
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/128869                                                        
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/128869
mailto:wrap@warwick.ac.uk


Unifying machine learning and quantum chemistry with a deep neural network for
molecular wavefunctions
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I. Abstract

Machine learning advances chemistry and materials
science by enabling large-scale exploration of chemical
space based on quantum chemical calculations. While
these models supply fast and accurate predictions of
atomistic chemical properties, they do not explicitly cap-
ture the electronic degrees of freedom of a molecule,
which limits their applicability for reactive chemistry and
chemical analysis. Here we present a deep learning frame-
work for the prediction of the quantum mechanical wave-
function in a local basis of atomic orbitals from which
all other ground-state properties can be derived. This
approach retains full access to the electronic structure
via the wavefunction at force-field-like efficiency and cap-
tures quantum mechanics in an analytically differentiable
representation. On several examples, we demonstrate
that this opens promising avenues to perform inverse de-
sign of molecular structures for target electronic property
optimisation and a clear path towards increased synergy
of machine learning and quantum chemistry.

II. Introduction

Machine learning (ML) methods reach ever deeper into
quantum chemistry and materials simulation, delivering
predictive models of interatomic potential energy sur-
faces1–6, molecular forces7,8, electron densities9, density
functionals10, and molecular response properties such as
polarisabilities11, and infrared spectra12. Large data sets
of molecular properties calculated from quantum chem-
istry or measured from experiment are equally being used
to construct predictive models to explore the vast chemi-
cal compound space13–17 to find new sustainable catalyst
materials18, and to design new synthetic pathways19. Re-
cent research has explored the potential role of machine
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FIG. 1: Synergy of quantum chemistry and machine
learning. (a) Forward model: ML predicts chemical
properties based on reference calculations. If another
property is required, an additional ML model has to be
trained. (b) Hybrid model: ML predicts the wavefunction.
All ground state properties can be calculated and no
additional ML is required. The wavefunctions can act as an
interface between ML and QM.

learning in constructing approximate quantum chemical
methods20 as well as predicting MP2 and coupled clus-
ter energies from Hartree-Fock orbitals21,22. There have
also been approaches that use neural networks as a basis
representation of the wavefunction23–25.

Most existing ML models have in common that they
learn from quantum chemistry to describe molecular
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properties as scalar, vector, or tensor fields26,27. Fig. 1a
shows schematically how quantum chemistry data of dif-
ferent electronic properties, such as energies or dipole
moments, is used to construct individual ML models for
the respective properties. This allows for the efficient ex-
ploration of chemical space with respect to these proper-
ties. Yet, these ML models do not explicitly capture the
electronic degrees of freedom in molecules that lie at the
heart of quantum chemistry. All chemical concepts and
physical molecular properties are determined by the elec-
tronic Schrödinger equation and derive from the ground-
state wavefunction. Thus, an electronic structure ML
model that directly predicts the ground-state wavefunc-
tion (see Fig. 1b) would not only allow to obtain all
ground-state properties, but could open avenues towards
new approximate quantum chemistry methods based on
an interface between ML and quantum chemistry. Hegde
and Bowen28 have explored this idea using kernel ridge
regression to predict the band structure and ballistic
transmission in a limited study on straining single-species
bulk systems with up to four atomic orbitals. Another re-
cent example of this scheme is the prediction of coupled-
cluster singles and doubles amplitudes from MP2-derived
properties by Townsend and Vogiatzis29.

In this work, we develop a deep learning framework
that provides an accurate ML model of molecular elec-
tronic structure via a direct representation of the elec-
tronic Hamiltonian in a local basis representation. The
model provides a seamless interface between quantum
mechanics and ML by predicting the eigenvalue spectrum
and molecular orbitals (MOs) of the Hamiltonian for or-
ganic molecules close to ’chemical accuracy’ (∼0.04 eV).
This is achieved by training a flexible ML model to cap-
ture the chemical environment of atoms in molecules and
of pairs of atoms. Thereby, it provides access to elec-
tronic properties that are important for chemical inter-
pretation of reactions such as charge populations, bond
orders, as well as dipole and quadrupole moments with-
out the need of specialised ML models for each property.
We demonstrate how our model retains the conceptual
strength of quantum chemistry by performing an ML-
driven molecular dynamics simulation of malondialde-
hyde showing the evolution of the electronic structure
during a proton transfer while reducing the computa-
tional cost by 2-3 orders of magnitude. As we obtain a
symmetry-adapted and analytically differentiable repre-
sentation of the electronic structure, we are able to op-
timise electronic properties, such as the HOMO-LUMO
gap, in a step towards inverse design of molecular struc-
tures. Beyond that, we show that the electronic structure
predicted by our approach may serve as input to further
quantum chemical calculations. For example, wavefunc-
tion restarts based on this ML model provide a significant
speed-up of the self-consistent field procedure (SCF) due
to a reduced number of iterations, without loss of accu-
racy. The latter showcases that quantum chemistry and
machine learning can be used in tandem for future elec-
tronic structure methods.

