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Abstract: 

Hurricanes are among the most destructive natural phenomena on Earth. Timely prediction 

and tracking of hurricane intensities is important as it can help authorities in emergency 

planning. Several manual, semi and fully automated techniques based on different 

principles have been developed for hurricane intensity estimation. In this paper, a deep 

convolutional neural network architecture is proposed for fully automated hurricane 

intensity estimation from satellite infrared (IR) images. The proposed architecture is robust 

to errors in annotation of the storm center with a smaller root mean squared error (RMSE) 

(8.82 knots) in comparison to the previous state of the art methods. A webserver 

implementation of Deep-PHURIE and its pre-trained neural network model are available at 

the URL:  http://faculty.pieas.edu.pk/fayyaz/software.html#Deep-PHURIE.  
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1. Introduction 

Tropical cyclones (TC) are one of the most catastrophic phenomena on Earth. Most 

hurricanes occur in the tropical and subtropical region due to warm sea water. During the 

summer season, sunlight warms up the ocean water to form massive clouds in the upper 

atmosphere leading to the creation of hurricanes. Upon making landfall, tropical cyclones 

can cause extensive damage in the form of heavy rain, flooding and high-speed winds up to 

200 miles per hour. In the year 2017, the damage caused by major hurricanes in the United 

States (Irma, Harvey, and Maria) was approximately $265 billion [1]. Accurate and timely 

prediction of hurricane intensity can help minimize damage by taking precautionary 

measures in areas under threat.  

Several techniques have been developed for intensity estimation of tropical cyclones (TCs). 

One of the first such techniques was proposed by Dvorak during early age of the use of 

satellites for infrared imagery of hurricanes [2]. Dvorak’s technique was based on the 

presence of specific patterns that a cyclone can take during its life cycle. The method 

requires locating the center of the TC and then assigns it to a specific pattern class (e.g., 

eye, banded, shear, etc.). Each pattern class is then associated with a corresponding T-

number corresponding to a specific intensity value.  

The original Dvorak technique was completely manual and vulnerable to subjective errors. 

A semi-automated version of the Dvorak technique was proposed in the Objective Dvorak 

technique [3]. The method predicted tropical cyclone intensity with same accuracy as by 

the Dvorak technique but was applicable only for strong storm systems and required manual 

center annotation. 
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The Advanced Dvorak Technique (ADT) proposed a new set of rules in comparison to the 

original Dvorak technique [4]. ADT considers the structure of curved bands around the 

center of the storm and constrained maximal intensity change over a specific time period. 

An important aspect of the method was the introduction of a regression equation for 

measuring cyclone intensity.  ADT could measure intensity by using water vapor (6-7μm) 

and microwave channels (85-92 GHz) as well. ADT offered improved accuracy of intensity 

estimation but was not fully automated. 

Pineros et al. [5] proposed a deviation angle variance (DAV) method based on the 

observation that cyclone intensity is inversely proportional to the variation in deviation 

angles of the gradient values for a given hurricane image around an annotated center. 

Sigmoid curve fitting between variance of the deviation angle histogram and intensities was 

used for prediction. The method used GOES-12 satellite IR images of hurricanes in years 

2004-2009 in the North Atlantic Ocean. The Root Mean Squared Error (RMSE) between 

predicted and actual intensities was reported to be 24.8 knots (kt) when the model was 

trained on hurricanes data from the year 2004-2008 and tested on hurricane images of the 

year 2009. RMSE of 14.7kt was reported when the model was evaluated over randomly 

selected hurricanes over the years 2004-2008. 

Ritchie et al. proposed an updated version of DAV with some additional constraints [6]. 

Hurricane data of the year 2010 was added and images with intensity less than 34kt were 

removed from the dataset. The RMSE reported was 12.9kt. Fetanat et al. used a k-nearest 

neighbor algorithm for cyclone intensity estimation [7]. The method used cyclone age 

(imagery from 6, 12 and 24 hours before current time) information. For a query image, the 

algorithm finds the 10 most similar images. The predicted intensity of a query image is 

taken as the mean value of the intensity of 10 nearest neighbor images. 
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PHURIE (PIEAS Hurricane Intensity Estimator) was proposed recently by Asif et al [8]. 

