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ACTIONS OF ARITHMETIC GROUPS ON HOMOLOGY SPHERES

AND ACYCLIC HOMOLOGY MANIFOLDS

MARTIN R. BRIDSON, FRITZ GRUNEWALD, AND KAREN VOGTMANN

Abstract. We establish lower bounds on the dimensions in which arithmetic groups
with torsion can act on acyclic manifolds and homology spheres. The bounds rely on
the existence of elementary p-groups in the groups concerned. In some cases, including
Sp(2n,Z), the bounds we obtain are sharp: if X is a generalized Z/3-homology sphere
of dimension less than 2n− 1 or a Z/3-acyclic Z/3-homology manifold of dimension less
than 2n, and if n ≥ 3, then any action of Sp(2n,Z) by homeomorphisms on X is trivial; if
n = 2, then every action of Sp(2n,Z) on X factors through the abelianization of Sp(4,Z),
which is Z/2.

1. Introduction

The group SL(n,Z) acts faithfully by linear transformations on Rn and hence on the
sphere at infinity Sn−1, but if n ≥ 3 then it cannot act on lower-dimensional spheres or
Euclidean spaces. Indeed, in [2], Bridson and Vogtmann1 proved that if n ≥ 3 and d < n,
then SL(n,Z) cannot act non-trivially by homeomorphisms on any contractible manifold
of dimension d, nor on any homology sphere of dimension d − 1. This is an immediate
corollary of a more general theorem proved in [2]: if n ≥ 3 then SAut(Fn), the unique
subgroup of index 2 in the automorphism group of the free group Fn, cannot act non-
trivially by homeomorphisms on any Z/2-acyclic Z/2-homology manifold of dimension less
than n, nor any generalized Z/2-homology sphere of dimension less than n− 1. The proof
revolved around the elementary abelian 2-groups in SAut(Fn). Using Smith theory, one
argues that one of a small number of involutions have to act trivially; a detailed analysis of
the quotients of SAut(Fn) by these involutions then allows one to conclude that the entire
group has to act trivially.

Smith theory applies for any prime p. When p is odd there is a stronger restriction on
the dimension of a sphere on which an elementary abelian p-subgroup can act. If n is even,
then SAut(Fn) contains an elementary 3-group of rank n/2, and by exploiting this one
can give a considerably shorter proof of the fact that SAut(F2m) (and hence SL(2m,Z))
cannot act on an acyclic manifold of dimension less than 2m or a Z/3-homology sphere
of dimension less than 2m − 1 (see [2], Theorem 4.9). The purpose of the present note is

1991 Mathematics Subject Classification. 57S25, 53C24, 20F65, 20G30.
Key words and phrases. Arithmetic groups, Smith theory, acyclic manifolds.
Bridson is supported by an EPSRC Senior Fellowship and a Royal Society Wolfson Research Merit

Award. Vogtmann is supported by NSF grant DMS-0204185.
1The proof of a similar theorem announced earlier [10] is not valid.
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to point out that the strategy of this shorter proof, combined with ideas of Zimmermann
[15], can be used to establish similar theorems for many arithmetic groups. In most cases,
this will give only a lower bound on the dimension of spheres and acyclic spaces where
the group can act. But in good cases, where one has a suitably large elementary abelian
p-subgroup for some p, the bounds that one obtains can be sharp.

One such case is that of the symplectic groups. In this case, we prove that for n > 2 any
action of Sp(2n,Z) on a generalized Z/3-homology sphere of dimension less than 2n−1 or a
Z/3-acyclic Z/3-homology manifold of dimension less than 2n must be trivial. If n = 2 any
such action factors through the abelianization of Sp(4,Z), which is Z/2. The dimension
bound is sharp, since Sp(2n,Z) does act (linearly) on R2n and S2n−1. This result, with a
weaker conclusion for n = 2, was obtained independently by Zimmermann (see [14]).

Our investigations are motivated by the following general question:

Question. Given an affine algebraic group scheme G defined over Z and a ring oS of S-
integers in a number field k, what is the smallest dimensional sphere (or Euclidean space) on
which G(oS) can act? In particular, are there examples of actions below the first dimension
in which G(oS) has a non-trivial linear representation over R?

