
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/129165                            
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/237200357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/129165
mailto:wrap@warwick.ac.uk


1 

 

PHURIE: Hurricane Intensity Estimation from Infrared Satellite 1 

Imagery using Machine Learning 2 

Amina Asif1, Muhammad Dawood1, Bismillah Jan1, Javaid Khurshid1, Mark DeMaria2 and 3 

Fayyaz ul Amir Afsar Minhas1,* 4 

1. Department of Computer and Information Sciences, Pakistan Institute of Engineering and 5 

Applied Sciences (PIEAS), PO Nilore, Islamabad, Pakistan. 6 

2. National Hurricane Center, National Oceanic and Atmospheric Administration (NOAA), 7 

Miami, FL, United States of America 8 

* corresponding author email: afsar@pieas.edu.pk; fayyazafsar@gmail.com, Phone: +92-51-9 

2207381 to 85 Extension: 3164, Fax: +92-51-9248600 10 

ABSTRACT: Automated prediction of hurricane intensity from satellite infrared imagery is a 11 

challenging problem with implications in weather forecasting and disaster planning. In this work, 12 

a novel machine learning based method for estimation of intensity or maximum sustained wind 13 

speed of tropical cyclones over their life-cycle is presented. The approach is based on a support 14 

vector regression model over novel statistical features of infrared images of a hurricane. 15 

Specifically, the features characterize the degree of uniformity in various temperature bands of a 16 

hurricane. Performance of several machine learning methods such as Ordinary Least Squares 17 

Regression, Backpropagation Neural Networks and XGBoost regression has been compared using 18 

these features under different experimental setups for the task. Kernelized support vector 19 

regression resulted in the lowest prediction error between true and predicted hurricane intensities 20 

(approximately 10 knots or 18.5km/hour), which is better than previously proposed techniques and 21 

comparable to SATCON consensus. The performance of the proposed scheme has also been 22 

analyzed with respect to errors in annotation of center of the hurricane and aircraft reconnaissance 23 

data. The source code and webserver implementation of the proposed method called PHURIE 24 

(PIEAS HURricane Intensity Estimator) is available at the URL: 25 

http://faculty.pieas.edu.pk/fayyaz/software.html#PHURIE. 26 

Keywords: Hurricane Intensity Prediction; Tropical Cyclones; Machine learning based 27 

forecasting; Support Vector Regression 28 
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1. Introduction 30 

Hurricanes are among the most destructive natural phenomena on earth. They form over 31 

warm tropical and subtropical oceans during summers or early fall. Upon making landfall, 32 

hurricanes can cause significant property damage, and loss of life [1]. Timely analyses and 33 

forecasts of track, intensity and wind structure can help authorities raise warnings, evacuate high-34 

risk regions, estimate expected losses, and minimize mortalities. 35 

Due to the limited availability of direct measurements, satellite images of hurricanes 36 

throughout their lifecycles have been analyzed for the past several decades. One of the earliest 37 

methods for tropical cyclone (TC) intensity estimation is the Dvorak technique [2], which is a 38 

manual method that characterizes a TC based upon the cloud structure seen in an image. To reduce 39 

the reliance on human experts, the Objective Dvorak Technique [3] was proposed in 1989 for 40 

automatic intensity estimation based on rules similar to original Dvorak technique. More 41 

sophisticated rules were introduced in the Advanced Dvorak’s Technique [4], which resulted in an 42 

improvement in prediction accuracy. However, human involvement was still required and the 43 

method could not be automated completely. Since then, many studies have been carried out to help 44 

automate the process for improvement in speed and reduction in need for human intervention. A 45 

brief description of several of such studies is presented below. 46 

Piñeros et al. proposed a method based on the variance of the deviation angle of brightness 47 

temperature values in infrared (IR) images [5]. Their method was built on the premise that the 48 

lower the variance in the histogram of deviation angles, which is inversely proportional to TC 49 

organization, the higher would be intensity of the TC. A sigmoid curve was fit to use variance of 50 

deviation angles for intensity estimation. In their study, Piñeros et al. used IR images from the 51 

GOES-12 satellite for hurricanes in years 2004-2009 in the North Atlantic Basin. Their method 52 
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gives a Root Mean Squared Error (RMSE) of 14.7 knots when evaluated over a randomly selected 53 

set of hurricanes over the period 2004-2008. The same model, when trained over data from 2004-54 

2008 and tested over TC IR images from year 2009, produced an RMSE of 24.8 kt. An improved 55 

version of their technique was presented by Ritchie et al. [6]. That study added some additional 56 

constraints to the existing technique and re-trained it after removing low intensity (<34 kt) TC 57 

images from data and using data from an additional year (2010). This resulted in an RMSE of 12.9 58 

kt. The Deviation Angle Variation technique was used to estimate the intensities of TCs in the 59 

north Pacific ocean in a 2013 study [7] with an RMSE of 14.3 kt. [8] proposed a k-nearest neighbor 60 

based algorithm for TC intensity estimation. Their algorithm estimated the intensity based on the 61 

intensity of the 10 most similar images to the query image. In a study carried out by Jaiswal et al., 62 

brightness temperature histograms in the radial and angular directions were computed and 63 

histogram matching was used for intensity predictions [9]. Their study used TC data collected 64 

using satellites GOES-8 and -12 from 2000-2005 from the HURSAT database [10]. The method 65 

yielded an overall RMSE of 15.5 kt. The study by Zhao et al. presents a multiple regression based 66 

method using deviation angle and radial profiles in IR images for intensity estimation [11]. The 67 

method was tested on hurricane data from Northwestern Pacific Ocean over the years 2008 and 68 

