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Abstract

Background: Determining protein-protein interactions and their binding affinity are important in understanding
cellular biological processes, discovery and design of novel therapeutics, protein engineering, and mutagenesis
studies. Due to the time and effort required in wet lab experiments, computational prediction of binding affinity
from sequence or structure is an important area of research. Structure-based methods, though more accurate than
sequence-based techniques, are limited in their applicability due to limited availability of protein structure data.

Results: In this study, we propose a novel machine learning method for predicting binding affinity that uses
protein 3D structure as privileged information at training time while expecting only protein sequence information
during testing. Using the method, which is based on the framework of learning using privileged information (LUPI),
we have achieved improved performance over corresponding sequence-based binding affinity prediction methods
that do not have access to privileged information during training. Our experiments show that with the proposed
framework which uses structure only during training, it is possible to achieve classification performance comparable
to that which is obtained using structure-based features. Evaluation on an independent test set shows improved
performance over the PPA-Pred2 method as well.

Conclusions: The proposed method outperforms several baseline learners and a state-of-the-art binding affinity
predictor not only in cross-validation, but also on an additional validation dataset, demonstrating the utility of the
LUPI framework for problems that would benefit from classification using structure-based features. The implementation
of LUPI developed for this work is expected to be useful in other areas of bioinformatics as well.
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Background
Protein interactions are crucial in cells for maintaining
homeostasis and in regulating metabolic pathways involv-
ing thousands of chemical reactions running in parallel
within an organism [1, 2]. Protein binding affinity is one
of the most important aspects of protein interactions
which determines protein complex stability and binding
specificity and distinguishes highly specific binding part-
ners from less specific ones [2]. Protein binding affinity is
measured in terms of change in the Gibbs free energy
upon binding (ΔG). The importance of measuring binding
affinity has prompted the development of various

experimental techniques such as Isothermal Titration
Calorimetry (ITC), Surface Plasmon Resonance (SPR), and
Fluorescence Polarization (FP) which can be used to
accurately measure the protein binding affinity [3–5].
However, these techniques involve laborious,
time-consuming, and expensive experimental procedures
and cannot be applied at a large scale. As a consequence,
accurate predictive computational methods can be very
useful in this domain.
Machine learning based methods are important in this

area because of their ability to treat unknown factors in-
volved in protein binding implicitly and to learn a
data-driven flexible functional form [6, 7]. A number of
machine learning based methods have been proposed
both for predicting the absolute affinity value and to
classify protein-protein complexes into low and high
binding affinities using structure or sequence informa-
tion [8–16]. Some of the structure-based methods give
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reasonable accuracy on predicting absolute binding af-
finities on the affinity benchmark dataset [8, 10, 11, 15].
However, these methods have limited applicability be-
cause they require 3D structures of protein complexes
which are typically not available. On the other hand,
state-of-the-art sequence-based methods for predicting
binding affinity are not sufficiently accurate [12–14, 17,
18]. Therefore, accurate prediction of protein binding af-
finity using sequence information is still an unsolved
problem.
In this article, we present an implementation of the

Learning Using Privileged Information (LUPI) frame-
work for classifying protein complexes into low and high
binding affinity. Our proposed method is different from
previously proposed methods for the classification of
protein complexes in that it uses both protein structural
and sequence information during training but requires
only sequence descriptors for testing (see Fig. 1). Using
this method, we are able to utilize information from pro-
tein complexes with known protein 3D structures to
learn a better model and still be able to predict binding
affinities using sequence information alone during test-
ing. This has led to a significant improvement in the ac-
curacy in comparison to models which utilize only
sequence information during training. We expect the
LUPI framework to be very useful for other problems in
bioinformatics, particularly problems that benefit from
the use of protein 3D structures, such as protein

function prediction and prediction of protein-protein
and protein-nucleic acid interactions.

