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MILAMP: Multiple Instance Prediction of 
Amyloid Proteins 

Farzeen Munir, Sadaf Gul, Amina Asif and Fayyaz-ul-Amir Afsar Minhas* 

Abstract— Amyloid proteins are implicated in several diseases such as Parkinson’s, Alzheimer’s, prion diseases, etc. In order to 

characterize the amyloidogenicity of a given protein, it is important to locate the amyloid forming hotspot regions within the protein 

as well as to analyze the effects of mutations on these proteins. The biochemical and biological assays used for this purpose can 

be facilitated by computational means. This paper presents a machine learning method that can predict hotspot amyloidogenic 

regions within proteins and characterize changes in their amyloidogenicity due to point mutations. The proposed method called 

MILAMP (Multiple Instance Learning of AMyloid Proteins) achieves high accuracy for identification of amyloid proteins, hotspot 

localization and prediction of mutation effects on amyloidogenicity by integrating heterogenous data sources and exploiting 

common predictive patterns across these tasks through multiple instance learning. The paper presents comprehensive 

benchmarking experiments to test the predictive performance of MILAMP in comparison to previously published state of the art 

techniques for amyloid prediction. The python code for the implementation and webserver for MILAMP is available at the URL: 

http://faculty.pieas.edu.pk/fayyaz/software.html#MILAMP.  

Index Terms—Amyloid, Amyloidogenic Hotspots, Amyloid Prediction, Multiple Instance Learning, Machine Learning.  

——————————   ◆   —————————— 

1 INTRODUCTION

myloids are formed when many copies of certain polypeptide 
chains stack together or aggregate in a cross β formation as 

fibres [1][2][3]. A number of different biological mechanisms are 
involved in amyloidogenesis such as mutations, errors in protein 
synthesis, intrinsic protein disorder, environmental conditions, 
maturation and proteolysis, etc. [4]. Amyloid fibers are insol-
uble, resistant to the action of protease and are implicated 
in at least 50 known disease in humans such as Parkin-
son’s, Huntington’s, Alzheimer’s, Diabetes mellitus type 2, 
prion diseases, etc. [5][6]. The literature points out that specific 
subsequences, called hotspots, in amyloid proteins can act as 
seeds for amyloidogenesis [7][8][9]. The identification of these re-
gions can help biologists understand the biological function of 
such proteins. Similarly, the study of effects of point mutations 
on amyloid forming proteins or peptides is interesting from a bi-
ological perspective [8]. Given the crucial role played by amyloid 
proteins in many diseases and their interesting biochemical prop-
erties, correct identification and prediction of amyloid proteins, 
their hotspot regions and the effect of mutations on their amyloi-
dogenicity is very important.   

Determination of amyloid forming proteins through bio-
logical and biochemical assays is time consuming and ex-
pensive [10]. Bioinformatics methods can be used to im-
prove the throughput of these experiments. However, 
computational prediction of amyloid forming proteins, 
their specific hotspot regions responsible for aggregation 
and  the effects of point mutations on amyloidogenicity are 
challenging problems because amyloid forming proteins 
share little sequence or structural similarity [9][11][12]. 
Several computational amyloid prediction methods exist in the 
literature. Broadly, these methods can be divided into structure 
and sequence-based methods. Structure based methods, such as 
Aggrescan 3D [13] and AggScore [14], utilize the 3D tertiary 
structure of the protein in their prediction but are limited by the 
constraint that the tertiary structure of the protein must be avail-
able for testing. This constraint can become a limitation in the 
applicability of these techniques as obtaining 3D protein struc-
tures is time consuming and expensive. Prediction of protein 
structure through computational methods can also become a 
computational bottleneck in large-scale screening of candidate 
amyloid-forming proteins. Consequently, sequence-based meth-
ods are more widely used. AGGRESCAN [15][16], FoldAmy-
loid [17], and Pawar et. al. [18] [19] predict amyloidogene-
sis by relying on aggregation propensities of an individual 
residues in a polypeptide chain. Zyggregator [20] and 
TANGO [21] use individual residue aggregation propensi-
ties and β-structural conformation properties to predict 
amyloid forming proteins. Waltz uses the information 
from position specific scoring matrices (PSSMs), physio-
chemical properties of amino acids and structure derived 
from FoldX program to score hexapeptides based on their 
amyloidogenicity [22] [23]. APPNN is a neural network 
based amyloid predictor that uses biochemical and physi-
cochemical properties of amino acids for prediction [24]. 
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Burdukiewicz et al. use sequence n-gram analysis for iden-
tifying amyloidogenic motifs [25]. Similarly, the FISH Am-
yloid method uses amino acid co-occurrence for predicting 
amyloid segments in proteins with an AUC-ROC score of 
80% to 95% for experimental and computationally gener-
ated datasets [26]. MetAmyl [27], AmylPred [28] and Am-
ylPred2 [29] are ensembles of already existing amyloid 
predictors which give better prediction accuracy than their 
constituent methods. A number of sequence databases of amy-
loid sequences, such as WALTZ-DB [30], AmyLoad [31], etc. are 
available for development of machine learning based methods for 
amyloid prediction. Databases that contain information about 
the role of amyloid proteins in different diseases are also available 
[32]–[34].  

