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ABSTRACT: This study aims to use molecular dynamics

(MD) simulations of Kremer–Grest (KG) chains to inform future

developments ofmodels of entangled polymer dynamics.We per-

form nonequilibrium MD simulations, under shear flow, for well-

entangled KG chains. We study chains of 512 and 1000 KG beads,

corresponding to 8 and 15 entanglements, respectively. We com-

pute the linear rheological properties from equilibrium simula-

tions of the stress autocorrelation and obtain from these data the

tube model parameters. Under nonlinear shear flow, we compute

the shear viscosity, the first and second normal stress differences,

and chain contour length. For chains of 512 monomers, we obtain

agreement with the results of Cao and Likhtman (ACSMacro. Lett.

2015, 4, 1376). We also compare our nonlinear results with the

Graham, Likhtman andMilner-McLeish (GLaMM)model.We iden-

tify some systematic disagreement that becomes larger for the

longer chains. We made a comparison of the transient shear

stress maximum from our simulations, two nonlinear models and

experiments on a wide range of melts and solutions, including

polystyrene (PS), polybutadiene, and styrene–butadiene rubber.

This comparison establishes that the PSmelt data showmarkedly

different behavior to all other melts and solutions and KG simula-

tions reproduce the PS data more closely than either the GLaMM

or Xie and Schweizer models. We discuss the performance of

these models against the data and simulations. Finally, by impos-

ing a rapid reversing flow, we produce a method to extract the

recoverable strain from MD simulations, valid for sufficiently

entangledmonodisperse polymers. We explore how the resulting

data can probe the melt state just before the reversing flow. ©

2019 The Authors. Journal of Polymer Science Part B: Polymer

Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B:

Polym. Phys. 2019, 57, 1692–1704

KEYWORDS: molecular dynamics simulations; nonlinear rheol-

ogy; shear flow

INTRODUCTION Long-chain polymers molecules are at the heart
of the multibillion pound plastics industry. They undergo large
and rapid strains during processing, which strongly influence the
properties of products. Entangled polymers exhibit complex vis-
coelastic behavior under flow due to involvement of a wide range
of time and length scales, and topological constrains due to entan-
glements with surrounding chains. Understanding the dynamics
of polymers under flow is central to controlling how polymers
process and achieving desirable properties of end products. Rele-
vant conditions to polymer processing are long chains under
strongly nonlinear shear flow.

Theoretically, the dynamics of polymer chains are described by
the tube theory, developed by Doi and Edwards1 and based on
de-Gennes’ work.2 This theory relies on the assumption that a
single-chain model can be developed by treating the surrounding
chains as a mean field that creates an effective tube around the
test chain. Over time, the tube model has been improved to pre-
dict viscoelastic properties of entangled polymers by including

important mechanisms such as contour length fluctuation,3–5

constraint release,6–10 and chain stretching.11–13 An alternative
theoretical picture for the dynamics of chain stretch has recently
been presented by Xie and Schweizer,14,15 whose model includes
a new interchain “grip force” that delays chain retraction until
strands exceed a critical tension. Experimentally, the viscoelastic
behavior of entangled polymers has been addressed for solutions
at a range of concentrations16–21 and for melts.12,22–26

Molecular dynamics (MD) is potentially an extraordinarily
useful tool due to its enormously high spatial and temporal
resolution. Specifically, it allows the user to track the individ-
ual and collective motion of chains and subchains in ways that
are impossible by experiment. Moreover, it provides useful
information about the relations between viscoelastic proper-
ties at the macroscopic level and the related molecular mecha-
nisms at the microscopic level.27 Recently, MD has been used
to investigate the viscoelastic behavior of coarse-grained poly-
ethylene chains, in which CX denotes a melt of linear chains
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containing X carbon atoms. This system has about 75 carbon
atoms per entanglement.28 Unentangled C50 and slightly
entangled C178 chains have been simulated29 in bulk and in
confined systems. MD has been used to explore the structural,
conformational, rheo-optical, and topological properties of an
entangled C400 chains in the linear and highly nonlinear
regimes30,31; the dynamics and rheology of supercooled melts
of C1032 C20 and C150,33 and C100028 chains; the steady34

and transient34 behavior of a C100 melt; the steady and tran-
sient31,35 behavior of a C400 melt; and steady and startup
shear of a C700 melt.36,37

In polymer fluids, long-chain entanglement leads to the slow
dynamics that makes polymer processing phenomena rich and
difficult to predict empirically. These slow dynamics mean
that MD of long polymers is extremely difficult without
cutting-edge hardware and code. Consequently, a fast and
highly universal polymer force field was developed by
Kremer–Grest (KG),38 which aims to describe a generic
entangled melt rather than specific polymer chemistry. For
this KG force field, we use NX to denote a melt of linear chains
containing X beads. The KG model has been investigated39,40

over a period of nearly 30 years but has only recently been
applied to start-up of nonlinear shear of entangled melts. Ini-
tial results from Brownian dynamics simulations of mildly
entangled N500 chains by Lu et al.41,42 contradicted the tube
model in several significant qualitative ways. Specifically, they
reported chain stretching at flow rates that are expected to be
too low. Furthermore, the results of Lu et al.41,42 imply a vio-
lation of the stress-optical rule. Attempts to verify these
results from other groups did not reproduce these findings.
MD simulations of N200 chains by Masubuchi and Watanabe43

confirmed that the stress-optical rule holds for KG chains. Fur-
thermore, MD simulations of N512 chains by Cao and
Likhtman44 produced radically different results for the
nonlinear shear stress and the stretching dynamics. These
authors reported qualitative agreement with the Graham,
Likhtman and Milner-McLeish (GLaMM) model,13 a nonlinear
version of the tube model. The work by Lu et al. was subse-
quently retracted.45