Results
In this work, we describe a novel machine learning
method to predict protein binding affinity using protein
sequence and structure information. Previously, various
machine learning models have been developed for this
purpose using standard machine learning approaches
using sequence or structure information. Typically,
structure-based methods generate better predictions
than sequence-based ones but are limited by the fact
that structural information is not available for the vast
majority of proteins. In the proposed method, we handle
this constraint by following the learning using privileged
information (LUPI) framework in conjunction with an
SVM classifier (LUPI-SVM). In LUPI, a machine learn-
ing model is built by using additional or more inform-
ative features (called privileged space features) which are
available only during training in addition to input space
features that are available in both training and testing.
The privileged information is expected to help the classi-
fier converge to a better decision boundary in the input
space, leading to better generalization. Applied to bind-
ing affinity prediction, LUPI-SVM uses both protein se-
quence and structure during training but at test time it
uses only sequence-based descriptors. In what follows
we present results comparing the classification

Fig. 1 A framework to classify protein complexes based on their binding affinities with the paradigm of learning using privileged information
(LUPI). Privileged information (3D structural information) is only required at training time (left panel) to help improve performance at test time
using sequence information alone (right panel)
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performance of LUPI-SVM to several baseline classifiers
to illustrate the usefulness of this approach.

Protein binding affinity prediction with baseline learners
using structure and sequence descriptors
We first compare the performance of sequence-based
descriptors to structure-based ones on the task of classi-
fying protein complexes as having low and high binding
affinity. For this purpose, we have used a number of
classifiers such as classical Support Vector Machines
(SVMs), Random Forest (RF), and XGBoost as baseline
classifiers with both sequence- and structure-based fea-
tures. Results obtained with different types of structure
and sequence-based features through leave one complex
out (LOCO) cross-validation over the protein binding af-
finity benchmark dataset version 2.0 [19] which has 128
complexes, are shown in Table 1. The sequence-based
features include k-mer composition and features com-
puted using a Blosum substitution matrix to capture
substitutions of physiochemically similar amino acids.
For structure features, we have used Number of Interact-
ing Residue Pairs (NIRP) to get the frequency of inter-
acting amino acid pairs at the interface of a protein
complex, Moal Descriptors which include statistical
potentials, solvation and entropy terms and potentials
for hydrogen bond, Dias Descriptors representing infor-
mation related to binding assay pH, temperature, and
methodology of determining experimental binding affin-
ity, and Blosum-based features to capture the substitu-
tions of physiochemically similar amino acids involved
in the interface of a protein complex.
The results shown in Table 1 demonstrate that

structure-based features produce higher accuracy than
sequence-based features for all the classifiers. For ex-
ample, by using structure-based features during training

and testing, we observed area under the ROC curve of
0.74 and under the precision-recall curve (PR) score of
0.71 with the number of interacting residue pairs (NIRP)
as features derived from the structure of the protein
complex. On the other hand, sequence-based features
produce a maximum ROC score of 0.72 and PR score of
0.68 (SVM and XGBoost with 2-mer features). More-
over, we observe that most of the structural descriptors
perform better than the sequence-based features. This
observation suggests that structural descriptors are more
informative than sequence-based features. We have also
observed that performance of classical SVM is compar-
able to other standard state-of-the-art learners (RF and
XGBoost) with different types of structure and
sequence-based features. A similar trend regarding the
relative performance of SVM and RF classifiers was ob-
served by Yugandhar and Gromiha with a different data-
set and evaluation protocol [13].

Protein binding affinity prediction with LUPI-SVM using
protein structural descriptors as privileged information
In this section, we present our results with the Learning
Using Privileged Information (LUPI) Support Vector
Machine (LUPI-SVM). LUPI-SVM uses structure-based
features as privileged information which is assumed to
be available only during training in conjunction with
sequence-based descriptors which are used in both
training and testing. Our hypothesis is that due to its
modeling of structural information, LUPI-SVM will pro-
duce better accuracy for prediction of binding affinity
while overcoming the limitation of predictors that re-
quire structure information during testing.
The results obtained with the LUPI-SVM framework

using LOCO cross-validation on the affinity benchmark
dataset are shown in Table 2 and Fig. 2. In LUPI-SVM

Table 1 Protein complex classification results obtained using classical SVM, Random Forest and XGBoost using input and privileged
features with LOCO cross-validation over the affinity benchmark dataset