2009 and an RMSE of 12.1 kt was reported. 69 

The objective of our study is to develop a machine learning based automated system that can 70 

predict intensity of a hurricane when given its satellite infrared (IR) image. The workflow of the 71 

proposed system is illustrated in Figure 1. The proposed system computes statistical and deviation 72 

angle-based features for an input IR image. For prediction, the features are passed to a machine 73 

learning model that has been trained using existing data comprising of satellite images of previous 74 

hurricanes with known intensity. In this paper, we present details of our proposed method. The 75 
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dataset, feature extraction and machine learning models are described in section 2, results are 76 

presented in section 3 and conclusions are summarized in section 4.   77 

2. Methods  78 

 In this section, we present details of the dataset, feature extraction technique, machine 79 

learning models and the experimental setup employed in our study. The primary task of the 80 

proposed technique is to use machine learning for predicting the maximum sustained windspeed 81 

or intensity of a hurricane (in knots or kilometers per hour) from infra-red satellite images of the 82 

hurricane. Section 2.1 provides a description of the dataset used for training and evaluation of the 83 

machine learning model. In section 2.2, we explain feature extraction methods. Analysis of feature 84 

importance is presented in section 2.3. Different machine learning models analyzed in the study 85 

are described in section 2.4. Post-processing and experimental setup used for performance 86 

evaluation have been explained in sections 2.5 and 2.6, respectively. 87 

2.1 Dataset 88 

Our study used infrared images from the publicly available HURSAT-B1 (version-05) 89 

dataset [10] of different hurricanes. The original dataset contained hurricane season data for years 90 

1978 to 2009 and included imagery from multiple satellites including SMS-2, GOES-1 to 13, 91 

Meteosat-2 to 9, GMS-1 to 5, MTSAT-1R, MTS-2 and FY2-C/E. HURSAT-B1 contains both 92 

visible and IR window channel imagery. Example satellite infra-red images from the dataset are 93 

shown in Figure 2 in false coloring. A pixel value corresponds to temperature at a certain location 94 

as captured by the satellite with higher temperatures shown in red and lower ones shown in blue. 95 

The spatial resolution of the data is about 8 km/pixel (4.32 nautical miles per pixel), i.e., a single 96 

pixel represents the average temperature in an 8km × 8km region on the Earth’s surface. The 97 

dataset contains images from a number of hurricanes taken every 3 hours for each hurricane. 98 
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Images in the dataset are centered on the TCs. Information about the intensity of a given image of 99 

a hurricane was taken from IBTrACS (International Best Track Archive for Climate Stewardship) 100 

[12]. The intensity of a hurricane at a given time is defined as the maximum sustained surface 101 

windspeed (in knots) of the hurricane at a height of 10m from the surface of the Earth over a period 102 

of 1 minute (60 seconds). Based on the maximum sustained surface windspeed (in knots), a tropical 103 

storm can be classified into 5 categories. IBTrACS stores the intensity of the hurricane based on a 104 

consensus of automated, semi-automated and aircraft reconnaissance data. In line with previous 105 

studies, the best track data was linearly interpolated to match the temporal resolution of the image 106 

data. We used the intensity in knots as our target or output value.  107 

We restricted our study to hurricane data collected by GOES-12 satellite in the North 108 

Atlantic Basin from years 2004 to 2009. Only infrared (IR) window channel imagery was used in 109 

our study. Images taken after a TC made land-fall were removed from the dataset for our 110 

experiments. The subset used in the study included a total of 4552 images. Details about the 111 

intensity distribution of the sample are presented in Table1.  112 

2.2 Feature Extraction 113 

In satellite IR images, high intensity TCs present themselves as well-organized low-114 

temperature circular cloud structures. For low intensity TCs, the cloud structure becomes less 115 

organized. This phenomenon is shown in Figure 2. It can be seen that, as the intensity increases, 116 

the cloud structure becomes more symmetric and the organization of the clouds increases. This 117 

relationship was also the basic premise of the deviation angle technique described earlier.   118 

We use the above-mentioned phenomenon to extract features for intensity estimation of 119 

TCs. That is, the region around the center tends to exhibit a more uniform low-temperature circular 120 

structure in high intensity TCs in comparison to low intensity TCs. Therefore, we compute 121 
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statistical features around the center to characterize the TC structure.  To compute these features, 122 

we first divided each image into 5 circular bands of 8 pixels each (equivalent to 64 km or 34.56 123 

nautical miles) around the center. For each band, mean, standard deviation (SD), entropy, 124 

minimum and maximum are computed. Division of images into bands is illustrated in Figure 3. 125 

Formulae for computation of statistical features are listed in Table 2. The correlation of these 126 

features with hurricane intensity is shown in Figure 4 as discussed in the next section. 127 

In addition to the statistical features, we used variance of the deviation angle histogram as 128 

another feature for TC intensity estimation. The idea was motivated from the approach proposed 129 

by Piñeros et al. [5]. Deviation angle at a pixel is defined as the angle between the gradient vector 130 

and the line joining the hurricane center and that pixel. For well-organized circular structures, most 131 

of the deviation angles around the center are zero or near to zero. The concept is illustrated in 132 