The method uses infrared (IR) images of GOES-12 satellite from the year 2004-2009. A 

total of 26 features were extracted by dividing the image into five circular bands of 8 pixels 

each, around the center.  Standard deviation (SD), mean, entropy, maximum and minimum 

pixel values in each band and DAV proposed by Pineros et al. were used as features [5]. 

Support vector regression and Ordinary Least Squares regression (OLS) were used for 

model training. Performance evaluation was done using leave one year out cross validation. 

The RMSE reported with OLS and SVR was 11.2kt and 12.8kt, respectively. However, 

PHURIE requires annotation of the center for feature extraction. 

Pradhan et al. developed a deep convolutional neural network for cyclone intensity 

estimation [9]. The dataset used in their study consists of a total of ~45,000 IR images of 

hurricanes from the year 2000-2016 from multiple satellites (Himawari, GOES, MTSAT, 

etc.). The training dataset size is increased using image augmentation through zooming and 

rotation. Also, images with more than 20% of dark pixels were removed. The network 

consists of 5-convolutional and 3-fully connected layers. The RMSE reported was 10.00kt 

for both Atlantic and Pacific hurricanes. Since the study uses training and evaluation images 

in which the center of the image always coincides with the center of the hurricane, the 

proposed scheme is not expected to produce good predictions when the center of the 

hurricane is not known a priori. The study does not report any robustness analysis of their 

system to errors in annotation of hurricane center in IR images. The use of 64 (10 × 10) 

convolution filters with a total of 37.5 million learnable parameters and three input channels 

per image make the method memory and computationally intensive. Furthermore, it is 

unclear whether the train-test split based performance evaluation protocol of this approach 

ensures that if images of a hurricane have been used in testing, no images of the same 

https://www.xlstat.com/en/solutions/features/ordinary-least-squares-regression-ols
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hurricane are part of training. This is important as it may lead to overestimation of 

prediction accuracy of the system. 

In this paper, we propose a deep Convolutional Neural Network (CNN) for TC intensity 

estimation. The proposed model called Deep-PHURIE (Deep learning based PIEAS 

HURricane Intensity Estimator) gives low prediction errors in comparison to previous 

techniques. Based on our extensive benchmarking experiments, we expect the method to be 

robust to shifts or errors in annotated hurricane centers in images as well. Section 2 gives 

details of the methods used for development and performance evaluation of the proposed 

scheme. In section 3, we discuss different experiments performed for model evaluation.  

Conclusion and future work are discussed in section 4. 

2. Method 

In this section, details about dataset, machine learning models and experimental setup 

employed in our study are presented. 

2.1 Dataset 

In this study, publicly available dataset HURSAT-B1 (version 6) is used [10]. The dataset 

consists of hurricanes images from the year 1978-2015 taken by different satellites (GMS-

5, MET-5, MET-7, GOE-8, GOE-10, GOE-13, GOE-15, MSG-3, FY2-E, HIM-8, etc.) in 

Atlantic, Pacific, and Indian basins. The dataset contains images from multiple channels 

such as water vapor, visible channel, near IR and split window. Size of the images in the 

dataset is (301 × 301) pixels with a spatial resolution of 8km/pixel. The images are taken 

every 3 hours and are centered at the centers of the storm system. Information about storms 

such as center position, intensity (measured as 1-minute sustained wind speed in knots), 

central pressure, etc., was taken from IBTrACS (International Best Track Archive for 
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Climate Stewardship) [11]. The hurricane imagery data is available in NetCDF format 

online at [12].   

We restricted our study only to infrared (IR) channel images from the year 2001 to 2015. 

In line with previous methods, images with zero pixel intensity and those captured after the 

hurricane made landfall have been excluded from the dataset used in this study.  The final 

dataset comprised of 172,716 IR images. Table 1 shows the number of images of different 

categories of storms in the dataset. In Table 2, we present the year-wise distribution of the 

images.  