Features Classical SVM Random forest XGBoost

ROC PR Sr ROC PR Sr ROC PR Sr

Input space

2-mer 0.72 0.68 −0.40 0.68 0.63 − 0.38 0.72 0.66 −0.40

Blosum (Protein) 0.70 0.63 −0.36 0.69 0.62 −0.39 0.69 0.63 −0.34

Privileged space

NIRP 0.74 0.71 −0.45 0.74 0.67 −0.44 0.72 0.69 −0.42

Moal descriptors 0.73 0.68 −0.43 0.70 0.68 −0.37 0.71 0.68 −0.34

Dias descriptors 0.72 0.69 −0.42 0.69 0.69 −0.37 0.71 0.67 −0.34

Blosum (Interface) 0.61 0.60 −0.19 0.56 0.54 −0.11 0.66 0.59 −0.25

Bold faced values indicate best performance for each model. Blosum (Protein) refer to Blosum substitution scores averaged over the protein, while Blosum
(Interface) are Blosum substitution scores averaged over the interface. Moal descriptors are taken from Moal et al. [8], and Dias descriptors are taken from Dias
and Kolaczkowski [11]
ROC Area under the ROC curve, PR Area under the precision-recall curve, Sr Spearman correlation coefficient
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we used sequence-based features (2-mer and Blosum
substitution scores averaged over the protein) as input
and structure-based descriptors (NIRP, Moal Descrip-
tors, Dias Descriptors, and Blosum substitution scores
averaged over the interface) as privileged features, i.e.,
both sequence and structure features were used in train-
ing the classifier but only sequence-based features in
testing. In Table 2 we have also show results of classical
SVM using sequence-based features for an easy com-
parison with LUPI-SVM. An area under the ROC curve
(ROC) score of 0.78 and under the precision-recall curve
(PR) score of 0.73 were obtained using Moal Descriptors
as privileged information and 2-mer features as

input-space features; this is a large improvement over
the best baseline SVM performance of 0.72 and 0.68 for
area under the ROC curve and PR curve, respectively. In
all cases, the use of privileged information led to im-
proved performance, even when using the Blosum sub-
stitution scores averaged over the interface, that had
lower performance than sequence-based features. Sur-
prisingly, the performance of LUPI-SVM was also
slightly higher than an SVM which used privileged struc-
ture information for both training and testing. This sug-
gests that LUPI-SVM can make effective use of both
sources of information and provide performance that is
better than both sources by themselves. Moreover, it is
worth noting that the best features as privileged features
are not the ones that give the best performance on the
classification task, and that Moal descriptors consistently
provided the best performance as privileged features.
In order to test the performance of the proposed

scheme in predicting binding affinity of different types
of protein complexes, we have also computed the per-
formance of LUPI-SVM across three major classes of
complexes in the dataset. We observed area under the
precision-recall curve (PR) score of 0.68, 0.58 and 0.82
and area under the ROC curve (ROC) score of 0.82, 0.67
and 0.71 for enzyme containing (E), antibody/antigen
(A), and other complexes (O), respectively using Moal
Descriptors as privileged information and 2-mer features
as input-space features. These results also show a signifi-
cant improvement in comparison to baseline SVM per-
formance in terms of PR score of 0.62, 0.42 and 0.80 and
ROC score of 0.72, 0.57 and 0.69 for enzyme containing

Table 2 Protein complex classification results obtained through
classical SVM and LUPI across different features using LOCO
cross-validation over the affinity benchmark dataset

Input features

2-mer Blosum (Protein)

ROC PR Sr ROC PR Sr

Classical SVM

0.72 0.68 −0.40 0.70 0.63 −0.36

Privileged features LUPI-SVM

NIRP 0.76 0.71 −0.47 0.74 0.70 −0.42

Moal descriptors 0.78 0.73 −0.48 0.75 0.73 −0.43

Dias descriptors 0.74 0.70 −0.45 0.73 0.69 −0.40

Blosum (Interface) 0.73 0.69 −0.41 0.73 0.69 −0.42

Bold faced values indicate best performance for each model
ROC Area under the ROC curve, PR Area under the precision-recall curve, Sr
Spearman correlation coefficient

Fig. 2 ROC curves showing a performance comparison between LUPI-SVM (with 2-mers as input-space features and Moal Descriptors as the
privileged features) and the baseline classifiers (XGBoost, classical SVM (SVM), and Random Forest (RF) with 2-mer features). The average area
under the ROC curve (AUC) is shown in parenthesis
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(E), antibody/antigen (A), and other complexes (O),
respectively.
We have also divided complexes into rigid, medium

and difficult classes on the basis of conformational
change upon complex formation. We have observed an
improved performance of LUPI-SVM for rigid and
medium complexes with area under the precision-recall
curve (PR) score of 0.74, 0.84 and area under the ROC
curve (ROC) score of 0.82 and 0.92, in comparison to
the baseline SVM with PR score of 0.69, 0.78 and ROC
score of 0.73 and 0.84, respectively. For difficult com-
plexes, both LUPI-SVM and the baseline SVM exhibited
the same performance with PR score of 0.85 and ROC
score of 0.74.