Figure 5(a-c). Since high intensity TCs exhibit more circular structures, most of the deviation 133 

angles in their images would be small and the histogram of these angles will have a low variance. 134 

We have used variance of deviation angle histogram for 81x81 pixel window (equivalent to 135 

648×648 km or 350×350 nautical miles) centered at the center of an image as another feature. 136 

2.3 Analysis of importance of features 137 

To assess the effectiveness of statistical features around the center for intensity estimation, 138 

we plotted the features against intensity values for hurricane Rita (2005). The scatter plots are 139 

shown in Figure 4. It can be seen that a high negative correlation exists for most of the features. 140 

For example, the mean temperature of bands 2-4 show negative correlations with magnitude 141 

greater than 0.75 with TC intensity. Similarly, the standard-deviation of IR values also show a 142 

high inverse correlation. Thus, the mean IR intensities within 24-48 km (12.96-25.92 nautical 143 

miles) of the center of the TC and their uniformity are highly predictive of intensity. The entropy 144 
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and maximum values of temperatures in various bands are also inversely correlated with intensity.  145 

These plots clearly show the efficacy of using these statistical features in our technique. 146 

The effectiveness of the Deviation Angle Variance feature in terms of correlation with true 147 

intensity values has also been measured for hurricane Rita (2005). The plot for deviation angle 148 

variance versus true intensity values has been shown in Figure 5(d). It is worth mentioning here 149 

that simple statistical features such as mean, standard deviation, minimum and maximum 150 

temperatures for the third band produce comparable correlation values as the complex deviation 151 

angle variance-based feature. Hence, we deduce that, the statistical features despite being simpler, 152 

are as informative as deviation angle variance feature and hence, may help improve hurricane 153 

intensity predictions.   154 

2.4 Machine Learning Models 155 

In this study, our goal is to develop a system that, given a TC image and a center position, 156 

can predict its intensity. We have modeled the problem of predicting the intensity of a hurricane 157 

at a given time as a regression problem. For this purpose, we consider a dataset of 𝑁 example 158 

training images represented by their d-dimensional feature vectors 𝒙1, 𝒙2, … , 𝒙𝑁 corresponding to 159 

different infra-red satellite images of hurricanes and their associated intensity values 𝑦1, 𝑦2, … , 𝑦𝑁 160 

in knots. The objective of hurricane intensity prediction is to develop a machine learning prediction 161 

function 𝑓(𝒙) that can predict the intensity of the hurricane at a given time using a feature vector 162 

𝒙 corresponding to an image of the hurricane at that time. To choose the best-suited machine 163 

learning model for this problem, we carried out detailed performance analysis and comparison 164 

over different regression techniques: Ordinary Least Square (OLS) [13] and Support Vector 165 

Regression (SVR) [14] with Radial Basis Function (RBF) kernel, feed-forward backpropagation 166 

neural networks (BPNNs) [19] and gradient boosted tree (XGBoost) regression [20]. To establish 167 
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if these models are significantly effective in comparison to a naïve prediction, we compared their 168 

results to a zero-order baseline that uses the average intensity of the hurricanes in our data set as a 169 

constant prediction. Multiple machine learning techniques were compared to identify the best 170 

suited one for this task and to analyze the effectiveness of features used in this work by studying 171 

the difference in prediction errors of these techniques. Low variation in performance across the 172 

techniques implies that the features are significantly informative and a difference in choice of 173 

machine learning model would not have a considerable impact on the accuracy of the system and 174 

that the deployed model will generalize well to unseen cases. Further details of performance 175 

comparison are given in Results section. In the following sections, we present description of the 176 

various techniques used in this study.  177 

2.4.1 BASELINE METHOD 178 

To establish a baseline, we used the average intensity of TCs in the whole dataset as a zero-179 

order intensity estimator for any given image. 180 

2.4.2 ORDINARY LEAST SQUARE (OLS) REGRESSION 181 

OLS is one of the simplest regression techniques. The principle of OLS is to find a linear 182 

function that minimizes the sum of squared errors between target and estimated values for a given 183 

dataset. The objective in OLS is to find parameters 𝐰 and b of a linear function 𝑓(𝒙) = 𝒘𝑻𝒙 + 𝑏 184 

such that that the difference between the target value 𝑦𝑖 and 𝑓(𝒙𝑖) is minimized for all training 185 

examples 𝑖 = 1 … 𝑁. The OLS learning problem can be written as: 𝒘, 𝑏 =  𝑎𝑟𝑔𝑚𝑖𝑛
𝒘,𝒃

∑ (𝑦𝑖 −𝑁
𝑖=1186 

𝑓(𝒙𝑖))
2
. The parameters estimated from training data are then used for estimation of values for 187 

independent cases.  188 
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   There are two shortcomings of using OLS for our problem. First, OLS is prone to 189 

over/under-estimation due to the presence of outliers, as its sole aim is to minimize the sum of 190 

squared errors [15]. Second, we were not sure if a linear function would successfully be able to 191 

model the relationship between the features we extracted and the corresponding intensity values. 192 

Therefore, we needed a method that was less sensitive to outliers, offered better generalization and 193 

could model non-linear relationships. As a consequence, we used Kernelized Support Vector 194 

