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Abstract. Intermediate dimensions were recently introduced to interpolate between the Hausdorff

and box-counting dimensions of fractals. Firstly, we show that these intermediate dimensions may be

defined in terms of capacities with respect to certain kernels. Then, relying on this, we show that the
intermediate dimensions of the projection of a set E ⊂ Rn onto almost all m-dimensional subspaces

depend only on m and E, that is, they are almost surely independent of the choice of subspace. Our

approach is based on ‘intermediate dimension profiles’ which are expressed in terms of capacities. We
discuss several applications at the end of the paper, including a surprising result that relates the box

dimensions of the projections of a set to the Hausdorff dimension of the set.

1. Introduction

Theorems on dimensions of projections of fractals in Euclidean space have a long history. In 1954
Marstrand [12] proved that the Hausdorff dimension of the orthogonal projections of a Borel set E ⊂ R2

onto linear subspaces was almost-surely constant. More specifically,

dimH πV E = min{dimHE, 1},
for almost all one-dimensional subspaces V , where πV denotes orthogonal projection onto V . Kaufman
gave a potential-theoretic proof of Marstrand’s results [11], and in 1975 Mattila extended them to Borel
sets E ⊂ Rn and almost all V in the Grassmannian G(n,m) [13]. These seminal results set in motion a
sustained interest in the behaviour of dimension under projections, see [1, 14] for basic expositions and
[5, 15, 16] for recent surveys.

It is natural to seek projection results for the various other dimensions that occur throughout fractal
geometry. For example, in 1997 Falconer and Howroyd showed that the upper and lower box-counting
dimensions of the projections of a set are almost surely constant and given by what they termed a ‘dimen-
sion profile’ [6, 10], reflecting how a set in Rn appears when viewed from an m-dimensional perspective.
The dimension profiles were, however, implicitly defined and somewhat awkward to work with, lead-
ing to a recent re-working of the theory using a potential-theoretic approach [2, 3] where box-counting
dimensions are defined in terms of capacities which are then used to study projections.

Recently, Falconer, Fraser and Kempton [4] introduced intermediate dimensions to provide a continuum
of dimensions, one for each θ ∈ [0, 1], that interpolate between the Hausdorff dimension (obtained when
θ = 0) and box-counting dimensions (θ = 1). These dimensions are defined by restricting the diameters
of sets used in admissible coverings of E to a range [r, rθ] for small r. A general discussion of this and
other forms of dimension interpolation may be found in the recent survey [8].
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In this paper, potential-theoretic methods are used to study intermediate dimensions, first to give a
definition of these dimensions in terms of capacities with respect to certain kernels and then to prove a
Marstrand-type theorem to give the almost sure intermediate dimensions of projections of sets in terms
of capacities, see Theorem 5.1. Some examples and applications are given in the final section.

2. Intermediate dimensions

Intermediate dimensions were introduced by Falconer, Fraser and Kempton in [4] to interpolate between
Hausdorff dimension and box-counting dimensions. The lower and upper intermediate dimensions, dim θE
and dim θE of a set E ⊂ Rn depend on a parameter θ ∈ [0, 1], with dim0E = dim0E = dimHE and
dim1E = dimBE and dim1E = dimBE where dimH,dimB and dimB denote Hausdorff, lower box and
upper box-counting dimension, respectively. Various properties of intermediate dimensions are established
in [4]. In particular dim θE and dim θE are monotonically increasing in θ ∈ [0, 1], are continuous except
perhaps at θ = 0, and are invariant under bi-Lipschitz mappings. Intermediate dimensions are of interest
for sets which have differing Hausdorff and box-counting dimensions, such as sequence sets of the form
{0} ∪ {n−p : n = 1, 2, . . . } for p > 0, self-affine carpets and many other examples, with the intermediate
dimensions reflecting the range of diameters of sets needed to get coverings that are efficient for estimating
dimensions, see [4].

Specifically, for E ⊂ Rn and 0 < θ ≤ 1, the lower intermediate dimension of E may be defined as

dim θE = inf
{
s ≥ 0 : for all ε > 0 and all r0 > 0, there exists 0 < r ≤ r0(2.1)

and a cover {Ui} of E such that r1/θ ≤ |Ui| ≤ r and
∑
|Ui|s ≤ ε

}
and the corresponding upper intermediate dimension by

dim θE = inf
{
s ≥ 0 : for all ε > 0 there exists r0 > 0 such that for all 0 < r ≤ r0,(2.2)

there is a cover {Ui} of E such that r1/θ ≤ |Ui| ≤ r and
∑
|Ui|s ≤ ε

}
,

where |U | denotes the diameter of a set U ⊂ Rn. When θ = 0 we take (2.1) and (2.2) with no lower
bounds on the diameters of covering sets, recovering the Hausdorff dimension in both cases. When θ = 1
all covering sets are forced to have the same diameter and we recover the lower and upper box-counting
dimensions, respectively.

For our purposes it is convenient to work with equivalent definitions of these intermediate dimensions in
terms of limits of logarithms of sums over covers. For bounded and non-empty E ⊂ Rn, θ ∈ (0, 1) and
s ∈ [0, n], define

(2.3) Ssr,θ(E) := inf
{∑

i

|Ui|s : {Ui}i is a cover of E such that r ≤ |Ui| ≤ rθ for all i
}
.