Performance comparison of LUPI-SVM and models build
using classical machine learning setting on the
independent validation dataset
In addition to performance comparison using LOCO
cross-validation, we have also used an additional valid-
ation set to compare different machine learning models
with the proposed LUPI-SVM approach. This dataset
contains 12 positive examples (high affinity) and 27
negative examples (low affinity) and has no overlap with
the affinity benchmark dataset. In this case, we trained
the baseline and LUPI-SVM models on the affinity
benchmark dataset and tested on the validation dataset.
The results are shown in Table 3. Using a classical SVM,
we obtained a maximum area under the ROC curve
(ROC) score of 0.63 and precision-recall curve (PR)
score of 0.38 using 2-mer features, whereas by using
LUPI-SVM trained using 2-mer as input features and
Moal descriptors as privileged information, we obtained
a much higher ROC score of 0.71 and PR score of 0.46.
This shows an improved performance of LUPI-SVM
over the classical SVM.

We have also used this validation set to compare
LUPI-SVM against the existing state-of-the-art method
for protein affinity prediction called PPA-Pred2 [12]
using its webserver (accessed: March 18, 2018). For this
comparison, we obtained predictions for the complexes
in our validation dataset from the PPA-Pred2 webserver
and computed the ROC score based on the predicted
binding affinity values. We obtained a ROC score of 0.63
compared to 0.71 using the proposed LUPI-SVM
method. The low performance of PPA-Pred2 on this val-
idation dataset has already been reported independently
by Moal et al., [17, 18] as well. These results provide fur-
ther support for the advantage of using protein struc-
tural information as privileged information in the LUPI
framework.

Feature analysis for binding affinity prediction
To discover the features that contribute to predicting
binding affinity, we used the SHapley Additive exPlana-
tions (SHAP) tool [20]. SHAP values reveal the import-
ance of a feature in predicting binding affinity: for
example, a high SHAP value of the count of the amino
acid pair EK in the ligand proteins (denoted by L (EK) in
Fig. 3) indicates that the existence of EK contributes
more for predicting low binding affinity complexes.
Similarly, R (GT) (Counts of ‘GT’ mer in a protein
sequence designated as receptor) contributes more for
predicting high binding affinity complexes (see Fig. 3).
Different types of amino acids are involved in these

top 20 2-mers such as lysine (K), Glutamic Acid (E), Ar-
ginine (R), Aspartic Acid (D), Leucine (L), Tryptophan
(W), Tyrosine (Y) and Serine (S). In the top 20 2-mers,
Tryptophan (W), Tyrosine (Y), Serine (S), Thyronine (T)
and Arginine (R) are involved in those 2-mers which
contribute more in predicting high binding affinity com-
plexes. These amino acids have already been highlighted
as hot spots in protein interactions in previous studies
[21, 22].

Learned models using LUPI and classical SVM
We have used weight vectors of the best-trained models
using both LUPI-SVM and classical SVM to get insight
into the role of privileged information in training.
Figure 4 shows the weight vector of the trained classifier
for the ligand Blosum features using both LUPI-SVM
and classical SVM. Overall, both models show similar
contributions of each residue, and the role of privileged
information in LUPI-SVM appears to be in fine-tuning
the weights for improved accuracy.

Discussion
Computational protein binding affinity prediction tech-
niques are important for determining the binding speci-
ficity of proteins and their interactions due to the

Table 3 Comparison of classical SVM and LUPI-SVM on the
external independent validation dataset with training on affinity
benchmark dataset

Input features

2-mer Blosum (Protein)

ROC PR Sr ROC PR Sr

Classical SVM

0.63 0.38 − 0.28 0.61 0.39 −0.19

Privileged features LUPI-SVM

NIRP 0.66 0.42 −0.30 0.64 0.40 −0.28

Moal descriptors 0.71 0.46 −0.39 0.69 0.48 −0.30

Dias descriptors 0.65 0.41 −0.29 0.64 0.44 −0.20

Blosum (Interface) 0.64 0.40 −0.26 0.64 0.46 −0.22

Bold faced values indicate best performance for each model
ROC Area under the ROC curve, PR Area under the precision-recall curve, Sr
Spearman correlation coefficient
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difficulty of obtaining this information experimentally.
Among these computational methods, a number of ma-
chine learning methods have been proposed which use
both protein sequence and structures. All the available
machine learning methods operate in the setting where
information used during training should be available in
in the same way during testing. This requirement limits
the applicability of methods trained using protein 3D
structure, as most proteins do not have solved 3D struc-
tures. We have also observed that training models using
sequence information only and ignoring structural infor-
mation results in a loss of accuracy. It turns out that it is
possible to have the best of both worlds and obtain even
better performance than either source of data on its
own, while still only requiring sequence information
during testing using the proposed LUPI-SVM method.