III. Results

Atomic Representation of Molecular Electronic
Structure

In quantum chemistry, the wavefunction associated
with the electronic Hamiltonian Ĥ is typically expressed
by anti-symmetrised products of single-electron functions
or molecular orbitals. These are represented in a lo-
cal atomic orbital basis of spherical atomic functions
|ψm〉 =

∑
i c
i
m |φi〉 with varying angular momentum. As

a consequence, one can write the electronic Schrödinger
equation in matrix form

Hcm = εmScm, (1)

where the Hamiltonian matrix H may correspond to the
Fock or Kohn–Sham matrix, depending on the chosen
level of theory31. In both cases, the Hamiltonian and
overlap matrices are defined as:

Hij = 〈φi|Ĥ|φj〉 (2)

and

Sij = 〈φi|φj〉 . (3)

The eigenvalues εm and electronic wavefunction coeffi-
cients cim contain the same information as H and S
where the electronic eigenvalues are naturally invariant
to rigid molecular rotations, translations or permuta-
tion of equivalent atoms. Unfortunately, as a function
of atomic coordinates and changing molecular configura-
tions, eigenvalues and wavefunction coefficients are not
well-behaved or smooth. State degeneracies and elec-
tronic level crossings provide a challenge to the direct pre-
diction of eigenvalues and wavefunctions with ML tech-
niques. We address this problem with a deep learning
architecture that directly describes the Hamiltonian ma-
trix in local atomic orbital representation.

SchNOrb deep learning framework

SchNOrb (SchNet for Orbitals) presents a framework
that captures the electronic structure in a local repre-
sentation of atomic orbitals that is common in quantum
chemistry. Fig. 2a gives an overview of the proposed
architecture. SchNOrb extends the deep tensor neural
network SchNet32 to represent electronic wavefunctions.
The core idea is to construct symmetry-adapted pairwise
features Ωl

ij to represent the block of the Hamiltonian
matrix corresponding to atoms i, j. They are written as
a product of rotationally invariant (λ = 0) and covariant
(λ > 0) components ωλij which ensures that – given a suf-
ficiently large feature space – all rotational symmetries
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FIG. 2: Prediction of electronic properties with SchNOrb (a) Illustration of the network architecture. The neural
network architecture consists of three steps (gray boxes) starting from initial representations of atom types and positions
(top), continuing with the construction of representations of chemical environments of atoms and atom pairs (middle) before
using these to predict energy and Hamiltonian matrix respectively (bottom). The left path through the network to the energy
prediction E is rotationally invariant by design, while the right pass to the Hamiltonian matrix H allows for a maximum
angular momentum L of predicted orbitals by employing a multiplicative construction of the basis ωij using sequential
interaction passes l = 0 . . . 2L. The onsite and offsite blocks of the Hamiltonian matrix are treated separately. The prediction
of overlap matrix S is performed analogously. (b) Illustration of the SchNet interaction block30. (c) Illustration of SchNorb
interaction block. The pairwise representation hl

ij of atoms i, j is constructed by a factorised tensor layer ftensor from atomic
representations as well as the interatomic distance. Using this, rotationally invariant interaction refinements vm

i and basis
coefficients pl

ij are computed. (d) Loewdin population analysis for uracil based on the density matrix calculated from the
predicted Hamiltonian and overlap matrices. (e) Mean abs. errors of lowest 20 orbitals (13 occupied + 7 virtual) of ethanol
for Hartree-Fock and DFT@PBE. (f) The predicted (solid black) and reference (dashed grey) orbital energies of an ethanol
molecule for DFT. Shown are the last four occupied and first four unoccupied orbitals, including HOMO and LUMO. The
associated predicted and reference molecular orbitals are compared for four selected energy levels.

up to angular momentum l can be represented:

Ωl
ij =

l∏
λ=0

ωλij with 0 ≤ l ≤ 2L (4)

ωλij =

{
pλij ⊗ 1D for λ = 0[
pλij ⊗

rij
‖rij‖

]
Wλ for λ > 0

, (5)

Here, rij is the vector pointing from atom i to atom
j, pλij ∈ RB are rotationally invariant coefficients and

Wλ ∈ R3×D are learnable parameters projecting the fea-
tures along D randomly chosen directions. This allows to
rotate the different factors of Ωl

ij ∈ RB·D relative to each
other and further increases the flexibility of the model for
D > 3. In case of λ = 0, the coefficients are independent
of the directions due to rotational invariance.

We obtain the coefficients pλij from an atomistic neural
network as shown in Fig. 2a. Starting from atom type
embeddings x0

i , rotationally invariant representations of
atomistic environments xTi are computed by applying T
consecutive interaction refinements. These are by con-
struction invariant with respect to rotation, translation
and permutations of atoms. This part of the architecture
is equivalent to the SchNet model for atomistic predic-
tions (see Refs.30,33). In addition, we construct repre-
sentations of atom pairs i, j that will enable the predic-
tion of the coefficients pλij . This is achieved by 2L + 1
SchNOrb interaction blocks, which compute the coeffi-
cients pλij with a given angular momentum λ with respect
to the atomic environment of the respective atom pair ij.
This corresponds to adapting the atomic orbital interac-
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tion based on the presence and position of atomic orbitals
in the vicinity of the atom pair. As shown in Fig. 2b, the
coefficient matrix depends on pair interactions mlppair of
atoms i, j as well as environment interactions mlpenv of
atom pairs (i,m) and (n, j) for neighboring atoms m,n.
These are crucial to enable the model to capture the ori-
entation of the atom pair within the molecule for which
pair-wise interactions of atomic environments are not suf-
ficient.

