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Foreword

This volume contains the peer-reviewed contributions presented at the 2nd
International Conference on Advances in Statistical Modelling of Ordinal
Data - ASMOD 2018 - held at the Department of Political Sciences of the Uni-
versity of Naples Federico II, (24-26 October 2018). The Conference brought
together theoretical and applied statisticians to share the latest studies and de-
velopments in the field. In addition to the fundamental topic of latent structure
analysis and modelling, the contributions in this volume cover a broad range
of topics including measuring dissimilarity, clustering, robustness, CUB mod-
els, multivariate models, and permutation tests.

The Conference featured six distinguished keynote speakers: Alan Agresti
(University of Florida, USA), Brian Francis (Lancaster University, UK), Bet-
tina Gruen (Johannes Kepler University Linz, Austria), Maria Kateri (RWTH
Aachen, Germany), Elvezio Ronchetti (University of Geneva, Switzerland),
Gerhard Tutz (Ludwig-Maximilians University of Munich, Germany) who
significantly contributed to making the Conference successful with their in-
spiring presentations.

Moreover, the Conference encompassed 22 contributions that were ac-
cepted as full papers for inclusion in this edited volume after a blind review
process of two anonymous referees.

I would also like to take this opportunity to express my gratitude to the
members of the Scientific Committee: Eugenio Brentari (University of Bres-
cia), Anna Clara Monti (University of Sannio), Monica Pratesi (University
of Florence), Roberto Rocci (University of Rome Tor Vergata), and Stefania
Capecchi, Carmela Cappelli, Francesca Di lorio, Maria lannario, Rosaria
Simone from the University of Naples Federico II for their helpful support. I
am also very grateful to the members of the Organizing Committee: Stefania
Capecchi, Carlo De Luca, Cinzia Della Monica, Giuliana Perretti, Maria Gio-
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vanna Porzio, Caterina Rinaldi, Filomenda Vilardi that contributed to the suc-
cess of ASMOD 2018 and worked actively for its organization.

Finally, I wish to acknowledge the sponsorship of the Italian Statistical
Society, the CLADAG (Classification and Data Analysis) Group, and the fi-
nancial support of the Department of Political Sciences and the University of
Naples Federico II.

Marcella Corduas
Chair of the Scientific Committee
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Simple ordinal model effect measures

Alan Agresti*

Abstract: The survey effect measures for models for ordinal categorical data that can be sim-
pler to interpret that the model parameters. For describing the effect of an explanatory vari-
able while adjusting for other explanatory variables, we present probability-based measures,
including a measure of relative size and partial effect measures based on an instantaneous
rate of change. We also survey summary measures of predictive power that are analogs of
R-squared and multiple correlation measures for continuous response variables. We suggest
new measures of effect and of predictive power, illustrate the new and existing measures for
an example, and provide R code for implementing them. The talk is based on recent papers

with Claudia Tarantola and Maria Kateri.

Keywords: Average marginal effect, Ordinal probability comparison, R-squared.

*University of Florida, aa@stat.ufl.edu






Latent class approaches for modelling multiple ordinal items

Brian Francis*

Abstract: The modelling of the latent class structure of multiple Likert items is reviewd.
The standard latent class approach is to model the absolute Likert ratings. Commonly, and
ordinal latent class model is used where the logits of the profile probabilities for each item
have an adjacent category formulation (DeSantis et al., 2008). an alternative developed in
this paper is to model the relative orderings, using a mixture model of the relative differences
between pairs of Likert items. This produces a paired comparison adjacent category log-
linear model (Dittrich et al., 2007; Francis and Dittrich, 2017), with item estimates placed
on a (0,1) “worth” scale for each latent class. The two approaches are compared using data
on environmental risk from the International Social Survey Programme, and conclusions are

presented.

Keywords: Multiple likert items, Ordinal latent class models, Paired comparisons.

1. Introduction

Collections of multiple Likert items in questionnaires are very common,
and are usually used to measure underlying constructs. Scale from the Lik-
ert items can be built either through simply adding the item score or through
using an IRT model such as a graded response model to build a score. This
approach assumes that there is a single underlying construct to the items. The
current paper, in contrast, takes a different view. It proposes that there is a
latent class structure to the Likert items, with different classes having differ-
ent patterns of high and low responses. In this approach, score building is not
the aim; instead the aim is to understand the various patterns of responses that
might exist in the population.

The standard latent class approach to multiple ordinal indicators essen-
tially constructs a polytomous latent class model (Linzer and Lewis, 2011),

*University of Lancaster, UK, B.Francis@Lancaster.ac.uk
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and constrains the latent class profile probabilities, imposing a linear score
ordinal model on them (Magidson and Vermunt, 2004; DeSantis et al., 2008).
This results in a latent class adjacent category ordinal model. The method
however uses the absolute responses, and this has been criticised by some
authors, as they state that each respondent has their own way of interpreting
the Likert scale. Such interpretation may itself be culturally determined, or
may depend on other covariates such as age, gender and so on. For example
younger people and males may be more likely to express a firm opinion, using
the end categories of a unipolar Likert scale, than older people and females.
The alternative is to take a relative approach. While one method of doing
this is to standardise the items for each respondent, subtracting the respon-
dent mean. This is unsatisfactory as it ignores the categorical nature of the
data. In this paper we instead develop a paired comparisons approach, which
produces a worth scale for each latent class, ranking the items in order of pref-
erence. The paper compares the two methods and discusses the advantages
and disadvantages of each method.

Some common notation is introduced which will be used to develop both
models. The Likert items are assumed to be measured on the same response
scale with identical labelling; it is assumed that there are H possible ordered
response categories taking the values 1, ..., H for each of the J Likert items
indexed by j, and with /V respondents indexed by . y;;; yi; € 1,2,..., H
is defined to be the (ordinal) response given by respondent 7 to item j. A set
of H indicators for each item and respondent with the indicator z;;, taking
the value 1 if y;; = h and 0 otherwise.