Regression [14].  195 

2.4.3 KERNELIZED SUPPORT VECTOR REGRESSION 196 

Kernelized SVR is a variant of Support Vector Regression which, originally, is a linear 197 

regression technique, i.e., its prediction function can also be written as: 𝑓(𝒙) = 𝒘𝑻𝒙 + 𝑏. 198 

However, it can work for non-linear estimation using kernel functions. For a given dataset, SVR 199 

finds a weight vector 𝒘 such that the norm of 𝒘 is minimized and the absolute difference between 200 

the actual and predicted values for all examples does not exceed a threshold 𝜀 > 0. The 201 

optimization problem in this case can be given as: 𝑚𝑖𝑛
𝒘,𝑏

 ‖𝒘‖2 such that |𝑓(𝒙𝑖) − 𝑦𝑖| < 𝜀 for all 202 

𝑖 ∈ {1, 2, … , 𝑁}. Minimization of the norm of the weight vector ensures that the weight values do 203 

not become large and small changes in the inputs do not cause a large variation in the output. This 204 

regularization helps improve prediction performance in high dimensional and noisy feature spaces. 205 

To allow some violations, a non-negative slack variable 𝜉𝑖 is introduced for each example 𝒙𝑖and 206 

the optimization problem can therefore be modified to 𝑚𝑖𝑛
𝒘,𝑏,𝝃≽𝟎

 ‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖
𝑁
𝑖=1  such that 207 

|𝑓(𝒙𝑖) − 𝑦𝑖| < 𝜀 + 𝜉𝑖 for 𝑖 ∈ {1, 2, … , 𝑁}. This problem formulation ensures that the prediction 208 

errors are minimal, and the predictor is regularized. The hyper-parameter 𝐶 controls the amount 209 

of penalty imposed for each constraint violation. It is important to note that SVR minimizes the 210 



10 

 

absolute error and not the square-error function. This reduces the impact of outliers in comparison 211 

to OLS. An alternative representation of the SVR [14], allows non-linear regression by using RBF 212 

kernel functions 𝑘(𝒂, 𝒃) = 𝑒𝑥𝑝(−𝛾‖𝒂 − 𝒃‖2)  and changing the prediction function to 𝑓(𝒙) =213 

∑ 𝛼𝑖𝑘(𝒙, 𝒙𝑖)
𝑁
𝑖=1  [16], [17]. This kernelized formulation of the SVR learns parameters 𝛼𝑖 while 214 

enforcing regularization and error minimization over training data. The kernel function 𝑘(𝒂, 𝒃) is 215 

a symmetric positive definite function that essentially measures the degree of similarity between 216 

examples. We have used SVR with RBF kernel for our experiments as RBF has the ability to 217 

model spaces of very high dimensionality effectively [18]. The hyper-parameters 𝛾 and 𝐶 are set 218 

using nested cross-validation. 219 

2.4.4 BACK PROPAGATION NEURAL NETWORKS 220 

Neural Networks are function approximators inspired from the structure of human brain. They are 221 

composed of layers of small computational units called neurons. The output of neurons in a layer 222 

is fed to the neurons in the next layer. Each neuron computes its output by applying an activation 223 

function over the dot product of its weights and inputs. The final output is computed in the last 224 

layer. During training, the objective is to minimize the error between output of the neural network 225 

and the target values. To fit a model using a BPNN, an example or a batch of examples from the 226 

training data is passed to the network and output is computed. The error is calculated and weights 227 

of the network are updated in a direction opposite to the gradient of error [19]. The process is 228 

repeated iteratively to minimize training loss. Since the error surface is not always convex, 229 

backpropagation may yield sub-optimal solutions.  For comparison with our methods we have used 230 

a BPNN with two hidden layers, 64 neurons per layer, and rectified-linear unit (ReLu) activation 231 

functions with a single output layer neuron. The neural network has been implemented using Keras 232 

[21]. 233 
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2.4.5 XGBOOST 234 

XGBoost [20] is a random-forest based method that uses gradient boosted decision trees. 235 

A decision function that performs minimization of average regression loss is learned using gradient 236 

boosting on a set of decision trees trained in an iterative manner. The training in each increment is 237 

performed using residual error of the preceding step. Further details of the technique can be found 238 

in [20]. In our experiments, we used Python xgboost v. 0.7 API for XGBoost regression.  239 

2.5 Post-Processing 240 

Our model generates predictions using a single image. To reduce noise, a time-smoothing 241 

operation is performed after generating predictions for different images of a TC. For this purpose, 242 

we used a simple linear exponentially weighted averaging filter that, at a time step 𝑡,  produces a 243 

weighted average of predicted intensities for current and previous time steps as follows: 𝑔(𝒙𝑡) =244 

0.41𝑓(𝒙𝑡) + 0.25𝑓(𝒙𝑡−1) + 0.15𝑓(𝒙𝑡−2) + 0.1𝑓(𝒙𝑡−3) + 0.06𝑓(𝒙𝑡−4) + 0.03𝑓(𝒙𝑡−5). It is 245 

important to note that the coefficients of the filter sum to 1.0 and decrease exponentially with time. 246 