We claim

(2.4) dim θE = the unique s ∈ [0, n] such that lim inf
r→0

logSsr,θ(E)

− log r
= 0

and

(2.5) dim θE = the unique s ∈ [0, n] such that lim sup
r→0

logSsr,θ(E)

− log r
= 0.

It is easy to see from (2.1) and (2.2) that dim θE and dim θE are the infima of s for which these lower
and upper limits equal 0; that there are unique such values follows from the following lemma.
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Lemma 2.1. Let θ ∈ (0, 1) and E ⊂ Rn. For each 0 < r < 1,

(2.6) −(s− t) ≤
logSsr,θ(E)

− log r
−

logStr,θ(E)

− log r
≤ −θ(s− t) (0 ≤ t ≤ s ≤ n).

In particular, there is a unique s ∈ [0, n] such that lim inf
r→0

logSsr,θ(E)

− log r = 0 and a unique s ∈ [0, n] such that

lim sup
r→0

logSsr,θ(E)

− log r = 0.

Proof. For a cover {Ui} of E satisfying r ≤ |Ui| ≤ rθ and 0 ≤ t ≤ s ≤ n,∑
i

|Ui|trs−t ≤
∑
i

|Ui|s ≤
∑
i

|Ui|trθ(s−t).

Taking infima over all such covers yields

rs−tStr,θ(E) ≤ Ssr,θ(E) ≤ rθ(s−t)Str,θ(E),

from which (2.6) follows. These inequalities carry over on taking lower limits of the quotients so in
particular

lim inf
r→0

logSsr,θ(E)

− log r

is strictly monotonic decreasing and continuous for s ∈ [0, n]. Since S0
r,θ(E) is bounded below by the

box-counting number of E at scale rθ, it follows that

lim inf
r→0

logS0
r,θ(E)

− log r
≥ θ dimBE ≥ 0.

Also Snr,θ(E) is bounded above by the n-dimensional volume of a ball containing E so

lim inf
r→0

logSnr,θ(E)

− log r
≤ 0.

Continuity now gives a unique s ∈ [0, n] such that lim inf
r→0

logSsr,θ(E)

− log r = 0. A similar argument holds for

upper limits. �

In Section 4 we will show how dim θE and dim θE can be represented in terms of capacities of E ⊂ Rn with
respect to certain kernels. Then in Section 5 we will show that by changing a parameter in the kernels
we obtain the intermediate dimensions of the orthogonal projections of E onto almost all m-dimensional
subspaces.

3. Capacities and Dimension Profiles

In this section we introduce a notion of dimension derived from capacities that is closely related to the
intermediate dimensions and which is amenable to studying projections.

Throughout this section, let θ ∈ (0, 1] and m ∈ {1, . . . , n}. For 0 ≤ s ≤ m and 0 < r < 1, define the
potential kernels

(3.1) φs,mr,θ (x) =


1 0 ≤ |x| < r(
r
|x|
)s

r ≤ |x| < rθ

rθ(m−s)+s

|x|m rθ ≤ |x|
(x ∈ Rn).
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When s = m this becomes

(3.2) φm,mr,θ (x) =

{
1 0 ≤ |x| < r(
r
|x|
)m

r ≤ |x|
(x ∈ Rn),

and so corresponds to the kernel φmr (x) used in [3] in the context of box-counting dimensions. As we
would expect, this kernel is also recovered when θ = 1 where φs,mr,θ is independent of s. Note that φs,mr,θ (x)

is continuous in x and monotonically decreasing in |x|. LettingM(E) denote the set of Borel probability
measures supported on E, we say that the energy of µ ∈M(E) with respect to φs,mr,θ is∫ ∫

φs,mr,θ (x− y) dµ(x)dµ(y)

and the potential of µ at x ∈ Rn is ∫
φs,mr,θ (x− y) dµ(y).

We define the capacity Cs,mr,θ (E) of E to be the reciprocal of the minimum energy achieved by probability
measures on E, that is

Cs,mr,θ (E) =

(
inf

µ∈M(E)

∫ ∫
φs,mr,θ (x− y) dµ(x)dµ(y)

)−1
.

Since φs,mr,θ (x) is continuous in x and strictly positive and E is compact, Cs,mr,θ (E) is positive and finite.
For bounded, but not necessarily closed, sets we take the capacity of a set to be that of its closure.

The existence of equilibrium measures for kernels and the relationship between the minimal energy and
the corresponding potentials is standard in classical potential theory. We state this in a convenient form;
it is easily proved for continuous kernels, see, for example, [3, Lemma 2.1].

Lemma 3.1. Let E ⊂ Rn be compact, m ∈ {1, . . . , n}, 0 ≤ s ≤ m, θ ∈ (0, 1] and 0 < r < 1. Then there
exists an equilibrium measure µ ∈M(E) such that∫ ∫

φs,mr,θ (x− y)dµ(x)dµ(y) =
1

Cs,mr,θ (E)
=: γ.

Moreover, ∫
φs,mr,θ (x− y)dµ(y) ≥ γ

for all x ∈ E, with equality for µ-almost all x ∈ E.

As we will see, these capacities are closely related to the sums considered in Section 2. The following
lemma, which parallels Lemma 2.1, enables us to define ‘intermediate dimension profiles’.