The Hamiltonian matrix is obtained by treating on-
site and off-site blocks separately. Given a basis of atomic
orbitals up to angular momentum L, we require pair-wise
environments with angular momenta up to 2L to describe
all Hamiltonian blocks

H̃ij =


Hoff

([
Ωl
ij

]
0≤l≤2L+1

)
for i 6= j

Hon

([
Ωl
im

]
m 6=i

0≤l≤2L+1

)
for i = j

, (6)

The predicted Hamiltonian is obtained through sym-
metrisation H = 1

2 (H̃ + H̃ᵀ). Hoff and Hon are modeled
by neural networks that are described in detail in the
methods section. The overlap matrix S can be obtained
in the same manner. Based on this, the orbital energies
and coefficients can be calculated according to Eq. 1. The
computational cost of the diagonalisation is negligible for
the molecules and basis sets we study here (< 1 ms). For
large basis sets and molecules, when the diagonalisation
starts to dominate the computational cost, our method
requires only a single diagonalization instead of one per
SCF step. In addition to the Hamiltonian and overlap
matrices, we predict the total energy separately as a sum
over atom-wise energy contributions, in analogy with the
conventional SchNet treatment30 to drive the molecular
dynamics simulations.

Learning electronic structure and derived properties

The proposed SchNOrb architecture allows us to per-
form predictions of total energies, Hamiltonian and over-
lap matrices in end-to-end fashion using a combined re-
gression loss. We train separate neural networks for sev-
eral data sets of water as well as ethanol, malondialde-
hyde, and uracil from the MD17 dataset7. The reference
calculations were performed with Hartree-Fock (HF) and
density functional theory (DFT) with the PBE exchange
correlation functional34. The employed Gaussian atomic
orbital bases include angular momenta up to l = 2 (d-
orbitals). We augment the training data by adding ro-
tated geometries and correspondingly rotated Hamilto-
nian and overlap matrices to learn the correct rotational
symmetries (see Methods section). Detailed model and
training settings for each data set are listed in Supple-
mentary Table 1.

As Supplementary Table 2 shows, the total energies

could be predicted up to a mean absolute error below
2 meV for the molecules. The predictions show mean
absolute errors below 8 meV for the Hamiltonian and
below 1 · 10−4 for the overlap matrices. We examine how
these errors propagate to orbital energy and coefficients.
Fig. 2e shows mean absolute errors for energies of the
lowest 20 molecular orbitals for ethanol reference calcu-
lations using DFT as well as HF. The errors for the DFT
reference data are consistently lower. Beyond that, the
occupied orbitals (1-13) are predicted with higher accu-
racy (<20 meV) than the virtual orbitals (∼100 meV).
We conjecture that the larger error for virtual orbitals
arises from the fact that these are not strictly defined by
the underlying data from the HF and Kohn-Sham DFT
calculations. Virtual orbitals are only defined up to an
arbitrary unitary transformation. Their physical inter-
pretation is limited and, in HF and DFT theory, they do
not enter in the description of ground-state properties.
For the remaining data sets, the average errors of the oc-
cupied orbitals are <10 meV for water and malondialde-
hyde as well as 48 meV for uracil. This is shown in detail
in Supplementary Fig. 1. The orbital coefficients are pre-
dicted with cosine similarities ≥ 90% (see Supplementary
Fig. 2). Fig. 2f depicts the predicted and reference or-
bital energies for the frontier MOs of ethanol (solid and
dotted lines, respectively), as well as the orbital shapes
derived from the coefficients. Both occupied and unoc-
cupied energy levels are reproduced with high accuracy,
including the highest occupied (HOMO) and lowest un-
occupied orbitals (LUMO). This trend is also reflected in
the overall shape of the orbitals. Even the slightly higher
deviations in the orbital energies observed for the third
and fourth unoccupied orbital only result in minor defor-
mations. The learned covariance of molecular orbitals for
rotations of a water molecule is shown in Supplementary
Fig. 3.

The ML model uses about 93 million parameters to
predict a large Hamiltonian matrix with >100 atomic or-
bitals. This size is comparable to state-of-the-art neural
networks for the generation of similarly sized images35.
Supplementary Table 6 shows the computational costs
of calculating the reference data, training the network
and predicting Hamiltonians. While training of SchNOrb
took about 80 hours, performing the required DFT refer-
ence calculations remains the bottleneck for obtaining a
trained network, in particular for larger molecules. Our
approach to predicting Hamiltonian matrices leads to ac-
celerations of 2-3 orders of magnitude.

As SchNOrb learns the electronic structure of molec-
ular systems, all chemical properties that are defined as
quantum mechanical operators on the wavefunctions can
be computed from the ML prediction without the need
to train a separate model. We investigate this feature by
directly calculating electronic dipole and quadrupole mo-
ments from the orbital coefficients predicted by SchNOrb,
as well as the HF total energies for the ethanol molecule.
The corresponding mean absolute errors are reported in
Supplementary Tab. 4 and 5. The calculation of energies
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and forces from the coefficients requires the evaluation of
the core Hamiltonian (HF) or exchange correlation terms
(DFT), for which we currently resort to the ORCA code.
To avoid this computational overhead and obtain highly
accurate predictions for molecular dynamics simulations
with mean absolute error below 1 meV, we predict en-
ergies and forces directly as a sum of atomic contribu-
tions32. Regarding the electrostatic moments, excellent
agreement with the electronic structure reference is ob-
served for the majority of molecules (<0.054 D for dipoles
and <0.058 D Å for quadrupoles). The only deviation
from this trend is observed for uracil, where a loss func-
tion minimizing only the errors of Hamiltonian and over-
lap matrices is too limited. The dipole moment depends
strongly on the molecular electron density derived from
the orbital coefficients, which are never learned directly.

