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The exploitation of phase change materials in diverse technological applications 

can be greatly aided by a better understanding of the microscopic origin of their 

functional properties. In the last ten years, simulations based on electronic 

structure calculations within density functional theory (DFT) have provided 

useful insights on the properties of materials in this class. Still, large simulation 

cells and long simulation times beyond the reach of DFT simulations are needed 

to address several key issues of relevance for the performance of the devices. One 

way to overcome the limitations of DFT methods is using machine learning 

techniques to build interatomic potentials for fast molecular dynamics simulations 

which still retain a quasi-ab initio accuracy. Here, we take stock of what we have 

learned about the functional properties of the prototypical phase change material 

GeTe by harnessing such interatomic potentials. Future challenges and 

applications of the machine learning techniques in the study of phase change 

materials will be outlined. 

Keywords: molecular dynamics, crystal nucleation and growth, machine 

learning, supercooled liquids, glass aging, phase change materials. 

 

Introduction 

The development of novel non-volatile memories (NVMs) is key to further our 

ability to retain and share the ever-growing amount of data we generate every day 

(2.5 exabytes in 2013 [1]). Current NVMs based on the Flash technology suffer of 

a relatively low speed and of a limited endurance. Among the alternative options 

to Flash technology, phase-change memories (PCMs) [2,3] stand out as one of the 
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most promising candidates - as testified by the recent Intel/Micron 3D Xpoint 

technology devised for storage class memories [4]. 

In PCMs, the information is encoded into two different phases of  chalcogenides 

alloys known as phase change materials [5,6], which can reversibly (up to ~105 

times) switch between the crystalline and amorphous phases upon Joule heating 

within few nanoseconds. The two phases have markedly different electrical 

resistance that are exploited in the memory read out. 

Although the Ge2Sb2Te5 compound is presently the material of choice for PCM, 

the quest toward alloys with better performances is very much under way [6,7].  

For embedded applications in the automotive industry, for instance, data retention 

above 100 oC is desirable which is not achievable with Ge2Sb2Te5.  Other 

applications such as neuromorphic computing [8] or photonic devices [9] would 

also benefit from a specific tailoring of the functional properties of phase change 

alloys. To this end, a thorough understanding of the microscopic features of phase 

change materials is mandatory. 

In this respect, atomistic simulations can provide valuable microscopic 

information difficult to be gained experimentally. First principles (or ab initio) 

electronic structure calculations would be the tool of the trade, and indeed the 

field has greatly benefited from simulations  based on density functional theory 

(DFT)  [6-7,10-12].  

Nonetheless, the investigation of many properties of phase change alloys lies well 

beyond the capabilities of DFT methods:  for instance, the crystallization of 

nanowires (a possible alternative architecture for PCMs) requires simulations of 

~104 atoms for several nanoseconds, while DFT simulations are typically limited 

to few hundreds atoms for up to few nanoseconds.  

If we were to deal with silicon, we would know what to do: pick an 

empirical/classical potential of your choice and strike some balance between 

accuracy (some of which would be lost) and computational efficiency. However, 

albeit a Tersoff-like parametrization was devised for GeTe [13], phase change 

materials display a complex interplay between different atomic environments 

[14], which makes  the construction of classical potentials very challenging. 
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One way to solve this conundrum, where DFT is not fast enough, and classical 

potentials are not accurate enough, is to harness machine learning (ML) 

algorithms [15-17] to build interatomic potentials with (quasi) ab initio accuracy 

and a computational efficiency (almost) comparable to that of classical potentials. 

 

 

Machine learning-based 

interatomic potentials 

Machine Learning (ML) is by now a 

pervasive aspect of technology 

which is percolating very rapidly 

into many scientific fields. Materials 

science is not immune, in that there 

exists a perception that ML is bound 

to deliver the next generation of 

interatomic potentials for atomistic 

simulations. Actually, in this field 

ML algorithms are used as a flexible 

tool to build a potential energy 

surface by fitting a quite large 

dataset (104-105
 configurations) of 

DFT energies and forces of relatively 

small (102 atoms) configurations; two 

popular approaches in this context 

are based on Gaussian 

approximations  [18] or neural 

networks (NNs) [19].  