There has also been some recent intense examination of the
tube model’s retraction mechanism, involving the interplay of
experiments, simulation, and theory. This has focused on sig-
natures of chain retraction predicted by the tube model that
should be detectable by small-angle neutron scattering
(SANS). Specifically, a nonmonotonic transient response in the
radius of gyration perpendicular to flow, following a uniaxial
extension. Recent SANS experiments by Wang et al.46 did not
observe this signature for a stretch of λ = 1.8 for polystyrene
(PS) chains with Z = 34 entanglements, despite earlier SANS
experiments confirming the signature for a λ = 1.7 stretch of
Z = 54 polyisoprene chains.47 MD simulations by Xu et al.48

for λ = 1.8, Z = 34 KG chains confirmed the lack of retraction
signature. However, the signature was observed in MD simula-
tions of KG chains by Hsu and Kremer49 when either the
strain or the number of entanglements was increased. These
simulations also showed that, during chain retraction, the

leading anisotropic term of the single-chain structure factor is
well predicted by the GLaMM model, particularly for moder-
ately entangled chains. In summary, the GLaMM model pre-
dicts that the SANS signatures of retraction occur rather more
sharply than is observed in PS experiments and MD simula-
tions. Consequently, the GLaMM model predicts signatures of
retraction for moderately entangled chains (Z = 34) at small
strain (λ = 1.8) but these are not observed in PS experiments
and KG simulations until longer chains47,49 or larger strains49

are employed. Finally, in the slip-link simulations of Mas-
ubuchi50 the signatures are absent under milder flow condi-
tions, in agreement with Refs,46,48 even though chain
retraction is present. As slip-link simulations are based on the
tube model, but avoid some of the averaging approximations
of the GLaMM model, this suggests that the overprediction of
the retraction signature is due to mathematical approxima-
tions in the GLaMM model rather than a fundamental issue
with the tube model. Indeed, Masubuchi tentatively ascribes
the difference to entanglement fluctuations inducing inhomo-
geneities in the entanglement density along the chain contour.

In this paper, we aim to improve the use of MD simulations of
KG chains to inform future developments of models of poly-
mer dynamics. The above controversy indicates the challeng-
ing nature MD of simulations for nonlinear flows of entangled
polymers and the need for careful verification of the underly-
ing code base and of emerging simulation results. The studies
of Masubuchi and Watanabe43 and Cao and Likhtman44 both
used in-house codes, which are not publicly available. There is
a clear need for a corresponding open-source code to widen
access to this powerful technique, to benefit from more wide-
spread scrutiny and testing of the underlying code, and to
produce results for more strongly entangled chains. Recently,
Schilling’s group added the necessary shear boundary condi-
tions33 to the widely used MD code ESPResSo.51 This enables
nonlinear shear of polymers to be simulated within this well-
tested and highly parallel open-source software. In this study,
we use this code to run nonequilibrium MD (NEMD) simula-
tions for KG chains. We reproduce the results of Cao and
Likhtman44 for N512 chains and produce new data for chains
of approximately double the number of entanglements. We
also compare the peak stress from our simulations with a
range of experiments and models and interpret the picture
emerging from this comparison. Finally, we present a method
to extract the recoverable strain from MD simulations on
entangled polymers and test modeling ideas that link the
recoverable strain to the polymer stress in the velocity gradi-
ent direction.52 To assist with future work we have made
examples of our input scripts available in the supporting
information for this manuscript.

MODEL AND SIMULATION DETAILS

As in Cao and Likhtman,44 we represent polymer chains by
the conventional KG polymer model.38,53 We used the stan-
dard KG model to equilibrate our systems, rather than using a
soft nonbonded potential along with harmonic bonds as in
Cao and Likhtman.44 Then, we ran simulations under shear
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conditions and computed the transient shear viscosity using
the following relation:

η tð Þ = − Pxy tð Þ
_γ

: ð1Þ

Here η is the shear dependent viscosity, Pxy is the xy compo-
nent of the pressure tensor, and _γ is the imposed system aver-
age shear rate. The pressure tensor for a molecular system
can be written as

Pαβ tð Þ= 1
V

XN
i

m viα tð Þviβ tð Þ +
XN
i

XN
j > i

rijα tð Þ f ijβ tð Þ
" #

: ð2Þ

On the right-hand side of eq 2, the first summation term is the
kinetic contribution, and the second term is the potential con-
tribution to the pressure tensor. Here i represents the particle
index, α and β represent Cartesian components, mi is the mass
of particle i, viα, and viβ are the velocity components of particle
i in the α and β directions, respectively. In the second summa-
tion, rijα represents the α component of the distance vector
between particle i and j, and fijβ is the β component of the
force exerted on particle i by particle j.

In our NEMD simulations, we generated shear flow using Lees
Edwards boundary conditions54 with a dissipative particle
dynamics thermostat.55,56 All simulations were performed
under constant volume and constant temperature conditions.
We used a temperature of ϵ/kB, where ϵ is the Lennard-Jones
interaction strength. We took the friction coefficient for the
thermostat to be 0.5 τ−1 and the cut-off radius to be Rc = 1.3σ,

where τ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTð Þ= mσ2ð Þp

and m is the mass of the bead, kB is
the Boltzmann constant, T is the temperature, and σ is the
Lennard-Jones size of the beads. We used the ESPResSo51 MD
package for all simulations. We simulated systems consisting

of 300 and 420 chains of lengths 512 and 1000, respectively.
We ran simulations at shear rates _γð Þ of 0.000005, 0.00001,
and 0.00003 τ−1. The integration timestep used in our simula-
tions was 0.012 τ. We ran our equilibrium simulations on
8 and 12 nodes for N512 and N1000, respectively, and for the
nonequilibrium simulations we used 5 and 7 nodes, for N512
and N1000, respectively. In all cases each node had 28 CPUs.

