -1, terms T2 ×T3 ×T4 ×T5 in (47) should
be equal to zero. Since T2, T4, T5 are less than one, we thus
seek for a condition to ensure that term T3 is less than one
too, i.e.,
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With some manipulations, relation (48) results to
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(49)

SNRn∗k in (49) is real for βnk ≥ 1e−4, which means that the
diagonal elements of the Jacobian matrix JB∗

k
are ∂B∗

k

∂bn∗
k

≈ −1

for SNRn∗k >5.306dB. Similarly, we have
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(50)

Terms Λ1, Λ2 and Λ3 in (50) are positive thus, ∂B∗
k

∂bn
′∗
k′

< 0,
which implies that the impact of the off-diagonal elements
on the non-singularity of JB∗

k
is negligible. Moreover, (47)

confirms that the Jacobian matrix JB∗
k

is continuous w.r.t bn∗k ,
which certifies that bn∗k in (7) does exist. Similarly, we can
show that pn∗k in (8) exists as well and thus, the existence of
a NE in B is ensured for both pn∗k and bn∗k . This completes
the proof of Proposition 1. ◻

APPENDIX D
PROOF OF PROPOSITION 2

At time t, each best response function f (bn∗k (t)) of set
f(b∗k(t)) in (13) can be calculated as
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where G =
∑
K
k′=1,k′=k
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N
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k′

√
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> 0 has been added

for brevity, rn∗k = log2 ( 1+SNR
n∗
k

e
) is specified in (12). As

observed, the right hand side of f (bn∗k (t)) in (51) is mono-
tone convex w.r.t bn∗k for a given pn∗k , hence, recalling that
bn∗k ∈ (0, 8 × 106], we calculate lim

bn∗
k
→0+

f (bn∗k ) = 0+ − bn < 0,

and lim
bn∗
k
→+∞

f (bn∗k ) = +∞ − 0 > 0. Therefore, according

to the Intermediate Value Theorem [37], each f (bn∗k (t)) of
f(b∗k(t)) has at least one root in (0, 8 × 106]. Furthermore,
to show that f(b∗k(t)) is comprised by standard functions
it is sufficient to prove that it is jointly (i) positive, (ii)
monotonous and (iii) scalable w.r.t the bandwidth allocation
vector b∗k(t) = (b1∗k , b2∗k , ..., bn∗k , ..., bN∗

k ) [38], [39].
(i) Positivity: Considering multiple users (i.e. k′ ≠ k), f(b∗k(t))
in (13) is positive because rn∗k > 0, rn∗k′ > 0,∑Nn′=1,n′≠n b

n′∗
k > 0

and ∑Nn′=1,n′≠n b
n′∗
k′ > 0 for all k, k′ ∈K.

(ii) Monotonicity: Considering multiple carriers n ≠ n′ and
that user k changes a bandwidth resource bn∗k by an amount
of 0 < ρ < 1, the bandwidth allocation vector of user k becomes
b̃
∗

k(t + 1) = (b1∗k , b2∗k , ..., ρ ⋅ bn∗k , ..., bN∗
k ) and we can write the
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derivation of its winning strategy as
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Recalling (2), (12), (18) and (21), variables rn∗k , rn∗k , bn, and
b̃n in (52) are calculated as below.
rn∗k = rn∗k (bn∗k ) ⋅ ∑Nn′=1,n′≠n b

n′∗
k = vn∗

wn
(∑Nn′′=1 b

n′′∗
k )

2
⇒

√
rn∗k (bn∗k ) ⋅ ∑Nn′=1,n′≠n b

n′∗
k =

√
vn∗

wn ∑
N
n′′=1 b

n′′∗
k =

√
vn∗

wn
⋅ bk ⇒

∑Kk=1

√
rn∗k (bn∗k ) ⋅ ∑Nn′=1,n′≠n b

n′∗
k =

√
vn∗

wn ∑
K
k=1 bk =

√
vn∗

wn
⋅B.

(53)
r̃n∗k (ρ ⋅ bn∗k ) ⋅ ∑Nn′=1,n′≠n b

n′∗
k = vn∗

wn
(∑Nn′′=1 b

n′′∗
k )

2
⇒

√
r̃n∗k (ρ ⋅ bn∗k ) ⋅ ∑Nn′=1,n′≠n(bn

′∗
k ) =

√
vn∗

wn
⋅ bk ⇒

∑Kk=1

√
r̃n∗k (ρ ⋅ bn∗k ) ⋅ ∑Nn′=1,n′≠n(bn

′∗
k ) =

√
vn∗

wn
⋅B.

(54)

bn = ∑Kk=1 b
n∗
k and b̃n = ∑Kk′=1,k′≠k b

n∗
k′ + ρbn∗k

= ∑Kk′=1 b
n∗
k′ − bn∗k + ρ ⋅ bn∗k = (bn + (ρ − 1) bn∗k ) .