Lemma 3.2. Let E ⊂ Rn be compact, m ∈ {1, . . . , n}, θ ∈ (0, 1] and E ⊂ Rn. For each 0 < r < 1,

(3.3) −(s− t) ≤
(

logCs,mr,θ (E)

− log r
− s
)
−
(

logCt,mr,θ (E)

− log r
− t
)
≤ −θ(s− t) (0 ≤ t ≤ s ≤ m).

In particular, there is a unique s ∈ [0,m] such that lim inf
r→0

logC
s,m
r,θ (E)

− log r = s and a unique s ∈ [0,m] such

that lim sup
r→0

logCs,mr,θ (E)

− log r = s.
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Proof. By comparison of the kernels it is easily checked that, for 0 ≤ t ≤ s ≤ m,

φs,mr,θ (x) ≤ φt,mr,θ (x) ≤ r(t−s)(1−θ)φs,mr,θ (x) (x ∈ Rn).

Using the definition of capacity and that an equilibrium measure on E for the kernel φs,mr,θ is a candidate

for an equilibrium measure for φt,mr,θ and vice-versa, we obtain

Cs,mr,θ (E) ≥ Ct,mr,θ (E) ≥ r(s−t)(1−θ)Cs,mr,θ (E).

Taking logarithms and rearranging gives (3.3).

The inequalities (3.3) remain true on taking lower limits of the quotients so lim inf
r→0

logCs,mr,θ (E)

− log r −s is strictly

monotonic decreasing and continuous in s ∈ [0,m]. With the kernels (3.2) it is shown in [3] that

lim inf
r→0

logCm,mr,θ (E)

− log r
= dimBπV E ≤ m

for projections πV E of E onto almost all m-dimensional subspaces V ∈ G(n,m), so

lim inf
r→0

logCm,mr,θ (E)

− log r
−m ≤ 0.

Since the kernels are bounded above by 1, C0,m
r,θ (E) ≥ 1, so

lim inf
r→0

logC0,m
r,θ (E)

− log r
− 0 ≥ 0.

We conclude that there is a unique s ∈ [0,m] such that lim inf
r→0

logCs,mr,θ (E)

− log r = s, and similarly for the upper

limits. �

Thus, for each integer 1 ≤ m ≤ n, we define the lower intermediate dimension profile of E ⊂ Rn as

(3.4) dimm
θ E = the unique s ∈ [0,m] such that lim inf

r→0

logCs,mr,θ (E)

− log r
= s

and the upper intermediate dimension profile as

(3.5) dim
m

θ E = the unique s ∈ [0,m] such that lim sup
r→0

logCs,mr,θ (E)

− log r
= s.

Lemma 3.3. The intermediate dimension profiles are increasing in m, that is, for compact E, θ ∈ (0, 1]
and 1 ≤ m1 ≤ m2 ≤ n

dimm1

θ E ≤ dimm2

θ E and dim
m1

θ E ≤ dim
m2

θ E.

Proof. This follows immediately noting that the kernels φt,mr,θ (x) are clearly decreasing in m. �

The remainder of the paper concerns the relationship between the intermediate dimensions of a set E,
defined in terms of the sums over restricted covers of E, and intermediate dimension profiles, defined
in terms of the capacities. In particular, we will see that for E ⊂ Rn, dim θE = dimn

θE and that
dimBπV E = dimm

θ E for projections πV E of E onto almost all m-dimensional subspaces V (1 ≤ m ≤ n−1)
with respect to the natural invariant measure on the Grassmannian.
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4. Capacities and Intermediate Dimensions

The main result in this section characterises intermediate dimensions of sets E ⊂ Rn in terms of dimension
profiles which we have defined in terms of capacities Cs,nr,θ (E) with respect to the kernels φs,nr,θ .

Theorem 4.1. Let E ⊂ Rn be bounded and θ ∈ (0, 1]. Then

dim θE = dimn
θE

and
dim θE = dim

n

θE.

This will follow immediately from the following proposition together with the definitions (2.4), (2.5), (3.4)
and (3.5). We may assume throughout that E is compact since the intermediate dimensions are stable
under taking closures, see [4].

Proposition 4.2. Let E ⊂ Rn be compact, θ ∈ (0, 1], and 0 ≤ s ≤ n. Then there is a number r0 > 0
such that for all 0 < r ≤ r0,

(4.1) rsCs,nr,θ (E) ≤ Ssr,θ(E) ≤ andlog2(|E|/r) + 1ersCs,nr,θ (E)

where the number an depends only on n. Consequently

lim inf
r→0

logSsr,θ(E)

− log r
= −s+ lim inf

r→0

logCs,nr,θ (E)

− log r

and

lim sup
r→0

logSsr,θ(E)

− log r
= −s+ lim sup

r→0

logCs,nr,θ (E)

− log r
.

Proof of Proposition 4.2 We prove the left hand inequality of (4.1) in Lemma 4.3 and the right hand
inequality in Lemma 4.4.

Lemma 4.3. Let E ⊂ Rn be compact, θ ∈ (0, 1], 0 < r < 1 and 0 ≤ s ≤ n. Then

(4.2) rsCs,nr,θ (E) ≤ Ssr,θ(E).