Table 1 Intensity distribution of images used in the study 

Category Number of Images 

Pre-Developmental (< 20 kt) 14,318 

Tropical Depression (20-34 kt) 75,541 

Tropical Storm (35-64 kt) 55,377 

Hurricane: (>64kt) 27,480 

Total 172,716 

 

Table 2  Hurricanes and images distribution by year. 

Year Number of Images Number of Hurricanes 

2001 9,140 86 

2002 9,421 78 
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2003 12,675 86 

2004 10,313 81 

2005 13,708 95 

2006 13,220 87 

2007 11,297 84 

2008 11,852 86 

2009 12,782 94 

2010 11,100 80 

2011 11,215 84 

2012 13,156 91 

2013 11,620 96 

2014 10,541 81 

2015 10,676 93 

Total 172,716 1301 

 

2.2 Pre-processing 

The images in dataset are of size 301 × 301 pixels, which are resized to 224 × 224 in order 

to reduce the amount of computation in convolution layers. Images with negative pixel 

values are excluded from the dataset to reduce noise effects.  
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2.3 Convolutional Neural Network Architecture 

The goal of this study is to develop a deep learning-based model for hurricane intensity 

estimation using IR images. The proposed neural network model accepts 224 × 224 sized 

IR images as input and predicts the intensity of the hurricane in knots. The proposed 

network is 9-layers deep with 6-convolution layers, 2-fully connected layers, and an output 

layer as shown in Figure 1. At the first convolution layer, filters of size (5 × 5) with a depth 

of 32 are used, which results in 32 feature-maps. Rest of the filters throughout the network 

are of size (3 × 3). Each convolution layer is followed by a pooling layer for making the 

system robust and invariant to small geometric changes in images. Pooling also reduces the 

total number of computations. The proposed architecture uses Max-pooling of size (3 × 3) 

with a stride size of 2. Pooling reduces the length and width of an image which helps in 

reducing the total number of computations. Filters are learned at convolution layers using 

back-propagation [13].  

 

Figure 1 Network architecture 

For training the network, back propagation with Mean Squared Error (MSE) as loss function 

is used. If 𝑦𝑖 is target value (annotated hurricane intensity) for a given image 𝒙𝑖 and the 

network prediction is 𝑓(𝒙𝑖), the error is computed as below. 
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MSE =
1

𝑁
∑ ( 𝑓(𝒙𝑖) −  𝑦𝑖) 2

𝑁

𝑖=1
                             (1) 

We used Adam (adaptive moment estimation) optimizer for network weights optimization 

[14]. Deep networks, being high-capacity machines, are prone to overfitting [15]. 

Therefore, dropout, i.e., random dropping of some neurons during training, is used for 

performing regularization [16]. Batch normalization is also used which also acts as 

regularization and makes training faster [17]. Our proposed model has been trained on 

randomly translated, flipped and center cropped images from the year 2001-2014. The 

motivation behind using transformed images is that training over transformed images would 

help the model be invariant to shifts and scaling. It also helps the system to be robust to 

errors in annotation of the hurricane center.  

Hyper-parameters of the model, such as learning rate, number of epochs, number of neurons 

in each layer, and number of filters in each convolution layer, etc., have been tuned by 

conducting multiple trials over a validation set comprising of hurricanes from the year 2015. 

Learning rate was tuned by selecting different values in the range 10-5 to 10-1 with an 

optimal value of 5 × 10−5. The network was trained for 1000 epochs with early stopping 

at 50 epochs. 