2. The ordinal latent class model

We first introduce the ordinal latent class model, which models the ab-
solute responses. Let y;; be the ordinal response of respondent i to item j.
It is assumed that there are K latent classes. The item response vector for
respondent 7 is

yi = (yilayi2>~-->yiJ)>
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Then the ordinal latent class model is defined by:

P(y;) = ) n(k)P(yilk)

]~

k=1

[
[M] =

(k) H P(y;|k) under conditional independence.

x>
Il

1

We write

P(yi;|k) H pj;c}i}zl

where pjy, is the probability of observing the ordinal response / for indicator
J given membership of latent class k - these are sometimes called the latent
class profile probabilities.

Ordinality is imposed by using an adjacent categories ordinal model and
we parameterise the model through regression parameters on the logit scale,
which separates out the intercept parameter [3;;, and the class specific param-
eters (3, for each item and response category.

logit(pjrn) = Bjn + Bjkn
= Bjn + hBjk under a linear score model

The likelihood L is then given by

L= I Pl

i k=1

Model fitting is usually carried out by using the EM algorithm - details are
given in Francis et al. (2010) and Aitkin et al. (2014). Determination of
the optimal number of classes is commonly achieved by choosing that model
which minimises an information criterion, although a wide variety of other
methods have been proposed. We have used the BIC in this paper.
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3. The latent class ordinal paired comparison model

An alternative to the absolute latent class approach is to work on a rela-
tive scale. This perhaps is of greater interest. We take a paired comparison
approach, using the difference in the ordinal likert responses. This allows the
development of a “worth” scale between 0 and 1 with items placed on this
scale. The sum of the item scores is defined to be 1. This section proceeds by
developing the ordinal paired comparison model, and then extends that model
by adding a mixture or latent class process to the model.

3.1. The ordinal paired comparison model

This model starts by constructing a set of paired comparisons - taking all
possible pairs of items and comparing them in turn (Dittrich et al., 2007). For
respondent ¢ and for any two items j = a and j = b, let

h if item a preferred by h steps toitem b = y;, — Yip
Ti(ab) = 0 if Likert ratings are equal =0
—h if item b preferred by A steps toitem a = y;, — Yip

The probability for a single PC response z; (4 is then defined by

Zi (ab)
a Ta S | i/ 0
p(xi,(ab)) _ { Hab (ﬂ'b> ,(ab) 7&

Hab Cab cof Li,(ab) = 0

The 7s represent the worths or importances of the items, c,;, represents the
probability of no preference between items a and b and f,, 1S @ normalising
quantity for the comparison ab. Over all items, we now form a pattern vector
x; for observation ¢ with @; = (2 (12), %513, - - - » Ti (ab), - - - » Ti,(J—1,7)) and
count up the number of responses n, with that pattern. The probability for a
certain pattern / is

be = AN H p(mab)

a<b

where AA* is a constant (the same for all patterns).
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A log-linear model can now be constructed with observed counts n,. The

expected counts for a pattern { are defined as where 7 is the total
number of respondents defined by n = ny +ny 4+ --- +ny+ --- + ny and

where L is the number of all possible patterns.
Taking natural logs, the log expected counts are obtained by

nme=a+> Ta(Xe — M) + Loy=0Yab

a<b

For x,, = hthisis h(\, — \y) , for x4, = —h thisis (=X, + \y) and for
ZTap = 0 thisis 4. To show that this is an adjacent categories model, the
log odds of a pair for any two adjacent categories on the ordinal scale can be
examined - say h and h + 1. Then, as m, = np,, we have

me(h) _
In (W) = In(pas) + h(Aa = Ap) — In(ptap) — (A 4+ 1)(Aa — Ap)
= =N

which is true for any h as long as h or h + 1 are not zero.
The worths 7; are calculated from the \; through the formula

exp(2)))
7Tj = 7 .
23:1 exp(2);)

3.2. Extending the model to incorporate latent classes

As before, we assume that there are K latent classes with different prefer-
ence patterns (the lambdas). The likelihood L. becomes:

K

L:H(qunmk> where Zpgkzl V k and quzl.
¢k ¢ k

=1

Inpy, = a+ Z Zab(Aak — Aok) + La,,=0 Vab
a<b

Aj is replaced in the model by ) j;,, and we now have to additionally estimate
the qx. qi is the probability of belonging to class % (the mass points or class
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sizes). Again, we use the EM algorithm to maximise the likelihood, and use
the BIC to determine the number of classes. Typically, we need to use a range
of starting values to ensure an optimal solution.

4. An Example

Six question items on the topic of environmental danger were taken from
the 2000 sweep of the International Social Survey Programme , which focused
on issues relating to the environment. As part of this survey, the respon-
dents assessed the environmental danger of a number of different activities
and items. The question is reproduced below; each question used the same
response scale. The six Likert items are:

¢ air pollution caused by cars (CAR)

t arise in the world’s temperature (TEMP)

g modifying the genes of certain crops (GENE)

i pollution caused by industry (IND)

f pesticides and chemicals used in farming (FARM)

w pollution of water (rivers, lakes, ...) (WATER)

with the response scale for each of the items as follows:
In general, do you think item is

4. extremely dangerous for the environment
3. very dangerous

2. somewhat dangerous

1. not very dangerous

0. not dangerous at all for the environment

Both absolute and relative latent class models are fitted to this data. The
standard ordinal latent class model (absolute) was fitted using Latent Gold
5.1 (Vermunt and Magidson, 2013), and the paired comparison ordinal latent
class model (relative) was fitted using an extension to the prefmod package
in R (Hatzinger and Maier, 2017). Both approaches used 20 different starting
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Table 1. BIC values from fitting latent class models (a) the standard ordinal
LC model and (b) the ordinal PC LC model

(a) standard ordinal LC model  (b) Ordinal PC LC model

absolute relative
No. of classes K BIC no of parameters BIC no of parameters
1 24207.04 24
2 22680.48 31 6823.11 26
3 22153.75 38 6359.56 32
4 22112.70 45 6204.76 38
5 22097.07 52 6303.71 44
6 22084.99 59
7 22083.33 66

values to ensure that the global maximum of the likelihood was reached. Ta-
ble 1 shows the BIC values for both models, for a range of values of K. It can
be seen that the standard latent class approach needs either six or seven classes
(six classes is chosen here), whereas the paired comparison latent class model
gives a minimum BIC for ' = 4. The smaller number of classes found for
the paired comparison approach is perhaps to be expected, as the standard ap-
proach needs to model both the absolute level of the Likert responses as well
as the differences.