It is important to note that no computational method exists 
that can simultaneously predict whether a protein will form an 
amyloid or not, locate its hotspot regions and analyze the effect 
of mutations on amyloidogenicity. Such a multi-task predictor 
can exploit common predictive patterns across all three tasks for 
producing accurate predictions. Although, these prediction prob-
lems are related to each other, conventional machine learning 
techniques do not allow the development of a single model for 
making predictions for all three tasks as the nature of annotated 
data available for them varies greatly. 
In this paper, we have proposed a novel machine learning 
approach called Multiple Instance Learning for AMyloid Pre-
diction (MILAMP) for prediction of amyloid proteins, their 
hotspots regions as well as changes in aggregation propen-
sities due to point mutations. Modeling of these three prob-
lems through multiple instance learning allows us to leverage 
similarities among the three prediction tasks and use existing an-
notated data more effectively to produce a unified and highly ac-
curate predictor. We have observed similar improvements in pre-
diction accuracy of prion proteins through multiple instance 
learning in our previous work [35]. We have evaluated the 
performance of the proposed amyloid prediction method 
on several datasets. We have also performed a large-scale 
data analysis of amyloid formation propensity of various 
proteins in the protein data bank (PDB). In addition to that, 
we also report the performance of the proposed method on 
recently published amyloid peptides that were not part of 
our training set. 

2 MATERIALS AND METHODS 

2.1 Datasets 

For the development of MILAMP, the following datasets 
have been used. It is important to note the differences in struc-
tures and annotations across these datasets to better understand 
our motivation for applying multiple instance learning to this 
problem.  
Dataset-1 (DS1) 

DS1 consists of a total of 304 hexapeptides collected 
from various sources by Familia et. al. [24] with 168  (posi-
tive) peptides experimentally verified to form amyloid fi-
bers in vitro and 136 (negative) non-amyloid peptides. De-
tailed information about this dataset is available in supplemen-
tary file. This dataset has been used as a training set in the de-
velopment of the proposed scheme. 
Dataset-2 (DS2) 

DS2 has also been taken from the work by Familia et. al. 
[24]  and it consists of 483 proteins with different polypep-
tide chain lengths. It contains 341 amyloid proteins 
whereas the remaining 142 proteins do not exhibit amyloid 
formation in vitro. A CD-Hit-2D [36] sequence similarity clus-
tering analysis of sequences in the largest curated amyloid se-
quence database (AmyLoad) with DS2 reveals that AmyLoad 
contains only 3 novel sequences with less than 40% sequence 
identity to DS2. All other sequences in AmyLoad share more 
than 40% sequence identity with sequences in DS2 [31]. There-
fore, we have chosen to use this dataset instead of AmyLoad as it 
allows us direct comparison with previous papers as well. It is 
important to note that amyloid-forming hotspots have not been 
annotated for these proteins. This dataset has been used in 
cross-validation based performance assessment of 
MILAMP as discussed in section 2.4. Detailed information 
about the dataset is available in the supplementary file.  
Dataset-3 (DS3) 

DS3 consists of 33 proteins from amylome that have 
been used for evaluation in Metamyl [27]. For each protein 
in this dataset, the hotspot regions responsible for fibril for-
mation are annotated. Altogether, a total of 70 experimen-
tally validated amyloid-forming hotspot regions are 
marked. This dataset is used for testing the performance of 
MILAMP and is not involved in training. Detailed infor-
mation about the dataset is available in the supplementary file.  
It is important to note that annotated hotspot regions of different 
proteins in this dataset are not precise and may cover an area 
larger or smaller than the minimal set of amino acids required for 
amyloid formation.  
Dataset-4 (DS4) 

To analyze the performance of MILAMP for predicting 
changes in aggregation propensities in amyloid sequences 
due to point mutations, we have used a dataset of point 
mutations [15]. This mutation dataset consists of polypep-
tide sequences together with annotated changes in aggre-
gation propensities due to point mutations. The changes in 
aggregation propensities (increase, decrease, or no effect) 
for all 53 mutations in this dataset have been verified ex-
perimentally in vitro [15]. Detailed information about the da-
taset is available in the supplementary file. 

