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It is shown theoretically that an electric field can be used to control and suppress the
classical Rayleigh-Taylor instability found in stratified flows when a heavy fluid lies
above lighter fluid. Dielectric fluids of arbitrary viscosities and densities are consid-
ered and a theory is presented to show that a horizontal electric field (acting in the
plane of the undisturbed liquid-liquid surface), causes growth rates and critical sta-
bility wavenumbers to be reduced thus shifting the instability to longer wavelengths.
This facilitates complete stabilization in a given finite domain above a critical value
of the electric field strength. Direct numerical simulations based on the Navier-Stokes
equations coupled to the electrostatic fields are carried out and the linear theory is
used to critically evaluate the codes before computing into the fully nonlinear stage.
Excellent agreement is found between theory and simulations, both in unstable cases
that compare growth rates and in stable cases that compare frequencies of oscillation
and damping rates. Computations in the fully nonlinear regime supporting finger
formation and roll-up show that a weak electric field slows down finger growth and
that there exists a critical value of the field strength, for a given system, above which
complete stabilization can take place. The effectiveness of the stabilization is lost if
the initial amplitude is large enough or if the field is switched on too late. We also
present a numerical experiment that utilizes a simple on-off protocol for the electric
field to produce sustained time periodic interfacial oscillations. It is suggested that
such phenomena can be useful in inducing mixing. A physical centimeter-sized model
consisting of stratified water and olive oil layers is shown to be within the realm of
the stabilization mechanism for field strengths that are approximately 2 × 104 V/m.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865674]

I. INTRODUCTION

The stabilization of the Rayleigh-Taylor instability1–3 by external effects such as shear or
transverse oscillations has been extensively considered both theoretically and experimentally. It has
been shown4 that shear can stabilize the Rayleigh-Taylor instability in thin films by a nonlinear
mechanism that appears to be quite general and can lead to complex spatiotemporal dynamics, while
a more recent study5 predicts a similar, albeit more dynamically complex, saturation for a thin film
two-fluid system in a Couette device by transverse oscillations of one of the walls. Similar shear-
induced stabilization of capillary instability in cylindrical geometries has also been described.6, 7

The competition between gravitational and capillary instabilities has been studied8 for a liquid film
wetting the outer surface of a circular tube whose axis is horizontal (see also Ref. 9); it is shown
that time-periodic oscillations of the cylinder along its axis can stabilize the flow in the sense that
the lobes that form in the absence of oscillations become longer and of smaller amplitude. Recent
experimental studies10 of the development of the Rayleigh-Taylor instability in centimeter-sized
geometries incorporate magnetic fields to produce precise and controlled initial perturbations. Most
of the mechanisms outlined above require some form of mechanical actuation involving moving
parts; our objective herein is to employ an electric field to achieve stabilization and, in particular, to
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obtain controllable and tunable oscillatory two-fluid flows that can be useful in mixing in confined
geometries.

We are interested in flows of immiscible stratified liquids in small scale geometries, where
viscosity, surface tension, and gravity compete to select the dynamics. In particular, we focus on
centimeter-sized domains appropriate to desktop experiments where electric fields can be easily
applied; this provides a rich dynamical system that can be controlled passively or actively using
the applied electric field whose direction relative to the plane of the interface influences electro-
hydrodynamic instabilities. For example, it has been established in several pioneering works11–13

that a field which is perpendicular to the undisturbed interface induces instabilities that have found
application in modern soft lithography.14, 15 The control of such instabilities in a stably stratified
air-gas system using feedback control has been demonstrated experimentally16 in a circular device of
radius 1.9 cm with a 3 mm thickness liquid layer wetting the bottom plate electrode and a 0.785 mm
gas layer (sulfur hexafluoride to prevent dielectric breakdown) sandwiched between the liquid and
top electrode. The spatiotemporally modulated electric field was selected to produce a stabilizing
feedback force on the interface that undergoes electrohydrodynamic instabilities due to a constant
background imposed field. If, however, the field is parallel to the interface (or parallel to the axis
in cylindrical jet geometries), it induces a stabilizing effect. For example, it can prevent or delay
rupture events in liquid sheets in the presence of van der Waals forces,17, 18 it can produce large am-
plitude nonlinear traveling wave structures19 and it can suppress the Kelvin-Helmholtz instability.20

In cylindrical geometries axial electric fields can suppress capillary instabilities in liquid jets and
bridges as observed in several experiments.21–25 In the context of the Rayleigh-Taylor instability such
stabilization (allied to nonlinear aspects in the long wave limit) has been recently described26 (see
also the linear studies27, 28). The physical mechanism responsible for this electrostatic stabilization is
the modification of the normal stresses due to the presence of Maxwell stresses at the interface, that
in turn affect the perturbation pressures in the vicinity of the interface. Details of the linear stability
aspects of this mechanism are provided here in order to provide benchmarks capable of evaluating
the accuracy of direct numerical simulations (DNS) and to obtain a quantitative understanding of
incipient instabilities. With tested numerical tools at our disposal we then explore the nonlinear
dynamics of the problem at arbitrary Reynolds numbers with emphasis placed on suppression of
gravitational instabilities, when present, and establishment of temporal voltage protocols (essentially
on-off systems for simplicity) that produce controlled time-periodic sustained interfacial oscillations
that can be useful in mixing. The direct numerical simulations are carried out using the GERRIS29

platform, whose utility has been demonstrated on numerous occasions;30, 31 there is also a focus on
efficient implementation of electric effects,32 which render it highly suitable in the context of our
application.

The paper is structured as follows. Section II introduces the governing equations and bound-
ary/interfacial conditions for both the fluid dynamics and the electrostatics. Section III is devoted to
the general linear stability problem and an implicit dispersion relation is derived and used to charac-
terize electrohydrodynamic stability properties. In Sec. IV the linear theory is employed to validate
the direct numerical simulation results for wide parameter ranges. Simulations are performed to
probe the nonlinear regime in several directions including implementation of complete stabilization
as well as demonstrating active control protocols that can produce sustained interfacial oscillations
with mixing ramifications. In Sec. V we provide our conclusions.