Beyond that, we have studied the prediction accuracy
for ethanol when using the larger def2-tzvp basis set
which includes f-orbitals (l = 3). While the predictions
of the Hamiltonian and overlap matrices remain remark-
ably accurate with 8.3 meV and 10−6, respectively, the
derived properties exhibit large errors, e.g. an MAE of
0.4775 eV for the orbital energies. For large numbers of
orbitals, errors in the Hamiltonian can accumulate due to
the diagonalisation. This problem could be solved by im-
proving the neural network architecture to further reduce
the prediction error or introducing a density dependent
term into the loss function, which will be explored in
future investigations.

In this case, a similar accuracy as the other methods
could in principle be reached upon the addition of more
reference data points. The above results demonstrate the
utility of combining a learned Hamiltonian with quantum
operators. This makes it possible to access a wide range
of chemical properties without the need for explicitly de-
veloping specialised neural network architectures.

Chemical insights from electronic deep learning

Recently, a lot of research has focused on explaining
predictions of ML models36–38 aiming both at the valida-
tion of the model39,40 as well as the extraction of scientific
insight17,32,41. However, these methods explain ML pre-
dictions either in terms of the input space, atom types
and positions in this case, or latent features such as local
chemical potentials32,42. In quantum chemistry however,
it is more common to analyse electronic properties in
terms of the MOs and properties derived from the elec-
tronic wavefunction, which are direct output quantities
of the SchNOrb architecture.

Molecular orbitals encode the distribution of electrons
in a molecule, thus offering direct insights into its un-
derlying electronic structure. They form the basis for
a wealth of chemical bonding analysis schemes, bridging
the gap between quantum mechanics and abstract chem-
ical concepts, such as bond orders and atomic partial
charges31. These quantities are invaluable tools in un-

derstanding and interpreting chemical processes based on
molecular reactivity and chemical bonding strength. As
SchNOrb yields the MOs, we are able to apply population
analysis to our ML predictions. Fig. 2d shows Loewdin
partial atomic charges and bond orders for the uracil
molecule. Loewdin charges provide a chemically intuitive
measure for the electron distribution and can e.g. aid in
identifying potential nucleophilic or electrophilic reaction
sites in a molecule. The negatively charged carbonyl oxy-
gens in uracil, for example, are involved in forming RNA
base pairs. The corresponding bond orders provide infor-
mation on the connectivity and types of bonds between
atoms. In the case of uracil, the two double bonds of
the carbonyl groups are easily recognizable (bond order
2.12 and 2.14, respectively). However, it is also possible
to identify electron delocalisation effects in the pyrimi-
dine ring, where the carbon double bond donates elec-
tron density to its neighbors. A population analysis for
malondialdehyde, as well as population prediction errors
for all molecules can be found in Supplementary Fig. 4.
and Supplementary Table 3.

The SchNOrb architecture enables an accurate predic-
tion of the electronic structure across molecular configu-
ration space, which provides for rich chemical interpreta-
tion during molecular reaction dynamics. Fig. 3a shows
an excerpt of a molecular dynamics simulation of malon-
dialdehyde that was driven by atomic forces predicted us-
ing SchNOrb. It depicts the proton transfer together with
the relevant MOs and the electronic density. Supplemen-
tary Video 1 shows a side-by-side comparison between
the predicted and reference HOMO-2 orbital during this
excerpt of the trajectory. The density paints an intuitive
picture of the reaction as it migrates along with the hy-
drogen. This exchange of electron density during proton
transfer is also reflected in the orbitals. Their dynami-
cal rearrangement indicates an alternation between single
and double bonds. The latter effect is hard to recognise
based on the density alone and demonstrates the wealth
of information encoded in the molecular wavefunctions.

Fig. 3b depicts the forces the different MOs exert onto
the hydrogen atom exchanged during the proton trans-
fer. All forces are projected onto the reaction coordinate,
where positive values correspond to a force driving the
proton towards the product state. In the initial config-
uration I, most forces lead to attraction of the hydrogen
atom to the right oxygen. In the intermediate config-
uration II, orbital rearrangement results in a situation
where the majority of orbitals forces on the hydrogen
atom become minimal, representing mostly non-bonding
character between oxygens and hydrogen. One excep-
tion is MO 13, depicted in the inset of Fig. 3b. Due
to a minor deviation from a symmetric O-H-O arrange-
ment, the orbital represents a one-sided O-H bond, ex-
erting forces that promote the reaction. The intrinsic
fluctuations during the proton transfer molecular dynam-
ics are captured by the MOs as can be seen in Fig. 3c.
This shows the distribution of orbital energies encoun-
tered during the reaction. As would be expected, both
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FIG. 3: Proton transfer in malondialdehyde. (a) Excerpt of the MD trajectory showing the proton transfer, the
electron density as well as the relevant MOs HOMO-2 and HOMO-3 for three configurations (I, II, III). (b) Forces exerted by
the MOs on the transferred proton for configurations I and II. (c) Density of states broadened across the proton transfer
trajectory. MO energies of the equilibrium structure are indicated by gray dashed lines. The inset shows a zoom of HOMO-2
and HOMO-3.

HOMO-2 and HOMO-3 (inset, orange and blue respec-
tively), which strongly participate in the proton transfer,
show significantly broadened peaks due to strong energy
variations in the dynamics. This example nicely shows
the chemically intuitive interpretation that can be ob-
tained by the electronic structure prediction of SchNOrb.