2.2 Feature Extraction  

In contrast to existing approaches that typically employ 
complicated feature extraction techniques, we have used 
simple amino acid composition features in our model. Spe-
cifically, we have used a sliding window approach to cal-
culate the hexapeptide amino acid composition within a 
protein. This results in a 20-dimensional vector for each 
hexapeptide within a protein whose components corre-
spond to the normalized frequency of occurrence of differ-
ent amino acids within a sequence window. 

2.3 Multiple Instance Learning for Amyloid 
Prediction 

As discussed earlier, there are three major predictive tasks in this 
domain: 1) classifying amyloid protein from non-amyloid pro-
teins, 2) identifying the subsequences that act as hotspots for am-
yloid formation and, 3) predicting the change in the aggregation 
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propensities of a protein due to point mutations. Available da-
tasets for these three problems (DS1-DS4) are structured in such 
a way that it is not possible for a single classical machine learn-
ing model (Support Vector Machines (SVMs), Neural Net-
works, etc.,) to directly generate predictions for all three tasks 
simultaneously. DS1 and DS2 consists of amino acid sequences 
which are labelled for amyloidogenicity without any hotspot level 
annotations. Thus, DS1 can be used to build a classifier for gen-
erating hexapeptide-level predictions which can then be used to 
identify hotspot regions within a protein by employing a sliding 
window approach. DS2 consists of proteins of varying lengths 
each with a label indicating whether it can form an amyloid (pos-
itive) or not (negative). Consequently, a classical predictive 
method built using DS2 cannot provide information about the 
occurrence of hotspots in these proteins and, thus, this dataset 
cannot be directly used for hotspot prediction. We hypothesize 
that the combination of DS1 and DS2 can lead to an improved 
classifier for prediction of amyloid proteins and their hotspots. 
DS3 provides hotspot level annotations but it is too small 
(33 proteins only) to have any significant impact on train-
ing a hotspot level predictor. Furthermore, DS3 is typically 
used for benchmarking the predictive accuracy of different 
machine learning models. DS4 contains information about 
the effects of mutations on amyloid formation, but it is not 
possible to directly model amyloid prediction using this 
dataset with classical machine learning.  

To fully exploit available datasets for amyloid predic-
tion, we have employed Multiple Instance Learning (MIL). 
Multiple instance learning is a form of weak supervision 
that has been employed in a variety of machine learning 
problems with ambiguously labeled data.  Unlike conven-
tional machine learning problems in which a label is asso-
ciated with each example, examples in multiple instance 
learning come in bags [37][38].  A bag is a group of exam-
ples and a label is assigned to each bag rather than to indi-
vidual examples. A positive bag is labeled as positive if it 
contains at least one positive example as shown in Figure 
1. However, it is not known which example in the positive 
bag is actually positive. If a bag does not contain any posi-
tive examples, it is labeled negative. A machine learning 
model is then built to classify individual instances from 
such ambiguously labeled data and generate labels at the 
bag level as well. It is interesting to note that conventional 
classification is a special case of multiple instance learning 
with one example per bag [39]. 

The problem of prediction of hotspots and amyloid 
forming sequences with annotations at the hexapeptide 
and protein level in DS1 and DS2, respectively, is ideally 
suited for multiple instance learning. Specifically, this is 
achieved by taking each hexapeptide in DS1 and each pro-
tein in DS2 as a bag with hexapeptide sub-sequence win-
dows in each protein as examples in the bag. We use pro-
tein-level labels (amyloid vs. non-amyloid) as bag labels. 
We then use a custom machine learning model to learn a 
classification boundary using this data for classification of 
hexapeptide windows in a protein as amyloid forming or 
not. This classification model is then coupled with a rank-
ing model for prediction of mutation effects as discussed 
in the next two sub-sections. 

 
Figure 1 Concept diagram of the MIL formulation for amyloid prediction 

showing how bags are formed for DS1 and DS2. 

