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Abstract 

At present a wide variety of methods have been proposed to treat eye 

disorders, drug therapies are most commonly used. It should be noted that effective 

treatment modalities especially for degeneration of the retina and optic nerve are 

lacking. In the last few years stem cell transplantation has been proposed as an 

alternative method. The opportunities that stem cells provide within clinical use are 

almost unlimited. These cells are presently applied to treat various traumatic and 

degenerative disorders due to their unique biologic properties. Stem cells have high 

proliferative capabilities and are a self-maintained population of cells capable of 

differentiating into different cell types. Thus, they are represent a very primary stage 

of a cell lineage. Their ability to differentiate into different pathways provides 

animals with great plasticity in the renewal of somatic cells in postnatal ontogenesis. 

Pre-clinical and clinical ophthalmology studies where mesenchymal stem cells are 

applied and various methods of their administration are discussed herein. In addition 

the safety and efficacy of using bone marrow- and adipose tissue-derived 

mesenchymal stem cells have been discussed.  
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1. Introduction 

The development and introduction of modern treatment modalities for 

different eye disorders are a challenge in medicine. In recent years ophthalmologists 

have placed a greater focus on stem cells (SCs) as the renewal and regeneration of 

any tissue in the adult body depends on somatic SCs, with eye tissues being no 

exception (Holan et al., 2015). The cornea is a protective barrier and consists of three 

layers with a different germinal origin: the epithelium originates from superficial 

ectoderm and the stroma and endothelium arise from neural crest cells (mesechymal 

tissue). Experimental studies have shown that a variety of SCs are present in each of 

these layers (Amano et al., 2006). For example, limbal SCs maintain epithelial 

homeostasis and regenerate the cornea, with their deficiency being the main cause 

of blindness all over the world (Ksander et al., 2014). However, clinical use of 

cultured stromal and endothelial SCs is hindered as it is difficult to isolate them in 

sufficient numbers and optimized culture media are lacking. Therefore, it is a high 

priority to search for an alternative, readily available source of SCs which can be 

provided in sufficient amounts especially as stem cells have such high potential in 

the treatment of eye disorders characterized by permanent loss of cells such as 

glaucoma, age-related macular degeneration, degeneration of photoreceptor cells, 

hereditary retinopathy, mechanic and ischemic retinal lesions (Joe and Gregory-

Evans, 2010; Oner, 2018; Song et al., 2015; Zarbin, 2016).  

 

2. Overview of stem cells 

Stem cells from adults can be subdivided into three main groups; 

hematopoietic, multipotent mesenchymal (stromal) and tissue-specific progenitor 

cells. Hematopoietic stem cells are multipotent stem cells that give rise to all blood 

cells of myeloid (monocytes, macrophages, neutrophils, basophils, eosinophils, red 



blood cells, megakaryocytes and platelets, dendritic cells) and lymphoid (T- and B 

cells and natural killers) lineages (Eaves, 2015). 

Tissue-specific progenitor cells are poorly differentiated cells located in 

various tissue types and organs and are responsible for the renewal of their cell 

populations, in essence to replace dead cells. An example of tissue-specific 

progenitors includes myosatellite cells, which reside in the myocardium (Le and 

Chong, 2016). These cells are oligo- and unipotent. That progenitor cells can divide 

only a restricted number of times whilst other stem cells are capable of unlimited 

self-renewal is their main difference from other SCs (Klimczak and Kozlowska, 

2016). Therefore in this context mesenchymal stem cells (MSCs) are of great 

interest. Firstly, MSCs give rise to several tissue types. They can differentiate into 

epithelial neuron-like cells, retinal ganglion cells, glial and photoreceptor cells 

(Phinney and Prockop, 2007). MSCs are also known to successfully differentiate 

into keratocytes and corneal epithelial cells (Sun et al., 2018; Zhang et al., 2015). 