RESULTS AND DISCUSSION

We present results from nonequilibrium MD simulations. We
first discuss the rheological properties of KG chains in equilib-
rium, then we focus on the transient behavior of these chains
under nonlinear shear flow.

Linear Rheology
In Figure 1(a), we show the stress autocorrelation function G(t)
against time. We computed G(t) using a recently developed effi-
cient method.57 We reproduce Cao and Likhtman’s results44 for
N512 chains to confirm consistency of the two codes in linear
response. The two N512 curves are in close agreement. We ran
simulations for the much more entangled N1000 chains (solid
squares in Fig. 1(a)), and are able to resolve well the terminal
time. This required a long simulation involving 9 × 109 MD
simulation time steps, which corresponds to 1.08 × 108 τ or
approximately 16 terminal times, if we use double reptation to
approximate the terminal time as half the Likhtman–McLeish5

reptation time (see Table 1). Our simulation parameters are
compared with those of Cao and Likhtman in Table 1.

We computed the storage G0 (ω) and loss G00 (ω) moduli by
fitting G(t) with Maxwell modes, as in Likhtman and Cao.44

Tables 2 and 3 show the resulting Maxwell mode parameters
and Figure 1(b) plots G0 (ω) and G00 (ω). We then fitted these
curves with the Likhtman and McLeish model,5 which is a
quantitative tube model for linear response. For this fitting,
we fixed the constraint release parameter at cν = 0.1 and fitted
the remaining three tube model parameters, namely, the

(a) (b)

FIGURE 1 Equilibrium stress relaxation for KG chains. The open circles are results from Cao and Likhtman44 and the solid circles are

our results, both for N512 chains. The solid squares are our results for N1000 chains. (a) The stress auto-correlation function. (b) The

storage and loss moduli obtained by Maxwell mode fitting to the G(t) data. The lines are fits of the Likhtman–McLeish model.5 [Color

figure can be viewed at wileyonlinelibrary.com]
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entanglement modulus, Ge, the Rouse relaxation time of an
entangled segment, τe, and the number of monomers per
entanglement, Ne, which should be a constant for a given
chemistry and volume fraction. We fitted our N512 and
N1000 data simultaneously with the same parameter values.
Our resulting parameters are shown in Table 1 and compared
with Cao and Likhtman’s values, obtained by fitting their
N350 and N512 data simultaneously. Table 1 also contains
the number of entanglements, Z = N/Ne, the chain Rouse time
τR = Z2τe and the reptation time (computed using eq 12 from
reference5). We expect our parameters to be superior to Cao
and Likhtman’s because we fit to a wider range of molecular
weights (almost a factor of 2 in our case), we exclude the
weakly entangled N350 data and because our set includes a
well-entangled system (N1000). Table 1 shows that we obtain
the same values for τe and Ge as Cao and Likhtman. This is
expected as these parameters can be determined accurately
from moderately entangled chains and this requires only high
frequency data, which can be obtained with good statistical
resolution from a comparatively short simulation. That is,
adding a highly entangled sample does not update these

parameters from Cao and Likhtman’s results. In contrast, we
see a noticeable change in Ne, because this value is sensitive
to the terminal region and is best determined from data on
well-entangled chains, as we provide here. The value of Ne is
important for accurate tube model predictions for fast
nonlinear flow as Ne is required to compute the overall chain
Rouse time, τR. Indeed, Table 1 shows that we determine a
somewhat smaller τR for N512 than Cao and Likhtman. Later,
this improved τR will be important when comparing our MD
results to experiments. Figure 1(b) shows that the Likhtman
and McLeish model generally predicts G0 (ω) and G00 (ω) very
well but that we have enough statistical resolution in our sim-
ulation data to expose a systematic disagreement for the
shape of the peak in G00 (ω).

Nonlinear Shear Stresses
We ran MD simulations for start-up of nonlinear shear at a
range of shear rates. We computed the transient shear stress
using eq 1 and we used logarithmic bins in time for averaging
as described by Cao in his thesis.58 In this technique, the

TABLE 1 Simulation and Tube Model Parameters Used in Cao and Likhtman44 and This Work

Simulation parameters Tube model parameters

N Nc Box ratio ρσ3 Code Ne Z τe/10
3 τ τR/10

5 τ τd/10
5 τ Ge

Cao et al. 512 300 2:1:1 0.85 In-house 60 8.53 3.29 2.3 16.6 0.0196

This Work 512 300 2:1:1 0.85 ESPResSo51 65 7.88 3.29 2.0 12.3 0.0196

This Work 1000 420 1:1:1 0.85 ESPResSo51 65 15.4 3.29 7.8 137 0.0196

The tube model parameters were obtained by fitting the Likhtman–McLeish model5 to the storage and loss modulus data in Figure 1(b).