2.6 Experimental Setup 247 

 We performed multiple experiments over features and regression models discussed earlier 248 

for the 2004-2009 sample. We have used Root Mean Squared Error (RMSE) [22] as the 249 

performance metric to evaluate and compare the efficacy of our methods with previously published 250 

works. Results for the experiments are presented and discussed in Section 3. 251 

2.6.1 LEAVE ONE TC OUT CROSS VALIDATION 252 

For all TCs over the period 2004-2009, we left one hurricane out for testing and trained 253 

over the rest. RMSE scores for each of the test hurricanes were computed and then averaged. The 254 

experiment was performed for all of the regression techniques described in section 2.4: OLS, SVR, 255 

Feed-forward BPNN and XGBoost.  256 
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2.6.2 STRATIFIED ERROR ANALYSIS 257 

We have performed stratified error analysis of our method for different stages of TC 258 

development to get an idea of prediction accuracy for low vs. high intensity hurricanes using leave 259 

one TC out cross-validation. 260 

2.6.3 COMPARISON WITH DEVIATION ANGLE VARIANCE TECHNIQUE 261 

To compare our method with the deviation angle variance based method,  we replicated the 262 

experiments carried out in [5]. Two experiments were performed in the study. The first experiment 263 

uses data from 2004-2008. The following hurricanes were left out for testing: Bonnie (2004), Earl 264 

(2004), Jeanne (2004), Matthew (2004), Nicole (2004), Dennis (2005), Irene (2005), Katrina 265 

(2005), Nate (2005), Rita (2005), Tammy (2005), Delta (2005), Debby (2006), Isaac (2006), 266 

Arthur (2008), Cristobal (2008), Fay (2008), Hanna (2008), Kyle (2008) and Paloma (2008). The 267 

rest of the TCs over the period 2004-2008 were used for training. 268 

 In the second experiment, all TCs from 2004-2008 were used for training and data from 269 

2009 were used for testing. We report the RMSE results for both OLS and SVR. 270 

2.6.4 LEAVE ONE YEAR OUT CROSS VALIDATION 271 

 In this experiment, we used the data for all years from 2004-2009. TCs from one year are 272 

left out for testing and training is performed over the rest. This experiment was performed to 273 

compare our method with the improved version of the DAV technique [5] proposed by [6]. Their 274 

experiment used long range IR images from GOES-E satellite and used data of one additional year 275 

(2010). We report RMSE results for our data using the same Leave One Year Out Cross validation 276 

method. 277 

2.6.5 COMPARISON WITH AIRCRAFT RECONNAISSANCE DATA 278 
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Aircraft reconnaissance data is available for several hurricanes and it gives very reliable estimates 279 

of hurricane intensity at certain times. We compared the predictions of the proposed model with 280 

aircraft measurements by performing leave one TC out cross-validation and restricting our error 281 

evaluation to only those times that were within 3 hours of an aircraft pass.  282 

2.6.6 CENTER ANNOTATION ERROR ANALYSIS  283 

As the proposed scheme relies on center annotations for feature extraction, we also analyzed the 284 

effect of error in annotating the center of the hurricane on intensity estimation. For this purpose, 285 

we selected a single hurricane from every year at random for evaluation through leave one TC out 286 

cross-validation. The annotated center in IR images of a hurricane was shifted along both axes by 287 

a random amount within the interval [−𝑟, +𝑟] prior to feature extraction and intensity prediction. 288 

The magnitude of the shift, 𝑟, was varied from 0 to 10 pixels (corresponding to a maximum center 289 

position error of 80 km or 43.2 nautical miles) to model the effect of center annotation errors of 290 

existing center prediction methods [1]. This process is repeated 5 times for each hurricane to get 291 

reliable estimates. The prediction error of the proposed technique is then plotted against the 292 

magnitude of the shift in the annotated center for analyzing the effect of center annotation error on 293 

intensity prediction error. 294 

2.6.7 ANALYSIS OF IMAGES FROM OTHER CHANNELS 295 

The focus of this study has been to predict TC intensity from IR images. However, in order to 296 

assess the effectiveness of the features proposed in this work over data from other channels, we 297 

have also evaluated leave one year out cross-validation analysis over other available channels 298 

including: Visible channel observations (VSCHN), water vapor observations (IRWVP), Near-299 

infrared channel observations (IRNIR) [10].  300 

2.7 PHURIE Webserver 301 
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 We have developed a freely available webserver called PHURIE (Python HURricane 302 

Intensity Estimator) for the proposed method which accepts an IR image in netcdf file format, 303 

extracts features, and generates a prediction from machine learning model. The center of the image 304 

input should correspond to the center of the hurricane. PHURIE uses a kernelized SVR model, 305 

since the SVR based models had shown to generally outperform others in different experiments. 306 

Details of the performance comparison of different regression techniques is presented in the 307 

Results section.  It is important to note that the webserver generates predictions using a single input 308 

image without any post-processing. The websever has been developed using Python and scikit-309 

learn and is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#PHURIE. 310 

3. Results and Discussion 311 

In this section results for all the experiments performed under the setup discussed in the 312 

previous sections are presented and discussed. 313 

3.1 Leave One TC out Cross Validation 314 

Using the mean intensity (zero-order predictor) as the predicted intensity for a given image, 315 

gives an RMSE of 24.3 kt as shown in Table 3. This is the expected maximum error of any 316 

technique and is used as a baseline for comparison.  317 

For evaluation of our method, we used Leave One Hurricane Out model as described in 318 

section 2.4.1. Mean RMSE values obtained using SVR, OLS, BPNN and XGBoost regression 319 

models are presented in Table 3. Using SVR, we obtained a mean RMSE of 11.2 kt. As expected, 320 

the proposed method performs much better than the zero-order predictor. The error of SVR is 321 

much lower than other machine learning models. Furthermore, the post-processing smoothing step 322 

http://faculty.pieas.edu.pk/fayyaz/software.html#PHURIE
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reduces these errors even further to 9.5 kt which is comparable to CIMSS satellite consensus 323 