II. MATHEMATICAL MODEL

We consider two incompressible, immiscible, viscous fluids in a two-dimensional setting as
shown in Fig. 1. An electric field of size V̄ ∗/L acts horizontally as shown in the figure, where L
is a typical length over which a voltage potential difference V̄ ∗ is maintained. In addition the flow
is unconfined above and below (lateral boundaries can easily be incorporated but our main objective
is to isolate the competition between Rayleigh-Taylor instability and electrostatics so we avoid lateral
confinement). Using a Cartesian coordinate system, the interface between the two fluids is denoted
by y = S(x, t), and fluids 1 and 2 occupy the regions y < S(x, t) and y > S(x, t), respectively (subscripts
1,2 will refer to fluids 1 and 2). The fluids are perfect dielectrics with given constant permittivities
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FIG. 1. Schematic of the problem with fluid 2 lying above fluid 1 and separated by the interface y = S(x, t). A constant
horizontal electric field of size V̄ ∗/L is applied horizontally as shown. (The direction of the field is unimportant.)

ε1,2, viscosities μ1,2, densities ρ1,2 and the corresponding velocity vectors are u1,2 = (u1,2, v1,2). We
denote the constant surface tension coefficient at the interface by σ . When the interface is flat (S =
0), the field is uniform and given by E0 = −(V̄ ∗/L) i, and when the interface is disturbed we need
to consider voltage potentials V1,2 in regions 1,2 that satisfy Laplace’s equation. This follows from
the electrostatic approximation: Maxwell’s equations reduce to ∇ × E1,2 = 0, ∇ · (ε1,2E1,2) = 0,
hence E1,2 = −∇V1,2 from the former condition, with Laplace equations following from the second
condition away from the interface: (

∂2

∂x2
+ ∂2

∂y2

)
V1,2 = 0. (1)

The dimensional momentum and continuity equations are

ρ1(u1t + (u1 · ∇)u1) = −∇ p1 + μ1�u1 − ρ1gj, (2)

ρ2(u2t + (u2 · ∇)u2) = −∇ p2 + μ2�u2 − ρ2gj, (3)

∇ · u1,2 = 0, (4)

where p1,2 denote the pressures in each fluid and g is the acceleration due to gravity. Since the fluids
are perfect dielectrics with constant permittivities, there are no charges present hence the Lorentz
force is absent in the momentum equations (2) and (3). However Maxwell stresses have jumps at the
interface and this is accounted for in the normal stress balance (12).

We introduce the density and viscosity ratios

r = ρ1/ρ2, m = μ2/μ1, (5)

and non-dimensionalize using fluid 1 as reference. Lengths are scaled by L, velocities by a reference
value U and pressures by ρ1U2; the following dimensionless parameters emerge

g̃ = gL

U 2
, μ̃ = μ1

ρ1U L
, εp = ε2

ε1
, We = σ

ρ1gL2
(6)

that represent an inverse square Froude number g̃, an inverse Reynolds number μ̃, the permittivity
ratio εp, and an inverse Weber number denoted by We and which measures the ratio of surface tension
to gravitational forces. Furthermore, we scale voltage potentials by V ∗ so that the dimensionless
electric parameter measuring the size of Maxwell stresses in the interfacial stress balance equation
becomes unity in fluid 1 variables. Inspection of the stress tensor (18) below, shows that this choice
necessitates

ρ1U 2 = ε1(V ∗)2

L2
⇒ V ∗ = U L

√
ρ1/ε1. (7)
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As a result, the dimensionless boundary condition at the right of the domain x = 1/2 becomes
V1,2 = V̄ , where the dimensionless parameter V̄ = V̄ ∗/V ∗ measures the magnitude of the applied
electric potential difference. The dimensionless Navier-Stokes equations become

ũ1t + (ũ1 · ∇)ũ1 = −∇ p̃1 + μ̃�ũ1 − g̃j, (8)

ũ2t + (ũ2 · ∇)ũ2 = −r∇ p̃2 + mμ̃r�ũ2 − g̃j, (9)

∇ · ũ1,2 = 0, (10)

where j = (0, 1) and tildes are used to refer to dimensionless quantities.
Since we assume a sharp interface (this is preferable in analytical treatments but is relaxed in the

computational treatment as we will see below) electrohydrodynamic coupling and capillary effects
occur through the interfacial boundary conditions. The conditions required at y = S are a kinematic
condition, and continuity of: normal and tangential stresses, velocities, normal components of the
displacement field ε̃ Ẽ, and tangential components of the electric field (equivalently continuity of
voltage potentials):

ṽi = St + ũi Sx , i = 1, 2, (11)

[n · T · n]1
2 = σ̃ κ, (12)

[t · T · n]1
2 = 0, (13)

[ũ]1
2 = 0, (14)

[
ε̃Ẽ · n

]1
2 = 0, (15)

[
Ṽ

]1
2 = 0, (16)

where [(·)]1
2 = (·)1 − (·)2 represents the jump across the interface, n = (−Sx , 1)/(1 + S2

x )1/2,
t = (1, Sx )/(1 + S2

x )1/2 are the unit normal and tangent to the interface, respectively, and κ is the
interfacial curvature. Condition (15), the continuity of the normal component of the displacement
field ε̃Ẽ, follows from the assumption that there are no impressed free charges at the interface,
which is a standard assumption for dielectric fluids. The stress tensor T contains hydrodynamic and
electrical parts

Ti j = − p̃δi j + μ̃

(
∂ ũi

∂x j
+ ∂ ũ j

∂xi

)
+ ε̃ Ẽi Ẽ j − 1

2
|Ẽ|2δi j [ε̃ − (∂ε̃/∂ρ)ρ]. (17)

The expression for the electric component of the stress tensor is well known in the field of
electrodynamics.33, 34 We note that the incompressibility and constant permittivity assumptions
(and hence the fact that ∂ε̃/∂ρ = 0) allow us to reduce expression (17) to the form

Ti j = − p̃δi j + μ̃

(
∂ ũi

∂x j
+ ∂ ũ j

∂xi

)
+ ε̃ Ẽi Ẽ j − 1

2
ε̃|Ẽ|2δi j , (18)

which is widely used in electrohydrodyanmic stability problems in the literature.19, 33, 35

III. LINEAR STABILITY THEORY

In this section we derive analytical expressions (typically implicit relations) for the growth
rates of disturbances to be used in validations of the numerical simulations. The base state solu-
tion is given by a flat interface, zero velocities and a uniform electric field: ũ1,2 = 0, Ṽ1,2 = V̄ x ,
p̃1 = −g̃y + q1, p̃2 = −g̃y/r + q2, where q1 and q2 are integration constants which can be set to
0 without loss of generality. Linearizing about this basic state by writing ũ1,2 = δû1,2, S = δ Ŝ, Ṽ1,2