TABLE 2 Linear Spectrum of Moduli and Timescales for N512 Chains

Mode # τi gi Mode # τi gi

1 0.8322 2.4849 6 2362.47 0.0103

2 4.0826 0.3520 7 11,587.8 0.0041

3 20.020 0.1464 8 56,837.4 0.0041

4 98.197 0.0518 9 278,784 0.0019

5 481.65 0.0230 10 1.367e6 0.0055

TABLE 3 Linear Spectrum of Moduli and Timescales for N1000 Chains

Mode # τi gi Mode # τi gi Mode # τi gi

1 0.0291 1.297 8 86.2276 0.0401 15 255,362 0.0028

2 0.0912 0.123 9 270.132 0.0219 16 799,994 0.0009

3 0.2857 0.032 10 846.265 0.0122 17 2.50621e6 0.0001

4 0.8952 2.314 11 2651.16 0.0072 18 7.85139e6 0.0047

5 2.8045 0.270 12 8305.52 0.0026 19 2.45967e7 0.0011

6 8.7859 0.172 13 26,019.4 0.0030 – – –

7 27.524 0.087 14 81,513.0 0.0005 – – –
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quantity C(t) at any time (t) after start of shear can be com-
puted using the following relation:

C ti +
t0i
2

� �
=
1

t0i

ðti + t0i
ti

C tð Þ dt: ð3Þ

Here ti are averaging time intervals and ti = t0 +
Pi−1

k = 0t
0
k , t0 is

the shear start time, t0i =DM
i, D is constant for the first time

interval, and M is a multiplication factor. In this work, D and
M are set to 8Δt and 1.1, respectively, where Δt is the simula-
tion time step.

Our results for N512 are shown in Figure 2, along with a com-
parison of the results from Cao and Likhtman44 and this work,
using open and solid symbols, respectively. We do not see any
significant difference between our results and Cao and
Likhtman’s results.44 At these shear rates, the shear stress
exhibits a transient overshoot. Also included in Figure 2 is the
linear viscoelastic envelope, η0(t), which we calculated from

η0 tð Þ =
X
i

giτi 1−exp −t=τið Þ½ �, ð4Þ

using the Maxwell modes we obtained by fitting our linear
simulations of G(t) as in Figure 1 and Table 2. Both sets of
nonlinear simulation data conform to η0(t) at low strain.
Finally, we also show the predictions of the GLaMM model13

using the tube model parameters obtained from our linear
simulations (Table 1) and including the minor modifications
proposed by Auhl et al.59 Our revised tube model parameters
are important to the comparison of our MD to experiments
because our improved value of Ne reduces the uncertainty in

the Rouse time of the simulations. The GLaMM model shows a
systematic overprediction of the time and height of the shear
stress overshoot relative to the simulation data.

In Figure 2, we show the shear viscosity as a function of time
at different shear rates for the longer N1000 chains. As with
Figure 3, we also include the linear viscoelastic envelope and
the predictions of the GLaMM model using the parameters
from linear response (Table 1). The systematic disagreement
is somewhat more pronounced for these longer chains. The
model overpredicts the peak and steady-state stress, with the
effect becoming stronger at higher rates. Some of this greater
disagreement, relative to N512, can be explained by the
greater Rouse Weissenberg numbers for N1000.

In Figure 4, we show the first normal stress difference coeffi-
cient as a function of time for N1000. The first normal stress dif-
ference overshoots, like the shear viscosity, but the peak value
is shifted to later times. It was also observed by Jeong et al.35

that the peak in the first normal stress difference occurs at

t ψmax
1

� �
≈2 t ηmaxð Þ, where ψ1 = N1= _γ

2 = σxx −σyy
� �

= _γ2. The

dashed line in Figure 5 is the linear viscoelastic envelope,
obtained from

N1

γ2
: tð Þ=

X
i

2giτ
2
i 1−

t

τi + 1

� �
exp

− t
τi

� �� �
, ð5Þ

which describes the nonlinear data at small strains. Also
shown are the GLaMM model predictions, which are some-
what above the MD data for the highest shear rate.

Figure 5 shows the transient second normal stress difference, N2,
for N1000 chains, plotted as −N2. We observe an undershoot in
N2, manifest as a maximum in the negative N2.The minimum at

FIGURE 2 Shear viscosity against time from MD simulations of

N1000 chains. The predictions from the GLaMM model13 are

represented by solid lines with input parameters from Table 1.

The black dashed line was obtained using eq. 4. [Color figure

can be viewed at wileyonlinelibrary.com]

FIGURE 3 Transient shear viscosity from MD simulations of

N512 chains. The open and solid symbols represent results

reported by Cao and Likhtman44 and this work, respectively. The

predictions from the GLaMM model13 are represented by solid

lines. The black dashed line is obtained using eq. 4. [Color

figure can be viewed at wileyonlinelibrary.com]
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t ψmin
2

� �
≈t ηmaxð Þ, where ψ2 = N2= _γ

2 = σyy −σzz
� �

= _γ2. In addi-

tion to the undershoot, our simulated N2 is small, negative,
and shear thinning, all of which are seen in experiments.60

Despite its small magnitude the second normal stress differ-
ence is significant as it has been linked to the onset of edge
fracture.60,61 The GLaMM model, like many constitutive
models, predicts a zero second normal stress difference under
shear.