In the NN method of Behler and Parrinello [19] the structure of the system is 

encoded by means of so-called symmetry functions which describe the local 

atomic environment of each atom up to a cutoff radius typically encompassing up 

Figure 1. a) Neural networks (NN) can be harnessed to 

construct a machine learning interatomic potential 

starting from a dataset of DFT energies of small (100 

atoms) configurations. b) Total pair correlation 

function of liquid GeTe from a NN simulation with  

4096 and 216 atoms, compared with DFT results for the 

smaller cell. Adapted from Ref.[20]. Copyright 2012 

American Physical Society. 
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to the 3rd coordination shell. As depicted in Figure 1a, the symmetry functions 

represent the input of a feed-forward NN which consists of a collection of nodes 

and layers where the inputs are subject to a non-linear transformation (via so-

called activation functions) and then linearly combined via a number of “weights” 

to eventually yield the total energy of a given configuration. The weights are 

randomly initialized and then refined by backpropagation in order to minimize the 

mismatch between the energies predicted by the NN and by DFT [19].  Once a 

sufficiently good fitting is achieved, we can leverage it to obtain the energy of  

very large models at a low computational cost that scales linearly with the number 

of atoms. Crucially, forces and stress are readily available from NN potentials, 

thus enabling fast molecular dynamics (MD) simulations while retaining an 

accuracy very close to that of the underlying DFT calculations. 

In the next sections, we will illustrate how the neural network potential (NNP) for 

the prototypical phase change compound GeTe that we generated in 2012 [20], 

has allowed us to address several properties ranging from dynamical 

heterogeneity and fast crystallization in the liquid phase to the structural 

relaxations in the glass. 

 

 

Functional properties of the phase change material GeTe 

A neural network potential for GeTe 

The NNP for GeTe described in Ref. [20,21] was constructed from the DFT 

energies of ~30,000 configurations containing from 64 to 216 atoms. The 

potential was validated against DFT calculations (an example is illustrated in Fig. 

1b) and it is capable to describe the bulk phases of GeTe as well as surfaces, 

nanowires and nanoparticles.  

As a first application, the NNP was used to compute the thermal conductivity of 

the amorphous phase [22] and the thermal boundary resistance at the amorphous-

crystal interface [23]. On this topic, we refer the reader to a recent review on the 

thermal properties of amorphous materials studied by means of ML potentials 

[24]. 
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Fragility of the supercooled liquid and structural relaxations in the glass 

In a PCM device, the crystallization of the amorphous phase is achieved by 

electrical pulses that bring the material in a supercooled liquid state above the 

glass transition temperature Tg. One of the key properties of phase change 

materials is that they tend to be fragile liquids [25], which means that their 

viscosity (η) remains fairly low at high supercooling, only to rise sharply very 

close to Tg. This feature allows atoms to remain highly mobile at low 

temperatures (T), where the thermodynamical driving force for crystal nucleation 

and growth  is also high [25]. The 

NNP allowed us [26] to compute 

the function η(T) which provided 

an estimate of the so-called 

fragility index (the slope of η(T) 

at Tg) which turned out to be in 

reasonable agreement with later 

experimental data from ultrafast 

differential scanning calorimetry 

[25].  

The atomic mobility at low T is 

further enhanced by a breakdown 

of the Stokes-Einstein relation 

between viscosity and diffusivity 

that was also predicted by MD 

simulations [26]. This feature is 

typical of fragile liquids and it is often ascribed to the emergence of dynamical 

heterogeneities consisting of spatially separated domains in which atoms move 

substantially faster or slower than the average. This is illustrated in Figure 2a: 

close to the melting temperature the distinction between slow (blue) and fast (red) 

moving regions is minimal; however, as we cool down the system one can clearly 

notice the emergence of spatially localized domains (see Figure 2b) [27]. These 

Figure 2. a) Dynamical heterogeneity of liquid GeTe: slow- 

and fast-moving domains are highlighted in blue and red. 

b) Spatially localized clusters of slow and fast moving 

atoms at 500 K. The chains of  Ge–Ge bonds  in most 

mobile regions (purple) are highlighted in panel c). 