We examine the mean Likert rating for each of the items within each of
the latent classes for the standard ordinal latent class model. In contrast, the
worths provide the interpretation of the latent classes in the paired compari-
son LC model. Both plots are shown in Figure 1, which are oriented so that
greater dangerousness (or greater danger worth) is towards the top of the plots.

It can be seen that for the standard ordinal latent class model, the first
three classes - Class 1 (51%), Class 2 (24%) and Class 3 (12%) - all show
little difference between the items, but differ according to their absolute level.
The three remaining classes, in contrast, show considerable differences be-
tween the items. The paired comparison solution gives a similar story. The
largest class shows little difference between the items, with the three remain-
ing classes showing large differences in dangerousness between items. Al-
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item means for absolute latent class ordinal model - 6 classes
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»CAR
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Figure 1. Item worths for (top) standard ordinal LC model and (bottom) or-
dinal paired comparison LC model
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though the item rankings show some minor differences between the two meth-
ods, the results are similar.

5. Discussion and conclusions

This paper has demonstrated that the paired comparison ordinal model can
be useful to understand the relative ordering of items in multiple Likert re-
sponses when the absolute level of the response is not of interest. The method
leads to simpler models, which makes interpretation simpler. There are how-
ever some restrictions in using the model. The most important is that all Lik-
ert items must be measured on the same response scale. Differences between
Likert items only make sense when this is true, and the paired comparison
method relies on that. The PC method as currently implemented also assumes
equidistance between the Likert categories, and further work is needed to re-
lax this assumption.

Acknowledgements: 1 am grateful to Regina Dittrich and Reinhold Hatzinger for very helpful

discussions on this topic.
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Bayesian latent class analysis with shrinkage priors:
an application to the Hungarian heart disease data

Bettina Griin*, Gertraud Malsiner-Walli**

Abstract: Latent class analysis explains dependency structures in multivariate categorical
data by assuming the presence of latent classes. We investigate the specification of suitable
priors for the Bayesian latent class model to determine the number of classes and perform
variable selection. Estimation is possible using standard tools implementing general purpose
Markov chain Monte Carlo sampling techniques such as the software JAGS. However, class
specific inference requires suitable post-processing in order to eliminate label switching. The
proposed Bayesian specification and analysis method is applied to the Hungarian heart dis-
ease data set to determine the number of classes and identify relevant variables and results are

compared to those obtained with the standard prior for the component specific parameters.

Keywords: Bayesian latent class analysis, Shrinkage prior, Variable selection.

1. Introduction

Latent class analysis (LCA) is a modeling approach for categorical data
originally proposed by Lazarsfeld (1950). The observed association between
the manifest categorical variables is assumed to be caused by latent classes.
Conditional on class membership the categorical variables are assumed to be
independent given the class specific variable distributions.

Issues in LCA are the selection of the number of classes and the identifica-
tion of relevant variables. Within the frequentist framework using maximum
likelihood estimation Dean and Raftery (2010) investigated the use of the BIC
in combination with a headlong search algorithm to explore the model space
to determine a suitable number of classes as well as subset of variables. They
illustrate their approach using the Hungarian heart disease data set. Alterna-
tively, White et al. (2016) use stochastic search methods to select the number
of classes and relevant variables within the Bayesian framework.

*Johannes Kepler Universitiit Linz, bettina.gruen @jku.at
**Wirtschaftsuniversitidt Wien, gertraud.malsiner-walli@wu.ac.at
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In this paper we investigate the use of sparse finite mixture models in com-
bination with shrinkage priors. Malsiner-Walli et al. (2016) proposed the
sparse finite mixture model with shrinkage priors on the means for the Gaus-
sian finite mixture model. We extend this approach to the Bayesian latent
class model. We also indicate how a general purpose Markov chain Monte
Carlo (MCMC) sampler such as JAGS (Just Another Gibbs Sampler; Plum-
mer 2003) can be used to obtain draws from the posterior and present suitable
post-processing tools of the MCMC draws to eliminate label switching. This
proposed model specification and analysis strategy is used to reanalyze the
Hungarian heart disease data set.

2. Bayesian latent class model

Assume there are n observations y;, ¢ = 1,...,n given. Each observation
vy, 1s a vector of length J, i.e., J variables are observed and each element y;;
contains values in {1,..., L;} implying that each variable j is a categorical
variable with L; > 2 different values.

The latent class model for observations y;, ¢ = 1,....n is given by

K J Lj
f(yi|m™, ©) Zwk H 0 Jyl”*l)

k=1 j=11=1

where 7 = (7 )k=1,...k» © = (Okji)r=1,... K:j=1,...51=1,...1;» 1() is the indica-
tor function, and

Z?Tkzl, 7Tk20, Vk,

Zek,jl = 17 Vk7j7 9k7jl > Oa Vkvja l.

2.1. Prior specification

The parameter vector consists of (7, ®). In Bayesian finite mixture model-
ing one assumes in general that the component weights 7 and the component

14
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specific parameters ® are a-priori independent and that the component spe-
cific parameters are independently identically distributed (at least conditional
on some hyperparameters). Furthermore conditionally conjugate priors are
used to simplify MCMC sampling.