(55)

By substituting (53), (54) and (55) into (52) we obtain
f (b∗k (t)) − f (b̃

∗

k(t))

= bn ⋅
√
vn∗
wn ⋅bk

√
vn∗
wn ⋅⋅B

− (bn + (ρ − 1) ⋅ bn∗k ) ⋅
√
vn∗
wn bk√
vn∗
wn ⋅B

= bn∗k ⋅ bk
B
⋅ (1 − ρ) > 0,

(56)

and, hence, f (b∗k (t)) is monotonous since f (b∗k (t)) >
f (b̃

∗

k (t)) for b∗k (t) ≻ b̃
∗

k (t).

(iii) Scalability: For ρ > 1, we denote the bandwidth allocation
vector of user k as b̂

∗

k(t) = (b1∗k , b2∗k , ..., ρ ⋅ bn∗k , ..., bN∗
k ) and

write the derivation of its winning strategy as

ρ ⋅ f (b∗k (t)) − f (b̂
∗

k (t)) = ρ ⋅ bn ⋅

√

rn∗
k
⋅∑
N

n”=1,n′′ ≠n
bn

′′∗
k

√
vn∗
wn B

−b̂n ⋅

√

rn∗
k
(ρ⋅bn∗

k
)⋅∑

N

n
′ =1,n′ ≠n

bn
′∗
k

√
vn∗
wn B

,
(57)

where bn = ∑Kk=1 b
n∗
k = ∑Kk′=1,k′≠k b

n∗
k′ + bn∗k and

b̂n = ∑Kk′=1,k′≠k b
n∗
k′ + ρ ⋅ bn∗k . Therefore, ρ ⋅ bn − b̂n =

∑Kk′=1,k′≠k(bn∗k′ ⋅ (ρ − 1)) and r̃n∗k (ρ ⋅ bn∗k ) ⋅ ∑Nn′=1,n′≠n b
n′∗
k =

vn∗

wn
⋅ (∑Nn′′=1 b

n′′∗
k )

2
⇒

√
r̃n∗k (ρ ⋅ bn∗k ) ⋅ ∑Nn′=1,n′≠n(bn

′∗
k ) =

√
vn∗

wn
⋅bk, which recalculates (57) as ρ⋅f (b∗k (t))−f (b̂

∗

k (t)) =

ρ ⋅ bn ⋅
√
vn∗
wn bk√
vn∗
wn B

− (b̂n) ⋅
√
vn∗
wn bk√
vn∗
wn B

= bk
B
⋅ (ρ ⋅ bn − b̂n) = bk

B
⋅

∑Kk′=1,k′≠k b
n∗
k′ (ρ − 1) > 0, and yields that f (b∗k (t)) is scalable

as ρ ⋅ f (b∗k (t)) > f (b̂
∗

k (t)). This completes the proof of
Proposition 2. ◻

APPENDIX E
PROOFS OF PROPOSITION 3 AND PROPOSITION 4

The set C (gi(ynk , t)) in (14) includes vari-
ables (y1

1 , y
2
1 , ..., y

N
1 , ..., y

1
k, ..., y

N
k , ..., y

1
K , ..., y

N
K , t), which

are ((K ⋅ N) + 1) in total, i.e., (K ⋅ N) variables for ynk
in (C1)-(C3) plus one variable for t in (C4). Also, the
Jacobian matrix G (gi(ynk , t)) in (15) can be represented
by the partial derivatives of each of the {gi(ynk , t)} con-
straints w.r.t ynk and t, as shown in (58) at the top of
this page. From (58) the Jacobian matrix is computed as
G (gi(ynk , t)) = [ ∇g1(ynk , t) . . .∇gK+2(ynk , t)]

T = Jcb, where
Jcb is K + 2 rank matrix given in (59) at the bottom of
this page. Also, for N > 1 the number of variables (i.e.
(K ⋅ N) + 1) in G (gi(ynk , t)) is larger than the number
of constraints (i.e. K + 2) therefore, there exists a non-
zero vector ψ = [ψ1

1 . . . ψ
N
1 ψ

1
2 . . . ψ

N
2 . . . ψ1

K . . . ψ
N
KψKN+1]