The bounds that we establish depend on the torsion in the groups G(oS) and are sum-
marized in Theorem 3.2. In Section 2 we show how everything works in the concrete setting
of the symplectic group Sp(2n,Z). In Section 3 we point out that the basic features of the
argument work for much more general arithmetic groups, and a slightly weaker hypothesis
may be used. We emphasize here, however, that this general argument does not eliminate
the need for special arguments in low-dimensional cases, even for the symplectic group.

In Section 4 we discuss conditions on linear algebraic groups G and rings of S-integers
oS that are sufficient to ensure that the lattices Γ = G(oS) have the features needed for
our general argument. The lower bounds on the dimension in which such groups Γ have
interesting actions depend on the existence of elementary p-subgroups; the larger the rank
of such a subgroup, the better the bounds one obtains. We provide some elementary
examples of such subgroups, but we leave open the question of how to identify the largest
such subgroup in general.

Acknowledgements. We thank Alex Lubotzky, Gopal Prasad and Alan Reid for their help-
ful comments concerning the material in Section 4. Most particularly, we thank Dan Segal
for his notes on this material, from which we borrowed heavily. We also thank the Insti-
tute Mittag-Leffler (Djursholm, Sweden) for its hospitality during the preparation of this
manuscript.

Tragically, the second author did not survive to see this project completed. He is sorely
missed for many reasons. Any deficiencies in the final version of this paper are the respon-
sibility of the first and third authors alone.
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2. The integral symplectic group

The symplectic group Sp(2n,Z) is the subgroup of GL(2n,Z) consisting of matrices
which preserve the standard symplectic form. With respect to a symplectic basis

{a1, . . . , an, b1, . . . , bn}

for V = Z2n, the form is represented by the matrix

J =

(

0 I
−I 0

)

and an integer matrix M lies in Sp(2n,Z) if and only if tMJM = J .
There is a subgroup T of Sp(2n,Z) isomorphic to (Z/3)n, generated by the symplectic

transformations

Ri :



















ai 7→ −bi

bi 7→ ai − bi

ak 7→ ak for k 6= i

bk 7→ bk for k 6= i

If Vi is the subspace with basis {ai, bi}, then Ri is the identity on V ⊥

i ⊂ R2n and the matrix

of Ri restricted to Vi is

(

0 1
−1 −1

)

. We remark that T is also a subgroup of SL(2n,Z),

and is the same subgroup as was used in [2], Lemma 3.2.
We now recall the statement of Theorem 4.7 of [2] for odd primes p, which is proved

using Smith Theory.

Theorem 2.1. Let p be an odd prime. If m < 2d−1, then (Z/p)d cannot act effectively by
homeomorphisms on a generalized Z/p-homology sphere of dimension m or a Z/p-acyclic
Z/p-homology manifold of dimension m+ 1.

For T ∼= (Z/3)n this says:

Corollary 2.2. Whenever T acts by homeomorphisms on a generalized Z/3-homology
sphere of dimension less than 2n−1 or a Z/3-acyclic Z/3-homology manifold of dimension
less than 2n, some non-trivial element of T acts trivially.

We shall use the structure of Sp(2n,Z) to deduce Theorem 2.3 from Corollary 2.2. The
case n = 2 is special: for n ≥ 3 the group Sp(2n,Z) is perfect, but Sp(4,Z) maps onto
Sp(4, 2), which is isomorphic to the symmetric group Σ6 and hence maps onto Z/2, which
acts non-trivially on the line and the 0-sphere.

Theorem 2.3. Let X be a generalized Z/3-homology sphere of dimension less than 2n− 1
or a Z/3-acyclic Z/3-homology manifold of dimension less than 2n. If n ≥ 3, then any
action of Sp(2n,Z) by homeomorphisms on X is trivial. If n = 2, then every action of
Sp(2n,Z) on X factors through the abelianization of Sp(4,Z), which is Z/2.
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Proof. Let ρ : Sp(2n,Z) → Homeo(X) be an action of Sp(2n,Z) on X and let T ∼= (Z/3)n

be the subgroup defined above. By Corollary 2.2, there is a non-trivial element t ∈ T in
the kernel of ρ.