= V̄ x + δV̂1,2, p̃1 = −g̃y + δ p̂1, p̃2 = −g̃y/r + δ p̂2, with δ � 1, and looking for normal mode so-
lutions of the form û1,2(x, y, t) = ŭ1,2(y)eikx+ωt , Ŝ(x, t) = S̆eikx+ωt , V̂1,2(x, y, t) = V̆1,2(y)eikx+ωt ,
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p̂1,2(x, y, t) = p̆1,2(y)eikx+ωt , leads to an analytically tractable eigenvalue problem. Briefly, the
electric field eigenfunctions follow from the transformed Laplace equations (1) and the continuity
condition (16),

V̆1 = A e|k|y, V̆2 = A e−|k|y, (19)

where A(k, ω) is to be determined. The linearized Navier-Stokes equations imply that the perturbation
pressures are harmonic functions and hence

p̆1(y) = P1 e|k|y, p̆2(y) = P2 e−|k|y, (20)

with P1(k, ω) and P2(k, ω) to be determined. The perturbation pressures in turn provide the following
perturbation velocities,

ŭ1(y) = C1 exp

(√
k2μ̃ + ω√

μ̃
y

)
− ik P1e|k|y

k2μ̃ + ω − |k|2μ̃ , (21)

v̆1(y) = − ikC1
√

μ̃√
k2μ̃ + ω

exp

(√
k2μ̃ + ω√

μ̃
y

)
− k2 P1e|k|y

|k|(k2μ̃ + ω − |k|2μ̃)
, (22)

ŭ2(y) = C2 exp

(
−

√
k2mμ̃r + ω√

mμ̃r
y

)
− ikr P2e−|k|y

k2mμ̃r + ω − |k|2mμ̃r
, (23)

v̆2(y) = ikC2
√

mμ̃r√
k2mμ̃r + ω

exp

(
−

√
k2mμ̃r + ω√

mμ̃
y

)
+ k2 P2re−|k|y

|k|(k2mμ̃r + ω − |k|2mμ̃r )
, (24)

where C1(k, ω) and C2(k, ω) are two additional unknowns. These expressions are found by in-
tegrating the linearized momentum equations with the pressures known from (20), and selecting
the eigenfunctions that decay to zero far from the interface. Along with S̆(k, ω) we have six un-
knowns to determine from the six linearized homogeneous versions of (11)–(15). Note that only
one kinematic condition is needed since the problem is viscous (the inviscid case discussed later is
done separately), and that (14) represents two conditions. Writing the system as M X = 0 where
X = [A S̆ C1 C2 P1 P2]T , nontrivial solutions are possible if and only if det(M) = 0, and this provides
the desired dispersion relation. A list of the non-zero elements of M is given in Appendix A, where
we also identify the origin of each row in the matrix. In the viscous case, det(M) = 0 results in a
transcendental equation for ω(k) (for prescribed values of the densities, viscosities, permittivities,
surface tension, and electric potential difference) that requires an iterative procedure. Results have
been verified for an extended set of values and limiting cases, and a few examples are illustrated in
Sec. IV, where we also describe nonlinear DNS results.

IV. DIRECT NUMERICAL SIMULATIONS

As discussed in Sec. I, the numerical algorithm utilizes the GERRIS volume-of-fluid software
adapted to our particular electrohydrodynamic problem of Sec. II (a brief description is given below).
Of particular interest is the accuracy of the code in the context of our application and its ability to
capture and follow the underlying physical mechanisms from the early linear stages into the fully
nonlinear regime. We designed numerical experiments with small amplitude initial perturbations
(of order 10−3) to enable us to track the growth of the instability for an extended period of time
and scrutinize the algorithm’s capabilities. To this end we also compare simulations in parameter
regimes that are linearly stable (in general ω is complex so that perturbations can be underdamped
with oscillatory decay in time), and in such cases larger amplitudes of order 10−2 are utilized to
enable the accurate extraction of frequencies of oscillation and damping rates. The adaptive mesh
refinement feature of the package has been tuned to enable accurate calculation of these magnitudes,
and as seen in the results that follow, the accuracy and performance of the code is excellent.
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Next, we briefly outline the algorithm for our particular problem and refer the reader to Popinet36

for details. Using our notation the equations are (all interfacial forces are transferred to the momentum
equations)

ρ̃(ũt + ũ · ∇ũ) = −∇ p̃ + ∇ · (2μ̃D) + σ̃ κδsn + Fe,

ρ̃t + ∇ · (ρ̃ũ) = 0, (25)

∇ · ũ = 0,

where D is the rate of strain tensor Di j = (1/2)(∂ ũi/∂x j + ∂ ũ j/∂xi ). The Dirac distribution δs

isolates the surface tension effects to the interface alone, and volumetric electric forces are included
via the Fe term. In general the electrostatic potential in the bulk is the Poisson equation ∇ · (ε̃∇ Ṽ )
= −ρ̃e, with ρ̃e being the volumetric charge density which is zero in our problem (there is no
impressed charge initially), thus providing Laplace equations away from the interface. Using the
Maxwell stress tensor and applying a divergence operator32, 37 yields

Fe = −1

2
|Ẽ|2∇ ε̃. (26)

The density ρ̃ can be written in terms of a volume fraction c(x, t) (c is a color function)

ρ̃(c) ≡ cρ̃1 + (1 − c)ρ̃2, (27)

where ρ̃1 and ρ̃2 are the constant values of the density in the two phases. The density equation (25)
is then converted into the volume fraction equation

ct + ∇ · (cũ) = 0, (28)

and once this is solved for c the density follows from (27). Viscosity and permittivity differences
between phases are treated in an analogous way. In particular, the algorithm incorporates smooth
independent variations of ρ and ε across the thin interface region. A more complete physical
description could be obtained by using the Clausius-Mossotti relation38 that expresses the density
ρ in terms of the permittivity ε (we thank one of the referees for pointing this out). We note
that computations using different interpolating smoothing operators (e.g., arithmetic or harmonic)
produce results that are not sensitive to the exact variation of the permittivity across the interface.32

These authors also show that different interpolation procedures can be utilized to optimize the
performance of the algorithm, and such methods are adopted here as well.