Proof. By Lemma 3.1 there exists an equilibrium measure µ ∈M(E) and a set E0 with µ(E0) = 1 such
that ∫

φs,nr,θ (x− y)dµ(y) =
1

Cs,nr,θ (E)
=: γ

for all x ∈ E0. Let r ≤ δ ≤ rθ and x ∈ E0. Then

(4.3) γ =

∫
φs,nr,θ (x− y)dµ(y) ≥

∫ (r
δ

)s
1B(0,δ)(x− y)dµ(y) ≥

(r
δ

)s
µ(B(x, δ)).

Let {Ui}i be a finite cover of E by sets of diameters r ≤ |Ui| ≤ rθ and define I = {i : Ui ∩E0 6= ∅}. Then
for each i ∈ I, there exists xi ∈ Ui ∩ E0 so that Ui ⊂ B(xi, |Ui|). Hence

1 = µ(E0) ≤
∑
i∈I

µ(Ui) ≤
∑
i∈I

µ(B(xi, |Ui|)) ≤ r−sγ
∑
i∈I
|Ui|s

by (4.3), and so ∑
i

|Ui|s ≥ rsCs,nr,θ (E),

which yields the desired result upon taking the infimum over all such covers. �
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Note that by comparing kernels, Cs,mr,θ (E) ≤ Cs,nr,θ (E) for m ≤ n so (4.2) implies the weaker conclusion

that rsCs,mr,θ (E) ≤ Ssr,θ(E).

In the following proof, we use potential estimates to find a Besicovitch cover of E by balls of relatively
large measure. The Besicovitch covering lemma gives a bounded number of families of disjoint such balls
with their union covering E. The balls with diameters between r and rθ, together with covers of any
larger balls by balls of diameters at most rθ, provide efficient covers for estimating the sums Ssr,θ(E).
Additionally, in the next section, Lemma 4.4 will be important when considering intermediate dimensions
of projections.

Lemma 4.4. Let E ⊂ Rn be compact, 0 ≤ s ≤ n and θ ∈ (0, 1]. If there exists a measure µ ∈M(E) and
γ > 0 such that

(4.4)

∫
φs,nr,θ (x− y)dµ(y) ≥ γ

for all x ∈ E, then there is a number r0 > 0 such that for all 0 < r ≤ r0,

Ssr,θ(E) ≤ andlog2(|E|/r) + 1er
s

γ

where the constant an depends only on n. In particular,

Ssr,θ(E) ≤ andlog2(|E|/r) + 1eCs,nr,θ (E)rs.

Proof. To avoid ambiguity we will assume that θ ∈ (0, 1), though the proof is virtually the same when
θ = 1, essentially by taking M = 0; this ‘box-counting dimension’ case is also covered in [3].

Let D = dlog2(|E|/r)e and let M be the integer satisfying

(4.5) 2M−1r < rθ ≤ 2Mr.

We choose r0 sufficiently small to ensure that 2 ≤M ≤ D − 2 for all 0 < r ≤ r0. For x ∈ E, using (4.4)
and estimating the kernel φs,nr,θ (x− y) given by (3.1) over consecutive annuli B(x, 2kr) \B(x, 2k−1r) (1 ≤
k ≤ D),

γ ≤
∫
φs,nr,θ (x− y)dµ(y)

≤ µ(B(x, r)) +

D∑
k=1

∫
B(x,2kr)\B(x,2k−1r)

φs,nr,θ (x− y)dµ(y)

≤ µ(B(x, r)) +

M∑
k=1

∫
B(x,2kr)\B(x,2k−1r)

2−(k−1)sdµ(y) +

D∑
k=M+1

∫
B(x,2kr)\B(x,2k−1r)

rθ(n−s)+s(2k−1r)−ndµ(y)

≤
M−2∑
k=0

2sµ(B(x, 2kr))2−ks +

M∑
k=M−1

2sµ(B(x, 2kr))2−ks + r(θ−1)(n−s)
D∑

k=M+1

µ(B(x, 2kr))2−(k−1)n.

Hence, for each x ∈ E, there exists some integer 0 ≤ k(x) ≤ D such that one of the above summands is
at least the arithmetic mean of the sum. There are three cases. We will use that there are numbers dn
depending only on n such that every ball of radius ρ in Rn may be covered by at most λ−ndn balls of
diameter λρ for all 0 < λ ≤ 1 (dn = 3nnn/2 will certainly do).
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(i) If 0 ≤ k(x) ≤M − 2 then

γ

D + 1
≤ 2sµ(B(x, 2k(x)r))2−k(x)s = 4sµ(B(x, 2k(x)r))|B(x, 2k(x)r)|−srs,

so

(4.6) |B(x, 2k(x)r)|s ≤ (D + 1)γ−14srsµ(B(x, 2k(x)r));

(ii) if M − 1 ≤ k(x) ≤M then

γ

D + 1
≤ 2sµ(B(x, 2k(x)r))2−k(x)s ≤ µ(B(x, 2k(x)r))2s2−(M−1)s ≤ µ(B(x, 2k(x)r))22sr(1−θ)s,

so

(4.7) 4ndn r
θs ≤ 4n22s(D + 1)γ−1dnr

sµ(B(x, 2k(x)r));

(iii) if M + 1 ≤ k(x) ≤ D then

γ

D + 1
≤ r(θ−1)(n−s)µ(B(x, 2k(x)r))2−(k(x)−1)n,

so

(4.8) dn2k(x)nr(1−θ)n ≤ 2n(D + 1)γ−1dnr
s(1−θ)µ(B(x, 2k(x)r)).