Adipose derived (AD) and bone marrow (BM) derived are the most common 

and available sources of MSCs. MSCs derived from adipose and bone marrow have 

significant potential for tissue regeneration - they secrete signaling molecules such 

as neurotrophic factors, growth factors or cytokines which can diffuse in a local 

tissue medium and interact with nearby cells (Lin et al., 2009). Immunophenotyping 

is one of the most relevant methods used to differentiate BM and AD MSCs from 

other cells. On their surfaces both MSC types carry similar positive membrane 

markers such as CD105 (endoglin), CD73 (5'-nucleotidase) and CD90 (Thy-1), 

whilst remaining negative for markers including CD45, CD34, CD14, CD11b 

(Dominici et al., 2006).  

Mulipotent abilities of BM and AD MSCs are normally assessed by their multi-

lineage differentiation in three pathways such as osteogenic, adipogenic and 

chondrogenic ones. The differentiation into these lineages is a gold standard for 

MSC identification and any cell-based product should at least meet this requirement 

in order to be classified as MSCs (Dominici et al., 2006). For this purpose MSCs are 

cultured in a specific induction medium for 2-3 weeks to induce differentiation into 



particular types of cells. Then they are stained for calcium, lipids and proteoglycans 

to demonstrate whether the cells have functionally specialized into osteocytes, 

adipocytes and chondrocytes, respectively (Fig. 1). The potential of MSCs for 

neuronal differentiation and cardiomyoblasts has also been used as criteria in some 

studies; however, these differentiation types are not used as a routine method to 

determine biologic activity of MSCs. 

 

3. Stem cell treatments for ocular disorders and injuries 

 

3.1 Stem cell use in retinal and optic nerve disorders 

When treating degenerative eye disorders, MSCs are known to have a 

protective effect on ganglion cells of the retina and to stimulate regeneration of their 

axons in the optic nerve with paracrine factors they secrete. MSCs mainly provide a 

trophic supply of axonal neuroprotection and regeneration in damaged cells of the 

retina either by direct secretion of neurotrophic factors or by possible stimulation of 

its endogenous cells which provide additional paracrine supply and/or effects of cell 

replacement when activated (Mead et al., 2015). To date positive effects of MSCs 

have been conclusively established in the treatment of retina endothelial defects 

(Zhang et al., 2015).  

The administration of MSCs is also one of modern methods to treat diabetic 

retinopathy. A pilot clinical study conducted in China (No. ChiCTR-ONC-

16008055; chictr.org.cn) showed intravenous administration of BM MSCs to be safe 

and effective in this pathology (Gu et al., 2018). Two of the seventeen patients 

showed differing adverse effects, one showed an increase in creatine kinase levels 

and the other patient showed increased creatinine levels but these decreased after 

transfusion, unfortunately the study did not have a placebo control group and it also 

had a relatively short patient follow-up period of six months. Interestingly, AD 

MSCs implanted into the vitreous cavity in a diabetic retinopathy murine model 

mainly differentiated into pericytes when associating and maintaining the retinal 

vasculature which indicates a unique role of ADSCs in the treatment of diabetic 



retinopathy (Mendel et al., 2013). Adipose-derived stem cells were also shown to 

stabilize retinal microvasculature in a murine model of diabetic retinopathy and went 

on further to show that the cells from diabetic mice were less effective than those 

from healthy donors (Cronk et al., 2015) 

Age-related macular degeneration is the most common cause of blindness in 

developed countries. BM MSCs were shown in pre-clinical models of this 

degenerative disorder of human retina to have a protective effect on photoreceptor 

cells (Inoue et al., 2007; Wang et al., 2010). Although BM MSCs when injected into 

a subretinal area can differentiate into photoreceptor protein expressing cells, their 

ability to differentiate into functionally useful retinal cells is questionable. Their 

action is considered to be largely related to paracrine effects due to a release of 

neurotrophic factors (NTFs). NTFs are a family of proteins that are involved in 

regulating the growth, functioning and survival of neurons and other cells of the 

nervous system. Thus, BM MSC-based therapy can exert positive effects on the 

recipient's cells by producing cytokines and neurotrophic factors and alter a 

neurodegenerative process by means of immunomodulatory activity (Chichagova et 

al., 2018). Phase 2 results from eight patients (review number 56733164/203) with 