Deep learning-enhanced quantum chemistry

An essential paradigm of chemistry is that the molec-
ular structure defines chemical properties. Inverse chem-
ical design turns this paradigm on its head by enabling
property-driven chemical structure exploration. The
SchNOrb framework constitutes a suitable tool to enable
inverse chemical design due to its analytic representation
of electronic structure in terms of the atomic positions.
We can therefore obtain analytic derivatives with respect
to the atomic positions, which provide the ability to op-
timise electronic properties. Fig. 4a shows the minimi-
sation and maximisation of the HOMO-LUMO gap εgap

of malondialdehyde as an example. We perform gradient
descent and ascent from a randomly selected configura-
tion rref until convergence at rmin and rmax, respectively.
We are able to identify structures which minimise and
maximise the gap from its initial 3.15 eV to 2.68 eV at
rmin and 3.59 eV at rmax. While in this proof of concept
these changes were predominantly caused by local defor-
mations in the carbon-carbon bonds indicated in Fig. 4a,
they present an encouraging prospect how electronic sur-

rogate models such as SchNOrb can contribute to com-
putational chemical design using more sophisticated op-
timisation methods, such as alchemical derivatives43 or
reinforcement learning44.

ML applications for electronic structure methods have
usually been one-directional, i.e. ML models are trained
to predict the outputs of calculations. On the other hand,
models in the spirit of Fig. 1b, such as SchNOrb, offer
the prospect of providing a deeper integration with quan-
tum chemistry methods by substituting parts of the elec-
tronic structure calculation. SchNOrb directly predicts
wavefunctions based on quantum chemistry data, which
in turn, can serve as input for further quantum chemi-
cal calculations. For example, in the context of HF or
DFT calculations, the relevant equations are solved via a
self-consistent field approach (SCF) that determines a set
of MOs. The convergence with respect to SCF iteration
steps largely determines the computational speed of an
electronic structure calculation and strongly depends on
the quality of the initialisation for the wavefunction. The
coefficients predicted by SchNOrb can serve as such an
initialisation of SCF calculations. To this end, we gen-
erated wavefunction files for the ORCA quantum chem-
istry package45 from the predicted SchNOrb coefficients,
which were then used to initialize SCF calculations. Fig.
4b depicts the SCF convergence for three sets of compu-
tations on the uracil molecule: using the standard ini-
tialisation techniques of quantum chemistry codes, and
the SchNorb coefficients with or without a second order
solver. Nominally, only small improvements are observed
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a b

FIG. 4: Applications of SchNOrb. (a) Optimisation of the HOMO-LUMO gap. HOMO and LUMO with energy levels
are shown for a randomly drawn configuration of the malonaldehyde dataset (centre) as well as for configurations that were
obtained from minimising or maximising the HOMO-LUMO gap prediction using SchNOrb (left and right, respectively). For
the optimised configurations, the difference of the orbitals are shown in green (increase) and violet (decrease). The dominant
geometrical change is indicated by the black arrows. (b) The predicted MO coefficients for the uracil configurations from the
test set are used as a wavefunction guess to obtain accurate solutions from DFT at a reduced number of self-consistent-field
(SCF) iterations. This reduces the required SCF iterations by an average of 77% using a Newton solver. In terms of runtime,
it is more efficient to use SOSCF, even though this saves only 15% of iterations for uracil.

using SchNorb coefficients in combination with a conven-
tional SCF solver. This is due to the various strategies
employed in electronic structure codes in order to provide
a numerically robust SCF procedure. By performing SCF
calculations with a second order solver, which would not
converge using a less accurate starting point than our
SchNorb MO coefficients, the efficiency of our combined
ML and second order SCF approach becomes apparent.
Convergence is obtained in only a fraction of the origi-
nal iterations, reducing the number of cycles by ∼ 77%.
Similarly, Supplementary Fig. 5 shows the reduction of
SCF iteration by ∼ 73% for malondialdehyde. However,
since the second-order optimization steps is more costly,
it is more time-efficient to perform conventional SOSCF
which reduces the convergence time by 13% and 16% for
uracil and malondialdehyde, respectively.

It should be noted, that this combined approach does
not introduce any approximations into the electronic
structure method itself and yields exactly the same re-
sults as the full computation. Another example of in-
tegration of the SchNOrb deep learning framework with
quantum chemistry, as shown in Fig. 1b, is the use of pre-
dicted wavefunctions and MO energies based on Hartree–
Fock as starting point for post-Hartree–Fock correla-
tion methods such as Møller-Plesset perturbation theory
(MP2). Supplementary Table 5 presents the mean ab-
solute error of an MP2 calculation for ethanol based on
wavefunctions predicted from SchNOrb. The associated
prediction error for the test set is 83 meV. Compared
to the overall HF and MP2 energy, the relative error of
SchNOrb amounts to 0.01 % and 0.06 %, respectively.
For the MP2 correlation energy, we observe a deviation

of 17 %, the reason of which is inclusion of virtual orbitals
in the calculation of the MP2 integrals. However, even
in this case, the total error only amounts to a deviation
of 93 meV.

IV. Discussion

The SchNOrb framework provides an analytical ex-
pression for the electronic wavefunctions in a local atomic
orbital representation as a function of molecular compo-
sition and atom positions. While previous approaches
have predicted Hamiltonians of single-species bulk ma-
terials in a small basis set for limited geometric defor-
mations28, SchNorb has been shown to enable the accu-
rate predictions of molecular Hamiltonians in a basis of
more than 100 atomic orbitals up to angular momentum
l = 2 for a much larger configuration space obtained from
molecular dynamics simulations. As a consequence, the
model provides access to atomic derivatives of wavefunc-
tions, which include molecular orbital energy derivatives,
Hamiltonian derivatives, which can be used to approxi-
mate nonadiabatic couplings46, as well as higher order
derivatives that describe the electron-nuclear response of
the molecule. Thus, the SchNOrb framework preserves
the benefits of interatomic potentials while enabling ac-
cess to the electronic structure as predicted by quantum
chemistry methods.