Transient Chain Contour Under Shear
In order to examine the chain deformation directly from our
MD simulations, we computed the chain contour length, as fol-
lows. We divided each chain into Z = N/Ne subchains, with

each segment having 65 (Ne) monomers. We computed the
square end-to-end vector of each subchain Ri and took the
ensemble average. We then computed the contour length of
the whole chain by summing over the square root of each
mean square subchain length. That is,

L =
XZ
i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<Ri:Ri >

p
: ð6Þ

We chose this method of averaging as it is a measure of the
chain contour length that is readily computed from the
GLaMM model (see eq 20 of Ref.13). In Fig. 6, we show the
ratio between the average contour length L and the equilib-
rium length L0 against time for N512 chains under shear, com-
puted from both MD and the GLaMM model. A corresponding
plot for N1000 chain is shown in Figure 7. The worst agree-
ment with the GLaMM model occurs where the MD stresses
are overpredicted, namely, in steady state for both N512 and
N1000 and at the highest shear rate for N1000. This shows
that an overprediction of the chain stretching in the GLaMM
model is at least partially responsible for the overprediction
of the stresses in MD. Generally, the stretch evolution in the
simulations occurs later than the GLaMM model predictions,
which likely contributes to the GLaMM model predicting
stress peaks that are earlier than those in the simulations.

There has been some discussion in the literature of how reli-
able coarse-grained forcefields are for high flow rates. Jeong
et al.35 concluded that the chain orientation is the primary
cause for the macroscopic stress overshoot of entangled poly-
meric systems under start-up shear. Baig and Harmandaris62

reported larger chain deformation in their course-grained sim-
ulations of PS melts than their atomistic simulations, for
Weissenberg numbers above 5. We confirmed that our results

FIGURE 5 MD simulations of the transient negative second

normal stress difference for N1000 chains. [Color figure can be

viewed at wileyonlinelibrary.com]

FIGURE 6 Normalized chain contour length (from eq 6) under

shear for N512 chains from MD and the GLaMM model. [Color

figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Transient first normal stress difference from MD

simulations of N1000 chains, compared to the GLaMM model

predictions. The linear viscoelastic envelope is computed from

eq 5. [Color figure can be viewed at wileyonlinelibrary.com]
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obey the stress optical rule, in agreement with the atomistic
simulations of Jeong et al. Also, the transient chain stretching
in our simulations (Figs. 6 and 7) show no unphysically large
stretching. Finally, we will show in Section 3.4 that our simu-
lated peak stresses follow the same scaling law with flow rate
as experiments for all shear rates in our study, suggesting no
onset of unphysically large deformation in our simulations.

The Shear Stress Maximum and Comparison with
Experiments
The shear stress overshoot is a key transient feature at high shear
rates. To allow a comparison between our simulations, experi-
ments, and models, we have plotted, in Figure 8, the features of
the shear stress maximum for varying shear rate for several dif-
ference chemical species. These include PS, polybutadiene (PBD),
and styrene–butadiene rubber (SBR), encompassing both melts
and entangled solutions. These plots require τR and the entangle-
ment modulus, Ge, for each experimental system. For some
materials,18 these values have previously been determined13

from linear rheology using the Likhtman and McLeish model.5

For all other materials τR was reported in the original experimen-
tal papers and we have used these values. In addition, where the
original experimental papers report a plateau modulus, GN, we
convert this value to Ge bymultiplying by the standard factor63 of
5/4. We have also applied this 5/4 factor as a downward shift to
the Xie and Schweizermodel in Figures 8(b–d), to account for dif-
ferences between the entanglement and plateau modulus. For
the PBD solutions of Ravindranath and Wang,20 we obtained Ge
by directly fitting the Likhtman and McLeish model to linear rhe-
ological measurements. The plateau modulus for PS reported by
Schweizer et al.24 is about 1.5 times lower than the typical PS
melt value so we fitted their linear rheological data the Likhtman
and McLeish model to obtain Ge = 3 × 105 Pa, which is compara-
ble to typical PSmelt values.5

The data in Figure 8 fall into three distinct groups: low Z, high
Z, and the PS data. To illustrate this behavior, we separate the
peak strain plots into two parts, low Z and PS data in Figure 8
(a) and high Z data in Figure 8(b). We employ a similar sepa-
ration for the peak stress data in Figure 8(d,e). The PS curves
are clearly different to all the other materials and this distinct
behavior for PS is somewhat unexpected. We used PS data
from two different groups24,25 and confirmed that both lie on
the same mastercurve. We also confirmed the values of τR by
fitting the Likhtman and McLeish model to the linear rheologi-
cal experiments and obtained essentially the same τR as
reported in the original experimental papers. Thus, the sepa-
rate behavior for PS is clearly established. Interestingly, our
MD simulations follow the PS mastercurve and not that of the
other materials.

The peak strain plots in Figures 8(a,b) show three types of
behavior: all of the PS data collapse to a single master curve,
which is captured well by the Xie and Schweizer model; all of
the remaining low Z data are well described by the GLaMM
model for _γτR ≤ 10; and the high Z data are also captured by
the GLaMM model for _γτR ≤ 10, but with some disagreement
for some of the lowest Weissenberg number measurements.
Specifically, at very low Rouse Weissenberg numbers
( _γτR < 0:3), the GLaMM model fails to capture the SBR melt
with Z = 76, which is the most entangled sample for which
there is low _γτR data. Here, the model slightly overpredicts
the maximum strain. This flow regime is expected to be domi-
nated by convective-constraint release (CCR), and so this may
be experimental evidence of some deviation from the CCR
implementation in the GLaMM model. Finally, we note that

the high Z experiments and the simulations show γmax / _γ1=3

scaling, which is captured by the Xie and Schweizer model but
not the GLaMM model. Hence, the Xie and Schweizer model
captures the shape of these data but gives numerical values
that are somewhat too large.