2.4 Post-Processing 

The proposed model uses a single infrared image of a TC for intensity estimation. To reduce 

the effects of noise and model temporal evolution of the TC over time, we use exponentially 

weighted time averaging of predictions of images from 5 previous time steps. For TC 

intensity estimation at time 𝑡, the weighted average of the predicted intensity at the  current 

time step and predicted TC intensities at 5 previous time steps 𝑓(𝒙𝑡−𝑖), 𝑖 = 0,1, . . ,5 is used 

with weights given by 𝑤𝑖 = 0.41𝑒−𝑖 2⁄  as follows: 𝑝(𝒙𝑡) = ∑  𝑤𝑖𝑓(𝒙𝑡−𝑖)
5
𝑖=0 =
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0.41𝑓(𝒙𝑡) + 0.25𝑓(𝒙𝑡−1) + 0.15𝑓(𝒙𝑡−2) + 0.1𝑓(𝒙𝑡−3) + 0.06𝑓(𝒙𝑡−4) + 0.03𝑓(𝒙𝑡−5). 

Note that the coefficients sum to 1.0 and decrease exponentially for images that are farther 

back in time. This, effectively, ensures that the current prediction is based on the current 

image as well as images acquired 3 to 12 hours prior to the current time instance. Similar 

or equivalent weighted averaging schemes have also been used in previous studies [7] [8] 

as well as in the original Dvorak techniques [3][4].  

2.5 Experimental Setup 

Different experiments were conducted to analyze the performance of our proposed model. 

We compared the performance with the previously proposed best method to setup a baseline 

for our study.  

2.5.1 Baseline method 

To establish a baseline, we analyzed the performance of our previous in-house intensity 

predictor PHURIE [8] by training it over images in the dataset used in this work.  

2.5.2 Leave one year out (LOYO) cross-validation 

The performance of the proposed model has been evaluated using leave one year out cross-

validation. In this experimental setting, for every year, all the images of all hurricanes in 

that year are left out as a test set and the model is trained over the rest. The experiment is 

performed to compare the model’s performance with PHURIE [8]. In line with the practical 

use case of a hurricane intensity predictor, this evaluation protocol ensures that if images 

of a hurricane have been used for performance assessment during testing, no images of that 

hurricane are used in training.  
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2.5.3 Random train-test split validation 

In order to compare the performance of the proposed model with the CNN-based technique 

proposed by Pradhan et al [9], we divided the given data set randomly into a training set of 

92, 502 images and a test set of 39, 645 images. It is important to note that, unlike leave 

one year out analysis above, this evaluation protocol does not ensure that there is no overlap 

between hurricanes used for training and performance evaluation of a predictor. As a 

consequence, it is expected that this evaluation protocol over-estimates the prediction 

accuracy of a model. 

2.5.4 Center annotation error analysis 

The training images used in the work are centered at the center of the hurricane. In order to 

assess the sensitivity of the proposed model to changes in center annotation, we analyze the 

change in RMSE of the predictions of the model for randomly shifted images. For this 

experiment, test images are shifted along both axes (𝑥, 𝑦) by a random number of pixels 

within the range [−𝑟, +𝑟]. The predictions of the model are then recorded for different 

values of 𝑟 in the range [0,100] corresponding to a center annotation error of 0 to 800 km 

in an actual hurricane. The process was repeated 5 times for each test sample to get reliable 

estimates. The experiment is also repeated for two major hurricanes (Katrina 2005 and Rita 

2005) with well-formed eye and uniform circular patterns. The data of hurricanes from the 

year 2005 were excluded from training for this purpose. In order to capture the robustness 

of the proposed model to center annotation errors, pixel shift is plotted against prediction 

errors.  
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2.5.5 Comparison with Aircraft Reconnaissance Data 

Aircraft reconnaissance data for some of the hurricanes in our dataset are available. Aircraft 

reconnaissance provides reliable hurricane intensity estimates. In aircraft reconnaissance, 

specially designed aircraft of the National Oceanic and Atmospheric Administration 

(NOAA) are flown through a hurricane to record the intensity and other important 

characteristics. We performed error analysis for images of hurricanes that are within 3 hours 

of an aircraft pass through the hurricane. Hurricane data from 2005 was left out and the 

model was trained on the remaining hurricanes. The model performance was then evaluated 

on GOES-12 Satellite data of hurricanes from 2005 for which reconnaissance data was 

available. 