SchNOrb opens up completely new applications to ML-
enhanced molecular simulation. This includes the con-
struction of interatomic potentials with electronic prop-
erties that can facilitate efficient photochemical simu-
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lations during surface hopping trajectory dynamics or
Ehrenfest-type mean-field simulations, but also enables
the development of new ML-enhanced approaches to in-
verse molecular design via electronic property optimisa-
tion.

The SchNOrb neural network architecture demon-
strates that accurate predictions of electronic structure
is feasible. However, with increasing number of atomic
orbitals, the diagonalisation of the Hamiltonian leads to
the accumulation of prediction errors and becomes the
bottleneck of the prediction. Thus, for larger molecules
and basis sets, the accuracy of SchNOrb will have to be
further improved. More research on the architecture is
also required in order to reduce the required amount of
training data and parameters, e.g. by adding more prior
knowledge to the model. An import step into this di-
rection is to encode the full rotational symmetries of the
basis into the architecture, replacing the current data
augmentation scheme. Alternatively, on the basis of the
SchNOrb framework, intelligent preprocessing of quan-
tum chemistry data in the form of effective Hamiltonians
or optimised minimal basis representations47 can be de-
veloped in the future. Such preprocessing will also pave
the way towards the prediction of the electronic structure
based on post-HF correlated wavefunction methods and
post-DFT quasiparticle methods.

This work serves as a first proof of principle that di-
rect ML models of electronic structure based on quantum
chemistry can be constructed and used to enhance fur-
ther quantum chemistry calculations. We have presented
an immediate consequence of this by reducing the num-
ber of DFT-SCF iterations with wavefunctions predicted
via SchNOrb. The presented model delivers derived elec-
tronic properties that can be formulated as quantum me-
chanical expectation values. This provides an important
step towards a full integration of ML and quantum chem-
istry into the scientific discovery cycle.

V. Methods

Reference data

Reference configurations were sampled at random from
the MD17 dataset7 for each molecule. The number of
selected configurations per molecule is given in Supple-
mentary Table 1. All reference calculations were carried
out with the ORCA quantum chemistry code45 using the
def2-SVP basis set48. Integration grid levels of 4 and 5
were employed during SCF iterations and the final com-
putation of properties, respectively. Unless stated other-
wise, the default ORCA SCF procedure was used, which
is based on the Pulay method49. For the remaining cases,
the Newton–Raphson procedure implemented in ORCA
was employed as a second order SCF solver. SCF conver-
gence criteria were set to VeryTight. DFT calculations
were carried out using the PBE functional50. For ethanol,
additional HF computations were performed.

Molecular dynamics simulations for malondialdehyde
were carried out with SchNetPack51. The equations of
motions were integrated using a timestep of 0.5 fs. Simu-
lation temperatures were kept at 300 K with a Langevin
thermostat52 employing a time constant of 100 fs. Tra-
jectories were propagated for a total of 50 ps, of which
the first 10 ps were discarded.

Details on the neural network architecture

In the following we describe the neural network de-
picted in Fig. 2 in detail. We use shifted softplus activa-
tion functions

ssp(x) = ln

(
1

2
ex +

1

2

)
(7)

throughout the architecture. Linear layers are written as

linear(x) = Wᵀx + b (8)

with input x ∈ Rnin , weights W ∈ Rnin×nout and bias
b ∈ Rnout . Fully-connected neural networks with one
hidden layer are written as

mlp(x) = Wᵀ
2 ssp (Wᵀ

1x + b1) + b2 (9)

with weights W1 ∈ Rnin×nhidden and W2 ∈ Rnhidden×nout

and biases b1,b2 accordingly. Model parameters are
shared within layers across atoms and interactions, but
never across layers. We omit layer indices for clarity.

The representations of atomic environments are con-
structed with the neural network structure as in SchNet.
In the following, we summarise this first part of the
model. For further details, please refer to Schtt et al.30.
First, each atom is assigned an initial element-specific
embedding

x0
i = aZi ∈ RB , (10)

where Zi is the nuclear charge and B is the number of
atom-wise features. In this work, we use B = 1000 for
all models. The representations are refined using SchNet
interaction layers (Fig. 2b). The main component is a
continuous-filter convolutional layer (cfconv)

cfconv((x1, r1), . . . , (xn, rn)) =∑
j 6=i

xj ◦Wfilter(rij)


i=1...n

(11)

which takes a spatial filter Wfilter : R→ RB

Wfilter(rij) = mlp(g(rij)) fcutoff(rij) (12)

with

g(rij) =
[
exp(−γ(rij − k∆µ)2)

]
0≤k≤rc/∆µ

(13)

fcutoff(rij) =

{
0.5×

[
1 + cos

(
πr
rc

)]
r < rc

0 r > rc

, (14)
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where rc is the cutoff radius and ∆µ is the grid spac-
ing of the radial basis function expansion of interatomic
distance rij . While this adds spatial information to the
environment representations for each feature separately,
the crosstalk between features is performed atom-wise by
fully-connected layers (linear and mlpatom in Fig. 2b) to
obtain the refinements vti, where t is the current inter-
action iteration. The refined atom representations are
then

xti = xt−1
i + vti. (15)

These representations of atomic environments are em-
ployed by SchNet to predict chemical properties via
atom-wise contributions. However, in order to extend
this scheme to the prediction of the Hamiltonian, we need
to construct representations of pair-wise environments in
a second interaction phase.