Generic GERRIS boundary conditions are used—homogeneous Neumann for the velocities at
x = ±1/2 and Dirichlet for the voltage potential (Ṽ |x=−1/2 = 0, Ṽ |x=1/2 = V̄ ). The lateral bound-
ary conditions ∂ Ṽ1,2/∂y → 0 as |y| → ∞, are replaced by homogeneous Neumann conditions at
relatively large but finite values of y (in typical simulations the vertical extent of the computational
domain is −2.5 ≤ y ≤ 1.5, and this is found to be sufficient). We have also compared the eigenfunc-
tions obtained from linear theory with those from the simulations and the agreement is excellent
(not shown for brevity).

To quantify the interfacial dynamics, we track the position of the interface minima and maxima
throughout a simulation and use sliding least squares fits to extract growth rates. Thus, the linear
regime can be identified accurately and we make direct comparisons with the dispersion relation
described in Sec. III. Two different cases are presented in Subsections IV A 1 and IV A 2; first we
focus on growth rates in unstable regimes and the stabilizing modifications due to the electric field
(Subsection IV A), and second we consider a stable parameter range (Subsection IV B) in order to
compare decay rates and periods of oscillation between theory and simulation.

A. Linearly unstable regime

1. Effect of the electric field

We begin with a case that is Rayleigh-Taylor unstable in the absence of an electric field (heavy
fluid on top). For the parameters selected, perturbations with wavenumbers k = 2π , 4π are unstable
and we proceed to verify the linear stability results from the simulations as the electric field parameter
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FIG. 2. Linear growth rates as the voltage potential difference V̄ increases—values of V̄ as shown in the legend. Continuous
curves – linear stability theory. Symbols – growth rates estimated from DNS. Other parameters are ρ̃1 = 1, ρ̃2 = 5, μ̃ = 0.25,
m = 1, g̃ = 9.80655, σ̃ = 0.2, ε̃1 = 1, ε̃2 = 2.

V̄ is increased. Specifically, we use ρ̃1 = 1, ρ̃2 = 5, μ̃ = 0.25, m = 1, g̃ = 9.80655, σ̃ = 0.2, ε̃1 = 1,
ε̃2 = 2, while V̄ takes values ranging from 0 to 4, the latter value producing complete stabilization.
The initial perturbation is

S(x, 0) = −Ai cos(2qπx), (29)

where q is a positive integer and Ai > 0 is the perturbation amplitude, usually of order 10−3 to
10−2; in the numerical experiment described next we use Ai = 5 × 10−3. The results are shown
in Fig. 2 which superimposes the linear stability curves at different values of V̄ (labelled) along
with corresponding growth rates predicted by DNS at the respective values of V̄ (also labelled).
We notice striking agreement for both perturbation wavenumbers, and observe the stabilizing effect
of the electric field as V̄ is increased; the maximum growth rate decreases and the corresponding
wavelength shifts to longer lengths as the band of unstable wavenumbers decreases. The least squares
fit errors in estimating growth rates are less than 0.8% in all cases presented. Fig. 3 is used to explain
the growth rate extraction procedure in more detail. The plot shows the evolution of the logarithm of
the absolute value of the interface minimum |y|, say. We identify an exponential growth regime when
the log-curve follows a straight line after an initial transient. The interval 0.5 � t � 1.5 identified by

FIG. 3. Evolution of the logarithm of the interface minimum log |y| as V̄ increases, starting from small initial perturbations
and fixed wavenumber k = 2π . Other parameters as in Fig. 2.
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FIG. 4. Snapshots of the interfacial position at t = 1 (top row), t = 2 (middle row), and t = 3 (bottom row), for increasing
values of the applied electric potential difference V̄ = 0, 2, 3, 4. The evolution for the designated value of V̄ is contained in
each of the four columns and the field increases from left to right. Other flow parameters are as given in Fig. 2.

the two dashed vertical lines, approximately defines the extent of the linear regime in this particular
example. The slope of the curves for each V̄ is calculated using a least squares fit and the results are
added to Fig. 2 as appropriate symbols. The reason that an initial adjustment is required before the
solution follows the predictions of linear theory is due to the fact that only the interface is perturbed
at t = 0, while the velocities, pressures, and electric fields are not disturbed.

Fig. 4 shows the spatiotemporal evolution of the interface S(x, t) well into the nonlinear regime
for the values of V̄ = 0, 2, 3, 4, with all other parameters as in Fig. 2. Note that for V̄ = 4 the flow
is fully stable in complete agreement with linear theory (Figure 2 shows that R(ω) < 0 at k = 2π ,
where R denotes the real part). The results also show that the effect of non-zero V̄ is to promote
stabilization in the sense that the penetration length of the finger and associated roll-up structures are
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FIG. 5. Computation via DNS of the critical stabilizing voltage potential difference V̄ . The evolution of the position y of
the interface minimum is shown for a set of values of V̄ close to the theoretically predicted value V̄c ≈ 3.867 given by linear
theory. Other parameters are as in Fig. 2.

delayed. For example, looking at the profiles at t = 3 (last row of panels) the length of the finger in
the absence of an electric field is approximately 2.8 units, it is approximately 2.1 units when V̄ = 2,
and it decreases further to approximately 1.1 units when V̄ = 3; when V̄ = 4 there is no finger due
to complete stabilization. In addition, the roll-up structures at t = 3 become much less pronounced
as V̄ increases and are hardly discernible above V̄ = 3. Hence, we can conclude that the electric
field can be used to control the nonlinear features of Rayleigh-Taylor instability and can in principle
be selected to obtain a finger of a given length at a given time.

Next we evaluate the capabilities of the code in identifying the critical strength of the electric
field above which the flow becomes linearly stable. For the same flow parameters used earlier in this
section, linear stability theory predicts that disturbances with wavenumber k = 2π are completely
stabilized above the critical value V̄c = 3.867. Fixing the global accuracy of the simulations to be
of order 10−3, and the initial perturbation amplitude to be 5 × 10−3 as before, we wish to verify
that the code can reproduce this value of V̄c within the computational error bounds. To achieve this
we simulate with V̄ taking values from 3.75 to 3.95, with a more refined set of values around V̄c.
Fig. 5 summarizes these numerical experiments; the curves consisting of open circles (V̄ = 3.87)
and squares (V̄ = 3.86) represent the parameter regime we are trying to identify since V̄c lies within
these two values. The plot describes the evolution of the interface minimum for sufficiently long
times to enable a clear distinction between stable or unstable flows. The minimum starts at a value
of 5 × 10−3 at t = 0, and either increases to 0 or to more negative values depending on whether
the flow is stable or unstable, respectively. These results show that the direct numerical solutions
are highly accurate and are capable of predicting critical parameters that delineate stability and
instability windows.