The cover of E by the balls B = {B(x, 2k(x)r) : x ∈ E} is a Besicovitch cover, that is each point of E
is at the centre of some ball in the collection. The Besicovitch covering theorem, see for example [13,
Theorem 2.7], allows us to extract subcollections C1, . . . , Ccn of disjoint balls from B where cn depends
only on n and such that E ⊂

⋃
i

⋃
B∈Ci

B. Let

Ei = {B(x, 2k(x)r) ∈ Ci : M − 1 ≤ k(x) ≤M} and Fi = {B(x, 2k(x)r) ∈ Ci : M + 1 ≤ k(x) ≤ D}.

From (4.5) each B ∈ Ci \ (Ei ∪ Fi) has diameter at most rθ. Also, for each B = B(x, 2k(x)r) ∈ Ei let
DB denote a collection of at most (2Mr/rθ)ndn ≤ 2ndn balls of diameter rθ that cover B, and for each

B = B(x, 2k(x)r) ∈ Fi let DB denote a collection of at most
(
2k(x)r/rθ

)n
dn balls of diameter rθ that

cover B.

For each i = 1, . . . , cn, we consider the cover

C̃i :=
(
Ci \ (Ei ∪ Fi)

)
∪

⋃
B∈Ei∪Fi

DB
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of
⋃

B∈Ci
B. Then using (4.6) - (4.8),

∑
B∈Ci\(Ei∪Fi)

|B|s +
∑
B∈Ei

∑
B′∈DB

|B′|s +
∑
B∈Fi

∑
B′∈DB

|B′|s

≤ 4s(D + 1)
rs

γ

∑
B∈Ci\(Ei∪Fi)

µ(B) +
∑
B∈Ei

4ndn r
θs +

∑
B∈Fi

dn

(
2k(x)r

rθ

)n
rθs

≤ 4s(D + 1)
rs

γ
+
∑
B∈Ei

4n22s(D + 1)dn
γ

rsµ(B) +
∑
B∈Fi

2n(D + 1)dn
γ

rs(1−θ)rθsµ(B)

≤ 4s(D + 1)
rs

γ
+

4n22s(D + 1)dn
γ

rs
∑
B∈Ei

µ(B) +
2n(D + 1)dn

γ
rs
∑
B∈Fi

µ(B)

≤ (4n + 2 · 42ndn)(D + 1)
rs

γ
,

where we have used that Ci is a disjoint collection of balls. Hence, writing C =
⋃
i C̃i,

Ssr,θ(E) ≤
∑
B∈C
|B|s ≤ cn(4n + 2 · 42ndn)(D + 1)

rs

γ
= andlog2(|E|/r) + 1e 1

γ

on setting an = cn(4n + 2 · 42ndn). �

5. Intermediate dimensions of Projections

Our main theorem in this section is that the intermediate dimension profiles dimm
θ E and dim

m

θ E give the
almost sure constant values of the lower and upper intermediate dimensions of orthogonal projections of E
onto m-dimensional subspaces. Thus, intuitively, we can regard dimm

θ E and dim
m

θ E as the intermediate
dimensions of E when regarded from an m-dimensional viewpoint. Let γn,m be the natural invariant
measure on the Grassmannian G(n,m) of m-dimensional subspaces of Rn, see [14, Section 3.9].

Theorem 5.1. Let E ⊂ Rn be bounded. Then, for all V ∈ G(n,m)

(5.1) dim θπV E ≤ dimm
θ E and dim θπV E ≤ dim

m

θ E

for all θ ∈ (0, 1]. Moreover, for γn,m-almost all V ∈ G(n,m),

(5.2) dim θπV E = dimm
θ E and dim θπV E = dim

m

θ E

for all θ ∈ (0, 1].

To prove Theorem 5.1 we begin with some technical lemmas relating the kernel φs,mr,θ to the integral over

V of certain kernels defined on V ∈ G(n,m). We derive this from a standard estimate on integrals of the
characteristic functions of slabs, which has been used in several results on projections, see for example
[14, Lemma 3.11] and [3]. The next lemma states this standard fact; we indicate the proof for the lower
bound which does not seem readily accessible. For this we use the kernels

(5.3) φmr (x) = min

{
1,

(
r

|x|

)m}
(x ∈ Rn)

for r > 0 and m > 0 which were used in [3] in connection with box-counting dimensions of projections.
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Lemma 5.2. There exist constants cn,m, dn,m > 0 depending only on n and m such that for all x ∈ Rn
and r ∈ (0, 1),

cn,mφ
m
r (x) ≤

∫
1[0,r](|πV x|)dγn,m(V ) ≤ dn,mφmr (x).

Proof. The right-hand inequality is given in [14, Lemma 3.11]. The left-hand inequality is obvious when
|x| ≤ r, otherwise we may adapt the proof of [14, Lemma 3.11] by using the estimate

σn−1
({

y ∈ Sn−1 :
( n∑
i=m+1

y2i

)1/2
≤ r
})

≥ α(n)−1Ln ({y ∈ Rn : |yi| ≤ 1/2 for i ≤ m, |yi| ≤ r/n for i > m}) ,

where σn−1 denotes the normalised surface measure on Sn−1, α(n) is the volume of the unit ball in Rn
and Ln is n-dimensional Lebesgue measure. �

It is convenient to introduce further kernels φ̃sr,θ on m-dimensional subspaces, where 0 < r < 1, θ ∈ (0, 1]
and 0 < s ≤ m

(5.4) φ̃sr,θ(x) =


1 |x| < r(
r
|x|
)s

r ≤ |x| ≤ rθ

0 rθ < |x|
(x ∈ V ).

where V ∈ G(n,m) is some m-dimensional subspace. The motivation for this is that whilst φ̃sr,θ is of the

same form as φs,mr,θ (x) in the key region |x| ≤ rθ integrating φ̃sr,θ(πV x) over V ∈ G(n,m) gives a kernel

comparable to φs,mr,θ (x). For brevity, we write ' to mean that the ratio of the two sides is bounded away
from 0 and infinity by constants that are uniform in x, r and θ.