Further details of the shear stressmaximum are revealed by plots
of the shear stress maximum. Figure 8(c), which plots the maxi-
mum stress against maximum strain, again shows two
mastercurves: the PS experiments collapse to one curve and the
non-PS experiments collapse to a separate curve. The collapse is
very clear at moderate and high γmax but somewhat less clean at
lower γmax, where all of the low Z data show some dependence on
degree of entanglement, Z. Nevertheless, the PS mastercurve is
noticeably below the non-PS mastercurve. As with the previous
plots (Figs. 8(a,b)), the GLaMM model captures well the non-PS
experiments, for _γτR < 10. In contrast, the Xie and Schweizer
model predicts a σmax

xy that is above all of the experiments. In

particular, this model deviates mostly strongly from the PS
data, despite successfully predicting γmax for PS. Our MD simu-
lations capture both γmax and σmax

xy for the PS materials. A simi-

lar picture is apparent in Figs 8(d,e), namely, that the GLaMM
model captures the non-PS data for _γτR < 10; the Xie and
Schweizer model is higher than all data; and the MD simula-
tions are close to the PS data. However, again the Xie and
Schweizer model has the correct shape over a wide range of
flow rates for the high Z data, but with predicted value of a

FIGURE 7 Normalized chain contour length (from eq 6) under

shear for N1000 chains from MD and the GLaMM model. [Color

figure can be viewed at wileyonlinelibrary.com]
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constant factor of �2 above the experiments. Figure 8
(d) shows a stronger dependence on Z than the other plots,
particularly at lower shear rates. Also, Figs 8(d,e) show that
the GLaMM model overpredicts σmax

xy for _γτR > 10. Finally, in

Figure 8(d) the green dashed line corresponds to the power

law σmax
xy =Ge = _γτRð Þα with α≈0.44, which holds for the Z = 10

PS experiments for over two decades in shear rate, including
_γτR < 1. The high Z data20,26 in Figure 8(e) follows a similar
power law over an even wider range of shear rates, but with
a much weaker exponent of α≈ 0.3. The our MD data are for
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FIGURE 8 Comparison of our MD results with experiments by Costanzo et al.25 (PSmelt and solution), Schweizer et al.24 (PSmelt), Menezes

and Graessley18 (PBD solutions), Boukany et al.26 (SBR melts) and Ravindranath and Wang20 (PBD solutions), along with the GLaMM13 and

Xie and Schweizer14,15 models. The strain at peak stress against _γτR for PS and low Z (a) and high Z (b); the peak stress against peak

strain (c); and the peak stress against _γτR for PS and low Z (d) and high Z (e). The legend applies to all plots and ϕ is the volume

fraction. The green dashed line in (d) corresponds to σmax
xy =Ge = _γτRð Þ0:44. [Color figure can be viewed at wileyonlinelibrary.com]
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_γτR > 1, similarly to previous studies.44 Future MD studies
exploring lower Weissenberg numbers, although computation-
ally expensive, might elucidate the physics behind this lower
flow rate behavior in the PS experiments.

We now consider reasons for the divergence between the
GLaMMmodel and some of the experiments. The GLaMMmodel
assumes Gaussian chain statistics and constant monomer fric-
tion under flow. Both of these assumptions are most accurate
for materials where NeK, the number of Kuhn steps between
entanglements, is high. Thus we expect the best agreement for
highly diluted, entangled solutions. Our data comparison shows
that the SBR melts conform to the same master curve as the
solutions and so appear to have a sufficiently large NeK to agree
with the GLaMM model. Auhl et al.59 have also shown good
agreement with polyisoprene melts, which is consistent with
the comparatively large melt NeK for this chemical species.
Regarding Z, early versions of the tube model generally
neglected some mechanisms that are important for shorter
chains, such as constraint release and contour length fluctua-
tions and so were expected to work best for large Z. However,
the GLaMM model includes these corrections so can predict
melt and solution data as low as Z = 7.59,64 Below this threshold
linear tube models begin to breakdown, as discussed in Ref. 59.
Validation of the GLaMM model for very large Z (Z > 50) is less
comprehensive due to the rarity of nonlinear data for such
highly entangled chains. Figure 8 includes the most entangled
samples for which there is available nonlinear shear data. The
agreement of the non-PS data is equally good for all values of Z,
provided _γτR < 10, apart from a small number of minor devia-
tions detailed above.

Some recent modeling work65 suggests a possible reason for the
different behavior of PS compared to other materials, NeK, which
is lower for PS than for other melts.66 It is expected that the
monomer friction will reduce with local alignment of mono-
mers65 and this will become important for nonlinear flows of low
NeK fluids. Hence PS is more susceptible to this effect than other
melts. Experimental evidence on PS melts qualitatively supports
this. Specifically, Ianniruberto et al.65 observed that modeling
alignment-dependent friction is more important to capture PS
extensional rheology, compared to melts of other chemistries,
due to its small NeK. Furthermore, Robertson et al.67 showed that
including alignment-dependent friction in the tube model pro-
duces much-improved predictions of extrudate swell in PS, par-
ticularly for near-monodisperse polymers. In solutions reduced
friction is expected to be absent because the local environment is
dominated by the solvent.68 Hence, because the non-PS melts and
the solutions in Figure 8 shared a single master curve, alignment-
dependent friction seems negligible here. Furthermore, this con-
clusion is also supported by the agreement of these experiments
with the GLaMM model (for _γτR < 10), which neglects changes
in friction under flow.