The Hamiltonian matrix is of the form

H =


H11 · · · H1j · · · H1n

...
. . .

...
...

Hi1 · · · Hij · · · Hin

...
...

. . .
...

Hn1 · · · Hnj · · · Hnn

 (16)

where a matrix block Hij ∈ Rnao,i×nao,j depends on the
atoms i, j within their chemical environment as well as on
the choice of nao,i and nao,j atomic orbitals, respectively.
Therefore, SchNOrb builds representations of these em-
bedded atom pairs based on the previously constructed
representations of atomic environments. This is achieved
through the SchNOrb interaction module (see Fig. 2c).

First, a raw representation of atom pairs is obtained
using a factorised tensor layer32,53:

hλij = ftensor(xλi ,x
λ
j , rij) (17)

= ssp( linear2[

linear1(xλi ) ◦ linear1(xλj ) ◦Wfilter(rij)

]).

The layers linear1 : RB 7→ RB map the atom representa-
tions to the factors, while the filter-generating network
Wfilter : R → RB is defined analogously to Eq. 12 and
directly maps to the factor space. In analogy to how the
SchNet interactions are used to build atomic environ-
ments, SchNOrb interactions are applied several times,
where each instance further refines the atomic environ-
ments of the atom pairs with additive corrections

xT+λ
i = xT+λ−1

i + vT+λ
i (18)

vT+λ
i = mlpatom

∑
j 6=i

hlij

 (19)

as well as constructs pair-wise features:

pλij = pλ,pair
ij +

∑
m 6=i

pλ,env
mj +

∑
n 6=j

pλ,env
in (20)

pλ,pair
ij = mlppair(h

λ
ij) (21)

pλ,env
ij = mlpenv(hλij) (22)

where mlppair models the direct interactions of atoms i, j
while mlpenv models the interactions of the pair with
neighboring atoms. As described above, the atom pair
coefficients are used to form a basis set

ωλij =

{
p0
ij ⊗ 1D for λ = 0[

pλij ⊗
rij
‖rij‖

]
W for λ > 0

where λ corresponds to the angular momentum channel
and W ∈ R3×D are learnable parameters to project along
D directions. For all results in this work, we used D =
4. For interactions between s-orbitals, we consider the
special case λ = 0 where the features along all directions
are equal due to rotational invariance. At this point, ω0

ij

is rotationally invariant and ωλ>0
ij is covariant. On this

basis, we obtain features with higher angular momenta
using:

Ωl
ij =

l∏
λ=0

ωλij with 0 ≤ l ≤ 2L,

where features Ωl
ij possess angular momentum l. The

SchNOrb representations of atom pairs embedded in their
chemical environment, that were constructed from the
previously constructed SchNet atom-wise features, will
serve in a next step to predict the corresponding blocks
of the ground-state Hamiltonian.

Finally, we assemble the Hamiltonian and overlap ma-
trices to be predicted. Each atom pair block is predicted
from the corresponding features Ωl

ij :

H̃ij =


Hoff

([
Ωl
ij

]
0≤l≤2L+1

)
for i 6= j

Hon

([
Ωl
im

]
m6=i

0≤l≤2L+1

)
for i = j

,

where we restrict the network to linear layers in order to
conserve the angular momenta:

Hoff(·) =
∑
l

linearloff

(
Ωl
ij

)
[:nao,i, :nao,j ]

Hon(·) =
∑
j,l

linearlon

(
Ωl
ij

)
[:nao,i, :nao,i]

with linearoff, linearon : R2L+1×D → Rnao,max×nao,max , i.e.
mapping to the maximal number of atomic orbitals in
the data. Then, a mask is applied to the matrix block to
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yield only H̃ij ∈ Rnao,i×nao,j . Finally, we symmetrise the
prediced Hamiltonian:

H =
1

2
(H̃ + H̃ᵀ) (23)

The overlap matrix is obtained similarly with blocks

Soff (·) = linearS,on(Ωij)[:nao,i, :nao,j ]

Sii = SZi .

The prediction of the total energy is obtained analogously
to SchNet as a sum over atom-wise energy contributions:

E =
∑
i

mlpE(xi).

Data augmentation

While SchNOrb constructs features Ωl
ij and Ωl

ii with
angular momenta such that the Hamiltonian matrix can
be represented as a linear combination of those, it does
not encode the full rotational symmetry a priori. How-
ever, this can be learned by SchNOrb assuming the train-
ing data reflects enough rotations of a molecule. To save
computing power, we reduce the amount of reference
calculations by randomly rotating configurations before
each training epoch using Wigner D rotation matrices.54

Given a randomly sampled rotor R, the applied transfor-
mations are

r̃i = D(1)(R)ri (24)

F̃i = D(1)(R)Fi (25)

H̃µν = D(lµ)(R)HµνD(lν)(R) (26)

S̃µν = D(lµ)(R)SµνD(lν)(R) (27)

for atom positions ri, atomic forces Fi, Hamiltonian ma-
trix H, and overlap S.