Improved performance of LUPI-SVM over the baseline
classifiers and existing state-of-the-art method
(PPA-Pred2) [12] suggests that the proposed method
can effectively use both sources of information.

Conclusions and future work
We presented a novel machine learning method for pro-
tein affinity prediction that uses both protein structure
and sequence information during training but needs only
sequence information for testing. To the best of our
knowledge, this is first attempt to combine protein
structure and sequence information in this way to pre-
dict binding affinity. A comparison of the proposed
LUPI-SVM framework with different baseline learners
and a state-of-the-art binding affinity predictor shows
that our proposed method not only performs better in

Fig. 3 Feature analysis using SHAP. The impact of 2-mer features on model output is shown using SHAP values. The plot shows the top 20 2-
mers for the Ligand (L) or Receptor (R) by the sum of their SHAP values over all samples. Feature value is shown in color (Red: High; Blue: Low)
reveals for example that a high value of L (EK) (Counts of ‘EK’ in a protein sequence designated as ligand) contributes more for predicting low
binding affinity complexes

A B

Fig. 4 Weight vectors of the trained classifiers for the ligand Blosum features. a SVM with LUPI framework using Blosum substitution features computed
over each protein as input and Moal Descriptors as privileged features; b Classical SVM using Blosum features
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cross-validation but also on an additional validation
dataset. However, there is still a large room of improve-
ment in protein affinity prediction. As already suggested
in a recent study by Dias and Kolaczkowski, to achieve
better performance in this domain, we need either a sig-
nificant increase in the amount of quality affinity data or
methods of leveraging data from similar problems [11].
A number of other problems in bioinformatics in which

the existence of structure data is a bottleneck, can be ad-
dressed by combining sequence and 3D structural infor-
mation using the framework of learning using privileged
information. These include protein function prediction
[23], protein-DNA, protein-RNA and protein-protein
interaction prediction [24–27] as well. Finally, we expect
that the freely available Python implementation of the
LUPI-SVM framework will be helpful for applications in
other problem domains.

Methods
Dataset and preprocessing
In this study we have used the protein binding affinity
benchmark dataset 2.0 [19]. This dataset is a subset of
docking benchmark version 4.0 (DBD-4.0) and contains
144 non-redundant protein complexes with solved bound
and unbound 3D structures of the ligand and receptor pro-
teins at an average resolution of 1.2 Å (min: 0.17 Å; max:
4.9 Å) [19, 28]. Protein complexes in this dataset have
known binding affinities in terms of binding free energy
and disassociation constant and have been divided into
three major groups: (A) antibody/antigen, (E) enzyme con-
taining, and (O) other complexes. The binding free energy
ranges from − 18.58 to − 4.29. One protein complex (CID:
1NVU) in this dataset has two entries due to allostery [19,
29]. We considered only one of them (1NVU_Q: S), with
an affinity value of − 7.43, due to lack of availability of
structural information of interacting chains of the second
entry. Following the same data curation and preprocessing
technique used by Moal et al., and Yugandhar and Gro-
miha, we have selected 128 complexes (for detail see in the
Additional file 1: Table S1) from this dataset after removing
those complexes which: have a protein with length less than
50 amino acids, are not heterodimeric and have difficulty of
deriving a full structural feature set [8, 12]. This allows us
to use descriptors from Moal et al. and Dias et al., [8, 11].
We have divided this dataset into two parts: complexes
with low binding affinity (65 complexes) and complexes
with high binding affinity (63 complexes) using a threshold
− 10.86 which is median value of binding affinity in our
data set and has been used in other studies as well [13].
We have also used an external validation dataset of 39

protein-protein complexes with known binding free en-
ergy to perform a stringent performance comparison of
different methods and machine learning models. This
dataset is derived from Chen et al. by removing

complexes having more than two chains and involving
chains of size less than 50 residues [30]. This dataset has
been used for validation in a related study [17]. We have
also used this dataset to compare the performance of
our proposed method with PPA-Pred2 [12] by using the
predicted binding affinity values obtained from its web-
server, which is available at https://www.iitm.ac.in/
bioinfo/PPA_Pred/, accessed on 18-03-2018.