MIL-Classification Model 

In our multiple instance learning model, a hexapeptide 
from DS1 or a protein from DS2 is represented by a bag. A 
bag corresponding to a DS1 hexapeptide has only one in-
stance whereas a bag corresponding to a DS2 protein has 
multiple subsequences obtained by overlapping window 
of hexapeptides.  Each of the subsequences is represented 
by a feature vector 𝒙. Thus, a single bag corresponding to 
a hexapeptide (for DS1) or protein (for DS2) can be denoted 
by 𝐵𝐼 = {𝐱𝒊, 𝑖 = 1 … 𝑛𝐼}, 𝐼 = 1 … 𝑁, where 𝑛𝐼 is the number 
of hexapeptides in the 𝐼𝑡ℎ protein. The label 𝑌𝐼 for a given 
bag indicates whether the corresponding protein is an am-
yloid (+1) or not (-1). We denote hexapeptide level labels 
by 𝑦𝑖 which indicate whether a corresponding hexapep-
tide 𝒙𝒊 is involved in amyloidogenicity (+1) or not (-1). It is 
important to note that hexapeptide level labels are availa-
ble for DS1 only and not DS2. The MIL classification prob-
lem can be mathematically expressed as finding a discrimi-
nant function 𝑓(𝐵: 𝐰), parameterized by a weight vector 𝐰, 
which can predict amyloidogenicity of a given protein rep-
resented by bag 𝐵. The prediction score for a given bag can 
be obtained by taking the maximum linear discriminant 
score across all examples in the bag. Mathematically, this 
can be written as: 

𝑓(𝐵;  𝐰) = max𝐱∈𝐵 𝐰𝐓𝐱.   (1) 
The MIL classification problem thus requires that 

𝑓(𝐵;  𝐰) > 0 for positive bags corresponding to amyloid 
proteins or hexapeptides and 𝑓(𝐵;  𝐰) < 0 otherwise. This 
MIL problem has been solved using our MIL toolbox 
pyLEMMINGS (PYthon LargE Margin Multiple Instance 
learning System) [27]. PyLEMMINGs models MIL classifi-
cation as the following optimization problem which is then 
solved through an iterative stochastic sub-gradient optimi-
zation (SSGO) method [28][29]. 

min𝐰 𝜌(𝐁, 𝐘: 𝐰) =
λ

2
‖𝐰‖2 +

1

N
∑ 𝑙(BI, YI: 𝐰)

N

𝐼=1

  (2) 

Here ‖𝐰‖2 is reguralization term and 𝑙(BI, YI: 𝐰) is the hinge 
loss function given by: 

 𝑙(BI, YI: 𝐰) = max {0,1 − YI 𝑓(BI; 𝐰)}      (3) 
This loss function ensures that the prediction scores 

𝑓(𝐵;  𝐰) = maxx∈𝐵 𝐰𝐓𝐱 correspond to training labels as dis-
cussed above. In SSGO, a bag BIt

 is chosen at an iteration 𝑡 

= 1 … 𝑇 at random and the objective function with respect 
to the chosen bag is optimized through a sub-gradient de-
scent step. The objective function at iteration 𝑡 can thus be 
written as: 

𝜌(BIt
, YIt

: 𝐰𝐭) =
λ

2
‖𝐰𝐭‖2 + max {0,1 − YIt

 𝑓(BIt
; 𝐰𝐭)}  (4) 
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In order to perform a weight update, the highest scoring 
example in the current bag is first identified, i.e., 𝐱It

=

argmax
𝐱∈BIt

𝐰𝐭
𝐓𝐱. Since, 𝑓(𝐵;  𝐰) = maxx∈𝐵 𝐰𝐓𝐱 = 𝐰𝐭

𝐓𝐱It
, 

therefore equation (4) can be written as: 

𝜌(BIt
, YIt

: 𝐰𝐭) =
λ

2
‖𝐰𝐭‖2 + max {0,1 − YIt

 𝐰𝐭
𝐓𝐱It

}  (5) 

The SSGO solver then performs a descent step using the 

sub-gradient 𝛁𝐭 = 𝜕𝜌(BIt
, YIt

: 𝐰𝐭) 𝜕𝐰𝐭⁄ . Mathematically,  

𝐰t+1 = 𝐰t − ηt∇t  (6) 

Here, ηt = 1 λt⁄  is the learning rate and 𝛁𝐭 = λ𝐰t −

 𝕀 [YI𝐰𝐭
𝐓𝐱It

< 1]YIt
𝐱It

 with 𝕀 denoting the indicator function 

(𝕀[∙] = 1 iff the argument is true, else 0). The final updated 
weight vector can be written as follows:  

𝐰t+1 = 𝐰t −
1

λt
(λ𝐰t − 𝕀[YI𝐰𝐭

𝐓𝐱It
< 1] YIt

𝐱It
)          (7) 

The new weights are used in the objective function for the 
next iteration. After a fixed number of iterations T, the 
weight vector 𝐰 = 𝐰T+1 is used in validation and testing. 
Hotspot prediction for the feature representation of a given 
hexapeptide can be done by calculating the score 𝐰𝐓𝐱 
whereas protein level amyloid prediction can be done us-
ing 𝑓(𝐵;  𝐰) = max𝐱∈𝐵 𝐰𝐓𝐱. 