2. Effect of the viscosity ratio m

The computations in Sec. IV A 1 were carried out for fluids of equal viscosities. In numerous
applications viscosities differ (sometimes severely) and in what follows we consider the effect of the
viscosity ratio m = μ2/μ1 (upper to lower fluid values) on the electrostatic stabilization mechanism
described above. We expect, on physical grounds, that values of m < 1 or m > 1 will enhance or
reduce the instability, respectively, since there is less viscous resistance in the former case. Direct
numerical simulations have been carried out to characterize these effects for the range 0.1 ≤ m ≤
10, and the results are summarized in Fig. 6. A relatively weak voltage potential difference V̄ = 1
is used, and the densities, surface tension and electric properties of the fluids are the same as before
(see caption of Fig. 2).
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FIG. 6. Comparison between linear theory and DNS for different viscosity ratios as labeled in the legend. The continuous
curves correspond to linear theory and the symbols come from DNS. Other parameters are as in Fig. 2.

The results show that an increase in m above unity reduces the growth rate and this stabilization
becomes more pronounced with increasing m. At the same time, the instability increases as m is
decreased below unity since the less viscous fluid on top experiences less internal friction and flows
faster under gravity. The numerically obtained results via DNS for a wavenumber 2π (q = 1 in (29)),
show excellent agreement with the analytically predicted values. Low viscosity fingers penetrating
into more viscous fluid are more prone to develop “mushroom-shaped” roll-up structures as those
seen in Fig. 4, while a higher viscosity in the top fluid inhibits growth and acts as a delay mechanism
for nonlinear effects—this is discussed in more detail in Sec. IV C. A noteworthy observation is
that the critical wavenumber where the flow becomes stable is not affected by changes in viscosity
ratio. This has been confirmed by considering the inviscid limit of the problem. We rederived the
following explicit inviscid dispersion relation for our model,

ω2(k) = g̃
1 − r

1 + r
|k| − σ̃

r

1 + r
|k|k2 − r

1 + r

(1 − εp)2

1 + εp
V̄ 2k2. (30)

The first term on the right-hand side is responsible for the classical Rayleigh-Taylor instability
and is driven by the density ratio between the two fluids (r = ρ1/ρ2 < 1 corresponds to a heavier
fluid on top). The other two terms (surface tension and electric field) are both stabilizing and in
fact produce dispersive effects. Note that an exactly analogous stabilizing effect (instead of V̄ 2

one obtains H̄ 2 where H̄ is the strength of the applied magnetic field) has been found in the
linear analysis of Chandrasekhar3 (Section 97, pp. 464–466), in the case of a horizontal mag-
netic field applied to inviscid fluids of zero resistivity. The qualitative instability features are as
found previously (see Fig. 2, for instance) with enhanced stabilization as surface tension and/or
electric field effects increase. Sufficiently long waves will always be unstable but in the finite
geometries computed here a complete stabilization can emerge. More specifically, for the param-
eters used in Fig. 6 but neglecting viscous effects, relation (30) provides a critical V̄ i

c = 3.867708
for the inviscid limit, which is almost identical to that deduced from the viscous dispersion
relation.

Having established that a sufficiently strong electric field can completely stabilize the flow,
next we consider such regimes in order to evaluate the code’s accuracy and capabilities in capturing
interfacial oscillations that are temporally damped (either monotonically (overdamped), or in an
oscillatory manner (underdamped)).

B. Linearly stable regime

When the flow is linearly stable the eigenvalue ω is generally complex, i.e. ω = ωr + i ωi, with
ωr < 0 providing damping and ωi inducing oscillations in time of period 2π /|ωi|. Hence, considering
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FIG. 7. Comparison between linear theory and DNS in a regime that is stable according to linear theory. Solid curve – linear
theory. Open circles – DNS. The value of the viscosity ratio is μ̃ = 0.01. Other parameters are ρ̃1 = 1, ρ̃2 = 2, σ̃ = 1.5,
g̃ = 9.80655, ε̃1 = 1, ε̃2 = 2, and V̄ = 1.

the evolution of the interface at the midpoint x = 0, that is defining S0(t) = S(x = 0, t), linear theory
predicts

S0(t) = Ai cos(|ωi |t) e−|ωr |t . (31)

For this set of numerical experiments we use ρ̃1 = 1, ρ̃2 = 2, σ̃ = 1.5, g̃ = 9.80655, ε̃1 = 1, ε̃2 = 2,
V̄ = 1 and μ̃ varies from 10−10 (close to inviscid) to 0.25. The viscosities in the two fluids are taken
to be equal, hence m = 1. The initial perturbation amplitude is now slightly higher, 5 × 10−2, in
order to enable a sufficient number of resolvable damped oscillations.

An example of the dynamics of S0(t) for dimensionless viscosity μ̃ = 0.01 is shown in Fig. 7.
The figure superimposes the analytical result (31) (with Ai = 5 × 10−2 and ω calculated from the
implicit dispersion relation) with the evolution of S0(t) predicted from DNS. Agreement is very good
and we can conclude that the code is fully capable of predicting the damped oscillatory behavior
that characterizes the flow in this regime. It is worth noting that the oscillations depend crucially
on the presence of the electric field - in its absence the flow is Rayleigh-Taylor unstable for these
parameters. Physically, then, the electric field causes a dispersive stabilization and the non-zero
viscosity provides the damping seen in the results. We also note that plots similar to Fig. 7 were
used to accurately extract both the decay-rate as well as the period of the damped oscillations
for a wide range of dimensionless viscosities μ̃. This is done by considering local extrema in the
oscillation, and locally fitting a polynomial to the coordinates in the vicinity of consecutive peaks.
The results are collected in Table I; the second and third columns provide the analytical linear
stability results while the corresponding period and decay rates computed by DNS are given in
the last two columns, respectively. Agreement is very good with the exception of the two smallest
viscosity values μ̃ = 10−10, 10−5 that were selected to push the code into an inviscid regime. In

TABLE I. Study of the oscillatory motion of the interface in linearly stable regimes for different viscosities.

Linear theory Numerical results
Viscosity μ̃ Period Decay rate Period Decay rate

10−10 0.6049 5.59 × 10−5 0.6242 0.0364
10−5 0.6156 0.0177 0.6245 0.0385
10−2 0.6394 0.6343 0.6497 0.6348
5 × 10−2 0.6898 1.6278 0.6948 1.6256
2.5 × 10−1 0.9301 4.7150 0.9211 4.6730
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these two cases the period is overestimated by the simulations and the decay rate is higher than
predicted. It is also worth noting that the DNS predictions for these two viscosities are very similar
even though the viscosity values are different by five orders of magnitude. This is in part due to the
numerical viscosity imposed by default in GERRIS for stability and to limit artifacts. Discretization
schemes typically introduce small amounts of numerical viscosity, and even though the code has
strong optimizations in this direction, our results indicate that there is a clear limit on how small the
viscosity can be.