The center of Sp(2n,Z) is ±I, and is not contained in T . By the Margulis normal
subgroup theorem, any normal subgroup of Sp(2n,Z) is either central or has finite index.
Since the kernel of ρ contains a non-central element, it must have finite index. Sp(2n,Z)
has the congruence subgroup property, so the kernel of ρ contains a principal congruence
subgroup Γm for some m. Thus our action factors through the quotient Sp(2n,Z)/Γm

∼=
Sp(2n,Z/m), and it suffices to show that any action of Sp(2n,Z/m) is trivial.

Now Sp(2n,Z/m) ∼=
∏

j Sp(2n,Z/p
ei
i ), where pi runs over the prime divisors of m (see,

e.g., [9] for an elementary proof of this). If an action of Sp(2n,Z/m) is non-trivial, then its
restriction to some Sp(2n,Z/peii ) must be non-trivial. So it is enough to prove the theorem
with Sp(2n,Z) replaced by Sp(2n,Z/peii ).

So now we assume that ρ is an action of Sp(2n,Z/pe) on X, and we let Q ≤ Homeo(X)
denote its image. T maps injectively to Sp(m,Z/pe), so we identify it with its image. As
above, some non-trivial t ∈ T acts trivially on X.

The kernel of the natural map from Sp(2n,Z/pe) onto Sp(2n,Z/p) is a p-group. Except
in the case n = p = 2 the quotient PSp(2n, p) = Sp(2n,Z/p)/{±I} is simple, so the
composition factors of Sp(2n,Z/pe) are PSp(2n, p), Z/2 and Z/p. Furthermore (except for
Sp(4, 2)) Sp(2n,Z/pe) is perfect; thus if Q is non-trivial it must map onto PSp(2n, p). But
any two maps Sp(2n,Z/pe) ։ PSp(2n, p) have the same kernel, which does not contain t.
This contradicts the fact that the image of t in Q is trivial.

If n = p = 2, then we must deal with the possibility that the image of ρ is a non-trivial
2-group. A convenient way to do this is to note that the following element of order 5 in
Sp(4,Z) has normal closure of index 2:









0 1 0 0
−1 0 1 −1
0 1 0 1
0 0 −1 1









It follows that the only non-trivial finite 2-group onto which Sp(4,Z) can map is Z/2.
(This matrix is the image of an element µ of order 10 in the mapping class group Mod2

of a genus 2 surface, under the natural map Mod2 → Sp(4,Z). We refer the reader to [6]
for a geometric argument that the normal closure of µ in Mod2 has index 2.) �

3. A General Argument

The argument for Sp(2n,Z) used several features of this group which are common in
higher-rank arithmetic groups. Sp(2n) is an example of a group scheme defined over Z,
and it is convenient to use this language to phrase a general question about actions of such
groups on spheres and Euclidean spaces.

Recall that an affine algebraic group scheme G defined over Z is a functor from the
category of rings to groups which is represented by some finitely-generated ring A; this
means that there is a natural bijection between G(R) and Hom(A,R) for any ring R.



ARITHMETIC GROUP ACTIONS ON SPHERES AND ACYCLIC MANIFOLDS 5

As a simple example, consider the functor G = SL2; it is an affine group scheme over
Z represented by the ring A = Z[x1, x2, x3, x4]/〈x1x4 − x2x3 − 1〉. For a very readable
introduction to affine group schemes, see [13].

Question. Given an affine algebraic group scheme G defined over Z and a ring oS of S-
integers in a number field k, what is the smallest dimensional sphere (or Euclidean space) on
which G(oS) can act? In particular, are there examples of actions below the first dimension
in which G(oS) has a non-trivial linear representation over R?