Adapted from Ref. [24] - Copyright 2014 American 

Physical Society. 

a)

b) c)
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results have been obtained by the so called isoconfigurational analysis technique, 

which involves a large number (~100) of MD simulations [27]. 

Most notably, it turns out that fast-moving regions involve structural 

heterogeneities in the form of chains of Ge-Ge bonds, depicted in Figure 2c: these 

chains are not only ultimately responsible for the breakdown of the Stokes-

Einstein relation  and thus for an enhancement of the atomic mobility at high 

supercooling which boosts the crystallization speed, but they also play a role in 

the so-called resistance drift – a practical issue for PCMs whereby the resistance 

of the amorphous phase increases over time due to aging. In fact, by combining 

NNP and DFT calculations, we have found [28] that Ge-Ge chains are responsible 

for localized electronic states within the gap of the amorphous phase. Removal of 

these chains via structural relaxations lead to an energy gain and to a widening of 

the band gap which can explain the resistance drift (see Ref. [29] for a review).  

 Moreover, we have recently shown that the presence of Ge-Ge chains provides a 

rationale for the experimentally measured reduction of the resistance drift in GeTe 

nanowires [21], whose amorphous structure is characterised, on average, by a 

lower fraction of Ge-Ge chains  compared to the bulk. 

 

Crystal nucleation and growth 

From a computational standpoint, the fast crystallization of phase change 

materials offers the unique opportunity for  DFT  methods to study crystal 

nucleation and growth by means of  unbiased MD simulations [30]. Indeed, this 

has been achieved in several works (see Ref. [31] for a review), but the usage of 

still relatively small models inevitably leads to spurious interactions between the 

newborn crystalline nuclei and their periodic images, thus affecting both 

induction times and crystal growth velocities. 
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The advent of NNP was a game changer in this respect, as it allowed us to assess 

the extent of finite size effects (avoidable by using at least about 1000 atoms) and 

to investigate crystal nucleation and growth in a wide range of conditions for 

supercells containing 4000-32000 atoms [32-34]. Some of these findings are 

summarized in Figure 3: we were able to identify different nucleation regimes at 

different temperatures (see Figure 3a) and to accurately estimate the crystal 

growth velocity, extracted from the slope of growth profiles (Figure 3b). 

Recently, we have compared these growth rates with those obtained for GeTe 

nanowires [21] (Figure 3c) which enabled the study of the effects of 

nanostructuring on the crystallization kinetics. 

The heterogeneous growth of crystalline GeTe [34] – a scenario of utmost 

relevance for PCMs - was also addressed by using large models of polycrystalline 

a) b)

c)

d)

c)
e)

Figure 3. a) Number of crystalline nuclei (> 29 atoms) at different temperatures as a function of time in 

supercooled liquid GeTe. The number of nuclei first increases and then decreases due to coalescence. The 

two snapshots show crystalline atoms forming a single nucleus or several nuclei at high or low 

temperatures. b) The radius R of a crystalline nucleus of GeTe at two temperatures as a function of time. - 

Reprinted with permission from Ref. [31]. Copyright 2013 American Chemical Society. c) Crystal growth 

velocity of a GeTe nanowire (green triangles) and at the crystal/liquid interface in the bulk (blue circles). 

Reprinted with permission from Ref. [21]. Copyright 2017 American Chemical Society. d) C111 (red) and 

C100 (blue) crystalline grains in a polycrystalline model of GeTe at the beginning (t0) and end (tend) of the 

simulation. Projections along the xz planes are shown. Reprinted with permission from Ref. [31]. Copyright 

2015 American Chemical Society. e) Potential energy as a function of time in the simulation of the 

crystallization of Ge2Sb2Te5 with a Gaussian approximation potential. Reprinted with permission from Ref. 

[35].  Copyright 2018 American Chemical Society. 
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GeTe  that allowed us to follow the competition between the growth of different 

grains (Figure 3d). 