At values of the viscosity of 10−2 or larger, however, there is very good agreement and the code
is very robust. For example, for the largest value μ̃ = 2.5 × 10−1 the decay rate is quite fast and the
DNS results capture this and the period of oscillation with considerable accuracy (the errors are less
than 1%). In all these simulations the final time was taken to be t = 3 which proved proved effective
in capturing decay rates and periods of oscillation but is also large enough to reach trivial steady
states in the more viscous cases.

The main aim of the results described thus far has been the validation of the linear stability
theory with direct numerical simulations. We presented a comprehensive set of results in both
linearly stable and unstable regimes, which establish solid agreement between theory and DNS using
GERRIS. Armed with the positive outcomes of these stringent tests we continue our investigation
with numerical experiments into the fully nonlinear regime.

C. Fully nonlinear stage

The results of Fig. 4 presented the broad qualitative aspects of the nonlinear stages of electrified
Rayleigh-Taylor instability in viscous stratified fluids. In the non-electrified case such features
(penetrating fingers that roll up) have been observed in experiments and simulations by other
authors; in what follows we quantify analogous nonlinear structures with particular emphasis placed
on the electric field effects. One important feature is the position (length) of penetrating viscous
fingers into lighter fluid and the speed of the finger tip. To this end we define the finger tip position by
y(t) = S(0, t), track its evolution and estimate the downward tip speed |dy/dt| by applying backward
differences in time. We begin by presenting the effect of the applied electric potential difference V̄ on
tip dynamics, and conclude by showing a simple active control procedure using the electric field that
results in setting the unstable interface into externally forced sustained time-periodic oscillations.

1. Electric field effects on finger dynamics

In the first set of results we pick system parameters as in Sec. IV A (see caption of Fig. 2), and
describe the flow well into the nonlinear regime as V̄ varies from 0 to 4. The evolution of y(t) and
the corresponding tip speed |dy/dt| are given in Fig. 8 in the top and bottom panels, respectively, at
values V̄ = 0, 2, 3, 4 as labeled on the figure. Three different stages of interface evolution can be
distinguished. First, there is an interval of slow initial growth during which the interface undergoes
very little motion as observed in Fig. 8 up to t ≈ 0.5. In cases when the electric field and surface
tension are not large enough to fully stabilize the flow, the flow then enters a linear growth regime
up to t ≈ 1.5 − 2, depending on the value of V̄ (see Sec. IV A 1 also). Finally, beyond t ≈ 2 the
flow enters a fully nonlinear regime and coherent structures such as the typical “mushroom-shape”
appear next – see Fig. 4 also. These conclusions emerge by simultaneously analyzing the data for
y(t) and |dy/dt|. We find that the linear growth stage reaches nonlinear saturation, with the finger tip
velocity approaching a plateau. This is most clearly seen in the cases V̄ = 0 and V̄ = 2, where |dy/dt|
reaches a value of approximately 1 and 0.9, respectively. In all cases the electric field acts to reduce
this value and as observed from the results for the V̄ = 3 case, the occurrence of the phenomenon is
delayed; in this case we need to compute to larger times for the plateau velocity to emerge (this was
done but is not included for brevity). It is also worth noting that the overshoot and then reduction in
the tip velocity for the V̄ = 0 and V̄ = 2 cases, is due to the fact that the effects of the lower wall
are starting to be felt (the top and bottom walls in the computations are at y = 1.5 and y = −2.5,
respectively).
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FIG. 8. Evolution of the interface minimum y(t) = S(0, t) (top panel) and its speed (bottom panel), as the electric potential
difference V̄ increases. Other parameters are as in Fig. 2.

The results presented so far strongly indicate that a sufficiently large electric field can completely
stabilize the flow. In the next set of computations we investigate this mechanism in more detail as a
function of the initial perturbation of the interface. A particular question of interest is whether for
a given electric potential difference V̄ , there exists a threshold initial amplitude above which the
Rayleigh-Taylor instability will dominate over the electrostatic Maxwell stresses (for fixed surface
tension forces) and the usual fingers will form. To best evaluate the role of initial conditions we
select V̄ = 4 so that the flow is linearly stable in this regime. Computations are carried out for
initial amplitudes ranging from relatively small values Ai = 0.005, 0.05 to relatively large values
Ai = 0.1, 0.2 (note that the case Ai = 0.005 has already been shown to predict full stabilization).
The evolution of the tip position y(t) and the corresponding tip speed |dy/dt| are given in Fig. 9
in the top and bottom panels, respectively. The results show that the electric field in this case is
not capable of arresting the growth of initial disturbances beyond a threshold value that increases
with V̄ . For V̄ = 4 an initial amplitude Ai = 0.05 appears to be just above such a threshold since
by t = 3 the disturbance is already growing, and given longer time it will evolve into the fully
nonlinear regime. As seen from the results of the bottom panel of Fig. 9, larger initial amplitudes
lead to very similar plateau speeds of the fingers after the generic overshoot that is observed in
all our computations. The overshoot takes place when two secondary fingers form at the flanks
of the main finger as can be seen by analyzing the results in Figs. 4 and 9 (bottom panel), for
example. Eventually, the finger reaches the vicinity of the lower boundary of the computational
domain and undergoes a deceleration that can be observed by the late-stage dip in |dy/dt| (this is
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FIG. 9. Role of initial perturbation amplitudes Ai (as labeled) for the case V̄ = 4 that is predicted to be stable by linear theory
(other parameters are as in Fig. 2). The top panel shows the evolution of the interface minimum y and the bottom panel the
corresponding speed of this tip. Amplitudes larger than 0.05 overcome the electric field stabilization mechanism and lead to
a nonlinear evolution.

particularly visible for the largest initial amplitude used, Ai = 0.2 after approximately 2.75 time
units).

The numerical results described in this section have shown that the code is fully capable of
capturing the physics of the problem and is in complete quantitative agreement with linear stability
theory. The code provides us with a computational tool to investigate the fully nonlinear regime
and in particular to utilize of the electric field to produce desirable flow features such as sustained
large amplitude interfacial oscillations that can be useful in mixing. Such phenomena arising from
prescribed electric field variations are described next.