The answer to this question will depend on both the group scheme G and on oS . In our
answer for G = Sp(2n) and oS = Z we used Smith theory to find a non-central element
in Sp(2n,Z) which acted trivially; this allowed us to reduce the problem to actions of
Sp(2n,Z/pe). We then began over, with a Smith theory argument for Sp(2n,Z/pe). Instead
of starting over, we could have hypothesized the existence of one element t ∈ Sp(2n,Z)
which acts trivially and which projects to a non-central element in each Sp(2n,Z/pe). A
slightly more complicated argument, which we give below, can then be used to show that
t normally generates Sp(2n,Z) so the whole action is trivial. The advantage of this new
argument is that it applies whenever Γ = G(oS) enjoys the following properties:

(1) Normal Subgroup Property. Every normal subgroup of Γ is either central or
has finite index

(2) Weak Congruence Subgroup Property. For every finite-index normal sub-
group K < Γ, the pre-image in Γ of the centre of Γ/K contains a principal congru-
ence subgroup Γ(a) = ker(Γ → G(oS/a)).

(3) Very Strong Approximation. The map Γ → G(oS/a) is surjective for all ideals
a.

(4) Quasi-Solvable Quotients. For every prime ideal p in oS the quotient of G(oS/p)
by its centre is centreless with only solvable proper quotients (e.g. simple).

Proposition 3.1. Let Γ satisfy properties (1)-(4) above and suppose that Γ contains an
element t whose image in G(oS/p) is non-central for every prime ideal p. Then the quotient
of Γ by the normal closure of t is finite and solvable. In particular, if Γ is perfect then the
normal closure of t is equal to Γ.

Proof. Let K be the subgroup of Γ normally generated by t, let N be the pre-image in Γ
of the centre of Γ/K, and let f : Γ ։ Γ/N := Q be the quotient map.

Since N contains the non-central element t, it has finite index, by (1). The Congruence
Subgroup Property (2) tells us that N must contain a congruence subgroup Γ(a) = ker(Γ →
G(oS/a)), and (3) tells us that Γ → G(oS/a) is onto. Thus f induces an epimorphism

f : G(oS/a) ։ Q.

Since oS is a Dedekind domain, a factors uniquely as a product of powers of prime ideals,
say a =

∏

p
ei
i . By the Chinese Remainder Theorem, G(oS/a) =

∏

G(oS/p
ei
i ). We will be

done if we can argue that the restriction of f to each G(oS/p
ei
i ) has solvable image.
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An elementary calculation shows that the kernel of the natural map G(oS/p
e) → G(oS/p)

is a p-group, where p is the characteristic of oS/p. Thus the kernel of
∏

G(oS/p
ei
i ) →

∏

G(oS/pi)

is a nilpotent group, which we denote P .
Now consider the following commutative diagram of epimorphisms:

∏

G(oS/p
ei
i )

f
−→ Q

↓ ↓
∏

G(oS/pi) −→ Q/f(P )

Let (t1, . . . , tn) denote the image of t in
∏

G(oS/pi). By hypothesis, each ti is non-central
in G(oS/pi). On the other hand, the image of t in Q is trivial, by hypothesis, so the image
of each ti in Q/f(P ) is central by the virtue of the following elementary observation:

Let φ : G1 × G2 → A be an epimorphism of groups. If φ(g1, g2) = 1 then φ(g1, 1) and
φ(1, g2) are central in A.

Property (4) now implies that the image of G(oS/pi) in Q/f(P ) is solvable, and hence
Q/f(P ), a product of commuting solvable groups, is solvable. Since f(P ) is nilpotent, we
conclude that Q is solvable and hence so is its central extension Γ/K, as required. �

We combine this proposition with Theorem 2.1 to obtain restrictions on the possible
actions of Γ.

Theorem 3.2. Let p be an odd prime, let Γ = G(oS), as above, be a perfect group with
properties (1)-(4), and consider an action of Γ on a generalized m-dimensional Z/p-sphere
or (m+1)-dimensional Z/p-acyclic homology manifold over Z/p. Suppose that Γ contains
an elementary abelian p-group T of rank ⌊m/2⌋+1 whose projection to G(oS/p) intersects
the centre trivially for each prime ideal p in oS. Then the action is trivial.