 

Moreover, simulations of the crystallization of the most studied ternary compound 

Ge2Sb2Te5  have been performed very recently by means of a ML-based 

interatomic potential [35] based on Gaussian approximations (the so-called GAP 

approach [18]): a representative result is reported in Figure 3e.  

 

Conclusions 

 Although DFT simulations have provided invaluable contributions to the study of 

phase change materials, there is the need to bring  MD simulations closer to the 

size scale of real PCMs in order to address key issues for the improvement of the 

devices. ML-based interatomic potentials represent an effective solution, in that 

they can overcome the limitations of DFT calculations in terms of size and 

simulation time while offering computational efficiency close to that of 

classical/empirical potentials.  

Here, we have illustrated some of the results we have obtained by means 

of a NNP for GeTe.  The methodologies needed to construct ML potentials are 

now more accessible than they were in 2012 when the GeTe potential was 

devised: while a substantial effort is still needed to collect the huge dataset of 

DFT energies, several promising advances [36,37],  including stratified [38] and 

implanted [39] NN  are now available to tackle multi-component alloys [40]. 

In the field of PCMs, there are open questions that would greatly benefit 

from large scale simulations of multi-components alloys such as  the switching 

mechanism of Ge-rich alloys for embedded applications [41] and of 

superlattices/interfacial PCMs [42], just to name a few. For the hotly debated 

interfacial PCMs [43], DFT simulations have provided a number of different 

scenarios among which large-scale simulations might ultimately be able to 

identify the most plausible one. The impact of confinement effects and 

nanostructuring on the crystallization kinetics is another issue where ML 

potentials can make a difference. Our previous work on GeTe nanowires is an 
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example, but much remains to be explored, such as the fascinating possibility of 

monoatomic PCMs [44] or phase change materials encapsulated in carbon 

nanotubes [45] or even as isolated nanoparticles [46] . 

In conclusion, in light of what the community has achieved in the last few 

years, we feel that machine learning-based interatomic potentials can truly 

contribute to the rational design of phase change materials for PCMs and ther 

applications in the near future. 
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Figure 1. a) Neural networks (NN) can be harnessed to construct a machine 

learning interatomic potential starting from a dataset of DFT energies of small 

(100 atoms) configurations. b) Total pair correlation function of liquid GeTe from 

a NN simulation with 4096 and 216 atoms, compared with DFT results for the 

smaller cell. Adapted from Ref. [20]. Copyright 2012 American Physical Society. 

Figure 2. a) Dynamical heterogeneity of liquid GeTe: slow- and fast-moving 

domains are highlighted in blue and red. b) Spatially localized clusters of slow 

and fast moving atoms at 500 K. The chains of  Ge–Ge bonds  in most mobile 

regions (purple) are highlighted in panel c). Adapted from Ref. [27]- Copyright 

2014 American Physical Society. 

Figure 3. a) Number of crystalline nuclei (> 29 atoms) at different temperatures 

as a function of time in supercooled liquid GeTe. The number of nuclei first 

increases and then decreases due to coalescence. The two snapshots show 

crystalline atoms forming a single nucleus or several nuclei at high or low 

temperatures. b) The radius R of a crystalline nucleus of GeTe at two 

temperatures as a function of time. - Reprinted with permission from Ref. [32]. 

Copyright 2013 American Chemical Society. c) Crystal growth velocity of a 

GeTe nanowire (green triangles) and at the crystal/liquid interface in the bulk 

(blue circles). Reprinted with permission from Ref. [21]. Copyright 2017 

American Chemical Society. d) C111 (red) and C100 (blue) crystalline grains in a 

polycrystalline model of GeTe at the beginning (t0) and end (tend) of the 

simulation. Projections along the xz planes are shown. Reprinted with permission 

from Ref. [31]. Copyright 2015 American Chemical Society. e) Potential energy 

as a function of time in the simulation of the crystallization of Ge2Sb2Te5 with a 

Gaussian approximation potential. Reprinted with permission from Ref. [32].  

Copyright 2018 American Chemical Society. 
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