Unified MIL Classification and Ranking Model 

In order to produce a unified predictor that can be used to 
classify amyloid proteins, identify their hotspots and analyze 
mutation effects, we have modeled the prediction of increase or 
decrease in amyloidogenicity due to point mutations as an addi-
tional ranking constraint in the proposed MIL formulation. For 
this purpose, we have utilized the mutations dataset (DS4) 
which consists of a number of point mutations and their 
experimentally verified effects on amyloid formation. Spe-
cifically, we have used features of the wild-type and mu-
tated protein hexapeptide sequences together with the la-
bels indicating the effect of mutations for training. For this 
purpose, we denote the feature representations of wild-
type and mutant subsequences from DS4 by 𝐱𝑗

𝑊 and 𝐱𝑗
𝑀, 

𝑗 = 1 … 𝑄, respectively. 𝑦𝑗
𝑀 is used to indicate the label for 

the effect of the mutation (+1 for increased amyloidogenic-
ity and -1 otherwise). The resulting unified MIL problem 
can be written as the following structural risk minimiza-
tion: 

min𝐰 𝜌(𝐰) =
λ

2
𝐰T𝐰 + β ∑ 𝑙(BI, YI: 𝐰)

N

𝐼

+ ∑ 𝑟(𝐱𝑗
𝑊 , 𝐱𝑗

𝑀 , 𝑦𝑗
𝑀; 𝐰)

𝑗

 

     
 
(8) 

Here, λ is a regularization parameter, β is a scaling param-
eter that controls the effect of classification (amyloid vs. 
non-amyloid) errors based on the classification loss in 
equation-3 and 𝑟 is the ranking loss for mutation examples: 

𝑟(𝐱𝑗
𝑊, 𝐱𝑗

𝑀 , 𝑦𝑗
𝑀; 𝐰) = max{0,1 − 𝑦𝑗

𝑀  𝐰T(𝐱j
M − 𝐱j

W)}.    (9) 

This loss function requires that prediction scores produced 
by the MIL model correlate with known effects of mutation 

during training, i.e., 𝐰T𝐱i
M > 𝐰T𝐱i

W if amyloid formation 

increases as a consequence of the mutation and 𝐰T𝐱i
M ≤

𝐰T𝐱i
W otherwise. This problem is then solved using a sto-

chastic gradient solver in a similar manner as MIL classifi-
cation through pyLEMMINGS [27]. This formulation allows 

us to integrate heterogenous data sources for simultaneous pre-
diction of amyloid proteins, their hotspots and the effects of mu-
tations of amyloid proteins.  

2.4 Training and Evaluation 

In this section, we discuss the training and evaluation pro-
tocol used for performance analysis of the proposed 
method MIL Classification and the Unified MIL Classifica-
tion and Ranking Models. Area under the Receiver Oper-
ating Characteristic Curve (AUC-ROC), expressed in per-
centage, has been used as a performance metric. In addi-
tion to AUC, we have also utilized the area under the re-
ceiver operating characteristic curve (AUC-ROC0.1) as well 
as a performance metric to quantify the predictive perfor-
mance of various methods at low false positive rates.  
AUC-ROC0.1 captures the accuracy of the top-scoring pre-
dictions from a machine learning model. 

MIL Classification Model 

The proposed MIL Classifier (equation 2) is trained on DS1 and 
evaluated for prediction of amyloid proteins over DS2 using 5-
fold cross validation. For cross-validation over DS2, proteins in 
DS2 are first grouped into 92 clusters using CD-HIT [36] with 
a sequence identity threshold of 40%. These clusters are then di-
vided into 5 folds each having approximately equal number of 
label-wise stratified protein sequences. Such a sequence identity-
based division into folds ensures that no protein in a given fold 
shares more than 40% sequence identity with any protein in any 
other fold. This non-redundancy guarantees that training exam-
ples are distinct from testing example across folds and prevents 
overfitting.  
The performance of the proposed model for prediction of hotspot 
regions and mutation effects is evaluated by using DS3 and DS4 
as independent test sets, respectively. However, it is always en-
sured that for a given test sequence, the training set does not 
contain any proteins with >40% sequence identity to the test ex-
ample. For determining the accuracy of hotspot prediction in 
terms of an ROC curve for a classifier, individual sequence loca-
tions in a sequence are first annotated as hotspot (+1) vs. non-
hotspot (-1) based on labeling information in DS3. The predic-
tion scores of individual sequence locations are then used to con-
struct the ROC curve across all proteins in DS3. 