(SATCON) intensity prediction error (9.1kt)  [23].  324 

We have also performed leave-one-TC-out cross-validation with a feed-forward back-325 

propagation neural network. The average RMSE for the neural network is 12.0 knots which is 326 

marginally higher than RMSE of 11.2 knots obtained with support vector regression. We tuned 327 

different parameters of the neural network but no significant reduction in error was noted. We have 328 

also used XGBoost regression for this problem which gives an RMSE of 11.3 knots after 329 

optimization of various hyper-parameters such as the number of estimators, subsampling, etc.  330 

3.2 Stratified Error Analysis  331 

Figure 6 shows a scatter plot of the true and SVR-predicted intensities for all images of all 332 

TCs. The overall Pearson correlation between true and predicted intensities is 0.91, whereas, the 333 

overall RMSE is 10.6 kt, which indicates the effectiveness of our approach. Figure 6 also shows 334 

RMSE errors for different TC stages. We hypothesize that the increased error at higher intensities 335 

is a consequence of the presence of relatively fewer training images at these intensities (see table 336 

1) and the nature of the error function (RMSE) being used. For a deeper evaluation of the 337 

performance of our method, we present plots of SVR-predicted vs. actual intensities for hurricanes 338 

Katrina and Rita (2005) in figures 7 and 8 respectively. A high correlation can be observed for 339 

both the cases. It can be seen that, in contrast to most of the existing techniques, our method 340 

performs well even for low-intensity images.  341 

3.3 Comparison with Deviation Angle Variance Technique 342 

Results of the two experiments replicated from [5] are given in Tables 4 and 5. The 343 

comparison of our approach with their results using the same experimental conditions show that 344 
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all machine learning models used in this work outperform their approach in both the experiments. 345 

A major improvement has been seen in the second experiment (Table 5), where the TCs from years 346 

2004-2008 were used for training and testing was performed on hurricanes in 2009. We obtained 347 

a mean RMSE of 13.4 kt compared to the previously reported 24.8 kt [5]. Post-processing using 348 

temporal smoothing filter improves the results even further to 11.5 knots. It is important to note 349 

that the proposed scheme offers better accuracy than the recently published method by Zhao et al 350 

[11] which gives an RMSE of 12.1knots over typhoons in the northwestern pacific ocean in 2009 351 

as well.  352 

3.4 Leave One Year Out Cross Validation 353 

In this experiment, the aim was to compare our method with the improved version of the 354 

method proposed by [5] in [6]. They used TC data over the period 2004-2010. Our dataset 355 

comprised data over the period 2004-2009 obtained from the GOES-12 satellite. Also, in their 356 

experiment, Ritchie et al. used only the data for TCs with a minimum speed of 34 kt as low intensity 357 

TCs are reported to adversely affect the accuracy of their method.  358 

We have compared the performance of SVR, OLS, XGBoost and BPNN for Leave One Year 359 

Out cross-validation over all the images including both high and low intensity examples. The 360 

comparison is presented in Table 6. As evident from the results, SVR gives better prediction 361 

accuracy (RMSE of 11.1 knots) in comparison to other machine learning models. For TC data with 362 

a minimum intensity of 34 kt, all machine learning models perform better than the DAV [5] and 363 

Improved DAV techniques [6] (Table 7).  364 
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It can be seen that, including the low intensity examples did not have much effect over the 365 

performance of our method. It can, therefore, be concluded that the proposed method is more 366 

robust and has a better performance than the previously published techniques. 367 

3.5 Comparison with Aircraft Reconnaissance Data 368 

On restricting our error evaluation to only those points in time that are within 3 hours of an aircraft 369 

pass, we get a mean RMSE of 12.1 kts which is only slightly above the average RMSE for leave 370 

one TC out cross-validation (11.2 kts). This clearly illustrates the true generalization performance 371 

of the proposed scheme.  372 

3.6 Center Annotation Error Analysis 373 

The plot of prediction error in response to center annotation error is shown in Figure 9. It shows 374 

that the proposed system undergoes graceful degradation in performance with increase in center 375 

annotation error. Figure 9(a) shows the effects of random center shifts in hurricane RITA 2005 376 

images whereas Figure 9(b) shows the change in prediction accuracy as a consequence of random 377 

center shifts for 5 different hurricanes. The average RMSE increases from 11.5 kts to 16.5 kts for 378 

these hurricanes as the pixel shift is varied from 0 to 10 pixels (corresponding to 80 km or 43.2 379 

nautical miles). [24] showed that when only satellite data were available, the mean position 380 

uncertainty of tropical storms, hurricane, and major hurricanes was 29, 21 and 14 nautical miles, 381 

respectively. Those roughly correspond to 7, 5 and 3 pixel displacements in Figure 9. For 382 

hurricanes and major hurricanes, Figure 9 suggests that the position uncertainty would only 383 

slightly degrade the intensity estimates. For tropical storms, the impact is larger. Tests with real-384 

time position estimates are needed to assess the accuracy of our system for operations.  385 