AD MSC implantation treatment for dry-type age-related macular degeneration and 

Stargardt’s macular dystrophy showed no ocular or systemic complications and all 

experienced enhanced vision improvement (Oner et al., 2018). These disorders are 

of particular importance as there are no approved therapy to cure them presently, 

therefore finding alternative therapies is essential. Although treatments such as 

injections of anti-VEGF, verteporfin photodynamic therapy and steroids slow 

progression of age-related macular degeneration, other technologies need to be 

explored. In addition these methods still carry the risk of adverse events including 

endophthalmites, cataract and retinal detachment and levels of 50% of patients 

discontinuing treatment have been reported in a retrospective study, with 47% of 

these due to poor treatment responses (Kataja et al., 2018). Therefore there is a great 

need to improve treatment types, efficacy and outcomes.  



MSCs can be used to treat both acute and chronic ocular disorders. For 

example, an injection of BM MSCs into the anterior chamber in rodent models 

effectively decreased the intraocular pressure in experimental open-angle glaucoma. 

Researchers thought this profound effect to be due to paracrine factors of MSCs. 

Moreover, MSCs and factors they secreted induced reactivation of a pool of 

progenitor cells in the ciliary body and enhanced cell proliferation. Proliferating 

cells were observed within the camber angle for at least a month (Manuguerra-Gagne 

et al., 2013). 

 

3.3 Ocular injuries 

BM MSCs are capable of differentiating into specific keratocytes of the 

cornea which has been confirmed by low expression levels of markers specific for 

cornea epithelial cell phenotypes (Harkin et al., 2015). In cornea chemical burn 

models, MSCs exert their paracrine activity in a damaged cornea as anti-

inflammatory and anti-angiogenic effects. Autologous BM MSCs subconjunctively 

injected to rats with a chemical burn of the cornea are known to promote 

regeneration of the corneal epithelium, to reduce inflammation and 

neovascularization, and to increase the expression of anti-inflammatory cytokines 

(Ke et al., 2015; Sharma et al., 2018). There was a similar positive effect (Fig 2) 

when allogenic BM MSCs were subconjunctively injected into cats with traumatic 

corneal ulcers (Zakirova et al., 2015). Intravenous administration of BM-MSCs to 

mice with corneal chemical burns also stimulated regenerative processes in the site 

of injury as compared to the control group without cell transplantation (Lan et al., 

2012). Similarly in a rabbits with alkali burns those treated with AD MSCs or BM 

MSCs showed that antioxidant enzymes were restored, corneal reepithelialization 

was observed alongside reduced neovascularization after 15 days in comparison to 

controls (Cejka et al., 2016). Allogenic AD MSCs implanted subconjunctively also 

improved clinical manifestations of eosinophilic keratitis in cats. Feline eosinophilic 

keratitis is a chronic disease of the cornea caused by an immune response to an 

unknown antigenic challenge. None of the 5 implanted cats had systemic or local 



complications over the 11-month follow-up. The state of the cornea and conjunctiva 

improved without any signs of regression or worsening (Villatoro et al., 2018). It is 

also known that limbal epithelial stem cells play several roles in ensuring that the 

corneal epithelium is maintained, including repopulation of the cells (Yoon et al., 

2014). Work in vitro and on rabbit cornea burns models has shown that use of 

collagenase enzymes promotes a more suitable environment for limbal stem cells 

following cornea damage (Gouveia et al., 2019). By preventing YAP activation, the 

natural phenotype of these cells was maintained whilst having no negative effects 

on healthy cells, although naturally more clinical trials need to be undertaken to 

further assess efficacy and safety in people. 

The cornea is not the only area of interest for MSC treatment. Light-induced 

retinal injuries in rats have also shown MSC responses including increased 

production of neutrotropic factor expression within the cells in response to injury, 

with basic fibroblast growth factor likely to be involved in this mechanism (Xu et 

al., 2013). Lacrimal glands in rabbits show progenitor cell reactions and epithelial-

mesenchymal transitions following ligation-injury of the excretory duct (Lin et al., 

2017). A study on canine keratoconjunctivitis sicca treatment using allogeneic AD 

MSCs showed that in mild-moderate cases eyes reverted to a healthy state 

(Bittencourt et al., 2016). Most of the severe cases showed improvements in tear 

production with one patient regaining clinically normal levels however one patient 

did not respond to treatment at all. In addition no short term (7-28 days) or long term 

(6 and 12 months) adverse effects were observed in any of the 15 patients.  