Unified MIL Classification and Ranking Model 

For the MIL-Rank model (equation 8), DS1 is used for training 
only whereas 5-fold cross validation is performed over DS2 and 
DS4 for hotspot and mutation effect prediction, respectively. 
DS3 is used as an independent test set for evaluating the perfor-
mance of the predictor over the task of predicting amyloid 
hotspots. In line with our evaluation protocol for MIL classifica-
tion, it is always ensured that, for a given test sequence, the 
training set for this model also does not contain any proteins 
with >40% sequence identity to the test example. 

External Evaluation 

In addition to cross-validation and independent test set analysis 
over data sets DS1-DS4, we have also performed two external 
analyses of the proposed scheme which are discussed in detail in 
the results section.  
Firstly, we have analyzed the solvent accessibility of predicted 
amyloid hotspots in a large non-redundant set of proteins from 
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the protein data bank. For this purpose, we used a non-redundant 
dataset of 21,661 protein structures from the protein databank 
(PDB) [40] and plotted the amyloid forming potential of the top 
predicted hotspot region within a protein against its relative ac-
cessible surface area (rASA) [41]. The hotspot predictions are ob-
tained using the proposed method and rASA is obtained through 
STRIDE [41]. CD-HIT is used to obtain the set of non-redun-
dant proteins at 40% sequence identity threshold from PDB. 
We have also analyzed the performance of the proposed scheme 
over an external set of recently published experimentally verified 
amyloid proteins from the literature that are not a part of our 
original datasets. More details on these proteins are given in the 
results section. 

Hyperparameter Selection and scaling 

The hyperparameters of the proposed model (𝜆, 𝛽) have been se-
lected using nested cross-validation over DS-2 using AUC-ROC 
as the performance metric. Grid search was used to scan the 
choice of hyperparameters over the range 0.0001 to 1000 in steps 
of factors of 10.  

2.6 Code and Webserver  

The Python implementation for the proposed method and 
its webserver are available at the URL:  
http://faculty.pieas.edu.pk/fayyaz/software.html#MILAMP. 
The webserver can be used to obtain amyloid prediction 
score for a given protein sequence, locate its hotspot region 
and identify the effects of point mutations. The webserver 
generates prediction probabilities by scaling raw outputs of our 
machine learning models through Platt scaling [42] .  

3 RESULTS AND DISCUSSION 

The performance the proposed MIL and MIL-Rank predic-
tors has been compared with existing state of the art tech-
niques such as APPNN, MetAmyl and Aggrescan. As a 
baseline, a simple linear SVM trained over DS1 has been 
used as well. Table 1 summarizes the results which are dis-
cussed below.  
3.1 Amyloid Prediction 

Figure 2 shows the ROC curves of all classifiers for amy-
loid prediction. The baseline SVM trained on DS1 gives an 
AUC score of 83.1%. The MIL Classifier trained on DS1 and 
DS2 using 5-fold cross validation gives a significantly im-
proved AUC score of 88.1% in comparison to the baseline 
predictor. The MIL-Rank classifier is trained in a similar 
manner as MIL, but it uses additional information from the 
mutations dataset DS4 in its training. It gives an AUC score 
of 85.9%. The performance of MIL and MIL-Rank is com-
pared over DS2 for various existing methods such as AP-
PNN (AUC: 87.9%), MetAmyl (AUC: 88.3%), Aggrescan 
(AUC: 79.5%) and Waltz (AUC: 71.3%). It is important to 
note that the performance of the proposed Multiple Instance 
Learning based approaches is comparable to previous state of the 
art methods in terms of AUC-ROC. However, the AUC-ROC0.1 
scores of the proposed scheme (53.8% for MIL-RANK) are sig-
nificantly better in comparison to other schemes (highest score of 
44.8% for MetAmyl). Thus, the proposed scheme can be expected 
to produce fewer false positives in its top predictions. 
 

Table 1: Classification results of different classifiers for amyloid and hotspot 
prediction. AUC-ROC% scores for Amyloid Prediction over DS2 and 
Hotspot Prediction over DS3 are reported for each method together with their 
AUC-ROC0.1 (in parenthesis). Note that cross-validation (CV) results are 
reported for DS2 for amyloid prediction whereas DS3 is used for testing only 
in hotspot prediction. The maximum standard deviation values across mul-
tiple runs with different folds for amyloid prediction and hotspot prediction 
are 1.2% and 0.4%, respectively.  