T

to resolve G (gi(ynk , t)) by G (gi(ynk , t)) ⋅ ψ
T = 0 with

ψ1
k = ( ∇g2k

∇g1
k+1

)(∇g
1
k+1−∇g

2
k+1

∇g1
k
−∇g2

k

) , ψ2
k = −( ∇g1k

∇g1
k+1

)(∇g
1
k+1−∇g

2
k+1

∇g1
k
−∇g2

k

),

ψ3
k = 0, . . . , ψNk = 0 for k = 1,3,5, . . . , and ψ1

k = −∇gk2
∇gk1

,
ψ2
k = 1, ψ3

k = 0, . . . , ψNk = 0, ψKN+1 = 0 for k = 2,4,6, . . . .
This completes the proof of Proposition 3. Furthermore,
to show that constraints {gi(ynk , t)}, i = 0, ...,K + 1 are
continuous and twice differentiable in R(K⋅N)+1, it is suf-
ficient to prove that the Hessian matrix H (gi(ynk , t)) =
∇2
y∗,t∗L (y∗, t∗, λ∗,ξ∗, µ∗) of L (y∗, t∗, λ∗,ξ∗, µ∗) in (31)

is negative definite, i.e., ψT ⋅ ∇∗
y∗,t∗L (y∗, t∗, λ∗,ξ∗, µ∗) ⋅

ψ < 0. Indeed, we calculate the second derivatives of

L as ∂2L
∂yn
k

2 = − (η0+ξ
∗
k)⋅b

n∗
k

ln 2
⋅

(
∣hn
k
∣2

bn∗
k

⋅N0
)

2

(1+
yn∗
k
t∗ ⋅

∣hn
k
∣2

bn∗
k

⋅N0
)

2 < 0, ∂2L
∂t2

=

Jcb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . .1 1 1 . . .1 1 . . .1 . . .1 . . .1 . . .1 . . .1 . . .1 −pmax

∇g11 . . .∇gN−1
1 ∇gN1 0 . . .0 0 . . .0 . . .0 . . .0 . . .0 . . .0 . . .0 ∇tg1

0 . . .0 0 ∇g12 . . .∇gN−1
2 ∇gN2 . . .0 . . .0 . . .0 . . .0 . . .0 . . .0 ∇tg2⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . . . ⋮ . . . ⋮ . . . ⋮ ⋱ ⋮ . . . ⋮ . . . ⋮ ⋮

0 . . .0 0 0 . . .0 0 . . .∇g1k . . .∇gnk . . .∇gNk ⋱ 0 . . . 0 0 ∇tgk⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ . . . ⋮ ⋮ ⋮
0 . . .0 0 0 . . .0 0 . . .0 . . .0 . . .0 ⋱∇g1K . . .∇gN−1

K . . .∇gNK ∇tg1
ς . . . ς ς ς . . . ς ς . . . ς . . . ς . . . ς ς ς ς pc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(59)
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−∑Kk=1∑
N
n=1 (η0 + ξ∗k) ⋅

bn∗k
t∗⋅ln 2

⋅
(
yn∗
k
t∗ ⋅

∣hn
k
∣2

bn∗
k
N0
)

2

(1+
yn∗
k
t∗ ⋅

∣hn
k
∣2

bn∗
k

⋅N0
)

2 < 0, ∂2L
∂yn
k
∂ym
k
=

∂2L
∂ym
k
∂yn
k

= 0, m ≠ n, ∂2L
∂yn∗
k
∂t∗ = ∂2L

∂t∂yn
k

= (η0+ξ
∗
k)⋅b

n∗
k

ln 2
⋅

(
yn∗
k
t∗ ⋅

∣hn
k
∣2

bn∗
k

⋅N0
)

2

(1+
yn∗
k
t∗ ⋅

∣hn
k
∣2

bn∗
k

⋅N0
)

2 > 0 hence, L is twice differentiable. In

addition, due to the structure of ψ, the multiplications ψT ⋅
∇∗
y∗,t∗L (y∗, t∗, λ∗,ξ∗, µ∗) ⋅ ψ depend on the non-zero ele-

ments of ψ that correspond to the diagonal of H (gi(ynk , t))
computed by

(∇g
2
1

∇g11
)

2

⋅ (∇g
1
2

∇g11
)

2

⋅ (∇g
1
2−∇g

2
2

∇g11−∇g
2
1
)

2

⋅ ∂
2L

∂y11
2

+ ∂2L
∂y21

2+(∇g
2
2

∇g12
)

2

⋅ ∂
2L

∂y12
2+ ∂2L

∂ y22
2

+ ⋅ ⋅ ⋅ + (∇g
2
3

∇g13
)

2

⋅ (∇g
1
4

∇g13
)

2

⋅ (∇g
1
4−∇g

2
4

∇g13−∇g
2
3
)

2

⋅ ∂
2L

∂y13
2+ ∂2L

∂y23
2

+ . . .+(∇g
2
K

∇g1
K

)
2

⋅ ∂2L
∂ y1

K
2+ ∂2L

∂ y2
K

2 < 0.
(60)

From (60) and recalling that ∂2L
∂yn
k

2 < 0 for all n and k,
the Hessian H (gi(ynk , t)) of L (y∗, t∗, λ∗,ξ∗, µ∗) is negative
definite. This completes the proof of Proposition 4 ◻
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