Lemma 5.3. For all m ∈ {1, . . . , n − 1} and 0 ≤ s < m there exist constants a, b > 0, depending only
on n,m and s, such that for all x ∈ Rn, θ ∈ (0, 1) and 0 < r < 1

2 ,

an,m

∫
φ̃sr,θ(πV x)dγn,m(V ) ≤ φs,mr,θ (x) ≤ bn,m

∫
φ̃sr,θ(πV x)dγn,m(V ).

Proof. By direct integration, considering the cases |x| ≤ r, r < |x| ≤ rθ and rθ < |x| separately,

φ̃sr,θ(x) = srs
rθ∫

u=r

1[0,u](|x|)u−(s+1)du + rs(1−θ)1[0,rθ](|x|),

and so using Fubini’s theorem

∫
φ̃sr,θ(πV x)dγn,m(V ) =

∫ [
srs

rθ∫
u=r

1[0,u](|πV x|)u−(s+1)du+ rs(1−θ)1[0,rθ](|πV x|)
]
dγn,m(V )

= srs
rθ∫

u=r

u−(s+1)

[∫
1[0,u](|πV x|)dγn,m(V )

]
du+ rs(1−θ)

∫
1[0,rθ](|πV x|)dγn,m(V ).
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Using Lemma 5.2 and computing the integral using (5.3) yields∫
φ̃sr,θ(πV x)dγn,m(V ) ' srs

rθ∫
u=r

u−(s+1)φmu (x) du+ rs(1−θ)φmrθ (x)

=


1 (|x| < r)
s

m−s

((
r
|x|

)s
−
(
r
|x|

)m)
+
(
r
|x|

)s
(r ≤ |x| ≤ rθ)

s
m−s |x|

−m(rθ(m−s)+s − rm) + |x|−mrθ(m−s)+s (rθ < |x|)
' φs,mr,θ (x).

by comparing with (3.1), where the implied constants are uniform for x ∈ Rn, θ ∈ (0, 1) and 0 < r < 1
2 . �

Note that Lemma 5.3 is not quite valid when s = m since a logarithmic term appears in the final integral.
However we can avoid this case in our application.

We require one further lemma which is a variant of Lemma 4.3 for the modified kernels φ̃sr,θ.

Lemma 5.4. Let E ⊂ Rn be compact, θ ∈ (0, 1), 0 < r < 1 and 0 ≤ s ≤ n. If there exists µ ∈ M(E)
and a Borel set F ⊂ E such that ∫

φ̃sr,θ(x− y)dµ(y) ≤ γ

for all x ∈ F , then

µ(F )rsγ−1 ≤ Ssr,θ(E),

where Ssr,θ(E) is given by (2.3).

Proof. As in Lemma 4.3,

γ ≥
∫
φ̃sr,θ(x− y)dµ(y) ≥

(r
δ

)s
µ(B(x, δ))

for all x ∈ F and r ≤ δ ≤ rθ. Let {Ui}i be a cover of F by sets with r ≤ |Ui| ≤ rθ. We may assume that
for each i there is some xi ∈ F ∩ Ui, so that Ui ⊂ B(xi, |Ui|). Hence

µ(F ) ≤
∑
i

µ(Ui) ≤
∑
i

µ(B(xi, |Ui|)) ≤ r−sγ
∑
i∈I
|Ui|s,

so taking infima over all such covers,

Ssr,θ(E) ≥ Ssr,θ(F ) ≥ µ(F )rsγ−1.

�

Proof of Theorem 5.1 To prove Theorem 5.1 it suffices to prove the a priori weaker result where we
first fix θ ∈ (0, 1] and then establish the result for almost all V . We can do this because the intermediate
dimensions are continuous in θ ∈ (0, 1] and are therefore determined by their values on the rationals.

Without loss of generality let E ⊂ Rn be compact and m ∈ {1, . . . , n − 1}. When θ = 1 Theorem 5.1
reduces to the projection properties for box-counting dimensions, see [3]. Hence we will assume that
θ ∈ (0, 1).

To obtain the upper bounds (5.1) we will apply Lemma 4.4 to projections πV E of E onto V ∈ G(n,m).
It is clear from the definition of φs,mr,θ (3.1) that, for all 0 ≤ s ≤ m, θ ∈ (0, 1) and 0 < r < 1, φs,mr,θ (x)
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is monotonically decreasing in |x|. Since orthogonal projection is contracting, that is |πV (x)− πV (y)| ≤
|x− y|, it follows that

φs,mr,θ (πV (x)− πV (y)) ≥ φs,mr,θ (x− y) (x, y ∈ Rn).