Proof. Theorem 2.1 gives us an element t ∈ T ⊂ Γ which acts trivially. Then Proposi-
tion 3.1 allows us to conclude that the entire group Γ acts trivially. �

The subgroup T used in our previous proof for Sp(2n,Z) satisfies the hypothesis of
Theorem 3.2, so this gives a slightly different proof for Sp(2n,Z) when n ≥ 3.

4. Arithmetic groups

Let G be an algebraic group defined over Q. We fix an embedding G →֒ GLn. This
means that we identify G with a set of invertible matrices whose entries satisfy specific
polynomial equations with coefficients in Q. These equations make sense for any field k
containing Q, so we can define G(k) to be GL(n, k) ∩ G. If k is an algebraic number
field with ring of integers o and S a set of valuations, we may then define G(oS) to be
GL(n, oS) ∩G(k).

In this section we discuss conditions on G, k and S which will guarantee that Γ = G(oS)
has the properties we need for Proposition 3.1. We assume throughout that G is connected
(in the Zariski topology), simply connected (has no proper étale covers), and absolutely
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simple (i.e. simple when considered as an algebraic group over the algebraic closure of the
defining field). Examples of such groups include the classical special linear and symplectic
groups, as well as commutator subgroups of the orthogonal groups. We also assume that
Γ is infinite throughout.

4.1. Normal subgroups. The first property in the list from Section 3 is the Normal
Subgroup Property, which was established for a large class of algebraic groups by Margulis
[8]. In particular, under the conditions fixed above, the Normal Subgroup Property holds
for Γ as long as the dimension of a maximal k-split torus in G is at least 2 (rankk(G) ≥ 2)
([8], quoted in [11] as Theorem 9.9).

4.2. Congruence Subgroups. Sufficient conditions for ensuring Property (2) (the Con-
gruence Subgroup property) are given at length in [11], chapter 9. Our standing assump-
tions on G are sufficient together with:

• G has k-rank at least 2,
• if G is one of B2 or G2 then S contains all prime divisors of 2 with residue degree
1.

4.3. Strong Approximation. The third property on our list is the most problematic.
For G = SLn the statement is classical and can be found, for example, in Bourbaki ([1],
Chapter VII, section 2, part 4 on Dedekind domains). The proof uses the fact that SL(n, oS)
and SL(n, oS/a) are generated by elementary matrices I +λEi,j together with the Chinese
Remainder Theorem.

For most linear algebraic groups G one cannot expect Γ → G(oS/a) to be surjective for
all a. One reason is that the equations defining G may change drastically when reduced
modulo a prime, or even become completely trivial; in fact we should write G(a)(oS/a)
to indicate that we are considering the defining equations for G modulo a in the image.
However, in our proof we cannot afford to exclude any primes because we have no control
over which ideal a will be given to us by the Congruence Subgroup Property. It turns out
that it is enough to assume that

• For every prime p in oS , the map G(op) → G(p)(o/p) is surjective.

(Here op is the localization of o at the prime p, i.e. the ring obtained from o by inverting
all primes except p, and o/p = oS/p = op/p.) This assumption is satisfied, for example, by
all of the Chevalley groups (see [3]).

Under this assumption, Strong Approximation implies the needed surjectivity. This
argument goes as follows. The Strong Approximation as stated in [11], Theorem 7.12, can
be rephrased as:

Theorem 4.1. Let p1, . . . , pr be primes not in S. Let ei ∈ N and put

Ki = {g ∈ G(opi) | g ≡ In (mod peii )} .

Embed Γ diagonally in G(op1)× · · · ×G(opr ). Then

Γ · (K1 × · · · ×Kr) = G(op1)× · · · ×G(opr ).
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When G = SLn, o = Z, S = ∅ and we have only one prime p, the theorem reduces to
the statement SL(n,Z) ·K = SL(n,Zp), i.e. every determinant 1 matrix with entries in Zp

can be written as a product of a matrix with entries in Z times a matrix congruent to the
identity mod pe for any natural number e.