3.7 Analysis of Images from Other Channels 386 
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Leave One Year Out cross validation results using our proposed features over images from near 387 

infrared (IRNIR), water vapor (IRWVP) and visible (VSCHN) channels through SVR, OLS, 388 

BPNN, and XGBoost machine learning models are presented in Tables 8-10, respectively. The 389 

best mean RMSE values for the three channels are 12.3 kts (using XGBoost), 12.3 kts (using SVR) 390 

and 17.9 kts (using XGBoost), respectively. It is important to note that although these values are 391 

higher than the RMSE obtained using IR channel (11.1 knots with SVR), the relatively small 392 

decrease in accuracy for other channels, especially the near-IR and water-vapor channels, clearly 393 

indicates the effectiveness of the features proposed in this work. The poor performance in visible 394 

channel images can be attributed to the quality of these images being dependent upon lighting 395 

conditions.  396 

4. Conclusions and Future Work 397 

In this paper we presented a Support Vector Regression based technique for TC intensity 398 

estimation from satellite IR images. Since the shape of the cloud patterns helps in estimation of 399 

TC intensity in manual methods, we used several statistical features to characterize the structure 400 

in circular bands around the center of a hurricane image. These features included mean, minimum, 401 

maximum, standard deviation and entropy of bands. Apart from these features, variance of 402 

deviation angle histogram of an image was also used. The method proposed in this paper gives 403 

robust and state of the art performance on a number of different experiments and can be adapted 404 

for practical use. The features proposed in the study can also be employed for other prediction 405 

tasks related to hurricane IR imagery such as path-tracking. Although the main focus of this study 406 

was hurricane intensity prediction using infrared images, we have evaluated the proposed method 407 

on images from other channels including near infrared, water vapor and visible channels. In the 408 
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future, we plan on making a single machine learning method that can learn to predict both the 409 

center of a hurricane and its intensity. 410 

The results from this study show that the PHURIE intensity estimates are more accurate 411 

that other automated methods documented in published papers, and comparable to methods that 412 

use a consensus of several methods (such as the CIMSS SATCON).  However, some assumptions 413 

such as the use of best track positions, may inflate the accuracy of the estimates. The next step is 414 

to perform completely independent tests using only input that is available in real time.  That will 415 

provide a true estimate of applicability of PHURIE for operational forecast centers.  416 
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Table 1- Intensity distribution of images used in the study (C1 to C5 correspond to category of the 501 

hurricane). 502 

Category Number of Images 

Pre-Developmental (< 20 kt) 82 

Tropical Depression (20-34 kt) 1,617 

Tropical Storm (35-64 kt) 2,088 

Hurricane: C1 399 

Hurricane: C2 183 

Hurricane: C3 210 

Hurricane: C4 95 

Hurricane: C5 2 

Total 5,531 

  503 
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Table 2- Formulae for computation of statistical features 504 

 

Statistic  

 

Formula 

Mean �̅� =
1

𝑛
(∑ 𝑣𝑖

𝑛

𝑖=1

) 

Standard Deviation 𝑠 = √
∑ (𝑣𝑖 − �̅�)𝑛

𝑖=1

𝑛 − 1
 

Entropy 

𝐻(𝑣) = − ∑ 𝑝(𝑣𝑖) log
10

𝑝(𝑣𝑖)

𝑛

𝑖=1

 

𝑝(𝑣𝑖) is the probability of 𝑣𝑖 based on its relative frequency or counts 

of occurrence. 

 505 

  506 
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Table 3- Comparison between RMSE values for Leave One Hurricane Out cross validation for 507 

different machine learning models used in this work with statistical and Deviation Angle Variance 508 

features and zero-order predictors with and without post-processing.  509 

Method  Mean RMSE (kt) Mean RMSE after smoothing 

PHURIE: SVR 11.2 9.5 

PHURIE: OLS 12.8 10.5 

PHURIE: BPNN 12.0 10.1 

PHURIE: XGBoost 11.3 9.8 

Baseline Predictor (Mean) 24.3 - 

 510 

  511 
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Table 4- Comparison of results using our method and deviation angle variation based method for 512 

the same hurricanes as in (Piñeros et al., 2011). This table shows results on leaving certain 513 

hurricanes out for testing and training on the remaining ones from 2004-2008. 514 

Method  RMSE (kt) RMSE (kt) after smoothing 

PHURIE: SVR 11.5 9.8 

PHURIE: OLS 12.2 10.2 

PHURIE: BPNN 11.5 10.0 

PHURIE: XGBoost 11.6 9.9 

Deviation Angle Variation 

Technique[5] 
14.7 - 

 515 

 516 

  517 
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Table 5- Comparison of results using our method and deviation angle variation based method 518 

(Piñeros et al., 2011). In this experiment, hurricane data of years 2004-2008 was used for training 519 

and data of year 2009 was used for testing. 520 

Method RMSE (kt) RMSE after smoothing 

PHURIE: SVR 13.6 12.1 

PHURIE: OLS 13.4 11.5 

PHURIE: BPNN 13.2 11.6 

PHURIE: XGBoost 13.5 12.0 

Deviation Angle Variation Technique [5] 24.8 - 

 521 

  522 
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Table 6- Comparison among different methods for Leave One Year Out cross-validation 523 