Component weights

For the component weights 7t a Dirichlet prior is assumed with a single
parameter e:

7 ~ Dirichlet(eg, . .., €g).

Rousseau and Mengersen (2011) show that e is an influential parameter if an
overfitted mixture model is estimated. Based on their results Malsiner-Walli
et al. (2016) propose the sparse finite mixture model where an overfitting
mixture with K, the number of components, much larger than the number of
latent classes is fitted together with the specification of a very small and fixed
value for eg, e.g., g = 0.0001. Under this prior setting the posterior of an
overfitting mixture asymptotically concentrates on the region of the parame-
ter space where superfluous components have negligible component weights
instead of including duplicated components.

Standard prior for the component specific parameters

In Bayesian LCA one assumes that a-priori the parameters of the variables
are independent within components. This implies that for each variable 5 and
component £k the component specific parameter vector 6y, ; a-priori follows a
Dirichlet distribution:

0. ;. ~ Dirichlet(a;).

The value for a; is selected to regularize the likelihood which in the case of
an LCA model is often multi-modal, contains spurious modes and might have
modes at the boundary of the parameter space.
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Shrinkage prior for the component specific parameters

To shrink irrelevant variables towards a common Dirichlet parameter a hi-
erarchical prior is specified on a;. For this purpose the Dirichlet parameter
is re-parameterized into a mean and precision parameter plus a regularizing
additive constant:

a; = ag; + Qjpy, p; ~ Dirichlet(m;), V7,
1

¢j = )\—, VJ, )\j ~ G&mm&(l/l,VQ), VJ
J

Following Malsiner-Walli et al. (2016) we suggest to use v; = 1, = 0.5.
Furthermore we use uniform priors for ag j and p;,i.e.,a9; = land m; = 1.

2.2. MCMC estimation

Estimation of the Bayesian latent class model consists of approximating
the posterior distribution of (7r, ®) using MCMC methods. Diebolt and Robert
(1994) suggested to use data augmentation to facilitate MCMC estimation by
adding the class memberships of the observations to the sampling scheme.

Standard prior for the component specific parameters

The sampling scheme is given by:

1. Draw the class memberships .S; for all observations ¢ = 1,...,n:
J L
Sz‘ ~ Multinomial(l, pz)7 Dik X T, H H elllj(ﬁij:l).
j=11=1

2. Conditional on S = (.S;);=1...., draw 7 from a Dirichlet distribution:

-----

7 ~ Dirichlet(eg + ny,...,ep + ng),

n

=Y 1(Si=k) Vk=1,. K.

=1
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3. Conditional on S = (.5;);=1,..., draw 6y ; from a Dirichlet distribution:

Ok,j. ~ Dirichlet(aﬂ + Ng 1, - - s 451, + nkijj),

n

g = Y 1S =k)L(y;; =1) Vk,j, 1.

i=1

In each MCMC iteration the class memberships S induce a partition of
the observations into K, classes, i.e., the number of non-empty components
for this draw. In the overfitting mixture setting with A much larger than the
number of classes and e very small K, < K and the posterior distribution of
K can be used to estimate the number of classes. Malsiner-Walli et al. (2016)
proposed to use the mode as suitable point estimate.

Shrinkage prior for the component specific parameters

An additional sampling step is required to sample the hyperparameter val-
ues:

4. Conditional on ©, sample p; and \; for all j.
Model specification in BUGS and estimation using JAGS

The BUGS (Bayesian inference Using Gibbs Sampling; Lunn et al. 2009)
model description language allows the specification of a Bayesian model based
on a directed acyclic graph which contains the data as well as all parameters
as nodes and where the edges are implied by the hierarchical specification of
the Bayesian model.

For a Bayesian finite mixture models which is estimated using data aug-
mentation the model specification not only includes the data y and the param-
eters (7, ©) but also the class memberships S. The BUGS model specifica-
tion for the model including the shrinkage prior is given in Figure 1. Note that
for the standard prior the parameter a[j, 1:L[j]] is fixed and the four lines
of code defining the relationships for a, mu, phi and lambda are dropped.

The model is estimated within R using package rjags. Only a list contain-
ing the data in an array Y, the dimensions n, J, L and the parameters needs
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model {
for (i in 1:n) {
for (j in 1:J) {
Y[i, 1:L[j1, j] = dmulti(thetalS[i], j, 1:L[j1]1, 1
}
S[i] ~ dcat(pil1:K1)
}
for (j in 1:J) {
for (k in 1:K) {
thetalk, j, 1:L[jl] ~ ddirch(alj, 1:L[j11)
}
alj, 1:L[j1] <- aO[1:L[j]1] + phi[j] * mulj, 1:L[j]]
mulj, 1:L[j]] ~ ddirch(m[1:L[j11)
phil[j] <- 1 / lambdalj]
lambda[j] ~ dgamma(nul, nu2)
}
pil[1:K] ~ ddirch(eO[1:K]);
}

Figure 1. BUGS model specification for the sparse latent class model with
shrinkage priors.

to be specified. Note that Y needs to be given as an array of dimension n X
max(L;) x J containing zeros and ones to indicate the observed values. n
corresponds to the number of observations, J to the number of variables and L
is a vector containing the number of categories for each variable. In addition
the parameters specified are the number of components K and a vector e of
length K containing eq,. Furthermore, for the standard prior a is a vector of
ones of length max(L;), whereas for the shrinkage prior, m and a0 are two
vectors of ones of length max(L;), and nul and nu2, the parameters of the
Gamma prior on the shrinkage parameter ), are both set equal to 0.5.

Then the model is defined using jags.model() and samples are drawn
using jags.samples () while monitoring the parameters of interest using the
argument variable.names.