 

3.4 Cornea and ocular surface disorders 

Dry eye syndrome is one of the most common eye disorders. Its worldwide 

prevalence ranges from 7% to 33% depending on disease diagnosis management and 

the population demographics investigated (Lin et al., 2003; Moss et al., 2000). 

Causes of this syndrome are multiple, however, inflammation on the eye surface 

plays an essential role in its pathogenesis. The therapeutic potential of MSCs was 

studied in a dry eye syndrome murine model caused by an intraorbital injection of 



concanavalin A (Lee et al., 2015). The results showed that periorbitally injected 

MSCs reduced an infiltration with CD4 (+) Т-cells and decreased inflammatory 

cytokine levels in the intraorbital gland and on the eye surface. In addition, MSCs 

stimulated the formation of a lacrimal fluid and significantly increased the number 

of goblet cells in the conjunctiva. The study demonstrated the integrity of the corneal 

epithelium when injecting MSCs. No adverse effects were reported but the authors 

did highlight that some immune-modulatory effects of MSCs are species-specific 

which highlights the need to undertake trials in differing species. A separate study 

in rats similarly showed increased secretory granules and goblet cell numbers using 

topically applied MSCs (Beyazyildiz et al., 2014; Lee et al., 2015). These results 

formed the conclusion that MSCs can be used to treat a number of ocular surface 

diseases when inflammation plays a key role in the pathogenesis (Beyazyildiz et al., 

2014; Lee et al., 2015). The implantation of allogenic AD MSCs around lacrimal 

glands significantly improved the manifestation of clinical symptoms in dogs with a 

dry eye syndrome, with the effect being stable over the study period. There were no 

negative effects on the cornea or signs of regression or deterioration. The animals 

tolerated cell administration well and none of them had any systemic or local 

complications during the study (Villatoro et al., 2017; Villatoro et al., 2015).  

 

4. Advancing stem cell therapy in veterinary medicine 

 

The use of MSCs is rapidly expanding in veterinary medicine outside of 

ophthalmology, which may also be applicable to ocular disorders and injuries. One 

example is the use of AD MSC in equine bone spavin treatment trials in comparison 

to horses undergoing convention steroid treatment and a control group who were 

limited only in their movement (Nicpon et al., 2013). The AD MSCs cultivated in 

vitro showed progressive reductions in lameness, as did the steroid group in contrast 

to the control group, in addition the treatment proved to be safe. Similar results were 

observed in horses with superficial flexor tendon injuries treated with AD MSC 

combined with autologous platelet concentrate in comparison to controls (Marycz et 



al., 2012). Indeed it may be possible that conventional treatments or even more 

recent advances in gene therapy such as those observed in equine tendon injuries 

(Kovac et al., 2017, 2018), could be utilized in conjunction with the stem cell 

therapies discussed above in order to enhance proliferation, increase wound healing 

and reduce recovery time.   

The use of MSC has advanced dramatically over the years as have the methods 

used to increase and collect them. A study on mice and people showed that exercise 

increases hematopoietic stem/progenitor cells (HSPCs) and very small embryonic-

like stem cells mobilization (Kroepfl et al., 2012; Marycz et al., 2016). Interestingly 

this mimics the observations seen in people following acute myocardial infarction, 

strokes and other disorders (Paczkowska et al., 2009; Wojakowski et al., 2009). 

Linking these together, application of stem cells, increased mobilization of stem 

cells, understanding the cascades and mechanisms behind these processes and 

applying complimentary therapies may offer ways in which MSC therapy can be 

enhanced in the future for all applications including ocular. Other mechanisms of 

improving stem cell therapies have been suggested including the use conventional 

treatments alongside stem cells, assessing proximity of delivery to the site of 

treatment, and overcoming immune rejection by using host cells, thus overcoming 

traditional graft complications (Cislo-Pakuluk and Marycz, 2017).  