Classifier Training Data Amyloid 

Prediction 

Hotspot 

Prediction 

Linear SVM DS1 83.1 (46.1) 96.8 (76.3) 

MIL DS1+(DS2 CV) 88.1 (49.8) 98.0 (83.4) 

MIL-Rank DS1+(DS2 CV) 85.9 (53.8) 97.8 (83.0) 

MetAmyl [19] 88.3 (44.8) 96.8 (73.2) 

Aggrescan [10] 79.5 (24.4) 94.1 (66.1) 

APPNN [18] 87.9 (44.2) 97.3 (80.5) 

 
Figure 2 ROC curves for different classification methods for amyloid pre-
diction over DS2. The numbers next to the methods indicate the AUC-
ROC in percentage. 

3.2 Identification of hotspots in polypeptide chains 

Table-1 and Figure 3 show the AUC-ROC scores and corre-
sponding ROC curves, respectively, for different hotspot predic-
tion methods. For this purpose, DS3 consisting of 33 proteins 
with experimentally annotated hotspot regions, has been used as 
an independent test set. It can be seen that the proposed MIL and 
MIL-Rank classifiers perform better than existing methods with 
AUC score of 98% and 97.8%, respectively. This effect is more 
pronounced at low false positive rates with AUC-ROC0.1 as the 
performance metric: MIL gives a score of 83.4% in comparison 
to 80.5% by APPNN). This shows that the proposed method can 
be effectively employed to search for hotspot regions within the 
proteins prior to testing the top candidates in the wet lab. How-
ever, it must be pointed out that DS3 is not a complete or precise 
dataset in that it does not annotate all possible hotspot sequences 
in proteins and annotated hotspot sequences may cover much 
larger regions than the set of minimal amino acids required for 
amyloid formation. However, in the absence of any better da-
tasets and the fact that the same protocol has been used for per-
formance evaluation for all methods, we can expect that the pro-
posed scheme can generalize well over novel test sequences. Iden-
tified hotspots for each sequence in DS3 are listed in the supple-
mentary file. 

http://faculty.pieas.edu.pk/fayyaz/software.html#MILAMP
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Figure 3 ROC curves for different classification methods for hotspot pre-

diction over DS3. The numbers next to the methods indicate the AUC-

ROC in percentage. 
 
3.3 Effect of point mutations on amyloidogenicity 

Aggrescan is the current state of the art approach for predicting 
the effect of point mutations and it gives an AUC score of 
94.81%. The proposed MIL-Rank method gives an AUC-ROC 
score of 97.03%. This clearly shows that the proposed scheme is 
very effective in predicting protein amyloid propensity, hotspots 
and effects of point mutations in amyloid proteins. Details of in-
dividual predictions are given in the supplementary material. 
Therefore, it can be concluded that the proposed unified model 
can accurately predict amyloid proteins, their hotspot regions 
and the effect of mutations on their amyloidogenicity.   

 

Figure 4 Density plot of amyloid prediction scores vs. relative accessible 
surface area (rASA) for non-redundant PDB proteins. Each dot repre-
sents a predicted amyloid hotspot (with positive raw MILAMP score) in 
a protein and its rASA within the protein. 

3.4 Evaluation on non-redundant PDB 

Several naturally occurring proteins have amyloid 
hotspots but are not able to form amyloid fibers. This is be-
cause of the fact that the amyloid forming regions in most 
proteins are not exposed to solvent and occur in the core of 
the protein [43]. However, amyloid forming proteins contain 
amyloidogenic segments that are relative surface accessible 
(rASA) [28]. To evaluate the usability of our method, we 
have plotted the predicted amyloidogenicity of a potential 
amyloid forming region within a protein in a non-redun-
dant PDB set against its surface accessibility in Figure 4. It 
clearly shows that the majority of the high scoring subse-
quences in proteins with high MILAMP scores have low 
rASA. This demonstrates that hotspot that promotes amy-
loidogenesis typically exist inside the proteins and are not 
able to produce amyloid fibers. Thus, majority of the natu-
ral occurring protein do not form amyloid fibers although 

they may have an amyloidogenic region. The findings 
from this large scale analysis are in agreement with the 
work of Tzotzos and Doig who observed similar patterns 
over a smaller sample size [43]. It shows that the proposed 
scheme can be used for studying the behavior of amyloid 
proteins. It also points out the fact that surface accessibility of 
hotspot residues must be considered when using hotspot predic-
tions generated from the proposed scheme or from other se-
quence-based methods as well.  
 
3.5 Evaluation on External Proteins 

In order to analyze the performance of our proposed model, we 
have also evaluated it on some recently published experimentally 
verified amyloid proteins which are not included in any of our 
datasets (DS1-DS4). The MILAMP webserver was used to gen-
erate predictions for various proteins and analyze the concord-
ance of the predictions with experimental findings. We have also 
used the previous state of the art techniques (Aggrescan and 
Metamyl) for this this analysis. Below, we discuss the analysis 
of individual proteins. These results can be easily reconstructed 
by using the webservers for these methods. 