Now let a =
∏

p
ei
i be an arbitrary ideal of oS . It follows that the image of Γ in GLn(o/a)

is the same as the image of G(op1)×· · ·×G(opr ). Using the Chinese Remainder theorem and

the assumption that the maps G(op) → G(p)(o/p) are surjective, one shows that this latter

image is just G(o/a). (This includes showing that the surjectivity of G(op) → G(p)(o/p)

implies the surjectivity of G(op) → G(p)(o/pe), which is explained in Lemma 5 on page 393
of [7] in the case op = Zp.)

4.4. Simplicity. If G is a Chevalley group and G →֒ GLn is the standard representation
given by the Chevalley basis (see [4], Chapter 4), then G(p)(o/p) is almost always simple
modulo its centre and perfect [3]. The only exceptions are the groups in the following list:

A1(F2), A1(F3),
2A2(F2), B2(F2),

2B2(F2), G2(F2),
2F4(F2),

2G2(F3).

4.5. Some good groups. All of our conditions are satisfied if G is a Chevalley group of
rank at least 2, G →֒ GLn is the standard representation, and if G is B2 or G2 then S
contains all prime divisors of 2 with residue degree 1. One can extract from the references
quoted above that there are also many other groups with the properties we require.

5. Special linear and symplectic groups

Let k be a number field. In this section we restrict to special linear and symplectic
groups over rings oS of S-integers. For oS = Z, of course, we have already established
optimal bounds for actions on homology spheres and acyclic homology manifolds.

5.1. Linear actions. Let k and oS be as above. Theorem 2.1 tells us that whenever it
acts on Sn−2 or Rn−1, the subgroup SL(n,Z) ≤ SL(n, oS) must act trivially. Therefore the
kernel of the action contains elements which are not central, and are not central mod p for
any prime p. Thus the entire action is trivial by Proposition 3.1. The same observation
shows that Sp(2n, oS) cannot act on R2n−1 or S2n−2.

If k is totally real, then SL(n, oS) and Sp(2n, oS) embed in SL(n,R) and SL(2n,R),
respectively, so the above observations provide a complete answer to Question 6 in these
cases. But if k is not totally real, then we have only that SL(n, oS) acts on Cn (real
dimension 2n) and S2n−1; and similarly, Sp(2n, oS) acts non-trivially on R4n and S4n−1.
Thus, in this case, we have not determined the least dimension of a contractible manifold
or sphere on which these groups act non-trivially.

5.2. Roots of unity. Suppose that o contains a p-th root of unity η for some odd prime
p. The subgroup D of SL(n, oS) generated by diagonal matrices with powers of η on the
diagonal is a copy of (Z/p)n−1. By Theorem 2.1, whenever SL(n, oS) acts on R2n−3 or
S2n−4, some element of D acts trivially. D intersects the centre of SL(n, oS) if and only if
n is divisible by p. Moreover, if p does not divide n, then no element of D become central
modulo any prime p.
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If p does not divide n, we conclude that any action of SL(n, oS) on a Euclidean space
of dimension less than 2n − 2 is trivial, i.e. SL(n, oS) can’t act on R2n−3. Since there are
actions on R2n and S2n−1, this leaves only two dimensions in which there may or may not
be actions.

If p divides n, then SL(n, op) contains a non-central copy of (Z/p)n−2, so SL(n, op) can’t
act on R2n−5.

6. Questions

The Smith theory techniques underlying this note rely on the presence of p-torsion.
To determine the scope of their applicability, one needs to address the following natural
question:

Question. Given an affine group scheme G, a ring of S-integers oS, and a rational prime
p, what is the rank of the largest elementary abelian p-group in G(oS)?

There are obvious bounds coming from the observation that the generators of any such
elementary abelian p-subgroup are all simultaneously diagonalizable over C (as can be
seen easily from considering their Jordan forms), so the rank is at most the dimension of
a maximal torus in G(C). For example, in SLn, it is at most n− 1.

Smith theory techniques tell us nothing in the absence of torsion, and little is known
about how torsion-free lattices in semi-simple Lie groups of higher rank might act on
contractible manifolds or spheres. Such problems fit naturally into the context of the
Zimmer Programme [5], but the techniques developed until now are not well-adapted to
actions by homeomorphisms.
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