Year ↓ 

Method 

SVR OLS BPNN XGBoost 

2004 12.7 14.2 15.0 12.6 

2005 10.2 11.3 10.3 11.5 

2006 10.3 10.4 11.1 10.2 

2007 9.7 11.1 10.8 9.9 

2008 11.6 11.4 12.3 11.8 

2009 12.1 11.5 11.9 12.1 

Mean → 11.1 11.7 11.9 11.4 

 524 

  525 
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Table 7- Comparison with DAV and improved DAV technique for Leave One Year Out 526 

Experiment for intensities higher than 34 kt.  527 

Year 

Method   

DAV [5] 
Improved DAV 

[6] 
SVR OLS BPNN XGBoost 

2004 15.6 13.3 13.9 13.7 12.0 12.9 

2005 17.3 14.1 9.8 10.6 9.9 11.6 

2006 11.7 10.3 11.1 11.1 11.2 10.9 

2007 12.8 11.4 10.5 11.5 11.4 10.0 

2008 12.2 12.0 10.3 9.9 10.2 10.5 

2009 17.9 10.6 12.7 10.9 11.4 11.4 

Mean → 14.6 12.0 11.3 11.3 11.0 11.2 

 528 

  529 
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Table 8- RMSE values for Leave One Year Out cross validation over images from near IR channel 530 

Years SVR OLS BPNN XGBoost 

2004 14.3 15.7 15.2 14.2 

2005 11.1 13.0 12.2 11.6 

2006 10.8 10.5 11.5 11.1 

2007 10.3 12.3 11.8 11.3 

2008 14.5 13.9 12.1 11.5 

2009 13.9 12.5 15.0 14.3 

Mean 12.5 13.0 13.0 12.3 

Table 9- RMSE values for Leave One Year Out cross validation over images from Water Vapor 531 

Channel (IRWVP) 532 

Years SVR OLS BPNN XGBoost 

2004 15.6 14.6 17.8 18.0 

2005 11.6 13.7 15.9 12.0 

2006 9.1 10.8 11.1 10.4 

2007 11.2 12.9 14.9 11.1 

2008 12.0 11.3 11.0 11.6 

2009 14.5 15.6 13.5 12.3 

Mean 12.3 13.15 14.03 12.6 

 533 
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Table 10- RMSE values for Leave One Year Out cross validation over images from visible channel 534 

Years SVR OLS BPNN XGBoost 

2004 23.2 23.8 22.4 21.6 

2005 17.9 18.5 17.9 16.7 

2006 12.9 12.6 12.8 12.1 

2007 17.6 19.6 20.5 20.5 

2008 21.4 16.2 15.5 15.8 

2009 24.4 23.2 45.7 18.5 

Mean 19.6 19.00 22.5 17.6 

 535 
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 556 

Figure 1- Illustration of workflow of the proposed system 557 
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 559 

Figure 2- Images for Hurricane Katrina (2005).  560 

It can be seen that the cloud gets organized to a circular structure as the intensity increases. 561 
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 563 

Figure 3- Central region of an image is divided into circular bands for computing statistical 564 

features. 565 
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Figure 4- Statistical features plotted against intensity values for images from Hurricane Rita 568 

(2005).  569 

Mean (a), Standard Deviation (b), Maximum (c), Entropy (d) and Minimum (e) of the band 570 

temperatures have been used as features. A high correlation for most of the bands in (a)-(d) can be 571 

seen. The correlation between minimum band temperatures (e) and intensities is low, showing this 572 

feature may not be very informative. 573 

 574 
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(a) (b) (c) 

 

(d) 

Figure 5-  Illustration of concept of Deviation Angles.  576 

(a) shows a test image exhibiting a circular structure. (b) shows gradient vectors for each pixel. 577 

Most of the vectors are directed towards the center, hence the angles between the gradient vectors 578 

and the lines joining other pixels with the center are mostly zero. (c) shows a histogram of deviation 579 

angles for the image shown in (a). (d) presents a plot of deviation angle variance against intensity 580 

values for Hurricane Rita (2005). A high correlation can be seen for deviation angle variance, 581 

making it an informative feature. 582 
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 584 

 585 

Figure 6- Plot of actual vs. SVR-predicted intensities of all test hurricanes in leave one hurricane 586 

out cross validation using SVR.  587 

Different shades represent different categories of storms based on their intensities: Tropical 588 

Depression (TD), Tropical Storm (TS) and Categories 1-5 Hurricanes. 589 

  590 



40 

 

 591 

Figure 7- Actual and predicted intensity values for Hurricane Katrina (2005).  592 

The RMSE values obtained for SVR predictions before and after filtering are 13.9 kt and 10.9kt 593 

respectively. 594 

 595 

  596 
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 597 

Figure 8- Actual and predicted intensity values for Hurricane Rita (2005). 598 

The RMSE values obtained for SVR predictions before and after filtering are 13.7 kt and 10.6 kt 599 

respectively. 600 
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(a) 

 

(b) 

Figure 9 Effect of hurricane center annotation errors on root mean square error (RMSE) in 602 

predicted intensity using leave one TC out cross-validation. (a) Plot for pixel shift vs. RMSE for 603 

Rita (2005) and, (b) Combined plot for pixel shift vs. RMSE for Alex (2004), Rita (2005), Gordon 604 

(2006), Felix (2007), Bertha (2008) and Ana (2009). 605 
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