By Lemma 3.1, for each 0 ≤ s ≤ m there exists a measure µ ∈M(E) such that for all x ∈ E
1

Cs,mr,θ (E)
≤
∫
φs,mr,θ (x− y)dµ(y)

≤
∫
φs,mr,θ (πV (x)− πV (y))dµ(y)

≤
∫
φs,mr,θ (πV (x)− w)dµV (w),

where µV ∈ M(πV E) denotes the image of µ under πV defined by
∫
g(w)dµV (w) =

∫
g(πV x)dµ(x) for

continuous g and by extension. Then, for each z = πV (x) ∈ πV E,∫
φs,mr,θ (z − w)dµV (w) ≥ 1

Cs,mr,θ (E)
.

Thus πV E ⊂ V supports a measure µV satisfying the condition of Lemma 4.4 (with n replaced by m and
V identified with Rm in the natural way). Hence

Ssr,θ(πV E) ≤ andlog2(|E|/r) + 1ersCs,mr,θ (E)

for all 0 ≤ s ≤ m for sufficiently small r. Thus

lim inf
r→0

Ssr,θ(πV E)

− log r
≤ −s+ lim inf

r→0

Cs,mr,θ (E)

− log r
,

and the definitions (2.4) and (3.4) imply that dim θπV E ≤ dimm
θ E. The inequality for upper intermediate

dimensions follows in the same way on taking upper limits.

To show that the opposite inequalities hold for almost all V let θ ∈ (0, 1) and 0 ≤ s < m. Let (rk)k∈N be
a sequence tending to 0 such that 0 < rk ≤ 2−k and

(5.5) lim sup
k→∞

logCs,mrk,θ(E)

− log rk
= lim sup

r→0

logCs,mr,θ (E)

− log r
.

Using Lemma 3.1, for each k ∈ N, let µk be an equilibrium measure on E for the kernel φs,mrk,θ and let

γk :=
1

Cs,mrk,θ(E)
=

∫ ∫
φs,mrk,θ(x− y)dµk(x)dµk(y).

With φ̃sr,θ as in (5.4), Lemma 5.3 gives∫ ∫ ∫
φ̃srk,θ(πV x− πV y)dγn,m(V )dµk(x)dµk(y) ≤ a−1γk.

Then for each ε > 0,∫ ∫ ∫
γ−1k rεkφ̃

s
rk,θ

(πV x− πV y)dγn,m(V )dµk(x)dµk(y) ≤ a−1rεk,
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so summing and using Fubini’s Theorem,∫ ∞∑
k=1

(∫ ∫
γ−1k rεkφ̃

s
rk,θ

(πV x− πV y)dµk(x)dµk(y)

)
dγn,m(V ) ≤ a−1

∞∑
k=1

rεk <∞

since rεk ≤ 2−kε. Hence, for γn,m-almost all V , there exists MV > 0 such that∫ ∫
γ−1k rεkφ̃

s
rk,θ

(t− u)dµkV (t)dµkV (u) ≤MV <∞

for all k, where µkV ∈M(πV E) is the image of the measure µk under πV . Hence for such V ,∫ ∫
φ̃srk,θ(t− u)dµkV (t)dµkV (u) ≤MV γkr

−ε
k

for all k. Thus, for each k there exists a set Fk ⊂ πV E such that µkV (Fk) ≥ 1
2 and∫

φ̃srk,θ(t− u)dµkV (t) ≤ 2MV γkr
−ε
k

for all u ∈ Fk. It follows from Lemma 5.4 that

Ssrk,θ(πV E) ≥ 1
2 (2MV γk)−1rs+εk ,

and so

lim sup
k→∞

logSsrk,θ(πV E)

− log rk
≥ lim sup

k→∞

log rs+εk (4MV γk)−1

− log rk

= lim sup
k→∞

log rs+εk Cs,mrk,θ(E)

− log rk

= −(s+ ε) + lim sup
k→∞

logCs,mrk,θ(E)

− log rk
.

This is true for all ε > 0, so using (5.5),

lim sup
r→0

logSsr,θ(πV E)

− log r
≥ −s+ lim sup

r→0

logCs,mr,θ (E)

− log r

for all s ∈ [0,m). Since the expressions on both sides of this inequality are continuous for s ∈ [0,m] by
Lemmas 2.1 and 3.2, the inequality is valid for s ∈ [0,m]. The definitions (2.5) and (3.5) now imply that

dim θπV E ≥ dim
m

θ E for almost all V .

The argument for lower intermediate dimensions (5.2) is similar, setting rk = 2−k and noting that the
limits may be taken through a geometric sequence of r tending to 0. �

6. Observations and applications

One of the most natural questions concerning the intermediate dimensions is that of continuity at θ = 0.
In particular, continuity at 0 provides a complete continuous interpolation between the Hausdorff and
box-counting dimensions and it is therefore of interest to establish this for various classes of set. For
example, this was demonstrated in [4, Proposition 4.1] for Bedford-McMullen self-affine carpets, despite
the absence of a precise formula for the intermediate dimensions. It turns out that continuity at 0 for the
intermediate dimensions of a set implies continuity at 0 for the intermediate dimensions of the projections
almost surely.
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Corollary 6.1. Let E ⊂ Rn be a bounded set such that dim θE is continuous at θ = 0. If V ∈ G(n,m) is
such that dimH πV E ≥ min{m,dimHE}, then dim θπV E is continuous at θ = 0. In particular, dim θπV E
is continuous at θ = 0 for γn,m-almost all V ∈ G(n,m). A similar result holds for the upper intermediate
dimensions.