For the presented results the call to jags.model () included an inits ar-
gument to set a specific random seed for reproducibility and an n.adapt ar-
gument to increase the number of iterations for adaptation to 5,000. Then
jags.samples is called using 100,000 number of iterations with a thinning
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of 10.
2.3. Post-processing

The number of filled components K | are determined for each draw and an
estimate - 1is obtained using the mode of the posterior distribution. If there
is a distinct class structure in the data the MCMC sampler usually converges
quickly to this number of classes and a clear mode can be identified (see
Malsiner-Walli et al. 2016).

Conditional on the number of classes selected the draws are post-processed
in the following way to obtain an identified model with suitable class specific
parameter estimates as well as class assignments of the observations.

1. Discard all draws where K, # K 1.
2. Discard all parameter draws 8, for empty components.

3. For each draw relabel the components to minimize the misclassification
rate between the class assignments of this draw and the class assign-
ments of the last draw.

Note that this is a very simple strategy to obtain an identified model which will
only work if the data has a clear class structure. More elaborate approaches to
deal with label switching have been proposed and might be required in more
complicated settings to obtain good results (see Papastamoulis 2016).

3. Analyzing the Hungarian heart disease data

The Hungarian heart disease data consists of 284 patients on 5 categorical
variables. For more details on the categorical variables with their levels see
Table 1. Dean and Raftery (2010) analyzed this data set with LCA. They used
maximum likelihood estimation in combination with the BIC to perform a
joint approach for variable selection and determining the number of classes.
They compared the classification results obtained with LCA to the known di-
agnosis of heart disease (angiographic disease status) available in the data set.
The known diagnosis has two categories: “< 50%” indicating less than 50%
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Variable Level Class 1 Class 2
Chest pain type Typical Angina 0.06 (0.02) 0.01 (0.01)
Atypical Angina  0.57 (0.06) 0.07 (0.04)
Non-anginal pain  0.26 (0.04) 0.08 (0.04)
Asymptomatic 0.10 (0.07) 0.84 (0.06)
Exercise induced No 0.95(0.03) 0.33(0.11)
Angina Yes 0.05 (0.03) 0.67 (0.11)
Gender Female 0.36 (0.04) 0.15(0.04)
Male 0.64 (0.04) 0.85(0.04)
Resting Normal 0.81 (0.03) 0.77 (0.04)
Electrocardiographic ST-T wave 0.15(0.03) 0.21 (0.04)
results Estes’ criteria 0.04 (0.02) 0.02 (0.01)
Fasting blood sugar ~ False 0.94 (0.02) 0.90 (0.03)
>120 mg/dl True 0.06 (0.02) 0.10(0.03)

Table 1. Posterior mean (and posterior standard deviations) of the class spe-
cific parameters for the identified 2-class sparse LCA model.

diameter narrowing and “> 50” indicating more than 50% diameter narrow-
ing in any major vessel.

3.1. Sparse finite mixture model

An overfitting mixture model is estimated using ¢y = 0.0001 and K = 10.
In addition a uniform prior is assumed for the class specific parameters, i.e.,
ax j; = 1. The posterior distribution of the number of non-empty components
K has a clear mode at 2 with 99.7% of the samples having 2 non-empty
components. The remaining samples had 3 non-empty components (0.2%).
Using the samples with 2 non-empty components to identify the model results
in a posterior mean estimate for the component weight of the larger class m
of 0.579 with a posterior standard deviation of 0.075.

The class specific parameters for the categorical variables are given in Ta-
ble 1. These results can be compared to those in Dean and Raftery (2010)
who reported the maximum likelihood estimates for the parameters of a two-
class latent class model. The posterior mean and the maximum likelihood
estimates are similar. However, the Bayesian approach also provides uncer-
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Figure 2. Posterior distribution of the class specific parameters for the vari-
able “Chest pain type”.

tainty estimates as given by the posterior standard deviations and the full pos-
terior distributions which are visualized in Figure 2 for the variable “Chest
pain type”. In particular for parameter values which are estimated to be close
to the boundary the posterior is non-normal and the full posterior allows to
estimate suitable credible intervals for these parameters.

Observations can also be classified to the class they are most often as-
signed to during MCMC sampling after model identification. This partition
is compared to the clinical partition contained in the data (see Table 3 on the
left). The congruence between these two partitions is very high and results
are similar to those reported in Dean and Raftery (2010).

3.2. Sparse finite mixture model with shrinkage prior

An overfitting mixture model is estimated using ¢y = 0.0001 and K = 10.
In addition the shrinkage prior is imposed on the class specific parameters.
The posterior distribution of the number of non-empty components /', has a
clear mode at 2, with 99.9% of the samples having 2 non-empty components.
The remaining samples had 3 non-empty components (0.2%). Using the sam-
ples with 2 non-empty components to identify the model results in a posterior
mean estimate for the component weight of the larger class m; of 0.572 with
a posterior standard deviation of 0.068. The class specific parameters for the
variables are given in Table 2 and the congruence between the partitions in
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Variable Level Class 1 Class 2
Chest pain type Typical Angina 0.06 (0.02) 0.01 (0.01)
Atypical Angina  0.57 (0.06) 0.07 (0.04)
Non-anginal pain  0.26 (0.04) 0.08 (0.04)
Asymptomatic 0.10 (0.07) 0.83 (0.06)
Exercise induced No 0.94 (0.03) 0.34 (0.10)
Angina Yes 0.06 (0.03) 0.66 (0.10)
Gender Female 0.36 (0.04) 0.15(0.04)
Male 0.64 (0.04) 0.85(0.04)
Resting Normal 0.81 (0.03) 0.79 (0.04)
Electrocardiographic ST-T wave 0.16 (0.03) 0.19 (0.04)
results Estes’ criteria 0.03 (0.01) 0.02 (0.01)
Fasting blood sugar ~ False 0.94 (0.02) 0.91 (0.03)
>120 mg/dl True 0.06 (0.02) 0.09 (0.03)

Table 2. Posterior mean (and posterior standard deviations) of the class spe-
cific parameters for the identified 2-class sparse LCA model with shrinkage
prior.