Classifiers for prediction of binding affinity
We propose a machine learning approach for the classi-
fication of protein-protein complexes based on their
binding affinities using both structure and sequence in-
formation. As discussed earlier, the novelty of the pro-
posed approach is that it uses both sequence and
structure of protein during training time but requires
only sequence information during testing (see Fig. 1).
The proposed scheme is based on the paradigm of learn-
ing using privileged information (LUPI) [31].
In this work, we formulate binding affinity as a classifi-

cation problem: classifying protein complexes as having
low or high binding affinity. Thus, our dataset consists
of examples of the form (ci, yi) where ci is a protein
complex and yi ∈ {+1, −1} is its associated label indicat-
ing whether ci has binding free energy less than −10.86
(+1) or not (−1). The threshold −10.86 is the median
value of binding affinity in our data set and has been
used in other studies as well [13]. This results in 63 high
binding affinity complexes (with label +1) and 65 low
binding affinity complexes (with label −1). For a given
protein complex ci, we extract sequence and
structure-based features from it which are denoted by xi
and x′i , respectively. Our objective is to learn a function
that classifies a given protein complex into high or low
affinity using sequence information alone.

Baseline classifiers
As a baseline, we have used three different classifiers:
classical Support Vector Machine (SVM), Random For-
est (RF) and Gradient Boosting Machine (XGBoost)
[32–35].

Classical Support Vector Machine (SVM)
We used SVM to classify a protein complex into high or
low binding affinity by learning a function f(x) = 〈w,
x〉 with w as parameters to be learned from the training
data {(xi, yi )| i = 1, 2, …, N}. Optimal value of the w is
obtained in SVM by solving the following optimization
problem [32].

minw;ξ
1
2
λ∥w∥2 þ

XN
i¼1

ξi ð1Þ

Subject to:
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yi w; xih i≥1−ξ i; ξ i≥0; ∀i ¼ 1;…;N :

The objective function in Eq. (1) maximizes the mar-
gin while minimizing margin violations (or slacks ξ)
[32]. The hyperparameter λ ¼ 1

C controls the tradeoff be-
tween margin maximization and margin violation. We
used both linear and radial basis function (RBF) kernels
and coarsely optimized the values of λ and γ using grid
search with scikit-learn (version:0.18) [36].

Random Forest
Random Forest (RF) is an ensemble learning method
that operates by constructing multiple decision trees on
random subsamples of input features and examples and
classifies an example using a majority vote [33]. Random
Forests have been used in many related studies [13, 14].
Hyperparameter selection was performed with respect to
the number of trees and the minimum number of exam-
ples required for a split and used the implementation
available in scikit-learn (version:0.18) [36].

Gradient Boosting (XGBoost)
Gradient boosting is also an ensemble learning method;
it combines weak learners into a strong learner in an it-
erative fashion [34, 35]. We have performed model selec-
tion for XGBoost in terms of the number of boosting
iterations, booster, subsample ratio, learning rate, and
maximum depth using a grid search and xgboost 0.7
[35].

LUPI-SVM
The LUPI-SVM framework was recently proposed by
Vapnik and Izmailov [31]. Like the standard SVM, this
model also learns a linear discriminant function f(xi) =
〈w, xi〉 in the input space. However, in LUPI, instead of
slack variables as in a standard SVM, we have a slack
function ξi ¼ ⟨w′; x′i⟩ based on the privileged features.
This controls the decision boundary in the input space
using information from privileged features. In LUPI, we
learn w by using training data of the form fðxi; x0i; yi Þji
¼ 1;…;Ng where, xi and x′i are feature vectors for pro-
tein complex ci belonging to the input and privileged
feature spaces, respectively, and yi ∈ {+1, −1} is the asso-
ciated label. The mathematical formulation of the
LUPI-SVM can be written as:

minw;w′;ξ′
1
2
½λ∥w∥2 þ λ′∥w′∥

2�

þ λ′′
XN
i¼1

½yi⟨w′; x′i ⟩þ ξ′i � þ
XN
i¼1

ξ′i ð2Þ

Subject to:

yi⟨w; xi⟩≥1−½yi⟨w′; x′i ⟩þ ξ′i �;

yi⟨w
′; x′i ⟩þ ξ′i ≥0;