Proof. If m ≤ dimHE, then the result is immediate and so we may assume that m > dimHE. Then, for
θ ∈ (0, 1), using (5.1), Lemma 3.3, Theorem 4.1, and the assumption that dim θE is continuous at θ = 0,
we get

dimHE ≤ dimH πV E ≤ dim θπV E ≤ dimm
θ E ≤ dimn

θE = dim θE → dimHE

as θ → 0, which proves continuity of dim θπV E at θ = 0. The final part of the result, concerning
almost sure continuity at 0, follows from the above result together with the Marstrand-Mattila projection
theorems for Hausdorff dimensions. �

Corollary 6.2. Let E ⊂ R2 be a Bedford-McMullen carpet associated with a regular a×b grid for integers
b > a ≥ 2. Then dim θπV E and dim θπV E are continuous at θ = 0 for γ2,1-almost all V ∈ G(2, 1). In

particular, if log a/ log b /∈ Q, then dim θπV E and dim θπV E are continuous at θ = 0 for all V ∈ G(2, 1).

Proof. The almost sure result follows immediately from Corollary 6.1 and [4, Proposition 4.1]. The
upgrade from almost all to all follows by applying [7, Theorem 1.1], which proved there are no exceptions
to Marstrand’s projection theorem for Bedford-McMullen carpets of ‘irrational type’ apart from possibly
the projections onto the coordinate axes. However, the coordinate projections are both self-similar sets
and therefore the intermediate dimensions are automatically continuous at 0. �

The converse implication in Corollary 6.1 does not necessarily hold, since continuity at 0 for all of the
projections of E does not guarantee continuity at 0 for E. For example, let E be a set in the plane with
dimHE = 1 that satisfies dim θE = 2 for all θ ∈ (0, 1] and place it inside a circle. The existence of such
an E follows easily from the following consequence of [4, Proposition 2.4]. Our capacity approach yields
a simple proof, which we include for completeness.

Corollary 6.3. If E ⊂ Rn is bounded and satisfies dimBE = n, then dim θE = dim θE = n for all
θ ∈ (0, 1]. Similarly, if dimBE = n, then dim θE = n for all θ ∈ (0, 1].

Proof. Observe that

lim inf
r→0

logCn,nr,θ (E)

− log r
= dimBE = n

and so by (3.4) and Theorem 4.1 it follows dim θE ≥ dim θE = dimn
θE = dimBE = n. The result

concerning dim θE alone follows similarly. �

The following counter-intuitive result follows by piecing together Corollaries 6.1 and 6.3. This gives a
concrete application of the intermediate dimensions to a question concerning only the box and Hausdorff
dimensions.

Corollary 6.4. Let E ⊂ Rn be a bounded set such that dim θE is continuous at θ = 0. Then

dimBπV E = m

for γn,m-almost all V ∈ G(n,m) if and only if

dimHE ≥ m.
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A similar result holds for upper dimensions replacing dim θE and dimBE with dim θE and dimBE, re-
spectively.

Proof. One direction is trivial, and holds without the continuity assumption, since, if dimHE ≥ m, then

m ≥ dimBπV E ≥ dimH πV E ≥ m
for γn,m-almost all V ∈ G(n,m). The other direction is where the interest lies. Indeed, suppose
dimBπV E = m for γn,m-almost all V ∈ G(n,m) but dimHE < m. Then Corollary 6.3 implies that
dim θπV E = m for γn,m-almost all V ∈ G(n,m) and all θ ∈ (0, 1]. Applying the Marstrand-Mattila
projection theorem for Hausdorff dimension, it follows that for γn,m-almost all V ∈ G(n,m) dim θπV E is
not continuous at θ = 0, which contradicts Corollary 6.1. �

To motivate Corollary 6.4 we give a couple of simple applications. If E ⊂ R2 is a Bedford-McMullen
carpet satisfying dimHE < 1 ≤ dimBE, then

dimBπV E < 1 = min{dimBE, 1}
for γ2,1-almost all V ∈ G(2, 1). This surprising application seems difficult to derive directly, noting that
there is very little known about the box dimensions of projections of Bedford-McMullen carpets, aside
from them being almost surely constant. Another, more accessible, example is provided by the sequence
sets Fp = {n−p : n ≥ 1} for fixed p > 0. It is well-known that dimB Fp = 1/(1 + p) and therefore

dimB(Fp × Fp) = 2/(1 + p)

which is at least 1 for p ≤ 1 and approaches 2 as p approaches 0. Continuity at θ = 0 for dim θFp was

established in [4, Proposition 3.1] and it is straightforward to extend this to dim θFp × Fp. Therefore,
since dimH Fp × Fp = 0 < 1, we get

dimBπV (Fp × Fp) < 1

for γ2,1-almost all V ∈ G(2, 1). This is most striking when p is very close to 0. A direct calculation,
which we omit, in fact reveals that for all V ∈ G(2, 1) apart from the horizontal and vertical projections

dimBπV (Fp × Fp) = 1−
(

p

p+ 1

)2

,

an entertaining formula which we would not have come across if Corollary 6.4 had not lead us to it, see
also [9, Proposition 5.1]
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