Standard prior  Shrinkage prior
<50% >50% <50% >50%
Class 1 139 15 135 14
Class 2 42 88 46 89

Table 3. Estimated versus clinical partition for the identified 2-component
sparse LCA model with standard or shrinkage prior.

Table 3 on the right. Overall similar results are obtained for the two different
component specific priors. However, using a shrinkage prior reduces the risk
of overfitting heterogeneity and thus allows to obtain more precise estimates
in case irrelevant variables are identified. Figure 3 shows the posterior distri-
butions of the shrinkage parameters A for each variable. Small values indicate
that a variable is identified as not being relevant for distinguishing between the
two classes and that similar parameter values are estimated for both classes.
These results confirm those by Dean and Raftery (2010) who concluded that
the variables “Resting Electrocardiographic results” and “Fasting blood sugar
>120 mg/dl” are irrelevant.
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Fasting blood sugar >120 mg/dI 4

Resting Electrocardiographic results 4

Gender o

Exercise induced Angina 4

Chest pain type

e

Figure 3. Box plot of the shrinkage parameter ) for each variable.

4. Conclusion

Suitable priors for Bayesian LCA are presented which regularize the likeli-
hoods to avoid boundary solutions, induce sparse solutions with respect to the
number of classes as well as shrinkage to perform implicit variable selection.
Their application is demonstrated on the Hungarian heard disease data which
was previously analyzed based on maximum likelihood estimation. This data
set contains a clear structure with respect to the number of classes as well
as the relevance of variables for clustering. Suitable priors for such a setting
were proposed. Future research needs to investigate how these priors perform
and need to be adapted in more challenging settings.

Acknowledgements: This research was funded by the Austrian Science Fund (FWF): P28740.
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Modelling ordinal data: a ¢-divergence based approach

Maria Kateri*

Abstract: The role of the ¢-divergence (see Pardo, 2016) in constructing models for ordi-
nal data will be discussed. In particular well-known models for contingency table analysis
(see Kateri, 2014) and regression models for binary or ordinal responses (see Agresti, 2013)
will be revisited and redefined through divergence measures like the Kullback-Leibler and
the Pearson divergences. Since these divergences are members of the ¢-divergence family,
we shall proceed by embedding these models in generalized families of models derived by
replacing the Kullback-Leibler or Pearson divergence through the ¢-divergence. Properties
of these model families will be considered and the role of the specific divergence measure
used in describing the underlying dependence structure will be commented. More specific,
¢-divergence based association models for two-way tables have been introduced in Kateri
and Papaioannou (1995) and further discussed in Kateri (2018). Asymmetry models for
square contingency tables are generalized by Kateri and Papaioannou (1997) while the quasi
symmetry model for ordinal variables by Kateri and Agresti (2007). A ¢-divergence based
extension of the binary logistic regression model can be found in Kateri and Agresti (2010).
Crucial quantities in developing and interpreting these models are the ¢-scaled generalized
odds ratios, based on the corresponding generalization of the odds ratio for 2 x 2 tables (see
Espendiller and Kateri, 2016). The focus here will be on higher dimensional problems. Char-
acteristic members of the presented ¢-divergence based families of models, corresponding
to the power divergence of Cressie and Read (1984), will be implemented on examples and
discussed. The approach is maximum likelihood based. The maximum likelihood estimators
(MLES) of the models considered cannot be derived in closed-form expressions and have to
be computed numerically. Finally, emphasis will be given in closed-form approximations to
the MLEs that simplify the model fitting approach and can be valuable in model selection

procedures in high-dimensional set-ups.

Keywords: Contingency tables, Generalized odds ratios, Logistic regression.
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Robust statistical analysis of ordinal data

Elvezio Ronchetti*

Abstract: This paper discusses the robustness issues of estimators and tests in the analysis
of ordinal data based on ordinal response models. From a diagnostic point of view, we inves-
tigate the effects of outlying covariates and of specific deviations due to some respondents’
behavior, on the reliability of maximum likelihood estimators and related test procedures. In
particular we highlight the role of the link function in this context. Subsequently, we propose
robust M -estimators as an alternative to maximum likelihood estimators. We show that M
based inference outperform maximum likelihood inference, producing more reliable results

in the presence of deviations from the underlying assumptions.

Keywords: Ordinal response models, Link functions, M-estimation.

1. Introduction

Ordinal data play an important role in applied research in many areas, such
as medicine, psychology, sociology, political sciences, economics, market-
ing, and so on. They typically arise when items concerning opinions, prefer-
ences, judgements, evaluations, worries, etc., are expressed as ordered cate-
gories. The classical statistical approach to the analysis of ordered response
models is based on the assumption that a (unobserved) latent variable drives
the response and the model is then embedded within the Generalized Linear
Model framework (McCullagh and Nelder (1989)); see standard books such
as Agresti (2010) and Tutz (2012) among others. A different approach based
on the so-called CUB models (Piccolo (2003); Iannario and Piccolo (2016)),
parametrizes the probability of a given response as a mixture of a shifted Bi-
nomial and a discrete Uniform random variable. This approach does not re-
quire the specification of a model for the latent variable and describes directly
the effect of the covariates on the feeling and the uncertainty underlying the
respondents’ choices.

*Research Center for Statistics and Geneva School of Economics and Management, University of
Geneva, Switzerland, Elvezio.Ronchetti @unige.ch
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In real situations, it has been recognized that respondents may deliberately
or unconsciously choose a wrong category, as a consequence of a satisfic-
ing aptitude or a search for a shelter category (Iannario (2012)). This phe-
nomenon, in addition to the occurrence of gross-errors or to erratic behavior
by a few respondents, produces a contamination of the assumed model distri-
bution, which can have an important impact on the resulting estimators and
tests.