2.5.6 Basin by Basin Error Analysis 

Most of the previously proposed methods restrict their study to a specific ocean basin (i.e., 

Atlantic, Pacific or Indian). The performance of the proposed model was evaluated on 

Atlantic, Pacific, and Indian Basin Satellite Imagery exclusively. For this purpose, the data 

of hurricanes from 2005 was left for testing and model was trained on the rest.  

2.5.7 Visualization of CNN feature maps 

Deep neural networks have the ability to learn complex transformations. Understanding the 

behavior of convolution filters at different layers of the network is important and several 

approaches are availble in the literature for understanding predictions of a CNN. In CNNs, 

filters weights are updated at different layers of the network through back-propagation. 

Visualizing the filters helps in understanding the features learned by the neural network. 

Such visualizations can help us verify if important and problem-related features have been 
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learned or not. We have used the open source CNN filter visualization toolbox keras-vis to 

identify activations of various filters and layers in the proposed model [18].  

2.6 Implementation details and Deep-PHURIE Webserver 

The proposed system was implemented using Python with Keras and sklearn machine 

learning libraries. To provide a convenient user interface, a free webserver for the proposed 

method has also been developed. The webserver together with the pre-trained model and a 

simple python script to run Deep-PHURIE is available at the URL:  

http://faculty.pieas.edu.pk/fayyaz/software.html#Deep-PHURIE. The webserver accepts 

IR image in .netcdf format and generates intensity predictions for the input image.  

3. Results and Discussion 

In this section, we discuss the results of the experiments discussed in the previous section. 

3.1.1 Results of Leave One Year Out Cross-Validation 

Figures 2 shows the root mean squared errors (RMSE) values averaged across all hurricanes 

in a year when then model has been trained on all other hurricanes in Leave One Year Out 

(LOYO) cross-validation as discussed in section 2.5.2. The mean RMSE of leave one year 

out cross-validation for the proposed model is 8.82 kt which is better than all previous 

approaches. Figure 3 shows the results of LOYO cross-validation for images when the 

intensity of the storm is >34kt, i.e., when the storm system has been classified as a tropical 

storm or hurricane. The mean RMSE for such cases is 9.4kts.  

3.1.2 Comparison with PHURIE 

The mean RMSE of leave one year out (LOYO) cross-validation for PHURIE and Deep-

PHURIE are 12.38 knots and 8.82 knots, respectively. Note that both PHURIE and Deep-

PHURIE have been trained and evaluated using the same evaluation protocol and the same 

http://faculty.pieas.edu.pk/fayyaz/software.html#Deep-PHURIE
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data. It clearly shows that Deep-PHURIE performs significantly better than PHURIE. 

Performance comparison of both methods is shown in Figure 2. 

 

Figure 2 Performance comparison of PHURIE and Deep-PHURIE  

 

Figure 3 Leave One Year out cross validation results comparisons for all intensities and 

intensities >34 knot Hurricane images.    
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3.1.3 Random train test split 

In order to compare the results of our proposed method with the CNN based approach 

proposed by Pradhan et al [9], we performed a random train-test split evaluation as well. 

With this evaluation protocol, the RMSE of the proposed method is 7.07 knots which is a 

considerable improvement to 10.0 knots reported by [9]. However, it must be emphasized 

that random train-test split is expected to over-estimate the true prediction performance of 

both systems due to the overlap of training and test sets with respect to hurricanes being 

used in the analysis. 

3.1.4 Center annotation error analysis 

We performed center annotation error analysis for PHURIE and our proposed method. 

Figure 4 shows the impact of pixel shift on PHURIE and the proposed method. The 

prediction error of PHURIE increases significantly with respect to random pixel shift (r) in 

comparison to the proposed scheme. For a pixel shift of 70-pixels, the increase in RMSE of 

the proposed method is only 1 knot compared to PHURIE whose RMSE increases to 27 

knots. Thus, the proposed method is tolerant to high center annotation errors. A similar 

trend is noted for center annotation error analysis over major hurricanes in the year 2005 

(see Figure 5). The robustness of the proposed scheme to errors in annotation of the center 

of the storm system is expected to be very helpful in a fully automated deployment of the 

proposed scheme.  