It is less clear why our KG chain simulations are close to the PS
experiments, rather than the other materials. Our KG chains have
approximatelytwobeadsperKuhnstep,69meaningNeK=Ne/2=32.5

which is small, but not as small as PS. There may also be a role for
bead density and temperature in KG simulations. The standard
choices for these, taken herein, give a relatively high density com-
pared to the Lennard-Jones interaction distance (ρ = 0.85σ3) and a
low temperature relative to the interaction energy (T = ϵ/kB). Both
of these factors mean that monomer–monomer interactions will
involve significant excluded volume in addition to noncrossability
of chains. Hence these factors may increase the role of alignment-
dependent friction relative to non-PS melts and solutions. There
may also be a role for fluctuations in the entanglement density,50

absent in the GLaMMmodel, to explain the PS andMDdata.

We now examine support from our simulations for the inter-
molecular gripping force in the model of Xie and
Schweizer.14,15 The Xie and Schweizer model predicts well the
peak strain from our simulations (see Fig. 8a) as well as the
corresponding data for PS melts. In particular, the model has
the correct scaling exponent, as reported in Refs 14,15. The
model achieves this because the intermolecular gripping force
delays chain retraction relative to the GLaMM model for mod-
erate values of _γτR by requiring strands to exceed a critical
tension. Consequently, the Xie and Schweizer model predicts a
noticeably higher σmax

xy than the MD and PS data in Figure 8(b,

c). Here, the MD and PS data fall below the non-PS data and
the GLaMM model, suggesting less chain stretching in these
data. This picture of suppressed stretching in the MD data, rel-
ative to the GLaMM model, is also observed directly in our
simulation results for transient chain stretching in Figures 6
and 7.

Strain Recovery from a Rapid Reversing Shear Flow
There has been recent experimental70,71 and theoretical52,72

interest in recoverable strain in polymers. Experiments by Lee
et al.71 have linked recoverable strain to microscopic structure
and normal stress in two very different polymeric systems. In
entangled polymers, the bulk of the strain is typically recov-
ered in a very fast, time-dependent, reversing shear flow, as
the slow-relaxing polymeric stress far exceeds the viscous
stresses.52,72 In such a fast reversing flow, the stress–strain
behavior is independent of the strain rate as there is insignifi-
cant relaxation during the strain recovery. Thus we model the
recovery period in our simulations as a rapid, constant rate
reversing shear flow. The recoverable strain corresponds to
the strain at which the shear stress returns to zero. Our MD
simulations to investigate recoverable strain are shown in
Figure 9. We picked a point from the shear stress transient in
Figure 2, corresponding to an imposed strain of γimposed and
applied a reversing shear at a rate of _γr. The shear stress tran-
sients for these reversing flows are shown in the insets of
Figure 9, in which γrec is the shear strain applied in the
reversing direction and σ0xy is the shear stress at the point the

shear is reversed. For γimposed = 16, we imposed three differ-
ent reversing shear rates in the range j _γr j τR = 23−69.
Figure 9 shows that, as expected, the stress–strain behavior is
independent of the flow rate. We repeated the test for two
rates for γimposed = 9, obtaining the same collapse of the
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stress–strain results. Thus using this shear rate window, we
could determine the recoverable strain from the reversing
strain required to return the shear stress to zero. Figure 9
shows the recoverable strain extracted from our simulations.
In these simulations, the imposed strain is almost entirely
recovered for imposed strains up to the shear stress maxi-
mum, with the recovery dropping off rapidly beyond
γimposed = γmax as in experiments (see Figure 10).70

It is clear from the insets of Figure 9 that the reversing shear
stress transients show considerable curvature. In particular,
there is a rapid initial drop-off in the shear stress shortly after
the reversing flow is applied. To examine this more closely,
we plotted in Figure 11(a) the reversing viscosity, defined as

ηrev tð Þ = σ0xy −σxy tð Þ
� �

=jγr: j, where t = 0 corresponds to the

start of the reversing flow. Our simulation results lie between
η0(t) (the linear viscoelastic envelope for start-up shear, using
the spectrum from Table 3) and ηfast(t), the same spectrum
but only including modes for which τ j _γrev j < 1. Between these
two limiting curves the MD results follow an apparent power
law with the exponent weakening with increasing γimposed. In
contrast, for sufficiently entangled polymers, the recoverable
shear modeling of Holroyd et al.52 predicts ηrev(t) = Gefft,
where Geff is an effective modulus. The apparent power-law
behavior in our simulation results is likely due to the linear
viscoelastic effect of fast relaxing modes that are non-
negligible as the chains are only moderately entangled. To cor-
rect for this we subtracted ηfast(t) from ηrev(t) in Figure 11(b).

This corrected quantity has the expected linear scaling with
t and from this we could extract a Geff. This suggests that the
response of the fast modes to the change in shear rate is the
same as for a start-up flow, whereas the slow modes retain a
memory of the earlier flow.

FIGURE 9 A summary of our method for extracting the recoverable strain from our MD simulations of N1000 chains. The main plot

shows the shear stress transient for a start-up shear at _γτR = 23. The insets show the stress response against reverse shear strain,

where the reversing flow starts at the point indicated on the main flow curve. The red and black dashed lines in the insets

correspond to σxy = σ0xy (stress at the start of the reverse) and σxy = 0 (end of the recovery), respectively. [Color figure can be viewed

at wileyonlinelibrary.com]

FIGURE 10 Recoverable strain extracted from our simulations of

N1000 chains, obtained from the reversing strain required to

return the shear stress to zero (see the insets of Fig. 9). The

dashed red line corresponds to γmax. [Color figure can be

viewed at wileyonlinelibrary.com]
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Our results for Geff are shown in Figure 12(a), normalized by
the effective modulus from the linear viscoelastic envelope,
G0. The recoverable shear modeling of Holroyd et al.52 pre-
dicts Geff/G0 = σyy/GN, where σ0yy is the polymer stress in the

yy direction at the point that the shear is reversed and
GN = 4/5Ge is the plateau modulus. The GLaMM model predic-
tions for σyy/GN are shown in Figure 11(b). They agree well
with the Geff/G0 values from our MD simulations. The key area
of disagreement is that the GLaMM model predicts a small rise
in σyy at large strains, as σyy undershoots, but this is not
reflected in Geff. Our results suggest an experimental protocol,
involving only shear stress measurements, that could provide
information about the polymer stress in the velocity gradient
direction.