Robust statistics deals with deviations from the underlying assumptions
and with their effects on the inferential procedures; see e.g. the books by Hu-
ber (1981, 2nd edition by Huber and Ronchetti, 2009), Hampel et al. (1986),
Maronna et al. (2006). However, in spite of the huge body of literature in the
past decades, the area of ordinal data has been somewhat neglected. A few ex-
ceptions are Hampel (1968), Victoria-Feser and Ronchetti (1997), Ruckstuhl
and Welsh (2001), Moustaki and Victoria-Feser (2006), Croux et al. (2013),
and Iannario et al. (2016).

Using ideas and tools of robust statistics, we propose robust M -estimators
as an alternative to maximum likelihood estimators and we show that M/ based
inference outperform maximum likelihood inference, producing more reliable
results in the presence of deviations from the underlying assumptions.

2. Maximum likelihood estimation

In this paper we consider a rich class of ordinal response models based on a
latent variable with covariates and different link functions. More specifically,
let Y be an ordinal variable of interest which is linked to an underlying latent
variable Y* through the relationship

Y =3 <~ Oéj_1<Y*§Oéj, jg=12...,m, (D)

where —oc0 = ap < ¢y < ... < ay, = +00 are the thresholds (cutpoints)
of the continuous support of the latent variable, and m represents the given
number of categories of Y.

The variable Y*, in turn, depends on p > 1 covariates, so that for the i-th
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statistical unit we have the latent regression model
Vi = X+ Xofot- -+ XipfBp+e = X;B+e;, t=1,2,...,n, (2)

where XZ = (Xila Xi?y R 7Xip)/a /8 = (ﬂl; BQ, e ,ﬂp), and €; is a random
variable with distribution function G(¢) and density g(¢) respectively. Since
Y* is unobservable, a random sample is given by (V;, X;), fori = 1,2,... n.

Relationship (1) yields the following probability mass function for Y; con-
dlthHally on X,L =xT; = (377;1, Tigy .- wrip)/

P(Y;=j|®) = Plaj.1 <Y <o) = Gloy—x;8) -G (o1 —x;3), (3)

for j = 1,2,...,m. Common specifications of G/(¢) are the Gaussian, the lo-
gistic and the extreme value distributions; see Agresti (2010) for an extensive
review.

From (3) it is easy to write the likelihood function of the parameters and
their score function. In particular, the k-th component of the score function of
the regression parameter 3 is given by

Z[[Z/i :j]eij(e) Tk, 4)
j=1
where
gla; —zB) — gla; 1 — x;8) .
€;i(0) = yi=12....n,5=1,2,....m,
J( ) G(Oéj — w;ﬁ) — G(Oéj_l — w;ﬁ) J
(5)
are the generalized residuals (Franses and Paap (2004), p. 123), I]-] is the
indicator function, and 6 = ((ay,...,an-1),8').

By the standard theory of robust statistics, the influence function (Ham-
pel, 1974) of the Maximum Likelhood Estimator (MLE) is proportional to
its score function, which is unbounded in the covariate & and possibly in
the generalized residuals depending on the distribution G/(-). This leads to
the conclusion that the MLE is locally non-robust. Notice that for the probit
and the complementary log-log link, the generalized residuals are unbounded,
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whereas for the logistic link they are bounded. This implies that the logistic
link provides robustness for the MLE at least with respect to deviations in the
generalized residuals.

3. Robust alternatives

A class of robust alternatives to the MLE can be obtained by introduc-
ing weights in the ML score function (4). This defines M -estimators with a
bounded influence function, which yields reliable estimates of the parameters,
and can be used to derive robust testing procedures. A typical weight function

is given by
w(yzymme) =
/ m
1, it Y Iyi=J] ley(0) ] ||zl <c
j=1
c . .
™ EY Ty =] [ e(8) |zl > c.
Do Ilyi=4) Ley®) ] llzl 57
\ j=1

(6)

A Mahalanobis distance ||z;|| = {(x; — fix) 25 (i — ﬂx)}1/2 can be
used for the norm of the covariates in (6), which needs however to be based
on a robust multivariate estimator of location f1x and scatter ) x. Notice that
these weights provide valuable diagnostic information on possible outliers
and substructures in the data. The tuning constant ¢ determines a trade-off
between efficiency and robustness and can be computed by requiring a given
efficiency (e.g. 95%) for the resulting estimator at the assumed model.

4. A numerical example: a shelter effect

We consider the following simple model. The response variable Y assumes
4 categories and depends on two qualitative variables W, for < = 1, 2. Each of
them assumes three categories, coded by two dichotomous 0 — 1 variables X/

30



E. Ronchetti, Robust statistical analysis of ordinal data

and X such that X¢ + X? < 1. The latent variable is Y* = 2.5X{ +1.0X? +
3.6X5+1.8X5+¢, where e ~ N(0, 1) and the cutpoints are o« = (1.2,2.8,5)".

Now we consider the case when five Y;, which originally take value 1, 2 or
3, are changed into 4. This kind of contamination occurs when the selected
category (in this case “four”) can be regarded as a shelter category: a choice
that the respondents feel comfortable with, although it appears incoherent
with their profiles in terms of covariates; see lannario (2012), for a more
extensive illustration of shelter choices.

The minimum and the maximum M/ S E-ratios of each parameter estimate
between the M LE and M -estimators are shown in Table 1. Values of ¢ be-
tween 1 and 1.5 seem thoroughly appropriate to achieve robust estimation
according to the two criteria. If say ¢ = 1.25 is taken, the gain in efficiency in
the estimation of a single parameter varies between 37.6% and roughly 140%,
which is a quite remarkable achievement obtained by M -estimators.