The CNN-based prediction scheme by Pradhan et al. [9] does not report any center 

annotation error analysis and we were unable to perform such an analysis for their predictor 

as their prediction model is not publicly available. As discussed earlier, their approach uses 

training images in which the center of the hurricane image always coincides with the 

physical center of the hurricane. Therefore, it is not expected to be robust to errors in 
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annotation of the hurricane center. For our proposed scheme, we have verified that 

robustness to center annotation errors is achieved only if the machine learning model has 

been trained on translated images in which the center of the hurricane has been shifted by 

an arbitrary amount. In order to show that training over shifted images is required for 

robustness against center annotation errors, we have performed a center annotation error 

analysis by training our CNN architecture with and without the use of translated images 

(Fig. 4). As can be seen in the plot below, the CNN is not robust to center annotation errors 

if it has not been trained on transformed images. 

 

Figure 4 Prediction error with respect to error in center annotation. The error bars indicate 

the standard deviation in RMSE across a certain pixel shift. 
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Figure 5 Prediction error of 2005 Major Hurricanes with respect to error in center 

annotation. The error bars indicate the standard deviation in RMSE across a certain pixel 

shift. 

3.1.5 Comparison with Aircraft Reconnaissance Data 

The comparison between the predictions of the proposed method with aircraft 

reconnaissance data from 2005 results in an RMSE of 11.7 knots in comparison to 10.7 

knots when all images are utilized. This increase is a consequence of aircraft reconnaissance 

being restricted to large hurricane intensities. This shows that the generalization 

performance of the proposed method is satisfactory and the proposed scheme can perform 

well in practice. 

3.1.6 Basin by Basin Error Analysis 

The performance of the proposed method was evaluated exclusively for Atlantic, Pacific, 

and Indian Basin Imagery. The experimental results are shown in Table 3. It is interesting 
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to note that the proposed method gives better RMSE than Pradhan et al. [9]: their method 

gives RMSE scores of 10.0kts for Atlantic and Pacific basins whereas our method results 

in RMSE of 9.37kts and 8.7kts for these basins, respectively. 

Table 3 Basin by Basin Error Analysis 

Basin RMSE 

Atlantic Basin 9.37 

Pacific Basin 8.7 

Indian Basin 8.9 

3.2 Feature-maps Visualization 

Figure 6 (a) shows the visualization of feature-maps at convolution layer-1 of the network. 

Since these filters are at initial layers of the network (layer-1), no clear pattern can be seen. 

However, at layer-6, well-defined patterns can be observed as shown in Figure 6 (c). The 

activation maps of the fully connected and output layers (Figure 6(e) and (f)) show circular 

patterns similar in structure to the center of a hurricane. This shows that the network 

captures important information from training data for predicting the intensity. 
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    (a)                                                                 (b) 

    

      (c)                                                              (d) 

    

  (e)      (f) 

Figure 6 Filters and activation-maps visualization at different layers of the network. 

 (a) Feature maps of convolution layer-1, (b) Feature maps of convolution layer-3  

(c) Feature maps of convolution layer-6, (d) activation maps of fully connected layer-1, 

 (e) Activation maps of fully connected layer-2, (f) output layer activation maps 
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4. Conclusion and Future Work 

With the use of deep learning, we have been able to design an accurate predictor of 

hurricane intensity that gives improved RMSEs in comparison to all previously proposed 

methods (see table-5). Apart from being more accurate, our method does not rely on any 

manual center annotation or handcrafted features. We have performed stringent 

benchmarking for the proposed scheme through different experiments. It is expected that 

the proposed system can be reliably used in practice. It can be further improved by 

complementing it with time-series forecasting data. 

Table 4  PHURIE and Deep-PHURIE results comparisons.  

Method RMSE (kt) after smoothing 

PHURIE [8] 11.2 

Pradhan et al. [9] 10.0 

Deep-PHURIE 8.8 
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