TasA protein 

Malishev et. al. [44], have experimentally shown that TasA 
protein (Uniprot id: P54507) interacts with bacterial model 
membranes which leads to membrane disturbance and 
structural changes in TasA. TasA forms disordered aggre-
gates which are involved in amyloidogenesis. MILAMP 
generates amyloid probability score of 0.897) The high pre-
diction score from our model correlates with experimental 
findings. MetAmyl and Aggrescan also generate positive scores 
of 0.67 and 0.23, respectively, for this protein. It is interesting to 
note that the top scoring hotspot regions (135-142 and 52-59) 
predicted by the proposed scheme are also predicted as hotspots 
by both MetAmyl and Aggrescan but at much lower ranks. 
Therefore, we can stipulate that these regions are very good can-
didates for experimental validation in a future study. MetAmyl 
and Aggrescan both predict several other hotspot regions as well 
which are not shared by all three methods.  

FapC protein 

Bleem et al. [45] have examined the sequence of FapC 
protein (NCBI Reference: WP_003113480) and experimen-
tally identified specific regions that are involved in amy-
loid formation. They found three conserved repeats, R1, 
R2, and R3, each of which contains a GVNXAA motif (Ta-
ble 3). The prediction scores of our proposed model for 
identifying hotspots are also given in Table 2. MILAMP 
can correctly identify these motifs among its top predic-
tions. This shows the proposed scheme is very effective for 
predicting hotspot regions in proteins. MetAmyl is also able 
to identify these regions correctly. However, Aggrescan predicts 
only one out of the three regions as a hotspot.  
VL2‐8‐J1 protein 
Brumshtein et. al experimentally identified two segments 
within the variable domains of Ig light chains using a ref-
erence model of VL2‐8‐J1 (GenBank Id:  BAA20021.1) 
which are involved in forming amyloid fibrils [46]. Each of 
these segments has been shown to be able to drive amyloid 
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fibril assembly independently of the other. Thus, these seg-
ments are important therapeutic targets. Table 3 shows the 
amyloid forming regions in the sequence. Our proposed 
model can correctly identify the second segment as a hot 
spot as its top prediction. In contrast, both MetAmyl and Ag-
grescan predict much large regions as hotspots (70 to 81 and 95-
110 by MetAmyl and 73-78 and 97-110 by Aggrescan).  
Table 2: FapC protein sequence. 

Hotspots Sequence Score  
R1 (53-101) 

Motif (83-88) 

QQNYNNKVSNFGTLNNASVSGSIK-

DASGNVGVNVAAGDNNQQANAAALA 

0.938 

R2 (120-168) 

Motif (150-155) 

QSGYGNTLNNYSNPNTASLS-

NSANNVSGNLGVNVAAGNFNQQKNDLAAA 

0.893 

R3 (291-324) 

Motif (307-312) 

NNASLSNSLQNVSGNVGVNIAAGGG-

NQQSNSLSI 

0.917 

Table 3: VL2-8-J1 protein sequence with model score. 

Amyloid driving 

segments 

Sequence  Model 

Score  

Identified 

Hotspot 
S1 (73-78) 

 

ASLTVS 

 

0.576 ASLTVSG 

 (73-78) 

S2 (98-104) NFYVFGT 0.907 NNFYVFG 

(97-103) 

HIV-1 Vpu protein 

Sneha et. al investigated amyloidogenicity of HIV-1 Vpu 
protein (Uniprot id: P20882) through molecular dynamics 
and identified residues 4–35 in the protein to be amyloido-
genic [47]. Figure 5 shows that our model produces high 
score for this region as well. It is interesting to note that the 
proposed scheme also predicts the same region as an amy-
loid hotspot. The same region is also predicted as an amyloid 
hotspot by both MetAmyl and Aggrescan. However, Aggrescan 
predicts an additional region of 58-65 as a hotspot. 

 
Figure 5 MILAMP raw prediction scores for HIV-1 Vpu protein against 
its sequence. The known amyloid forming region is highlighted as the 
shaded region.  

4 CONCLUSIONS 

In this work, we have proposed a machine learning based method 
that can simultaneously predict amyloid proteins, their hotspot 
regions and the effects of point mutations in such proteins. We 
have shown that the proposed method improves prediction accu-
racy by integrating heterogenous data sources in modeling the 
three predictive problems through multiple instance learning. 
We have also shown that MILAMP can outperform previous 
state of the art techniques. The proposed scheme can be easily 

used to generate accurate predictions for a variety of proteins and 
is expected to prove very useful for studying amyloid proteins. 
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