D. Inducing time-periodic interfacial oscillations using the electric field

Our objective here is to utilize the electrostatic stabilization mechanisms described above to
construct a way of producing ordered time-periodic fluctuations of the interface. The ultimate aim,
from a practical perspective, is to identify active control protocols that induce time dependent flows
in small scale devices without the need for moving parts, and to use such flows for mixing in
small-scale geometries.

We consider a regime where the two-fluid flow is Rayleigh-Taylor unstable, and in particular we
fix parameters as before (ρ̃1 = 1, ρ̃2 = 5, μ̃ = 0.25, m = 1, g̃ = 9.80655, σ̃ = 0.2, ε̃1 = 1, ε̃2 = 2).
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FIG. 10. Inducing sustained interfacial oscillations in a regime that is Rayleigh-Taylor unstable in the absence of an electric
field (ρ̃1 = 1, ρ̃2 = 5, μ̃ = 0.25, m = 1, g̃ = 9.80655, σ̃ = 0.2, ε̃1 = 1, ε̃2 = 2). Results are shown for an initial perturbation
amplitude Ai = 0.005 (top panel) and a much larger amplitude Ai = 0.03 (bottom panel). The electric field is switched on
with a difference in voltage potential of V̄ = 5 during the gray intervals and off during the white ones. An arbitrary number
of oscillations can be induced by successively repeating the on-off protocol.

As described earlier, if V̄ = 0 the flow is unstable and a downward penetrating finger forms, whereas
with V̄ = 4 the flow can be completely stabilized (see the results of Fig. 4, for example). This opens
the way for generating sustained oscillations as follows: (i) Start with no field and allow the flow
to become unstable; (ii) switch on the field to stabilize the flow and cause the interface to move
upwards; (iii) switch off the field again to generate an instability and finger formation; (iv) repeat
the process to obtain a time-periodic oscillation. Clearly the parameters must be tuned for a given
initial perturbation amplitude, and we emphasize that the initial amplitudes cannot be too large
(see the results of Sec. IV C 1 and particularly Fig. 9). Although the generation of time-periodic
oscillations introduces a time-dependent electric field, the quasi-static approximation is still valid (see
Appendix B) and the analytical and numerical treatments considered in Secs. IV A–IV C hold.

In the computations presented here we demonstrate the resulting oscillatory flows for relatively
small (Ai = 0.005) and relatively large (Ai = 0.03) amplitudes; in both cases we fix V̄ = 5 which is
sufficiently strong to stabilize the flow. The results are depicted in Fig. 10 that shows the evolution
of y(t) = S(0, t); the top panel corresponds to the weaker initial perturbation Ai = 0.005 and the
bottom panel to Ai = 0.03. During the gray-shaded intervals the field is on, and it is off elsewhere. In
each experiment field-on intervals are equal (note however that the field-on duration is larger for the
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Ai = 0.03 case), and they are alternated by field-off intervals so as to attain a time-periodic oscillation
of the whole interface similar to a standing wave (not shown for brevity). Intuitively, the field is
turned on once the finger forms and is developing into the nonlinear regime of finger formation
and penetration, kept on until the flow is stabilized, and then switched off again to allow the finger
to form once more. Repeating the process produced the depicted oscillations in time. The adopted
protocol is quite simple and has been selected for illustrative purposes rather than with the goal of
optimization of certain quantities. Such lines of investigation are currently under way and beyond
the scope of the present work.

V. DISCUSSION AND CONCLUSION

We have investigated theoretically, through linear stability theory and direct numerical simula-
tions, the effect of electric fields on stratified viscous flows that are susceptible to the Rayleigh-Taylor
instability. The simulations have been based on volume-of-fluid methods through the GERRIS29 plat-
form, and the main focus has been on the stabilizing effects of a uniform electric field imposed in the
horizontal direction (parallel to the undisturbed interface). Computational studies were performed
for a range of system parameters that include both stably and unstably stratified regimes. The
volume-of-fluid based code, with its adaptive mesh refinement and specialized algorithms for the
problem in question, was found to produce accurate results in reasonable CPU times and has been
validated to be in excellent agreement with the analytical predictions of linear theory (an implicit
dispersion relation has been derived and used—see Sec. III).

Stringent quantitative validation studies of DNS with linear theory have been carried out with
growth rates estimated through DNS starting from small initial perturbations. This has been done
both in the unstable regime where primary exponential growth rates are computed and compared (see
Figs. 2 and 6 for a range of applied voltage parameters V̄ and viscosity ratios m, respectively), and in
the stable regime where oscillation frequencies and damping rates are estimated from the simulations
and compared with the analytical results (see Fig. 7 and Table I). In both cases agreement is
compelling thus furnishing us with a suitable computational tool to explore the fully nonlinear regime.

We have demonstrated the ability of the electric field to affect nonlinear features of the Rayleigh-
Taylor instability (see Fig. 4). As the magnitude of the applied electric potential increases, the length
of the finger at a given time, decreases, and more interestingly the instability can be completely
suppressed for fields above critical strength. The critical field strengths when complete stabilization
is achievable, have been found to be in very close agreement with the critical values predicted by
linear theory (see Sec. IV A 1 and Fig. 5). Our simulations also indicate that for a fixed electric field
strength, the Rayleigh-Taylor instability cannot be suppressed if the initial perturbation amplitude
is large enough – see for example, Fig. 9 where a field characterized by voltage potential difference
V̄ = 4 is not capable of stabilizing disturbances of amplitudes larger than 0.05. As V̄ increases
further, flows starting from larger initial amplitudes can be completely stabilized, but we have
limited the computations presented here to physically reasonable values of V̄ , as discussed below
also.

Having illustrated the stabilization phenomena (both in the linear and nonlinear regime), we
showed how sustained interfacial oscillations can be produced by imposing a time-periodic electric
field. This was achieved by simply switching the field on and off in succession, so that its action
is used to stabilize the flow during the finger formation stage, after which it is switched off to
enable the instability to take place and the finger to form once more, with the process repeating
at will. The resulting flow produces a time-periodic oscillation of the interface (and consequently
spatio-temporal dynamics in the bulk) – typical results of the ensuing periodic motion are shown in
Fig. 10 – and we suggest that such protocols could be useful in mixing applications in small-scale
geometries.