Neural network training

For the training, we used a combined loss to train on
energies E, atomic forces F, Hamiltonian H and overlap
matrices S simultaneously:

`
[
(H̃, S̃, Ẽ), (H,S, E,F)

]
=

‖H− H̃‖2F + ‖S− S̃‖2F + ρ ‖E − Ẽ‖2

+
1− ρ
natoms

natoms∑
i=0

∥∥∥∥∥Fi −
(
−∂Ẽ
∂ri

)∥∥∥∥∥
2

(28)

where the variables marked with a tilde refer to the corre-
sponding predictions and ρ determines the trade-off be-
tween total energies and forces. The neural networks
were trained with stochastic gradient descent using the

ADAM optimiser55. We reduced the learning rate using
a decay factor of 0.8 after tpatience epochs without im-
provement of the validation loss. The training is stopped
at lr ≤ 5 · 10−6. The mini-batch sizes, patience and data
set sizes are listed in Supplementary Table 1. Afterwards,
the model with lowest validation error is selected for test-
ing.

Data availability

All datasets used in this work have been made available
on http://www.quantum-machine.org/datasets.

Code availability

All code developed in this work will be made available
upon request.
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Gaussian approximation potentials: The accuracy of quan-
tum mechanics, without the electrons. Phys. Rev. Lett.
104, 136403 (2010).

4 Smith, J. S., Isayev, O. & Roitberg, A. E. Ani-1: an
extensible neural network potential with dft accuracy at
force field computational cost. Chem. Sci. 8, 3192–3203
(2017).

5 Podryabinkin, E. V. & Shapeev, A. V. Active learning
of linearly parametrized interatomic potentials. Comput.
Mater. Sci. 140, 171–180 (2017).

6 Podryabinkin, E. V., Tikhonov, E. V., Shapeev, A. V. &
Oganov, A. R. Accelerating crystal structure prediction by
machine-learning interatomic potentials with active learn-
ing. Phys. Rev. B 99, 064114 (2019).

7 Chmiela, S. et al. Machine learning of accurate energy-
conserving molecular force fields. Sci. Adv. 3, e1603015
(2017).

8 Chmiela, S., Sauceda, H. E., Müller, K.-R. & Tkatchenko,
A. Towards exact molecular dynamics simulations with
machine-learned force fields. Nat. Commun. 9, 3887
(2018).

9 Ryczko, K., Strubbe, D. A. & Tamblyn, I. Deep learn-
ing and density-functional theory. Physical Review A 100,
022512 (2019).

10 Brockherde, F. et al. Bypassing the Kohn-Sham equations
with machine learning. Nat. Commun. 8, 872 (2017).

11 Wilkins, D. M. et al. Accurate molecular polarizabilities
with coupled cluster theory and machine learning. Proc.
Natl. Acad. Sci. U.S.A. 116, 3401–3406 (2019).

12 Gastegger, M., Behler, J. & Marquetand, P. Machine
learning molecular dynamics for the simulation of infrared
spectra. Chem. Sci. 8, 6924–6935 (2017).

13 Rupp, M., Tkatchenko, A., Müller, K.-R. & Von Lilienfeld,
O. A. Fast and accurate modeling of molecular atomiza-
tion energies with machine learning. Phys. Rev. Lett. 108,
058301 (2012).

14 Eickenberg, M., Exarchakis, G., Hirn, M. & Mallat, S.
Solid harmonic wavelet scattering: Predicting quantum
molecular energy from invariant descriptors of 3d electronic
densities. In Advances in Neural Information Processing
Systems 30, 6543–6552 (Curran Associates, Inc., 2017).

15 von Lilienfeld, O. A. Quantum Machine Learning in Chem-
ical Compound Space. Angew. Chem. Int. Ed. 57, 4164–
4169 (2018).

16 Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. &
Dahl, G. E. Neural message passing for quantum chem-

istry. In Proceedings of the 34th International Conference
on Machine Learning, 1263–1272 (2017).

17 Jha, D. et al. Elemnet: Deep learning the chemistry of
materials from only elemental composition. Sci. Rep. 8,
17593 (2018).

18 Kitchin, J. R. Machine learning in catalysis. Nat. Catal.
1, 230–232 (2018).

19 Maryasin, B., Marquetand, P. & Maulide, N. Machine
Learning for Organic Synthesis: Are Robots Replacing
Chemists? Angew. Chem. Int. Ed. 57, 6978–6980 (2018).

20 Li, H., Collins, C., Tanha, M., Gordon, G. J. & Yaron, D. J.
A density functional tight binding layer for deep learning
of chemical hamiltonians. J. Chem. Theory Comput. 14,
5764–5776 (2018). PMID: 30351008.

21 Welborn, M., Cheng, L. & Miller III, T. F. Transferability
in machine learning for electronic structure via the molecu-
lar orbital basis. J. Chem. Theory Comput. 14, 4772–4779
(2018).

22 Cheng, L., Welborn, M., Christensen, A. S. & Miller,
T. F. A universal density matrix functional from molecu-
lar orbital-based machine learning: Transferability across
organic molecules. J. Chem. Phys. 150, 131103 (2019).
https://doi.org/10.1063/1.5088393.

23 Sugawara, M. Numerical solution of the schrödinger equa-
tion by neural network and genetic algorithm. Comput.
Phys. Commun. 140, 366–380 (2001).

24 Manzhos, S. & Carrington, T. An improved neural net-
work method for solving the schrödinger equation. Can. J.
Chem. 87, 864–871 (2009).

25 Carleo, G. & Troyer, M. Solving the quantum many-body
problem with artificial neural networks. Science 355, 602–
606 (2017).

26 Grisafi, A., Wilkins, D. M., Csányi, G. & Ceriotti, M.
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