Table 1. Efficiency criteria when M -estimation is performed with the probit
link and a shelter effect occurs.

c 1 1.25 1.5 1.75 2 2.5 3
Min(M S E-ratio) 1.354 1.376 1373 1.342 1.299 1.201 1.124
Max(M S E-ratio) 2.556 2.398 2227 2.029 1.819 1.485 1.253

Acknowledgements: This paper is a summary of lannario M., Monti A. C., Piccolo D.,
Ronchetti E. (2017) Robust inference for ordinal response models, Electronic Journal of

Statistics, 11, 3407-3445, where all the details can be found.
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Uncertainty, dispersion and response styles
in ordinal regression

Gerhard Tutz*

Abstract:  Alternative approaches to model uncertainty, dispersion and the tendency to
middle or extreme categories in ordinal regression are considered. The focus is on repeated
measurements when a person responds on several items. Then it is possible to account for
individual response tendencies known as response styles. Extensions of the adjacent cate-
gories model are proposed that allow for the noncontingent response style, that is, a person
answers randomly or nonpurposefully, and the extreme response style, which means a person
has a tendency to prefer extreme or middle categories. Also mixture models for repeated

measurements are discussed.

Keywords: Response styles, Uncertainty, Dispersion.

1. Introduction

Ordinal regression models aim at linking the choice of a response category
to explanatory variables. In traditional models, for example in the most widely
used proportional odds model, the explanatory variables determine primarily
the location of the response on an underlying latent scale, which turns into the
location on the range of observed categories, see, for example, Agresti (2009).
However, alternative effects that determine the response on an ordinal scale
might be present. One effect, which has been modeled in various versions
of the CUB model (Iannario and Piccolo, 2016) is uncertainty. The manifest
response in a category is determined not only by the preference towards a cat-
egory but also by the the uncertainty of the respondent. CUB models refer
to the underlying psychological mechanism that generates uncertainty. Alter-
native effects are the impact of explanatory variables on the dispersion of the
categorical response and the preference for middle and extreme categories.

If a person answers to several items one has repeated measurements on a
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person. Then it is possible to include subject-specific effects that contain the
individual tendency to respond as response styles, that means as a consistent
pattern of responses that is independent of the content of the response. The
presence of response styles may affect the response behaviour and, when ne-
glected yield biases estimates, see, for example, Baumgartner and Steenkamp
(2001), Van Vaerenberg and Thomas (2013).

In the following the modeling of uncertainty, dispersion and a tendency to
middle and extreme categories in cross-sectional data is considered briefly.
Then the modeling of response styles as individual traits is considered.

2. Mixture Models in Ordinal Regression

Natural candidates for the modelling of uncertainty in ordinal regression
are mixture models. In particular the CUB model and its various extensions
use this potential, see, for example, Piccolo (2003), Iannario and Piccolo
(2016). A general mixture model with an indecision component has the form

P(R; =r|x;) = mPp(Y; = rlx;) + (1 —m) P (U; = 1), (D

where R; represents the observed response and Y;, U; are the unobserved ran-
dom variables taking values from {1, ..., k}. The variable Y; represents the
preference of a person for categories whereas U, represents the indecision of
a person. For the modelling of the preference, which is the deliberate choice,
one can use any ordinal response model, for example, the proportional odds
model, the adjacent categories model, or a shifted binomial model. The latter
is used in the CUB model. For the mixture probability one typically uses a
logit model logit(7;) = x; 7.

The choice of the indecision component determines which form of indeci-
sion is specified. Classical CUB-type models assume the uniform distribution,
Py (U; = r) = 1/k, which can be seen as the strongest form of uncertainty;
a person chooses at random from the available categories. In a CUB model
(binomial preference, uniform indecision) the Gini index, which measures
deviation from the uniform distribution and therefore uncertainty, is mono-
tonically increasing with the strength of the uncertainty 1 — ;.
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Alternatively, one can specify indecision by using distributions with dif-
ferent shapes. If one uses use a beta-binomial distribution centered at the
middle of the response categories (Tutz and Schneider, 2018) or a discretized
beta distribution (Simone and Tutz, 2018) one models dispersion in the un-
certainty component, which may be seen as a response style, more concrete
a response style that allows for a tendency to middle or extreme categories.
Alternative forms of response style distributions in the uncertainty component
were used by Gottard et al (2016).

When using a centered distribution in the uncertainty component one al-
lows for varying dispersion. For categorical data one might want to avoid the
variance as a dispersion measure since it demands a higher scale level than
the ordinal scale level. For Y € {1,...,k} a more appropriate measure is
the sum D = Z?:Q var(Y;)4/(k — 1), where Y; = 1if Y > jand Y; =1
otherwise. One obtains D) = 0 if Y has a one-point distribution and D = 1
if p(Y = 1) = P(Y = k) = 0.5. If indecision is modeled by a discretized
beta distribution the dispersion of the indecision can vary between zero and
one. Thus, for large indecision one obtains a wide range of dispersion for the
response.

Dispersion can also be modeled in the preference part instead of the indeci-
sion part. The CUBE model (Iannario, 2014) uses the beta binomial distribu-
tion to model (over)dispersion in the preference part. Alternative approaches
to model dispersion effects that are linked to explanatory variables are the
location-scale model and the location-shift model. The location-scale model
(McCullagh, 1980) uses the cumulative model in the extended form

ﬁOr + wTﬁ

PlY <r)=F( g

);
where F'(.) is a distribution function, typically the logistic function, and z is
an additional vector of explanatory variables that determines dispersion. The
model is also known as heterogeneous choice model or heteroscedastic logit
model. The location-shift version of the cumulative model (Tutz and Berger,
2017) is

PY <r)=F(Bo, + "B+ (r—k/2)z"a).
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The term (r — k/2)z" « shrinks or widens the thresholds of the cumulative
model.

3. Responses on Several Items

If one has just one observation per person one may link uncertain