CONCLUSIONS

We performed MD simulations to investigate the nonlinear
behavior of entangled KG chains. We report results for two chain
lengths of 512 and 1000 beads, which have 8 and 15 entangle-
ments, respectively. These results provide benchmarking for the
weakly entangled system and novel data for a more strongly
entangled system. We also present novel data for the normal
stresses and transient chain stretching for both chain lengths. For
both chain lengths we computed, from our simulations, the linear
stress relaxation function G(t) and, under nonlinear shear, we
computed the transient shear stress and chain contour length.
For N1000 we also generated MD data for the first and second
normal stress differences. Our shear stress data for N512 are
entirely consistent with those of Cao and Likhtman,44 providing
an independent verification of their results using a different ther-
mostat. This is significant given the contradictory results from Lu
et al.41,42 Our stress results for N1000 have many qualitative fea-
tures in common with experiments. We observe an overshoot in
the shear viscosity and the first normal stress difference, with the
peak in the first normal stress difference coefficient, occurring at

t ψmax
1

� �
≈2 t ηmaxð Þ. The second normal stress difference is

small, negative, shear thinning, and shows an undershoot,

occurring at t ψmin
2

� �
≈t ηmaxð Þ. We ran our simulations within

the widely used MD code ESPResSo,51 well-tested and highly
parallel open-source software. The multinode parallel func-
tionality of this code was essential to access the very long
simulation times that are needed for highly entangled chains.
Furthermore, as ESPResSo is open source, it is available for
use, scrutiny and modification by the whole research
community.

We analyzed our MD data using standard linear5 and nonlinear13

implementations of the tube model. For the linear rheological
simulations, we build on the results of Cao and Likhtman44 by
adding a significantly more entangled chain (N1000). This wider
range of molecular weights enables more effective fitting with
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the Likhtman–McLeish5 model, which produces an improved
value for the number of monomers per entanglement, Ne, for KG
chains. This improved parameterisation leads to improved values
for the Rouse time of KG chains, which is a key element in com-
paring these simulations to experimental data. Many of the fea-
tures in our simulated stresses are qualitatively similar to
experiments. Indeed, our comparison with experiments shows
that our KG results capturewell PSmelt experiments. TheN2 data
that we present may be useful in informing new constitutive
models, particularly those aimed at capturing edge fracture and
similar instabilities.

We made a systematic comparison of the transient shear stress
maximum for our simulations, experiments on a wide range of
both melts and solutions, including PS, SBR, and PBD. We also
compared with predictions from the GLaMM and Xie and
Schweizer models. This comparison establishes that PS data and
non-PS data show markedly different behavior and that KG
chains reproduce the PS data more closely than the GLaMM or
Xie and Schweizer models. We ascribe the PS behavior to the low
NeK value of PS melts and KG chains. The model of Xie and
Schweizer14,15 captures the strain of peak stress for PS melts and
KG simulations, but overpredicts the stress peak in experiments
and simulations. However, the Xie and Schweizer model has the
correct shape over a wide range of flow rates for the high Z data
despite its overprediction relative to these experiments. The
GLaMM model13 captures both the peak stress and strain for the

non-PS experiments for shear rates up the _γτR ~10, beyond which
the peak height and strain are over predicted. The GLaMM
model overpredicts the chain stretch in KG chains and this is
a likely reason for its difficulty in predicting the features of
the shear stress maximum in PS melts. The Xie–Schweizer
model also overpredicts these stretch data. We identified
alignment dependent monomer friction as a potential low NeK

correction for the GLaMM model. There may also be a contri-
bution from inhomogeneities in the entanglement density
along the chain contour.

We developed a method to extract the recoverable strain from
MD simulations, via a rapid reversing flow, which is valid for
sufficiently entangled monodisperse polymers. We generated
recoverable strain data under rapid reversing flow for N1000
chains. We also analyzed the reversing flow stress transients
and identified fast relaxing parts of the melt spectrum that
behave as though fully relaxed when the flow is reversed and
a slow relaxing portion of the spectrum that retains a memory
of the melt state just before the reverse flow. From this sepa-
ration of the reversing flow transient we could extract from
our MD data, an effective modulus Geff for the reversing flow.
Our data for Geff show that the initial forward shear reduces
the modulus that opposes the reversing flow, an effect that
increases with the strain imposed during the forward
shear. The modeling by Holroyd et al.52 predicts that Geff/
G0 = σyyGN and we verify this prediction by showing that the
GLaMM model captures the shear induced changes in Geff. Our
reversing flow protocol requires only shear stress data from a
rapid reversing flow and the linear viscoelastic spectrum and
so should be achievable in experiments, to provide an

experimental method to probe the polymer stress in the veloc-
ity gradient direction from shear stress measurements alone.
Indeed, recent experiments by Lee et al.71 also linked recover-
able strain to normal stress measurements.
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