We conclude by illustrating the feasibility of the theoretical results by considering specific two-
fluid systems where the phenomena described in our study can emerge. Note that as a practical rule
in identifying pairs of fluids and electric field strengths capable of stabilizing the flow, it is sufficient
to use critical electric field parameters resulting from the linear theory—this has been confirmed by
direct simulations. In more general situations where specific perturbation amplitudes are imposed as
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in experiments,30, 31 it is feasible to carry out simulations using our computational tools to determine
necessary stabilizing field strengths.

A suitable example is that of water for the top fluid 1, and olive oil for the lower fluid 2—
see the schematic in Fig. 1. The physical properties of these fluids can be summarized as fol-
lows. Water at 20 ◦C has density ρ2 = 998.207 kg/m3, viscosity μ2 = 8.95 × 10−4 Pa s, and
electrical permittivity ε2 = 80.4 ε0, where ε0 = 8.85 × 10−12 m−3 kg−1 s4 A is the permittivity of
free space. The equivalent properties for olive oil are ρ1 = 918 kg/m3, μ1 = 0.081 Pa s, and
ε1 = 3.1ε0. The surface tension between olive oil and water is 0.02 kg s−2. We use a channel of
width 0.035 m under the action of a gravitational acceleration of 9.80655 m s−2. From the linear
theory of Sec. III we deduce that without the action of an electric field the system is prone to
instability. In order to completely stabilize the system we derive the critical strength of the electric
field to be Ec ≈ 2.032 × 104 V/m, which is well within the range of experimentally attainable
values. This result holds for an initial perturbation of wavenumber k = 2π , which corresponds to the
largest (and most dangerous) wavelength that can be imposed in our numerical environment. Note
also that the predicted field value Ec is significantly below the dielectric breakdown limits which
are approximately 1.35 × 107 V/m for water39 and 1.755 × 107 V/m for vegetable oils,40 respectively.
The two fluids used in this example are commonly found in applications and there are numerous
other fluids of industrial significance, as for example, systems containing water and 1 −octanol, or
water and carbon tetrachloride.
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APPENDIX A: DISPERSION RELATION DETAILS

In Sec. III, we described the solution procedure to obtain an implicit dispersion relation for the
growth rate ω(k) as a function of wavenumber and the physical parameters. This hinges on finding
non-trivial solutions to M X = 0, where M represents the coefficient matrix and X is the vector of
unknowns X = [A S̆ C1 C2 P1 P2]T . For completeness we provide the non-zero entries Mij of the 6
× 6 matrix M as they arise from the boundary conditions (11)–(14).

The first row is taken to be the contribution from the continuity of the normal component of the
displacement field (15): M11 = |k|(εp + 1), M12 = ik(εp − 1)V̄ .

The kinematic condition for the first fluid given by (11) provides the second row: M22 = ω,

M23 = ik
√

μ̃√
k2μ̃ + ω

, M25 = k2

|k|(k2μ̃ + ω − |k|2μ̃)
.

Manipulating the continuity of tangential stress balance (13) results in the entries

of the third row: M33 =
√

k2μ̃ + ω√
μ̃

+ k2√μ̃√
k2μ̃ + ω

, M34 = m

√
k2m̃μr + ω√

mμ̃r
+ m

k2√mμ̃r√
k2mμ̃r + ω

,

M35 = − ik|k|2 + ik3

|k|(k2μ̃ + ω − |k|2μ̃)
, M36 = −m

ik|k|2r + ik3r

|k|(k2mμ̃r + ω − |k|2mμ̃r )
.

Continuity of normal stresses, with an explicit expression given as (12), yields:
M41 = −ikV̄ (1 − εp), M42 = g̃

r (r − 1) + k2σ̃ , M43 = −2ikμ̃, M44 = 2ikmμ̃, M45 = −1

− 2μ̃k2

k2μ̃ + ω − |k|2μ̃ , M46 = 1 + 2mμ̃k2r

k2mμ̃r + ω − |k|2mμ̃r
.

The two velocity field components produce the final two rows of entries in matrix M. The

continuity description found in (14) gives M53 = 1, M54 = −1, M55 = − ik

k2μ̃ + ω − |k|2μ̃ ,

M56 = ikr

k2mμ̃r + ω − |k|2mμ̃r
for the horizontal velocity component u, while the continuity of
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the vertical velocity component v produces entries M63 = − ik
√

μ̃√
k2μ̃ + ω

, M64 = − ik
√

mμ̃r√
k2mμ̃r + ω

,

M65 = − k2

|k|(k2μ̃ + ω − |k|2μ̃)
, M66 = − k2r

|k|(k2mμ̃r + ω − |k|2mμ̃r )
.

The desired transcendental eigenrelation is found by setting det(M) = 0.

APPENDIX B: JUSTIFICATION OF THE APPLICABILITY OF THE ELECTROSTATIC LIMIT

We consider a simple scaling argument to justify why the existence of a magnetic field can be
ignored at leading order in our analysis. Starting from the magnetic induction equation

∇ × H = J + ε
∂E
∂t

, (B1)

where H is the magnetic field and J is the current, we use the following approach. By construction,
the electric field is scaled by E0 ∼ V̄ ∗/L and we write H = H0H′ and continue in simplified notation
(dropping the primes for convenience). We are particularly interested in the effect of frequency �

with which the electric field is switched on and off in the example at the end of Subsection IV D.
Using the induction equation (B1) yields

H0 ∼ ε0 E0L�. (B2)

Considering the approximations ε0 ∼ 10−11 F m−1, L ∼ 10−2 m, and typical electric field strength
E0 ∼ 104 V m−1, which are standard values within the context of our desktop experiments, gives

H0 ∼ 10−9� T s, (B3)

measured in an appropriate timescale 1/�, where T denotes teslas and s seconds. We argue
that within the current framework values of � that would yield a sufficiently high value of
H0 are never reached. The time scale leading to the dimensionless momentum equations (8) is
(L/g)1/2 (the velocity scale is proportional to

√
gL). Considering centimeter-sized geometries, so

L ∼ O(10−2), our dimensional times are approximately 101–102 s. Note that a cycle in the on-off
protocol described in the subsection of interest develops over one dimensionless time unit, therefore
� ∼ 10−2–10−1 Hz. This brings H0 down to less than 10−10 T and hence the contribution of the
magnetic field is negligible. We point out that even if we wish to model a system with a much higher
frequency of the on-off protocol, in the kilohertz range or even more, the induced magnetic field
would still be of very small scale and would play an inconsequential role in this study. The result
follows from previous explorations of this limit.41
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