ξ 0i≥0;∀i ¼ 1;…;N

where, λ, λ′, and λ′′ are hyper-parameters which control
the trade-off between margin maximization and margin
violations. Slack variables in the privileged space ξ′ en-
force the constraint that input-space slack values are
non-negative.
In order solve this optimization problem, we have de-

veloped a stochastic sub-gradient optimization (SSGO)
algorithm inspired by the Pegasos solver for binary
SVMs [37]. To do so, we write the constrained
optimization problem in Eq. (2) as an unconstrained one
as follows:

minw;w′

1
2
½λ∥w∥2 þ λ′∥w′∥

2�

þ λ′′
XN
i¼1

yi⟨w
′; x′i ⟩þ

XN
i¼1

lðyi; f ðxi; x′i ;w;w′ÞÞ ð3Þ

with the loss function:

lðyi; f ðxi; x′i ;w;w′ÞÞ
¼ maxf0;−yi⟨w′; x′i ⟩;1−yi⟨w; xi⟩−yi⟨w

′; x′i ⟩g:

The stochastic sub-gradient solver for this problem
operates iteratively by choosing a protein complex ran-
domly in each iteration and estimating the sub-gradient
of the objective function given in Eq. (3) based only on
the chosen complex. The sub-gradient at iteration t can
be written as:

∇t ¼
(
λwT−ytxt i f yt⟨w; xt⟩þ yt⟨w

′; x′t⟩ > 1and1−yt⟨w; xt⟩ > 0

λwT otherwise

∇′
t ¼

(
λ′w′T þ λ′′ytx

′
t−ytx

′
t i f −yt⟨w

′; x′t⟩ > 0oryt⟨w; xt⟩þ yt⟨w
′; x′t⟩ > 1

λ′w′T þ λ′′ytx
′
t otherwise

The weight vectors are updated in a direction opposite
to the direction of the sub-gradient by the following
equations

wtþ1←wt−μt∇t

w′
tþ1←w′

t−μ
′
t∇

′
t

using a step size of μt ¼ 1
tλ and μ0t ¼ 1

tλ0 . The complete
optimization algorithm is given in Fig. 5. Our python-
based implementation of learning using privileged infor-
mation algorithm is available online at: https://github.-
com/wajidarshad/LUPI-SVM.
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Feature representations
In this work we have used both structure- and sequence-
based feature representations. The sequence-based fea-
tures are used as input space features whereas structural
features are used as privileged space features, i.e., it is as-
sumed that structural features are available only for train-
ing. All feature representations are standardized to zero
mean and unit variance across all complexes. The details
of feature representation are as follows.

Sequence-based features
In order to model the sequence-based attributes of a
protein complex containing ligand and receptor chains,
we first obtain sequence-based features of all chains in
the ligand and receptor separately. The features of all
chains in the ligand (or receptor) are then averaged
across chains to get a single feature vector for the ligand
(or receptor). The feature vector representations of lig-
and and receptor are then concatenated to produce a
feature vector for the protein complex as performed
elsewhere [38]. We give details of the individual chain
level sequence-based feature descriptors used in this
study below.

k-mer composition (k-mer)
k-mer composition i.e. the counts of the occurrences of
k-mers in a protein sequence, is a widely used descriptor
of a protein sequence [39]. We used this feature repre-
sentation to capture the composition of a protein se-
quence. For k-mers of size 2 (2-mer) this yields a

400-dimensional feature representation of each protein
chain.

BLOSUM-62 features: Blosum (Protein)
In order to represent amino acid composition and at the
same time capture substitutions of physiochemically
similar amino acids in a protein sequence, a protein
sequence is converted into a 20-dimensional vector by
averaging the columns from a BLOSUM substitution
matrix corresponding to each amino acid in a given
sequence. We used a BLOSUM-62 substitution matrix
to extract this feature representation [40]. This feature
representation has already been used successfully in sev-
eral related studies [41–44].