Therapeutic administration of MSCs can be applied to the eye in a number of 

modes including topical, subconjunctival, intraperitoneal [IP] and intravenous [IV]. 

A recent paper looking at administration following corneal injury in mice has 

indicated that in this incidence subconjunctival and IV showed superior therapeutic 

efficacies in terms of epithelial integrity, accelerated tissue restoration, and reduced 

fibrosis, corneal opacity and inflammation in comparison to topical or IP (Shukla et 

al., 2019). Therefore although topical delivery may be easily accessible for the 

cornea, it may not provide the highest efficacy in comparison to other methods. Cell 

viability and function, achieving cells retention in the affected area and providing a 

cell matrix may also affect efficacy. Techniques such as delivery within fibrin glue 

in rats and the use of a biologically active 3D matrix with MSCs modified for 



increased production of VEGF165 and FGF2 in dogs have provided methods in 

which to enhance efficacy (Masgutov et al., 2019; Zakirova et al., 2019). 

Understanding the mechanisms has also resulted in MSC derived characteristics or 

structures such as extracellular vesicles being used in pre-clinical and clinical trials 

(Galieva et al., 2019). Once example is a macular hole clinical trial using 

extracellular vesicles which has been approved by the Food and Drug 

Administration (NCT03437759). Most animal clinical trials are still ongoing and the 

many hundreds of human clinical trials are mostly in early stages therefore the full 

range of clinical outcomes, including adverse effects are yet to be determined. It is 

widely regarded that the main hurdles to overcome when considering MSC therapies 

are donor heterogeneity, ex vivo expansion, immunogenicity, and cryopreservation 

(Galderisi and Giordano, 2014; Galipeau, 2013), this is likely to be the case in both 

people and veterinary patients.  

 

5. Concluding remarks 

 

The last decade has demonstrated that methods based on MSC transplantation 

are safe and effective. The diversity of approaches to isolate, culture and administer 

SCs determines the development of cell-based technologies for the treatment of 

numerous eye disorders depending upon the pathology. The use of AD- and BM-

derived MSCs to treat certain ocular diseases is scientifically proven and evidence-

based. Ensuring that techniques are simple and reproducible are especially important 

as this will provide a quick and effective introduction into routine clinical practice. 

Thus, ongoing scientific experiments/research and activities to introduce MSCs into 

a clinical practice offer great opportunities for cell-based therapy and highlight an 

essential role of MSCs in the evolution of medicine and biology.  
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Figure legends 

  



 

Figure. 1 Morphology of human mesenchymal stem cells derived from 

adipose tissue during the differentiation protocols. a) Human mesenchymal stem 

cells derived from adipose tissue. b) Adipogenic differentiation - cell nuclei are 

stained with Dapi (blue), adipose tissue inclusions within cells dyed in Nile Red 

(yellow). c) Osteogenic differentiation - Von Kossa staining, the calcium containing 

area is stained in black. d) Chondrogenic differentiation- acid mucopolysaccharides 

of the extracellular matrix formed within the differentiation of AD MSCs into 

chondrocytes are stained with Аlcian blue.  

  

  



 

Figure 2. Mesenchymal stem cell treatment of corneal ulcers. Traumatic 

corneal ulcers in cats treated with routine methods (a, b) and subconjunctival 

transplantation of allogenic AD MSCs (c, d). Deep ulcers of the cornea 

accompanied with pronounced blepharospasm, edema of the eyelids, tenderness, 

and purulent secretion were diagnosed in cats (a, c). b) At 25 days in animals 

treated with classical methods symptoms such as tenderness, blepharitis, 

blepharospasm, slight purulent and mucous secretion, keratitis and deep vascularity 

of the cornea were present.  d) At 25 days the animals transplanted with AD MSCs 

had edema of the eyelids, tenderness and blepharospasm; there was no purulent 

and mucous secretion, a small scar rather that a corneal defect was visualized.  
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