Structure-based features (privileged feature space)
Proteins interact and perform their function through
their 3D structure. Therefore, structural properties of a
protein complex play a vital role in defining the binding
affinity of a protein complex. In order to extract struc-
tural properties of a protein complex, we used different
complex level feature representations. We have used
these features both as a baseline and for LUPI as privi-
leged information. Different type of structural feature
representations of each complex in our dataset used in
this study are described below.

Number of interacting residue pairs (NIRP)
Interactions in a protein-protein complex are normally
stabilized by the non-covalent interaction between

Fig. 5 Training algorithm for LUPI-SVM with stochastic sub-gradient optimization
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residues occurring at the interface of ligand and receptor
[45]. The amino acids involved in these non-covalent in-
teractions at the interface of a protein complex deter-
mine the binding mode and binding energy of a protein
complex [1]. For this reason, we used the frequency of
interacting amino acids pairs at the interface of a protein
complex as shown in Fig. 6. Through this method, we
extracted a 211-dimensional feature representation from
the bound structures of ligand and receptor of a protein
complex using a distance cutoff of 8 Å.

Moal descriptors
These descriptors were obtained from a study on
protein-protein binding affinity prediction by Moal et
al., [8]. This 200-dimensional feature representation of
a complex describes the interface and conformational
changes upon binding. These features include statis-
tical potentials (residue and atomic pair potentials,
four-body potentials), solvation and entropy terms
(atomic contact energies, continuum electrostatics
models, hydrophobic burial, terms for translational,
rotational, vibrational, side chain and disorder to
order transition entropies), unbound-bound descrip-
tors (change in internal energy) and other potential
terms like energy terms associated with electrostatics,
London dispersion and exchange repulsion forces, as
well as potentials for hydrogen bond [8]. By using
these descriptors, a correlation score of 0.55 has been
reported between the experimental and predicted
binding affinities of the complexes in the affinity
benchmark dataset [8].

Dias descriptors
We obtained these descriptors from a study on
protein-protein binding affinity prediction by Dias and
Kolaczkowski [11]. These descriptors include informa-
tion related to binding assay pH, temperature, and meth-
odology of determining experimental binding affinity
value of each complex in the benchmark dataset [11].
We have converted the string values of experimental
methods into a feature vector using binary one-hot
encoding [46]. These descriptors give a 27-dimensional
feature representation for each complex in our dataset.
A Pearson correlation of 0.68 between the experimental
and predicted binding affinities has been reported using
these descriptors [11].

Average BLOSUM-62 features: Blosum (Interface)
As discussed earlier, we extracted Blosum features to
model substitution of physiochemically similar amino
acids in a protein sequence. We have also extracted this
feature representation for amino acids involved in the
interface of a protein complex with a distance cutoff of
8 Å.

Model validation, selection and performance assessment
We used Leave One Complex Out (LOCO)
cross-validation to evaluate our classification models
over the non-redundant binding affinity benchmark
dataset [8]. This scheme of cross-validation allows us to
include more training data by developing the model with
(N – 1) complexes and testing on the left out complex.
This process is repeated for all the complexes in the

Fig. 6 Number of interacting residue pairs (NIRP) in the interface of a protein complex. The frequency of non-repeating pairs (considering A: B
and B: A the same) was computed from the bound 3D structures of ligand (L) and receptor (R) of a protein complex. Residues (shown as spheres) at a
distance cutoff of 8 Å are considered the interface of the complex. The bottom panel of the figure shows the form of the feature vector extracted
using this scheme
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dataset to get a single value of an accuracy metric. We
have used area under the ROC curve (ROC), area under
the precision-recall curve (PR) and the Spearman correl-
ation coefficient (Sr) as accuracy metrics for model
evaluation and performance assessment [44, 47–49].
Average values of all the metrics obtained by shuffling
the data across 3 runs of LOCO cross-validation have
been reported in the results and discussion section.
In order to get the optimal values of the hyperpara-

meters for all the baseline classifiers and LUPI-SVM, we
used grid search with an area under the ROC curve as the
metric for selection with nested 5-fold cross-validation.
For the standard SVM, the range of values for λ and γ was
[10−3, 103 ] and [10−3, 101 ], respectively. Similarly, for
LUPI-SVM, we used values for λ, λ′ and λ′′ in the range
[10−5, 103 ]. We used the best hyperparameters selected
through grid search for the training and testing of the final
model.

Additional file

Additional file 1: Table S1. Detail of 128 protein complexes with
known binding affinity values used as training dataset. (DOCX 34 kb)
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